

Steve Alpern, Thomas Lidbetter

Searching a variable speed network

Article (Accepted version)
(Refereed)

Original citation:
Alpern, Steve and Lidbetter, Thomas (2014) Searching a variable speed network. Mathematics
of Operations Research, 39 (3). pp. 697-711. ISSN 0364-765X

DOI: 10.1287/moor.2013.0634

© 2014 INFORMS

This version available at: http://eprints.lse.ac.uk/59638/

Available in LSE Research Online: November 2015

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE
Research Online website.

This document is the author’s final accepted version of the journal article. There may be
differences between this version and the published version. You are advised to consult the
publisher’s version if you wish to cite from it.

http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=t.r.lidbetter@lse.ac.uk
http://pubsonline.informs.org/journal/moor
http://pubsonline.informs.org/journal/moor
http://dx.doi.org/10.1287/moor.2013.0634
https://www.informs.org/
http://eprints.lse.ac.uk/59638/

Abstract

A point H lies on a network Q according to some unknown distribution.
A Searcher starts at a given point O of Q and moves to find H at speeds
which depend on his location and direction. He seeks the randomized search
algorithm which minimizes the expected search time. This is equivalent to
modeling the problem as a zero-sum hide-and-seek game whose value V is
called the search value of (Q,O).
We make a new and direct derivation of an explicit formula V = (1/2) (τ + ∆)

for the search value of a tree, where τ is the minimum tour time of Q and
∆ (called the incline of Q) is an average over the leaf nodes i of the differ-
ence δ (i) = d (O, i) − d (i, O) , where d (x, y) is the time to go from x to y.
The function δ can be interpreted as height, assuming uphill is slower than
downhill. We then apply this formula to obtain numerous results for general
networks. We also introduce a new general method of comparing the search
value of networks which differ in a single arc. Some simple networks have
very complicated optimal strategies which require mixing of a continuum of
pure strategies. Many of our results generalize analogous ones obtained for
constant velocity (in both directions) by S. Gal, but not all of those results
can be extended.
Keywords: search, network, game, minimax, search game, immobile hider

Searching a Variable Speed Network

Steve Alpern and Thomas Lidbetter
Department of Mathematics

The London School of Economics
Houghton Street, London WC2A 2AE, UK

November 2, 2012

1 Introduction

This paper analyzes the search game played between an immobile Hider and
a mobile Searcher on a finite network Q with a distinguished root node O.
The Hider simply picks a point H in Q (the hiding place). Q is considered
as a subspace of Euclidean space, so that the Hider is not restricted to the
nodes of Q, but can also choose a point on the arcs of Q. The Searcher
chooses a path S = S (t) in Q which starts at O, covers Q, and satisfies a
time constraint

d (S (t1) , S (t2)) ≤ t2 − t1, for t1 < t2,

where d (x, y) is a given quasimetric (satisfying all axioms for a metric except
possibly symmetry in x and y) denoting the minimum time required to go
from x to y. As usual, dW (x, y) denotes the travel time within the subset W.
If d is symmetric (d (x, y) = d (y, x)), and thus a metric, then we say that
Q is time-symmetric. The payoff of this zero-sum game (to the minimizing
Searcher) is the capture time T given by

T (S,H) = min {t : S (T) = H} .

Although both players have infinite pure strategy sets, the value V of this
game Γ = Γ (Q,O, d) exists by the usual application of the minimax theorem
of Alpern and Gal [5], and we call this number V (Q) the search value of Q
(or of Q,O, d). In general, both players will require mixed strategies. In the
case where Q is a tree studied in Section 4, there are only finitely many un-
dominated pure Hider strategies —namely the leaf nodes. So there the usual
minimax theorem would suffi ce. As long as there is a cycle in the network,
all points in the cycle are undominated, and so even the undominated Hider
strategies are infinite. In some cases the optimal mixed strategy has infinite
support, as in the ‘two-arc’network whose solution is given in Theorem 17.
In keeping with the original notional convention of S. Gal, we use upper case
S = S (t) and H for pure strategies and lower case s and h for mixed strate-
gies. A mixed strategy for the Hider is simply a probability distribution over
Q.We consider such a distribution as a probability measure, as that notation
is easier, with h (W) denoting the probability the Hider is in the subset W
of Q. For mixed Searcher and Hider strategies s and h we define T (s, h) as
the expected search time

T (s, h) =

∫
T (S,H)d(s× h),

1

where s× h is the product measure.
The game Γ has been widely studied for time-symmetric networks since

its formulation by Rufus Isaacs [15]. In this context it has been completely
solved for trees (Gal [11]), weakly cyclic networks (Reijnierse and Potter [21]),
weakly Eulerian networks (Gal [13]) and networks with an odd number of
identical arcs between two nodes (Pavlovic [19]). For general networks there
are methods of approximating the solution (Anderson and Aramedia [8]) and
analyses of the complexity of the solution (von Stengel and Werchner [22]).
More applied work in this area has been carried out by Jotshi and Batta [16].
The topic of search games has been the subject of books by Gal [12], Alpern
and Gal [6], and Garnaev [14].
The time-symmetry assumption has recently been dropped in the article

[2] of the first author on trees, which gave a recursive method of determining
the search value of any tree. Here, we extend that work to general networks
by first determining an explicit formula for the search value of a tree and an
improved analysis of optimal responses. Our new search value formula for
trees is V = (1/2) (τ + ∆) , where τ (called the tour time) is the minimum
time required to tour the tree and ∆ (called the incline of Q) is a measure of
the asymmetry of the quasimetric d. We define the height δ (x) of a point x
in Q as the time difference in getting to and from x with respect to the root
O, that is, δ (x) = d (O, x) − d (x,O) . The incline ∆ is a weighted average
of the heights of the leaf nodes of the tree. The terminology is based on the
idea that going up takes more time than going down. The formula for V
is easy to obtain independently of the previous work, though we could also
have obtained it easily from the recursions in [2]. We choose to adopt the
former method so that the arguments of this paper are self contained. We
use this formula as one of our tools to extend the analysis of variable speed
travel from trees to general networks.
Another idea introduced in this paper is the Arc-Adding Theorem, The-

orem 13, which deals with the question of how the search value of a network
changes when a new arc is added between points of the original network. By
using the Arc-Adding Theorem to relate the search value of a network to the
search value of an associated tree and then applying the search value formula
for trees, we are able to find or bound the search values of several classes of
networks. Our methods also yield a new explicit formula for the value of the
Kikuta search game [17] with node searching costs and a simpler derivation
of the solution to the foraging (find-and-fetch) search problem of the first
author [3].

2

The main results of this paper concern the determination of the value
(or lower bounds on it) for networks other than trees. The main tools for
this analysis are the Arc-Adding Lemma and the value formula for trees. We
first obtain a complete solution (Theorem 16) for the search game played on
a circle where the distance function d(O, x) around the circle is concave in
both directions. We then consider the more complicated problem where the
circle consists of two arcs from the root to its antipode which have identical
travel time functions. It turns out that when the antipode is ‘downhill’
from the root the solution is quite complicated, requiring both players to
use a distributions over a continuum of pure strategies. In particular, the
Searcher sometimes goes all the way around the circle but sometimes reverses
direction before completing the tour. This is in stark contrast to the way Gal
found that Eulerian networks are searched for time-symmetric (not variable
speed) networks. We then obtain lower bounds on the value of arbitrary
networks by a new technique called identification-cutting-deleting involving
(i) identifying points on the network, (ii) cutting the resulting loops that
are formed and (iii) removing the ‘larger’ of the two resulting rays. This
process gives the general lower bound of Theorem 18, which can be shown
(Corollary 19) to generalize a result of Gal [11] for time-symmetric networks.
For weakly Eulerian networks, we obtain (Proposition 22) the result that the
tree formula (τ +4) /2 is a lower bound if a family of points of the network
all lie downhill from the root.
The paper is organized as follows. Section 2 gives our assumptions and

notations for travel times. Section 3 presents the general principle of search-
ing regions of higher density first. Section 4 gives our derivation of the search
value formula for a tree and applications to the Kikuta game [17]. Section
5 presents the Arc-Adding Theorem, discussed above. Section 6 analyzes
the simplest non-tree, a network consisting of a single loop (a circle). This
is the only section where variations of travel times within an arc are of im-
portance. Section 7 looks at the circle as consisting of two identical arcs
between two points and shows that in certain cases the solution is very com-
plicated, involving backtracking and a continuum of pure strategies. Section
8 uses the Arc-Adding Theorem and the search value formula for trees to
obtain lower bounds on the search value of general networks and on weakly
Eulerian networks. Section 9 concludes.

3

2 Assumptions and Notations for Travel Times

The most natural way to define travel times is by having a notion of arc length
and to specify two speed functions (one for each direction) along the arcs,
piecewise continuously. However it turns out to be easier to work directly
from the quasimetric d (x, y) giving the travel time from x to y.
In most cases considered here (in particular, for trees), we will only need

to know the travel times from one end of an arc (a−) to the other (a+). To
this end, we define forward and reverse travel times on a, denoted Fa and
Ra, by

Fa = da
(
a−, a+

)
, Ra = da

(
a+, a−

)
, and their difference by Da = Fa −Ra.

(We require the subscript in the form da because the shortest time between
a− and a+ might not be via the arc which connects them.) The orientation
of arcs involved in defining Fa and Ra is a matter of choice: for trees, we
will always orient arcs away from the root O. For general networks we often
choose the orientation so that Fa ≥ Ra.

3 Searching higher density regions first

This section deals with the problem of searching for an object whose distrib-
ution is known. In this case the search density, or just density, of a region of
Q is defined as the probability the Hider is in the region divided by the time
taken to search the region. We now give a general analysis of this well known
principle of searching the higher density region first, taking the particular
version established as Proposition 3 of Alpern and Howard [7], and also used
in this form in Alpern [2].
We begin by fixing a network Q and a Hider distribution (mixed strat-

egy) h on Q. If S (t) is a Searcher path with cumulative capture distri-
bution G (t) = Pr (T (S,H) ≤ t) = h (S [0, t]) , then the expected search
time, T (S, h) is given by T (S, h) =

∫∞
0
t dG (t) . Suppose that a < b < c,

S (a) = S (b) = S (c) and that S searches (probabilistically) disjoint re-
gions A and B of Q in time intervals [a, b] and [b, c] , that is, h (S [a, c]) =
h (S [a, b]) + h (S [b, c]) . Here we use measure and function notation so that
for example h (S [a, c]) represents the probability that the Hider lies in the
portion of Q covered by the path S between times a and c. The following
theorem considers the question of when the Searcher will do better (reduce

4

T) by searching in the opposite order. The answer is in terms of what we
call the search density. The search density of A is the probability that the
Hider is in A (that is, h (A)) divided by the time required to search A (in
this case b− a).

Theorem 1 (Search Density) Fix a network Q and a Hider distribution
h. Suppose S (with cumulative capture distribution G) searches disjoint
regions A and B for the first time during time intervals [a, b] and [b, c] ,
while S ′ searches in the other order (B during [a, a+ (c− b)] and A during
[a+ (c− b) , c]).

If
G (c)−G (b)

c− b ≥ G (b)−G (a)

b− a , then T (S, h) ≥ T (S ′, h) .

In other words the search with higher search density should be carried out
first. If two searches have the same search density they can be carried out
consecutively in either order.

The proof of this theorem is straightforward, and can be found in [2].

4 The Search Value of a Tree

In this section we take Q to be a rooted tree, and for simplicity, a binary tree
(one with at most two arcs out of any node, degree at most three). Any tree
can be made into a binary tree by adding arbitrarily small additional arcs,
so this assumption is not critical. We assume that all arcs are oriented away
from O.
An earlier paper [2] gave a recursive method for computing the search

value of a tree. Here we present for the first time an explicit formula for the
search value, using the notion of the height of a point x in Q as the difference
between the time to reach x from O and the time to return to O from x.
That is, the height δ(x) of a point x (relative to O which has height 0) in Q
is given by

δ(x) = d(O, x)− d(x,O). (1)

It is clear that the Hider should only hide at leaf nodes, as all other points
of Q are dominated by these. It was already shown in [2] (and by Gal [11]
for time-symmetric trees) that the optimal hiding distribution over the leaf

5

nodes is the Equal Branch Density distribution e, which we will formally
define later. We define the incline of Q, denoted ∆, as the mean height of
the leaf nodes, with respect to the distribution (notated as a measure) e, that
is

∆ =
∑
i∈L

e (i) · δ (i) .

For a tree, the tour time τ is simply the sum of all the forward and reverse
times of its arcs, τ =

∑
arcs a (Fa +Ra) . The main result of this section is

the value formula for trees:

V =
1

2
(τ + ∆) .

4.1 Subtrees and optimal strategies

This subsection shows how our notions of e and∆ can be adapted to subtrees
and defines the optimal strategies for the players. By a subtree of a tree Q
we mean a subset of Q which is itself a tree.

Definition 2 (subtrees σz, EBD distribution e) If z is a node or arc of
a rooted tree Q,O, let σz,Oz denote the rooted subtree consisting of all points
of Q whose unique path to O intersects with z; the root Oz is the unique
closest point to O in σz. Define the tour time τ z to be the time taken to tour
σz (the sum of all the forward and reverse arcs of σz). The EBD distribution
(measure) e is the unique one concentrated on the leaf nodes that at every
branch node x with out arcs a and b gives equal search density to the two
branches σa and σb. That is,

e (σa)

τa
=
e (σb)

τ b
, or simply

e(σa)

e(σx)
=
τa
τx

=
τa

τa + τ b
. (2)

Figure 1 illustrates the calculation of leaf node measure e and height δ
on the given tree, which are indicated above each of the four leaf nodes. We
recall the convention of putting the travel times Fa and Ra to the left and
right of the arc a. The right side is one fourth the tour time of the tree, so
its EBD measure e is 1/4, while the left side’s is 3/4. Similar ideas give the
secondary division of 1/4 into two weights of 1/8, and of 3/4 into two weights
of 1/2 and 1/4. The leftmost δ is calculated as (4 + 7) − (5 + 2) = 4. The
weighted average of the leaf node heights δ (i) is

∆ =
1

2
(4) +

1

4
(0) +

1

8
(−1) +

1

8
(+1) = 2, so V =

1

2
(τ + ∆) = 17. (3)

6

For the moment, ignore the information about arcs a and b. Readers familiar
with the earlier paper [2] will note that there the value (of the full tree) could
not be calculated without first analyzing the values of the subtrees, which is
not what we do here. This approach is forward looking whereas the earlier
was backwards looking (using backwards recursion of the value). A similar
difference in approach to the Searcher branching pattern (the βs) will be seen
later on.

7 5 2 4 1 2 2 1

4
2 1

1

e = 1/2,
N = 4

e = 1/4,
N = 0

e = 1/8,
N = ?1

e = 1/8,
N = +1

a b

O

Aa = 8/3,KÝaÞ = 13
24

Ab = 0,KÝbÞ = 11
24

b = 32, A = 2, V = 17
Figure 1. Tree with solution method indicated.

It is useful to extend our notions of e, δ,∆,L to their values on subtrees.
Definition 3 For any arc or node z, let Lz = L ∩ σz denote the set of leaf
nodes of σz, let ez = e/e(σz) denote the probability measure induced by e on
σz, and let δz(x) = d(Oz, x) − d(x,Oz) be the relative height of a point x in
σz. Define the incline ∆z of σz by

∆z =
∑
i∈Lz

ez(i)δz(i).

Note that we may rewrite ∆z in terms of the arcs a in σz as

∆z =
∑
i∈Lz

ez(i)δz(i) =
∑
i∈Lz

ez(i)
∑

{arcs a:z≤a<i}

Da

=
∑

arcs a∈σz

Da

∑
i∈La

ez(i) (since i ∈ Lz and z ≤ a < i ⇐⇒ a ∈ σz and i ∈ La)

=
∑

arcs a∈σz

ez(σa)Da (4)

7

We now need a technical result relating to the inclines.

Proposition 4 If a node x has outward arcs a and b, then

(i) ∆x = τa
τx
·∆a + τb

τx
·∆b, and

(ii) |∆a|+ |∆b| ≤ τx.

Proof. For (i) we calculate

∆x =
∑
i∈Lx

ex(i)δx(i) =
∑
i∈La

ex(i)δx(i) +
∑
i∈Lb

ex(i)δx(i)

=
∑
i∈La

ex(σa)ea(i)δx(i) +
∑
i∈Lb

ex(σb)eb(i)δx(i)

= ex(σa) ∆a + ex(σb) ∆b =
τa
τx
·∆a +

τ b
τx
·∆b by (2).

For (ii), we calculate

|∆a|+ |∆b| ≤
∑

arcs c∈σa

|ea(σc)| · |Dc|+
∑

arcs c∈σb

|eb(σc)| · |Dc| (by (4))

≤
∑

arcs c∈σx

|Dc| =
∑

arcs c∈σx

|Fc −Rc| ≤
∑

arcs c∈σx

|Fc|+ |Rc| = τx.

Definition 5 (Depth-first (DF) path) A depth-first (DF) path in a tree
is one that, whenever arriving at a node, always takes an unsearched outward
arc, if available; otherwise it takes the unique reverse arc.

Now we give an explicit definition of the strategy β that was defined
recursively in [2] and turns out to be optimal for the Searcher.

Definition 6 (Biased depth-first (BDF) strategy β) At every branch node
x with out arcs a and b, define a probability distribution β over these arcs by
the formula

β (a) =
1

2
+

1

2τx
(∆a −∆b). (5)

(Since Proposition 4 (ii) shows that |∆a| + |∆b| ≤ τx, this is indeed a prob-
ability.) We interpret the strategy β, called the Biased Depth-first (BDF)
strategy, as follows:

8

1. When arriving at a branch node for the first time, choose an outward
arc a with probability β (a) .

2. When arriving at a branch node the second time, choose the unique
untraversed outward arc.

3. When arriving at a branch node the third time, choose the unique in-
ward arc.

The strategy β is an example of a branching strategy, which is any mixed
strategy that follows the three rules listed above (but perhaps with a proba-
bility function different from β). Note that branching strategies produce as
sample paths only DF paths. For the tree illustrated in Figure 1, we have
∆a = (2/3) (4)+(1/3) (0) = 8/3, and∆b = (1/8) (−1)+(1/8) (1) = 0, so that
β (a) = 1/2 + (8/3) /64 = 13/24. Note in particular that we computed the
optimal initial branching (at the root) without working backwards (unlike
our recursive approach in [2]).

4.2 A simple formula for the search value of a tree

We now show that the strategy pair (β, e) , the Biased Depth-first strategy
for the Searcher and the Equal Branch Density strategy for the Hider, form
a Nash equilibrium. Since this is a zero sum game this will imply they are
optimal strategies. The formula for the value is then obtained by calculating
the expected time for the Searcher strategy β to reach any leaf node. A form
of this argument for time-symmetric trees is given in [3] - this idea is exactly
the same. The following lemma answers a question arising from [2] as to the
full set of optimal responses to e, which could not be answered in that paper.

Lemma 7 Against the EBD Hider distribution e, the optimal responses for
the Searcher are precisely the DF searches. Consequently any mixture of DF
searches, such as β, is also an optimal response to e.

Proof. Suppose S is optimal against e and is not DF. We know that S must
search the leaf nodes in some order geodesically, moving on the shortest path
from one to another. Let x be a node furthest from O for which S searches
the reverse arc c (leading to prior node y) when only one of the forward arcs,
a but not b, has been searched. Suppose S reaches x at time t1, then goes

σa, cS
′c, σb,

9

for some path S ′. The paths separated by commas are three disjoint searches
(with disjoint arc) which start and end at the node x, so they could be carried
out in any order. Since S is optimal, the Search Density Theorem (Theorem
1) implies that their search densities must be non-increasing. The definition
of e ensures that the search densities of σa and σb are the same (they are
the branches at a common node), so by the previous remark their density
must be the same as that of the intervening search cS ′c. Now consider the
behaviour of S from the earlier time that y is reached just before S goes to
x. Here there are three arc disjoint paths, starting and ending at y, carried
out in the order

cσac, S
′, cσbc.

But these are not in non-increasing order of search density, as S ′ has a higher
search density than cS ′c and the other two have lower search densities than
σa and σb. Thus S is not optimal.
Next we want to show that all DF searches S have the same expected time

T (S, e) against e, so that they are all optimal responses. Consider the graph
with the DF searches as nodes and two searches Sa,b and Sb,a adjacent if they
are identical except that at one node x the first searches the two branches
σa and σb consecutively in that order, while the second uses the other order.
Note that by the Search Density Theorem and the definition of e, Sa,b and
Sb,a give the same value of T against e. Since this graph is connected, all DF
searches have the same value of T against e. In other words, any two DF
searches can be transformed into each other by a sequence of searches which
differ only in the order they search at a single node, and hence have the same
capture time.
A similar result is known for time-symmetric networks [3].

Lemma 8 Using the BDF strategy β, the expected time T for the Searcher to
reach each leaf node is 1

2
(τ + ∆). Consequently the leaf nodes are the optimal

responses to β. Hence any measure concentrated on leaf nodes, such as the
EBD strategy e, is also an optimal response to β.

Proof. We prove this by induction on the number of arcs. If the tree Q has
a single arc a, then clearly T = Fa. On the other hand τ = Fa + Ra and
∆ = Fa −Ra, so τ + ∆ = 2Fa. Assume the result is true for all trees with a
smaller number of arcs than Q. There are two cases: either O is a branching
node, or it is adjacent to only one arc.

10

Take the first case, that O is a branching node, with outward arcs a and b.
Then applying the induction hypothesis to the subtree σa, twice the expected
search time 2 · T (β, i) to reach a leaf node i in σa is given by

β (a) · (τa + ∆a) + β (b) · (2τ b + (τa + ∆a)) .

By (5), this expression is equal to(
1

2
+

∆a −∆b

2τ

)
· (τa + ∆a) +

(
1

2
+

∆b −∆a

2τ

)
· (2τ b + (τa + ∆a))

= (τa + ∆a) +

(
τ b +

τ b (∆b −∆a)

τ

)
= (τa + τ b) +

(
(τa + τ b) ∆a + τ b (∆b −∆a)

τ

)
= (τa + τ b) +

(
τa∆a + τ b∆b

τ

)
= τ + ∆, by Proposition 4 (i).

A similar argument applies to leaf nodes in σb.
Now consider the second case, that O is adjacent to a single arc a leading

to branching node x. Then applying the induction hypothesis to σx,

T = Fa + T (σx) = Fa +
1

2
(τx + ∆x) = Fa +

1

2
((τ − Fa −Ra) + (∆− (Fa −Ra)))

=
1

2
(τ + ∆) , where T (σx) denotes the expected time from x.

Theorem 9 The search value of a tree is half the sum of its tour time and
its incline,

V =
1

2
(τ + ∆). (6)

The Biased Depth-first strategy β is optimal for the Searcher, and the Equal
Branch Density strategy e is optimal for the Hider.

Proof. The two lemmas show that β and e are optimal responses to each
other, hence optimal strategies. Evaluating β at any leaf node thus gives the
value, as stated.

11

4.3 Uniqueness properties of optimal Searcher strate-
gies1

When the search region Q is a tree, we know from [2] that the EBD strategy
is the unique optimal Hider distribution, and that the strategy β that we call
the Biased Depth-First strategy in this paper is uniquely optimal among the
branching strategies for the Searcher. However, there may be other optimal
Searcher strategies that are not branching strategies. For instance, Gal’s
analysis [11] shows that for time-symmetric trees (whose arcs have equal
forward and reverse travel times), an equiprobable mixture of any Chinese
Postman Tour (any depth-first search returning to the root node at the end)
and its reverse tour, is optimal. This mixed strategy is known as a Random
Chinese Postman Tour (RCPT). Moreover, there may be a large number of
Chinese Postman Tours to choose from, each giving rise to a different optimal
mixed strategy. Despite the non-uniqueness of optimal strategies, distinct
optimal strategies do share some similarities in a ‘behavioural sense’, as we
explain in this section.
First observe that if we fix any binary branch node x of a time-symmetric

tree, then a Searcher who is following any RCPT will, upon reaching x for
the first time, choose each outward arc with probability 1/2, regardless of the
choice of RCPT. This uniqueness property generalizes (with 1/2 modified to
the branching probability) to arbitrary binary trees, but not otherwise. To
describe this generalization, we will use the following definition.

Definition 10 For a Searcher strategy s on a rooted tree Q, and a branch
node x of Q with outward arc a, let πs(a) be the probability that, on reaching
x for the first time, s takes the arc a first. We say two Searcher strategies
s1 and s2 on a tree Q are weakly equivalent if πs1(a) = πs2(a) for every
outward arc a of a branch node x.

For example, for the Biased Depth-First strategy β on a binary tree, if a
is the outward arc of some branch node, then πβ(a) = β(a). For non-binary
trees the Biased Depth-First strategy is undefined, but as we mentioned at
the beginning of Section 4, any tree can be modified to be a binary tree by
adding arcs of forward and reverse travel time 0. There are many ways this
can be done, giving rise to distinct optimal Searcher strategies which we show
may not be weakly equivalent. The following elementary result shows that

1We thank an anonymous referee for comments that led to the addition of this section.

12

uniqueness, up to weak equivalence, holds for binary trees. The positive part
is similar to the uniqueness of branching strategies and the negative part
depends on the way a non binary tree can be made binary by adding zero
length arcs.

Theorem 11 All optimal Searcher strategies on a rooted tree Q are weakly
equivalent if and only if Q is binary. Furthermore πs(a) is constant for
optimal Searcher strategies s if and only if a is one of two arcs from its base.

We will not give a formal proof of this theorem, but instead we explain
how it follows from another simple property, in this case shared by all opti-
mal Searcher strategies even for non-binary trees. This property is that the
expected time between reaching a node for the first time and taking a given
outward arc from this node is constant for all optimal Searcher strategies (as
long as the arcs have non-zero travel times). To see why this is the case, sup-
pose for some optimal Searcher strategy, a is an outward arc from a node x to
a node y, and let Tx→a be the expected time between reaching x for the first
time and taking the arc a. Since any optimal Searcher strategy is depth-first,
the value vx of the game played on the subtree σx is equal to the expected
time between arriving at x for the first time and reaching any leaf in σx, and
hence in σy. But this is also equal to the expected time between reaching
x for the first time and reaching y for the first time (that is Tx→a + Fa)
plus the value vy of the game played on σy. Hence vx = Tx→a + Fa + vy, so
Tx→a = vx − Fa − vy is constant for all optimal Searcher strategies.
When a node has only two outward arcs, this property implies that the

probability of taking a given outward arc is constant for all optimal Searcher
strategies, so that if a tree is binary, all optimal Searcher strategies must
be weakly equivalent. However, suppose a node x has three identical out-
ward branches beginning with arcs a, b and c. Then upon reaching x for
the first time, one optimal Searcher strategy might choose equiprobably be-
tween each possible order in which to take the outward arcs, and another
optimal Searcher strategy might choose equiprobably between a and b, and
then always choose c upon reaching x for the second time. In either case,
the expected time between reaching x for the first time and choosing a given
outward arc is the same. In general, it is not diffi cult to show that for a
non-binary tree, different choices of ‘binary modifications’always result in
different Biased Depth-first strategies that are not weakly equivalent. Theo-
rem 11 follows easily.

13

4.4 Application to the Kikuta game with search costs

We now consider the application of the theorem to the search game K =
K(Q,O) formulated by Kikuta [17] on a time-symmetric rooted tree Q,O.
Kikuta’s game is similar to Γ except that each node i is assigned a search
cost ci ≥ 0, with

∑
ci = C. When encountering a node, the Searcher can

either search it at cost (time loss) ci or bypass it (to search it later) without
incurring a cost. We have already observed in [2] that K(Q,O) is equivalent
to our game Γ on a time-asymmetric tree Q′. We obtain Q′ by replacing the
search costs with search arcs ai between each node i of Q and a new leaf
node i′ of Q′, with Fai = ci and Rai = 0, so that Dai = ci. We present here
for the first time an explicit formula for the value of Kikuta’s game, as a
corollary of our formula for the search value of a tree. Let τ be the tour time
of the original network, not including the search costs of the nodes.

Corollary 12 The value of Kikuta’s game K on a rooted time-symmetric
tree Q,O of total length µ and search costs ci totalling to C is given by

V = µ+
1

2

(
C +

∑
nodes i of Q

e (i′) · ci

)
. (7)

where e is the EBD distribution on the associated Q′. If the costs at all n
nodes of Q are equal to c, then V = (1/2) (τ + (n+ 1) c) and the Random
Chinese Postman Tour (and searching every node when you come to it) is
optimal.

Proof. Since V = V (K (Q,O)) = V (Q′, O) , and Q′ is a (time-asymmetric)
tree with no additional search costs, we have that the value V of Kikuta’s
game is equal to (1/2) (τ ′ + ∆′) , where τ ′ and ∆′ are the tour time and the
incline of Q′. Clearly

τ ′ = τ +
∑

nodes i of Q

(Fai +Rai) = τ + C = 2µ+ C

and ∆′ =
∑

nodes i of Q e (i′) · ci, establishing (7).
Now suppose all the ci = c and 1/2S1 + 1/2S2 is a RCPT, where S1 is a

Chinese Postman Tour and S2 is its reverse. Then for a fixed leaf node i, in
the sum T (S1, i) + T (S2, i), all non-leaf arcs contribute precisely their tour
time to the sum, and all leaf arcs except the one containing i contribute time

14

equal to c. The leaf arc containing i contributes time 2c. Hence, twice the
capture time, is given by

2T (1/2S1 + 1/2S2, i) = T (S1, i) + T (S2, i)

= τ + (n− 1)c+ 2c

= τ + (n+ 1)c

= 2V (Q′, O).

Hence the RCPT is optimal.
The case of equal search costs (but not the general case) can also be

tackled within the time-symmetric tree theory by adding time-symmetric rays
with travel times equal to c/2 at each node, observing that while this is not
equivalent to the Kikuta problem, it always finds the Hider at time c/2 earlier.
See [6]. This problem can also be attacked in the more diffi cult context of an
arbitrary Searcher starting point - see Baston and Kikuta [10]. Our methods
can be similarly applied to the foraging problem recently introduced by the
first author [3].

5 Adding arcs to a network

In this section we discuss new general ideas that may be applied to the study
of search games. They answer the question of how the search value V (Q,O)
changes when an additional arc is added between points ofQ. By repeated use
of these ideas, we can compare any network with an associated tree network,
to which we can apply the formula for the search value found in Section 4.
The idea of comparing general networks with trees goes back to Gal.
Suppose we add an arc to a network. How does the search value V (Q,O)

change (the root remains the same)? The following results give simple but
useful answers to this question.

Theorem 13 (Arc-Adding) Let Q′ be obtained from the rooted network
Q,O by adding an arc α from x to y, where x and y are points of Q. Then
setting V = V (Q,O) and V ′ = V (Q′, O), we have

(i) V ′ ≤ V + Fα +Rα. In particular, V ′ ≤ V if we simply identify x and y.

(ii) If Fα ≥ dQ (x, y) and Rα ≥ dQ (y, x) , then V ′ ≥ V.

15

Proof.
(i) Let s be an optimal mixed Searcher strategy onQ, so that the expected

search time T (s, x) ≤ V. Let s′ be the strategy on Q′ based on s, which
modifies each pure strategy (search path) S chosen by s to a path S ′ on Q
so that after the first time S (t) = x, S ′ goes to y and back along e before
continuing with the original path S. Then if z ∈ α, T (s′, z) ≤ T (s, x)+Fα ≤
V +Fα and if z ∈ Q, T (s′, z) ≤ T (s, z) +Fα +Rα ≤ V +Fα +Rα, giving (i).
(ii) Every optimal mixed Hider strategy h on Q guarantees an expected

capture time at least V on Q′. To see this, note that every strategy S ′ in Q′

is no better against h than the strategy S obtained by replacing any use of
α by a shortest path in Q between x and y, in the appropriate direction.
The second part of the Arc-Adding Theorem can be used to convert loops

(arcs a with a− = a+) to leaf arcs, which leads in some cases (as in Figure 3,
below) to trees, for which we will determine a formula for the search value.
We first need the notion of the in-radius ρ = ρ (a) and in-midpoint m = m (a)
of an arc a with initial and final ends a− and a+. These are uniquely defined
(via the Intermediate Value Theorem) by the equation

d
(
a−,m

)
= d

(
a+,m

)
= ρ.

In other words the in-midpoint is the unique point which is equidistant from
the two ends of its arc and this common distance is the in-radius.

Definition 14 (de-looping DL (Q)) Let a be any loop of a network Q, di-
rected so that Fa ≥ Ra. Let a1 denote the arc from a− to m = m (a) and let
a2 denote the arc from a+ to m, where both a− and a+ are identified with
some common node of Q. Let DL(Q) , the de-looping of Q, be the network
obtained from Q by removing all the (open) arcs a2 from Q, for every loop a.
For every loop a of Q, DL(Q) has a leaf ray a1, with travel times Fa1 = ρ (a)
and Ra1 = Ra − ρ (a). If a has constant velocities then

Fa1 = ρ (a) =
FaRa

Fa +Ra

and Ra1 = Ra − ρ (a) =
R2a

Fa +Ra

. (8)

To illustrate the de-looping algorithm, consider the network drawn on the
left of Figure 3. We use the convention that loop travel times are indicated
inside and outside, and for other arcs forward time is on left, reverse time
is on right. The right hand circle, with forward and reverse travel times 12
and 6 has its in-midpoint one third the way around the circle in the forward

16

direction. The formulae (8) give the travel times for its associated leaf arc on
the tree (4 and 2). (The left circle is turned into a leaf arc of half its length,
as in the time-symmetric constructions of Gal [13].)

Figure 3. A network and its delooped
tree.

Corollary 15 For any rooted network Q′, O, we have

V (Q′, O) ≥ V (DL (Q′) , O) . (9)

Proof. Observe that we can obtain the original network Q′ from the de-
looped network Q =DL(Q′) by adding (putting back) the (deleted) arc α =
a2. The result will follow from the second part of the Arc-Adding Theorem
upon showing that α (directed towards m (a)) is larger (slower) than a1 in
both directions. But for each loop a, we have, taking x to be endpoint
a− = a+ of the loop and y to be its in-midpoint m (a) , that

Fα = Fa1 = ρ (a) = dQ (x, y) , and

Rα = Fa − ρ (a) ≥ Ra − ρ (a) = Ra1 = dQ (y, x) .

Note that there is an alternative way we could "deloop" the network,
where we replace each loop a with a single arc of forward length Ra and
backward length 0. This arc has the same total travel time as the arc a1

used in Definition 14, but a larger incline. The alteration represents an
advantage to the Hider, since it effectively forces the Searcher to go around
the loop a in a particular direction. Hence this alternative delooping process
would provide an upper bound for the value of the game.2

2We thank an anonynous referee for making this observation.

17

6 Circle with Concave Travel Times

The simplest non-tree network is the circle, represented as a single loop arc
a, with its initial and terminal ends a− and a+ identified with the start node
O. For simplicity, we call the forward direction clockwise. We restrict the
nature of the travel times on the arc a by parameterizing a (directed from
end a− to a+) by 0 ≤ x ≤ 1 so that d (a+, x) is a decreasing linear function
of x and f (x) = d (a−, x) is an increasing continuous function. In this case
we say that the arc a has constant velocities if f is linear and has concave
travel times if f is concave. Note that the fact that an arc has concave travel
times is independent of the orientation choice for the arc.
In the time-symmetric case there is a simple solution to the game on a

circle: the value is half the travel time along the loop, two optimal strategies
for the Hider are hiding uniformly along the arc or hiding at the midpoint
m, the optimal Searcher strategy is to tour the loop equiprobably in either
direction. The general solution for arbitrary travel times is unknown. Even
for simple travel times (as shown in the next section when the circle is viewed
as two identical arcs, with uniform velocities, from O to m) the solution
can be very complicated, requiring backtracking paths and mixtures over a
continuum of pure strategies.
In this section we consider a version in which the solution for the time-

symmetric circle has a natural generalization to hiding at the in-midpoint
and searching with unequal probabilities in the clockwise or anticlockwise di-
rections. The travel time assumption needed for this simplification is concave
travel times.

Theorem 16 Let C be the network consisting of a single loop a at the start
node O, with concave travel times. Let ρ and m denote the in-radius and
in-midpoint of a. Then

1. V ≡ V (C,O) = ρ

2. Hiding at m is optimal.

3. The mixed Searcher strategy s̄p of going around loop a clockwise (for-
wards) with probability p = 1/ (1 + λ) and anticlockwise with probability

1 − p, is optimal for any λ ∈
[
f ′+(m)

Ra
,
f ′−(m)

Ra

]
, where f ′+ and f

′
− are re-

spectively the right and left derivatives of f .

18

4. In particular, if loop a has constant velocities, thenm = Ra/ (Fa +Ra) , V =
ρ = Fam and the unique optimal value of p is m.

Proof. The de-looping DL (C) of the loop a is a single ray with forward
travel time ρ, so the value of DL (C) is ρ, and by Corollary 15 we have
V ≥ ρ. (This is clear in any case as hiding at m ensures the Searcher cannot
reach you in time less than the in-radius ρ.)
Since the forward time function f (x) = da (a−, x) is concave, it has left

and right derivatives f
′
−(x0) and f

′
+(x0) at any x0 in the interior of a such

satisfying

f
′

−(x0) = inf
x<x0

f(xo)− f(x)

xo − x
≥ f

′

+(x0) = sup
x>x0

f(x)− f(x0)

x− x0
. (10)

Suppose that the Searcher adopts the strategy s̄p, p = 1/ (1 + λ) , for some

λ ∈
[
f+(m)
Ra

, f−(m)
Ra

]
. If the Hider is anticlockwise of m, that is, at some point

H = x ≤ m, then

T (s̄p, x)− ρ
= p f (x) + (1− p) g (x)− ρ = p f (x) + (1− p) Ra(1− x)− f(m)

=
f(x)

1 + λ
+
λRa(1− x)

1 + λ
− f(m)(1 + λ)

1 + λ
=
f(x) + λRa(1− x)− f(m)− λRa(1−m)

1 + λ

=
f(x)− f(m) + λRa(m− x)

1 + λ
≤
f(x)− f(m) + f ′−(m)(m− x)

1 + λ

≤ m− x
1 + λ

(
f ′−(x)− f(m)− f(x)

m− x

)
≤ 0.

By an analogous argument, if the Hider hides at some x ≥ m the Searcher
will find him in expected time ≤ ρ. Hence V ≤ ρ, so that V = ρ. Points 2
to 4 follow easily.

7 Solution of Two-Arc Networks

In the previous section we showed that the circle network has a simple solu-
tion if it has concave travel times. In this section we show that the solution
can become quite complicated if concavity is lost, even for a very simple class
of circle networks U (b) consisting of two identical constant velocity arcs from

19

O to m (so labeled because it is the in-midpoint of U (b) if we view it as a
single loop). That is, the two arcs have identical forward and reverse travel
times F and R. Without loss of generality we can take the forward travel
time F to be 1, and for notational simplicity denote R = b. Of course if b ≤ 1
then the network can be viewed as a single arc (loop) with concave travel
times, so in this case V (U (b)) = ρ = 1. Optimally, the Hider goes to m and
the Searcher adopts strategy s̄p with p = 1/2 (in fact any p ∈

[
b
1+b

, 1
1+b

]
).

As we shall see, the case b > 1 (where the network goes ‘downhill’from the
start O) has a rather complicated solution, reminiscent of the solution of the
search game on three (time-symmetric) arcs given in [19]. We view each arc
from O to m as having unit length, parameterized by x going from 0 to 1,
with forward velocity 1 and reverse velocity 1/b.

1

b
O m

Figure 4. The ‘two-arc’network U (b) .

Theorem 17 Consider the network U (b) consisting of two identical arcs
from O to m with forward travel time 1 and reverse time b ≥ 1. Then

1. The search value is V = V (U(b), O) = 1 + 1
2
(b− 1) ln 2.

2. An optimal strategy for the Hider is to pick x according to the density
function 4e−2x on the interval [0, ln 2/2] . Then he hides equiprobably
on the two points at forward distance x from O.

3. An optimal strategy for the Searcher begins by choosing a number y
from [0, ln 2/2] according to the density function 2e2y. With probability
p = (b+ 3) / (2b+ 2) he tours the circle equiprobably in either direction.
With probability 1− p he goes around in an equiprobable direction until
he is at forward distance y from O; then reverses direction and goes
around the circle until he has reached all points.

Proof. Suppose the Hider follows the strategy described in the statement
of the proof. Then the expected discovery time if the Searcher goes all the

20

way around the circle is

1

2

∫ 1
2
ln 2

0

2x4e−2xdx+
1

2

∫ 1
2
ln 2

0

(1 + b(1− 2x))4e−2xdx = 1 +
1

2
(b− 1) ln 2.

If the Searcher backtracks at some point y ≤ 1
2

ln 2 then the expected discov-
ery time is

1

2

(∫ 1
2
ln 2

0

(2(1 + b)y + 2x).4e−2xdx

)
+

1

2

(∫ y

0

2x 4e−2xdx+

∫ 1
2
ln 2

y

(2(1 + b)y + 1 + b(1− 2x))4e−2xdx

)
= 1 +

1

2
(b− 1) ln 2.

If the Searcher backtracks a some point y > 1
2

ln 2, the expected search time
will be greater than if he backtracks at y = 1

2
ln 2.

Suppose the Searcher follows the strategy described in the statement of
the proof. Then, if the Hider is at a distance x > 1

2
ln 2 from O, the expected

search time is

b+ 3

2b+ 2

(
1

2
2x+

1

2
(1 + b(1− 2x))

)
+

b− 1

2b+ 2

(
1

2

∫ 1
2
ln 2

0

(2(1 + b)y + 1 + b(1− 2x))2e2ydy +
1

2

∫ 1
2
ln 2

0

(2(1 + b)y + 2x)2e2ydy

)
= 1 + (b− 1) ln 2− (b− 1)x

≤ 1 + (b− 1) ln 2− (b− 1)
1

2
ln 2

= 1 +
1

2
(b− 1) ln 2

If the Hider is at a distance x ≤ 1
2

ln 2 then the expected search time is

b+ 3

2b+ 2

(
1

2
2x+

1

2
(1 + b(1− 2x))

)
+

(
b− 1

2b+ 2

)
·(

1

2

(∫ x

0

(2(1 + b)y + 1 + b(1− 2x)2e2ydy +

∫ 1
2
ln 2

x

2x2e2ydy +
1

2

∫ 1
2
ln 2

0

(2(1 + b)y + 2x)2e2ydy

))
= 1 +

1

2
(b− 1) ln 2

21

Hence the value is 1 + 1
2
(b− 1) ln 2.

The method for discovering these strategies is as follows. Suppose b = 2.
For the Hider distribution, we would like to find a density function h(x)
where x ∈ [0, z] such that the expected search time is the same whether the
Searcher backtracks after travelling some distance y ≤ z, or goes all the way
around the circle (which is effectively backtracking after travelling distance
0). That is,

1

2
6y +

∫ z

0

2xh(x)dx+

∫ y

0

2xh(x)dx+

∫ z

y

(6y + 3− 4x)h(x)dx = C.

where C is a constant, independent of y. Simplifying this and differentiating
with respect to y we obtain

4− h(y)− 2

∫ y

0

h(x)dx = 0.

Putting H(y) =
∫ y
0
h(x)dx gives the differential equation

dH

dy
= 4− 2H.

Solving this gives h(x) = 4e−2x, and using
∫ z
0
h(x)dy = 1 we obtain z = 1

2
ln 2.

A similar method can be used to find the Searcher strategy.

8 General Lower Bounds on the Search Value

In this section we obtain lower bounds for the search value of a network by an
algorithm of identification-cutting-deleting. We first (identification) identify
either all (Section 8.1) or some (Section 8.2) of the nodes. The identification
of two nodes may be regarded as the addition of an arc between these nodes
with 0 travel time in both directions. Then we cut any loops at their in-
midpoint (cutting). Finally, for each former loop, we remove (deleting) the
larger of the two resulting rays to the in-midpoint. Actually, we have seen
the last two (cutting and deleting) parts of the algorithm - this is simply the
de-looping algorithm. The result of the algorithm is a tree network with a
lower search value than the original one, by the Arc-Adding Theorem and
its corollary. Since we have a formula for the search value of a tree, this

22

becomes a lower bound for the original network. By choosing which nodes to
identify, this gives us different lower bounds. This is shown for the ‘circle with
two spikes’network of Figure 5 (with time-symmetric semicircles. Here Q∗

identifies all nodes and Q∗∗ identifies all nodes on the Eulerian subnetwork.

6 2

4

2

O
43

6 2

4

2

O
43

O

4

2

4

2

3

6

3

2

4

2

4

O

2

2

2

4/3

2/3

4

6

3

1

1

2

1

O

O

6

Q

Q*

Q** DL(Q**)

DL(Q*)

Figure 5. Network Q, with identifications followed by de-looping.

8.1 Lower bounds for arbitrary networks

Here we apply the identification-cutting-deleting algorithm to obtain a gen-
eral lower bound for the search value.

Theorem 18 Let Q,O be a rooted network with every arc a oriented so that
Fa ≥ Ra. Let ω =

∑
a∈A

Ra denote the time required to traverse all the arcs of

Q in the quicker direction. Then, with ρa denoting the in-radius of a,

V (Q) ≥ 1

2

(
ω +

∑
a∈A

Ra

ω
(2 ρa −Ra)

)
. (11)

Proof. Let Q∗ denote the network obtained from Q by identifying all of its
nodes. Thus Q∗ is an n−leaf clover around a central node O (n is the number

23

of arcs of Q). Let STAR(Q) =DL(Q∗) be the star obtained by de-looping
Q∗. So by the first part (identification remark) of the Arc-Adding Theorem
(Theorem 13) and Corollary 15 on de-looping, we have

V (Q,O) ≥ V (Q∗, O) ≥ V (STAR (Q) , O) .

It remains only to show that the right hand side of (11) is the search value
of the star network STAR(Q) , or that its tour time τ and incline ∆ satisfy

τ =
∑
a∈A

Ra ≡ ω, and (12)

∆ =
∑
a∈A

Ra

ω
(2ρ (a)−Ra) . (13)

It follows from (8) that for each arc a of Q, the corresponding arc a1 with
leaf node m (a) of STAR(Q) has tour time

τa1 = Fa1 +Ra1 = ρ (a) + (Ra − ρ (a)) = Ra, establishing (12), and

δ
(
a1
)

= Fa1 −Ra1 = ρ (a)− (Ra − ρ (a)) = 2ρ (a)−Ra. (14)

Since the EBD probability of the leaf node of a1 is τa1/τ , the remaining
formula (13) now follows from (14).
If Q is a time-symmetric network, then Ra is simply the length of the arc

a, so that ω is simply the total length of Q, a number called µ by Gal [11]. In
this case the radius ρ (a) of a is simply half its length Ra, so we have another
proof of Gal’s result.

Corollary 19 For any time-symmetric rooted network Q,O the search value
V satisfies

V ≥ µ/2, where µ is the total length of Q.

For time-symmetric networks, this is easily established by having the
Hider adopt the uniform distribution. Our proof is distinct from the Gal’s -
it involves no integration. Of course we can use the same idea here, to assert
that V (Q) ≥ ω/2, using the uniform Hider strategy.
Let us consider these estimate for the two-arc network U (b) for b = 2,

where Theorem 17 gives the search value as 1+ln (2) /2 = 1. 346 6. The lower
bound ω/2 gives (1 + 1) /2 = 1, which is the same as if we apply Theorem
18 to U (2) considered as a single loop. If we consider U (1/2) as having two
arcs and two nodes, then Theorem 18 (with Ra = 1, the shorter way, and
ρa = 2/3) gives the lower bound as (1/2) (2 + 2 (1/2) (2/3− 1/3)) = 7/6 =
1. 166 7.

24

8.2 Lower bounds for weakly Eulerian networks

In this section we show how to improve on the lower bound of Theorem 18
for weakly Eulerian networks. These are defined as follows (recall that a
network is Eulerian if it contains a closed path which visits each point of the
network exactly once).

Definition 20 A network Q is called weakly Eulerian if it contains a set of
disjoint Eulerian networks E1, . . . , Ek such that shrinking each of them to a
single point transforms Q into a tree. Formally, "shrinking" Ei to a point
means replacing it by a point incident to all arcs in Q−Ei that are incident
to Ei.

Let A1 denote the set of arcs of Q lying on the Eulerian networks and let
M denote the set of in-midpoints of these arcs. Let L denote (as earlier for
trees) the set of leaf nodes of Q.
We may also define ∆ = ∆(Q) for an Eulerian network in the following

way.

Definition 21 Let Q∗∗ be the network obtained from Q by identifying into
a single node j all the nodes on the same Eulerian component Ej of Q. Next
define the tree Q̂ = DL (Q∗∗) to be the de-looping of Q∗∗. Then we define
∆ = ∆(Q) by

∆ = ∆(Q̂)

Proposition 22 Let Q be a weakly Eulerian network such that

1. Fa = Ra for all a in A1, and

2. d (O, i) ≥ d (i, O) for all i ∈M∪L.

Then V (Q,O) ≥ 1
2

(τ + ∆) ≥ τ
2
.

Proof. The first part of the Arc-Adding Theorem (Theorem 13) says that
V (Q) ≥ V (Q∗∗) and Corollary 15 on de-looping guarantees that V (Q∗∗) ≥
V
(
Q̂
)
. Hence V (Q) ≥ V

(
Q̂
)
. We evaluate V

(
Q̂
)
using the formula (6)

for the search value of a tree. Note that for any i ∈M∪L, we have that

dQ̂ (O, i)− dQ̂(i, O) = dQ (O, i)− dQ (i, O) ≥ 0, (15)

25

by assumption 2. Note that the original network Q and the tree Q̂ have the
same tour time

τ =
∑

a∈A−A1

(Fa +Ra) +
∑
a∈A1

Fa.

Observe that the leaf nodes of the tree Q̂ are the points i ofM∪L, which
by assumption have non-negative height δ (i) . Hence the incline ∆ of Q̂ is
a weighted average of non-negative numbers, so by (15), ∆ ≥ 0. The tree
formula for the search value (6) gives

V (Q) ≥ V
(
Q̂
)

=
1

2
(τ + ∆) ≥ τ

2
. (16)

If we specialize this result to time-symmetric networks, we obtain a well
known result of Gal (2000), which generalized a similar result of Reijnierse
and Potter [21] for a more restricted class of networks (weakly cyclic net-
works).

Corollary 23 If Q is a time-symmetric Weakly Eulerian network, then V (Q) =
τ/2 (or in Gal’s notation, µ̄/2).

Proof. The assumption is stronger than that of the Proposition, so we have
V (Q) ≥ τ/2. However for all time-symmetric networks, the random Chinese
Postman Tour for the Searcher ensures that V (Q) ≤ τ/2.

9 Conclusion

This paper has analyzed the problem of searching a variable speed network
for a Hider who is hidden according to an unknown distribution. A worst
case scenario was considered, that is, a game against Nature in the form of
a Hider who does not want to be found. We solved the game explicitly for
a tree, improving over the recursive approach given in an earlier paper. We
then used our explicit solution for trees to analyze more general networks.
We note that even for the time-symmetric case, the general solution is

known only for a fairly small family of networks; for the time-asymmetric
case studied here even less is known. We believe the associated cooperative
problem of rendezvous (e.g. [1],[4]) could also be attacked with some success
on time-asymmetric networks using ideas presented here.

26

References

[1] Alpern, S. Rendezvous search: a personal perspective. Operations Re-
search 50 (2002):772-795.

[2] S. Alpern. Search games on trees with asymmetric travel times. SIAM
J. Control Optim. 48 (2010), no. 8, 5547-5563.

[3] S. Alpern. A search game model of optimal foraging on a network. Op-
erational Research Working Paper Series, LSEOR 10.124 (2010).

[4] S. Alpern and A. Beck. Asymmetric rendezvous on the line is a double
linear search problem. Mathematics of Operations Research 24 (1999),
604-618.

[5] S. Alpern and S. Gal, A Mixed Strategy Minimax Theorem without
Compactness, SIAM J. Control and Optim. 26 (1988), 1357-1361.

[6] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous.
Kluwer International Series in Operations Research and Management
Sciences, 319 pp, Kluwer, Boston, 2003.

[7] S. Alpern and J. V. Howard. Alternating search at two locations. Dy-
namics and Control 10 (2000), no. 4, 319-339.

[8] E. J. Anderson and M. Aramendia. The search game on a network with
immobile hider. Networks 20 (1990), 817-844.

[9] V. J. Baston and F. A. Bostock. An evasion game on a finite tree. SIAM
J. Control Optim. 28 (1990), no. 3, 671-677.

[10] V. J. Baston and K. Kikuta. Search games on networks with travelling
and search costs and with arbitrary searcher starting points. Preprint
(2010).

[11] S. Gal, Search games with mobile and immobile hider. SIAM J. Control
Optim. 17 (1979), 99-122.

[12] S. Gal, Search Games. Academic Press, 216 pp, 1980.

[13] S. Gal, On the optimality of a simple strategy for searching graphs. Int.
J. Game Theory 29 (2000), 533-542.

27

[14] A. Garnaev. Search Games and Other Applications of Game Theory
(Lecture Notes in Economics and Mathematical Systems Vol. 485),
Springer, 2000.

[15] R. Isaacs. Differential Games, Wiley, New York, 1965.

[16] A. Jotshi and R. Batta. Search for an immobile entity on a network.
European Journal of Operational Research 191 (2008), no. 2, 347-359

[17] K. Kikuta, A search game with travelling cost on a tree, J. Oper. Res.
Soc. Japan, 38 (1995), no. 1, 70-88.

[18] K. Kikuta and W. Ruckle, Initial point search on weighted trees. Naval
Res. Logistics 41 (1994), no. 6, 821-831.

[19] L. Pavlovic. A search game on the union of graphs with immobile hider.
Naval Res. Logistics 42 (1995), no. 8, 1177-1199.

[20] W. L. Pearn and M. L. Li. Algorithms for the windy postman problem.
Computers and Operations Research 21 (1994), no.6, p.641-651.

[21] J. H. Reijnierse and J. A. M. Potter. Search games with immobile hider.
Int. J. Game Theory 21 (1993), 385-394.

[22] B. von Stengel and R. Werchner . Complexity of searching an immobile
hider in a graph. Discrete Appl. Math. 78 (1997), 235-249.

28

	Lidbetter_Searching variable_2015_cover
	Lidbetter_Searching variable_2015_author

