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a b s t r a c t

What we see now in the landscape is the result of a long history of events with varying degrees of
persistence. We have only limited access to much of that history and we know that many current events
have only a minimal impact on what we see. Even rather extreme events may have impacts that are
not very long-lasting but can have the effect of changing the antecedent states for future events. That
means that sampling of sequences of events might be important in understanding the evolution of the
catchments. In some cases, however, extreme events can have an impact on the system that persists
over hundreds or thousands of years. Any evolution of the landscape is then constrained by those past
events, however much it might be also constrained by self-organisational principles. It might be difficult

to verify those principles given the epistemic uncertainties about past histories and system properties
that are generic to the studies that are possible within a research project or career. These arguments
are investigated in a simple slab model of landslip failures in a hillslope hollow subject to stochastic
forcing over long periods of time. The complementarity of an event-persistence approach to hydro-eco-
geomorphological systems is captured in suggestions for future research questions.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
. Introduction

Landscapes are structured. They show spatial organisation that
s the result of their development over time. In that landscapes are
pen systems, with a throughput of mass and energy, that develop-
ent is necessarily evolutionary, even if certain aspects of pattern

nd form might appear (at least for certain periods of time) to be
n some steady or quasi-equilibrium state consistent with the dis-
ribution of external forcing. That external forcing has, for much of
eological time, been due to natural agents but in the anthropocene,
an has had an increasing influence on both process and pat-

ern in the landscape. Until the anthropocene, the landscape was,
ecessarily, self-organising in ways that have led to some general
merging patterns (climatic zones, river basins, natural vegetation

atterns) but now there is a co-evolution of man and the landscape
hat leads to new emergent structures (and subjects of research as
eflected in the concept of ecohydrology, sociohydrology and the
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new IAHS Panta Rhei decadal programme; Sivapalan et al., 2012;
Montanari et al., 2013; Ehret et al., 2013; Lane, 2014).

The landscape we see now, both in our qualitative interpreta-
tion of form and process, and in the patterns of measurements we
might make in space and time, is an integration of past temporal and
spatial processes and events, with different time and space scales
of effectiveness and impact. The system is open and the dynamics
are nonlinear, even if we have to close the system and specify both
initial and boundary conditions for a particular period of study. It
has therefore been rather attractive to borrow from the concepts
of nonlinear systems and apply concepts such as self-organised
criticality to environmental systems. In brief, systems that tend
to evolve to critical states are unpredictable in that small forcing
events might, in the right circumstances, lead to significant and
rather unpredictable consequences or emergent properties, in par-
ticular resulting in power law magnitude-frequency relationships.
Such concepts have proven useful in explanations of environmental
systems, including the fractal nature of river networks and catch-
ments, the magnitudes of earthquakes, the form of debris cones,

and the areas of forest fires. This form of explanation has been
advocated as providing behavioural principles that govern environ-
mental systems and should be included in environmental models

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).

dx.doi.org/10.1016/j.ecolmodel.2014.07.019
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolmodel.2014.07.019&domain=pdf
http://creativecommons.org/licenses/by/3.0/
mailto:k.beven@lancaster.ac.uk
dx.doi.org/10.1016/j.ecolmodel.2014.07.019
http://creativecommons.org/licenses/by/3.0/


odell

(
n

t
n
t
e
s
o
n
n
t
i
e
w

s
c
a
t
e
T
s
i
s
m
a
S
i
e
o
t

i
o
i
t
r
a
(
t
a
e
t
a

i
n
s
q
i
s
l
c
b
n
t
a
t
t
A
A
r
a
t
b

K. Beven / Ecological M

Schaefli et al., 2011) but also criticised as a general form of expla-
ation (e.g. Frigg, 2003) and in specific applications.

One of the features of this approach is that history is impor-
ant, which makes closure somewhat problematic if what we see
ow depends on unspecified initial and boundary conditions from
he past. As systems evolve towards critical states, the ordering of
vents becomes important in that the sensitivity of the system to
ignificant change will depend on the rather arbitrary occurrence
f external forcing events in space or time (e.g. Beven, 1981). Sig-
ificant change might be triggered at a particular point in time (or
ot) dependent on the current state of the system and the magni-
ude of the event. Thus, history is important, but its effect might be
ndeterminate. We can see now only the net effect of sequences of
vents, some of which might be seen as having persistence in what
e see now.

Herein lies one of the problems with explanations based on
elf-organisation. Simulation models show that in order for the
haracteristics of the self-organisation to become fully apparent,
very large number of critical events are necessary in part because

he different realisations of events will develop in different ways,
ven if they have a tendency to similar self-organisational forms.
his requires time and a very large number of potential sites in
pace (as, for example, in earthquakes and river basins). Thus, even
f there is a tendency towards self-organised criticality in such
ystems, will it be apparent in what we see now given this require-
ent, or will we see only transient characteristics when changes

re occurring more rapidly than sufficient critical events can occur?
uch changes might themselves be the result of self-organised crit-
cality operating on some other processes at some other scale (see
xamples below). How does what we see now reflect this balance
f changes within the overall evolution of the system and what are
he implications for the predictability of the system of interest?

Here we would like to suggest that another viewpoint is richer
n explanatory power. This is not to deny that concepts of self-
rganisation do not provide valuable insights but what we see now
s, in very many landscapes, the result of past events that have had
he effect of resetting the initial conditions for the processes cur-
ently operating. This can happen frequently in some systems; and
t Holocene or orogenic scales for others. What we see now is a
non-linear) superposition of the effects of distributions of events
hat have occurred at different time scales into the past (including
nthropogenic events) and of the dispersion of the effects of those
vents into different parts of the system that defines their persis-
ence under the forcing of particular sequences of events in time at
ny particular site in space.

There is then a question of what self-organised criticality means
n this situation (except in some rather trivial sense that an event
ecessarily has consequences). That depends very much on how
ensitive a system is to small forcing events having large conse-
uences, i.e. how close that system is to criticality or how quickly

t moves towards criticality after an event. But that is not what we
ee in many systems. We certainly see history resulting from evo-
ution in the nature of soil profiles, in the succession of vegetation
ommunities, the form of river basins etc. but that history seems to
e rather easily reset by external forcing events rather than inter-
al organisation. What we see is in evolution but with evidence of
he persistence of some past extreme forcing events that did have
dramatic effect on the nature of the system, changing the ini-

ial conditions for the time evolution at that site. We shall avoid
he use of the word relaxation following such a critical event (e.g.
nderson and Calver, 1977; Culling, 1986; Ahnert, 1994; Calver and
nderson, 2004; Phillips, 2009) because, even if there might be a

eturn to some particular quasi-stationary form, the system is not
ctually stationary in any way. What we see now (over the limited
ime scale of a typical research project or research career) will then
e a particular state in that evolution, as dependent on a particular
ing 298 (2015) 4–15 5

sequence of events when the ordering of events might be impor-
tant. Lacking data from the past, origins beyond that time scale are
necessarily the stuff of speculation. Hence, the attraction of find-
ing general concepts and theoretical principles for extending our
knowledge and understanding over those longer time scales.

It has always been thus, of course. We naturally tend towards
generalised theories, but the drive today is to find theoretical prin-
ciples that have quantitative utility, rather than only qualitative
explanatory power. The questions that consequently arise include
how far it is possible to distinguish between competing explana-
tions in the light of limited data and the particular contingencies of
individual events (and anthropogenically induced change) in shap-
ing what we see now. For the hydrologist this is an extension of the
continuing discussion of equifinality of models and testing mod-
els as hypotheses (e.g. Beven, 1996, 2002, 2006; Clark et al., 2011;
Beven et al., 2012). For the geomorphologist it is an extension of the
discussion of the concepts of equifinality, equilibrium, and non-
linear dynamics to landform systems (Culling, 1957, 1987, 1988;
Culling and Datko, 1987; Phillips, 1997; Renwick, 1992; Ahnert,
1994; Beven, 1996; Phillips, 1997, 2011). For the ecohydrologist it
is an extension of the discussion of behavioural principles to the
landscape (Schaefli et al., 2011).

There is an interesting aspect to the original concept of equifi-
nality in geomorphology (see Culling, 1957; and his later discussion
in Culling, 1987, 1988) that has relevance here. That is that looking
backwards into the past, it is impossible to know all the details of
the events and processes that formed a particular landform fea-
ture. Thus there might be an equifinality of explanation. This is
a form of epistemic uncertainty that will hold for any open sys-
tem under study within which history and sequences of events are
important. But, it is particularly severe for all those events and pro-
cesses that do not have persistence to the state we see now. Where
self-organised criticality offers something new in this respect is to
extend the concept of persistence to the net effect of long sequences
of events producing recognisable organisation in the landscape that
may not have its origin in some extreme event. Where it does not
necessarily help is in shedding light on the impacts of events in
producing that organisation. We are limited to seeing the effects
of events that have persistence extending to the period of study or
what we see now.

Thus, the palimpsest of landscape will be the result of an evo-
lution that includes a variety of different forcing events. In general,
the effects of large events will have longer persistence, and the
effects of small events will dissipate more rapidly, but there is
the possibility that for systems close to some critical threshold, a
small event will induce some impact with persistence such that
the ordering of events will be important; a form of condition-
ing and triggering (Phillips, 2009). All events contribute to the
throughput of energy through the system, and consequently the
evolution of the system, that may be gradual, punctuated by sud-
den changes rather than demonstrating some dynamic equilibrium.
These features of nonlinear open systems now seem conceptu-
ally uncontroversial. It should also then not be controversial that
what we see in the landscape is the persistence of events that have
changed the boundary conditions for smaller scale processes.

2. Turbulence: organisation and boundary conditions

Many fluxes of water and air in and above the landscape
are turbulent. Turbulent flows are often cited as an example of
nonlinear dynamics and self-organisation in practice, albeit one in

which it has proven impossible to resolve completely (hence the
resort to various closure schemes in predicting turbulent flows).
Turbulence shows complex structures in both air and water, such
as the horseshoe vortices that have been studied in rivers, and the
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oundary layers that build up around obstructions and changes in
ocal internal boundary conditions for the flow domain of interest.

For the case of homogeneous turbulence, far from any obstruc-
ion or boundary, the complete description of turbulence remains
nresolved. Even direct numerical simulations of the Navier–Stokes
quations need some closure scheme for how momentum dissi-
ates at the level of the Kolmogorov length scale (e.g. Meneveau and
reenivasan, 1987). The issue is worse for inhomogeneous turbu-
ence induced by boundary condition effects (Hunt et al., 2006). The
ength scales over which changes in boundary conditions can have
n impact can be very long. But the effects of changes in boundary
onditions in time and space will be partly organised by the flow
tself (as in dune and other features in mobile bed rivers) and partly
mposed on the flow by totally independent factors (such as geolog-
cal structures in bedrock rivers and large boulders from rock falls
r glacial deposition). There is a range of intermediate scales from
ravel bars to flood plain meanders within which the organisation
ill depend on a sequence of external forcing events. The effects

f such events may be more or less persistent dependent on the
agnitude of that event and the integral effect of the subsequent

ffects that create what we see now.

. Forcing events and self-organisation – when does
volution become a change in boundary conditions?

This is just one example of how landscape systems are only
artly self-organising because of their dependence on external forc-

ng events that drive the evolution of the landscape by changing
he constraints on smaller scale processes. In fact, it could be sug-
ested that self-organisation is really only a part of the mechanism
or dissipating the effects of such singular events. This is quite clear
hen we look at the landscape in many parts of the world. What
e see now is clearly a reflection of the past and, in particular,

he result of glacial and periglacial events and processes. These
ave had long persistence in the forms of hillslopes and catchments
nd, less obviously, in soil structures and the occurrence of land-
lides and debris flows in moraine and head deposits that have been
waiting to fail” for thousands of years.

This is a modern form of a long time discussion in geomor-
hology between catastrophist and dynamic equilibrium views of

andscape evolution. The balance between the two views depends
n the magnitude of a forcing event relative to the rate of dissipa-
ion of the impact of that event. Extreme events, such as the last
laciation, can change the constraints for the dissipative processes
o such an extent that the effects of such an event are persistent. The
ffects of small events will dissipate much more quickly, but might
till be persistent to the observer depending on when the observa-
ions take place. The occurrence of events, including anthropogenic
vents, might be quite arbitrary even if contingent on the overall
volution. The balance is then complicated further by the depend-
nce of the response to an event on the antecedent state of the
ystem and the possibility that dissipative processes might act to
ake the system more sensitive to smaller events (including the

nstigation of catastrophic events at larger time scales). The occur-
ence of shallow landslides and debris flows are an interesting
xample in that respect.

. Event-persistence concepts and contingency

Thus, in an event-persistence view of hydro-eco-

eomorphological evolution, how the system responds depends
n the antecedent states and the nature of the event in space
nd time. The persistence of that event will have an effect on
he antecedent conditions for the next event. After an event the
ling 298 (2015) 4–15

system continues to evolve in ways that might make it more or
less sensitive to future events.

Consider the case of the occurrence of a shallow landslip or
debris flow. Debris flows can have locally dramatic effects on
hillslides and valley bottoms, and any communities and human
activities that they impact. In July 2007 a small debris flow occurred
in the Mallerstang Valley, Cumbria, UK as a result of intense rainfall
over Mallerstang Edge resulting in the transport of large amounts of
sediment into the Outhgill Beck and the River Eden, blocking of the
channel and road bridge in the hamlet of Outhgill. Fortunately the
debris flow only caused damage to some field boundary walls; the
channel and bridge were soon cleared; no properties were damaged
or lives lost (although a lot of coarse sediment deposited upstream
of Outhgill is still being transported in later events). Elsewhere in
the world the impacts of debris flows have been much greater (e.g.
Carrara et al., 2008).

In this case, the debris flow originated from glacial lateral
moraines left high on the sides of the valley. There is evidence
of similar failures elsewhere in the valley and similar locations
in the UK. They are, however, rather arbitrary in occurrence, con-
tingent on a combination of local occurrence of intense rainfalls
and antecedent conditions (and possibly long term evolution of the
cohesion of the materials at a site). In other small tributaries of Out-
hgill Beck, less than 100 m from the impacted channel, there was
no sign of erosion or major change. There was, however, another
similar debris flow that blocked a bridge on another tributary to
the River Eden on the same day some 3 km downstream. In this
location, the combination of circumstances producing such events
seems to be rather rare in both time and space.

Once such a flow has occurred of course, it might have persis-
tence in a number of different ways: visually as a qualitatively
distinguishable feature of the landscape; in making sediments
available from stream transport; in delaying the potential future
occurrence of a debris flow at that same site for long into the future
(relative to what we see now). Newson (1980) reports on a similar
complexity of response from 2 events at the Plynlimon experimen-
tal catchments in mid-Wales. Both events were estimated to have
return periods of the order of 100 years (although they were rather
different in their rainfall patterns) but occurred within 5 years in
1973 and 1977. The first event was characterised by a landslide and
debris flows; the second by transport of sediments in the river net-
work. Effectively the first event changed the antecedent conditions
for the second. Similar coupling sequences have been described
for the Howgill Hills in Cumbria by Harvey (2001) with some evi-
dence that there have been a number of distinct periods of hillslope
activity in the last 2500 years (Chiverrell et al., 2008).

Clearly, once a slope has failed it will generally require a period
of time to evolve towards being a potential failure site in the future
(e.g. Fig. 1). This will also depend on the sequence of events in rela-
tion to the accumulation of soil at the site. Where a debris flow
has exposed a bedrock surface then subsequent events might actu-
ally keep this clear of soil for significant periods of time. In Nelson
County, Virginia, the scouring of valley bottoms to granite bedrock
by debris flows during Hurricane Camille in 1969 has had decadal
persistence (Bechtel, 2006). How quickly soil and vegetation starts
to build up again will depend on geology and the surrounding
topography and soils. Vegetation developing at a site will help
retain soil and later, root strength will help maintain stability rel-
ative to the magnitude of forcing events. The non-occurrence of a
failure, and subsequent increase in soil depth might also reduce the
potential for failure. A change in rainfall regime with an increase in
rainfall intensities might increase the potential for failure, depend-

ing on the development of the system states between events.
Anthropogenic events, such as forest clearing, might change the
potential for failure significantly (e.g. Montgomery et al., 2000).
This is one example where the ordering of events at a site might
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Fig. 1. Simple event-relaxation concepts for a potential debris flow site.

e important on whether a failure occurs or not (Beven, 1981).
rediction of such events remains difficult, if only because of lack
f adequate rainfall data in time and space, lack of adequate soil
roperty data and the persistence of effects from past failures (e.g.
asadei et al., 2003).

Some attempts have been made to look at the long-term impli-
ations of debris flow events in time and space on catchment
orphology (e.g. Benda and Dunne, 1997; Stock and Dietrich,

006). This change of scale reduces the focus on individual sites,
o the integral effect over long periods of time. We do not then
now, of course, what the particular distribution of events in the
ast might have been, nor generally what the past impacts of man
ight have been. What we see now is the persistence of (some)

ndividual local events in the past superimposed on long term evo-
ution which provides an antecedent condition for the local; to
see” the integral effect requires some theoretical interpretation
nd some auxiliary assumptions about distributions of events and
heir impacts.

. Organising principles and quantitative prediction

Perhaps more controversial is what new concepts can be
ntroduced within this framework that will result in additional
nsights, over and above information gained from purely empir-
cal study of local persistence. Here again we should distinguish
etween qualitative concepts, such as self-organised criticality,
hat can be demonstrated on simple theoretical systems but which

ight be much more difficult to verify as hypotheses in a complex
andscape because of the sheer number of degrees of freedom and
ncertainties inherent at landscape scales (Frigg, 2003); and those
hat might be useful as deductive quantitative constraints of sys-
em behaviour. Within the first category we can include concepts
uch as the complex attractor, bifurcation and chaotic behaviour,
ynamic equilibrium and nonequilibrium, and self-organised crit-

cality. Within the latter category are principles of fractal scaling,
aximum entropy production, minimum energy dissipation, max-
mising boundary energy gradients, and dissipation of Helmholz
ree energy (see Rodriguez-Iturbe and Rinaldo, 2001; Kleidon and
chymanski, 2008; Schymanski et al., 2010; Zehe et al., 2010;
chaefli et al., 2011; del Jesus et al., 2012; Kleidon et al., 2012).
ing 298 (2015) 4–15 7

As Reggiani et al. (1998, 2000) and Kleidon et al. (2012) amongst
others have pointed out there has often been a lack of rigour
in applying physical principles in studies of environmental pro-
cesses and landscape. Such systems are subject to the requirements
of thermodynamics and the conservation of mass, energy, and
momentum. In particular, Kleidon et al. (2012) emphasise the open
nature of such systems and the way in which the free energy sup-
plied as net boundary fluxes must be dissipated according to the
laws of thermodynamics (see also Porada et al., 2011). This has
suggested to some that these types of organisational principles can
provide constraints on models that might be useful in making pre-
dictions (Schaefli et al., 2011). Similar arguments have been made
by Bejan (2007, Bejan and Lorente, 2010) in his theory of constructal
networks. These are, however, purely theoretical conjectures that
we have little hope of proving unequivocally because of the limi-
tations on how we can account for mass, energy and momentum
in any complex system (Beven, 2002, 2012). Similar points have
been made more generally by the philosophers Morton (1993) and
Cartwright (1999). Cartwright suggests that such principles might
be better perceived as potential capacities rather than quantita-
tive constraints. Indeed, she suggests that even the thermodynamic
laws must be treated in this way when applied to any particular
system.

These principles are generally quantified and deemed applicable
by empirical back-calculation of coefficients. This type of determi-
nation of empirical calibration is, of course, traditional in hydrology
and other environmental sciences. Many other process represen-
tations were developed and continue to be justified in this way.
Equivalent roughness lengths at a flow boundary can always be
calculated given a velocity profile (even if in some circumstances
that calculation yields values orders of magnitude greater than
the sand grains that Nikuradse’s original experiments involved,
e.g. Babaeyan-Koopaei et al., 2002). Darcy’s law will hold when a
hydraulic conductivity can be back-calculated from observations
of profiles of soil water tension and moisture content, even where
preferential flows would mean that it is not the appropriate theo-
retical framework (Beven and Germann, 2013).

The application of theory where it is not appropriate is clearly
not new (even if it should be considered as bad practice) and in
many areas of environmental modelling the aphorism of George
Box that all models are wrong but some might be useful is generally
accepted. It might then be helpful, however, to have some indi-
cation of the types of conditions under which certain theoretical
concepts might be useful in this sense. In the case of the organi-
sational principles discussed above, this would appear to depend
on some balance between the rate at which the potential towards
observable organisation evolution takes place and the persistence
of boundary controls that apply at different time and length scales.

Consider the development of river networks. Rodriguez-Iturbe
and Rinaldo (2001) argue that water draining from the land will
take a path of least resistance and will consequently minimise
energy dissipation in developing a drainage network and patterns
of slope and catchment areas. The result is a set of fractal relation-
ships characteristic of self-organised processes with exponents in
the range found by the empirical analysis of actual networks. Bejan
(2007) extends this optimisation argument to explain channel-
cross sectional areas and flux in other tree forms, Kleidon et al.
(2012) to critical zone fluxes, and Sidle et al. (2000, 2001) to
drainage networks within hillslope soils.

Drainage networks develop over time under the influence of a
(changing) distribution of events large and small. There are critical
event thresholds at a variety of scales, from the initiation of motion

of individual sediment particles, to the collapse of undercut banks,
to the cut-off of river meanders and to major avulsions of channels
from one position to another. The way in which momentum is dis-
sipated in the network will depend on the capacity of the stream
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o erode and transport the material of the bed and banks, which
tself will depend on the magnitude of a particular spate event and
he disposition of the sediment prior to that event (bed armouring
nd the way in which phytoplankton, macrophytes and bankside
egetation locally affect the supply, cohesion, mobilisation, and
eposition of sediments). As noted earlier, what is available to be
ransported by an event, might depend on past events. Transport
ithin an event might be transport limited in some circumstances

nd supply limited in others, even at the same site. There may be a
cale effect as well, in that persistent events at small scales might
ead to the breakdown of scaling laws apparent at larger scales (e.g.

oody and Kinner, 2006).
This will be cases, however, where what we see now at the local

cale will often show little in the way of clear persistence from past
vents. Where a major event has stripped vegetation and reworked
ravel deposits then the persistence will be greater (and can some-
imes be dated from vegetation ages, etc.). Even then, however, the
hannel modifications are largely constrained by what was there
efore, representing the integral effect of all past events.

It is clear that even in this case the network cannot be entirely
elf-organising. Persistence is still often apparent in prior land-
orms, the influence of underlying geology and the effects of
hanging base levels, etc. This will be most evident at the exter-
al links to the network when the uniqueness of particular places
omes most into play (Beven, 2002). It will be less evident at the
cales where a river is reworking its own past alluvial deposits.
t smaller catchment scales, the scope for arbitrary effects and
ontingencies is greater.

One particular example of this is the effect of the outbreak of
hestnut blight in the southern Applachians in the early part of the
0th Century. Although it is thought that this was introduced to
he US by the importation of Asian chestnut trees around 1900, by
940 some 4 billion trees had been lost. In parts of the Appalachians
5% of the trees were chestnuts. Many of the affected trees were
ut for timber, some after damage or toppling by wind. The blight
as been suggested as a major reason for the expansion of gully
ystems in the southern Appalachians in the 1930s that persist to
his day. Fire (Moody and Kinner, 2006) and blowdown due to wind
ave also been invoked as forms of contingent events (Phillips et al.,
008; Phillips and Park, 2009). In Virginia, in October 1979, an early
nowstorm led to about 30% of trees in some places in Shenandoah
ational Park falling over. The arroyo expansion in the American

outh-west in the late 19th century might also have an anthro-
ogenic origin with the introduction of cattle grazing. In this case,
here may have been earlier, more “natural” periods of gullying
nduced by occasional droughts (Antevs, 1952; Tuan, 1966; Pelletier
t al., 2011). There is clear persistence, but less information about
auses, initial conditions and changes.

. Preferential flow in soils

Another consequence of chestnut blight in the Appalachians
as the death and decay of root channels resulting in significant
etworks of preferential flow pathways through the soil. In this
ase a critical event has had a consequence, but in this case it is far
ore of an arbitrary event external to the preferential flow pro-

ess. There are other factors that affect preferential flows, such
s worms and burrowing animals, and cracking during drought
eriods, that are also external to the preferential flow process.
uch processes might actually create opportunities for preferen-
ial flow where there was little or none before, even though there
ay be little change in the hydrological regime. Other external pro-
esses, such as the use of ploughing rather than no-till agricultural
anagement, might reduce the opportunities for preferential flow.

hese external effects are changing the boundary conditions for
ling 298 (2015) 4–15

the preferential flow process, rather than being the product of self-
organisation of the flow process itself. What we see now at any site,
clearly depends on the rather arbitrary occurrence of such events
and their time scale of persistence. But they may have persistence
over long periods of time. Beven and Germann (2013) note that,
even in the case of cracking in a clay soil, the cracks may persist as
preferential flow pathways even after a wet winter (in part due to
roots that lie on cracked ped surfaces rather than penetrating the
clay). It is therefore difficult to believe in the general validity of the
suggestion that where there is “excess water” on hillslope a fractal
preferential flow network will develop so as to evacuate that water
(e.g. Sidle et al., 2000, 2001; Weiler and McDonnell, 2007).

It is interesting to think through the concept of excess water
on hillslopes. There is a long history of such a concept. Robert
Horton (1933) suggested that the soil surface was a separating
surface, causing water in excess of the infiltration capacity of the
soil to become surface runoff (though his concepts were actually
somewhat more sophisticated, see Beven, 2004). He recognised
that cracks in the soil could be important, but concentrated on the
downslope movement of excess water through crack systems or
“sun checks” which he called “concealed surface runoff” (Horton,
1942; Beven, 2004). Later, Dunne and others introduced the con-
cept of saturation excess surface runoff (Dunne, 1978) and Sidle
et al. (2000, 2001) have suggested that preferential flow lines could
develop in the soil to deal with water fluxes in excess of storage
in the matrix. The generality here is that water in excess of what
can be stored locally finds some way of finding its way downs-
lope towards a recognisable channel. In some cases, of soils that
are easily dispersed or eroded, that may cause a feedback into the
development of subsurface pipe systems, rills or gullies with a con-
sequent increase in the effective drainage density. Where the flow
can have a direct effect on developing the flow pathways this can be
a form of self-organisation, similar to that which leads to dendritic
drainage patterns in general. It is not so clear, however, that this
would be evident in cases where the soil surface is not easily eroded
and the hillslope simply sheds any excess water as surface runoff,
except perhaps in the most extreme events or after the surface has
been disturbed by anthropogenic action.

It is also not so clear in the case of preferential flow within
the soil, when the flow pathways due to roots, fauna, drying and
other causal mechanisms that are largely independent of prefer-
ential flow of the water itself. The water might still locally take
a path of least resistance, and some of the networks in the soil
that are self-organisational (such as root networks, mycorrhizal
mycelial networks and cracks and fissures) might have fractal scal-
ing characteristics (e.g. Van Noordwijk et al., 1994; Deurer et al.,
2003; Boddy and Donnelly, 2008). It might also be the case that
some flow pathways might be enhanced over others, for example
by the translocation of clay particles and build-up of cutans on the
surfaces of some preferential flow pathways, or long-term chemi-
cal weathering. This is also thought to happen in the shallow pipe
networks in peat soils found in the UK and elsewhere (Chappell,
2010; Jones, 2010). These networks appear to have their origins in
cracking in rare drought summers, but then parts of the network are
enhanced over others by the flow process itself. The network can
also be changed by roof collapse and blocking (Gilman and Newson,
1980). On balance, however, this would appear to be one case where
an event-persistence concept might dominate self-organisation in
controlling the local boundary conditions for the flow.

7. Vegetation productivity and drought
Another example of this balance between event persistence and
organisational principles is provided by the organisation of vegeta-
tion patterns. One issue in looking at vegetation patterns is that
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Table 1
Parameters of the simple soil depth model.

Parameter Symbol Base value Units

Initial soil depth do 0.1 m
Slope angle ˛ 0.36 rad
Effective upslope contributing area Ac 1000 m2 m−1

Density of water �w 1000 kg m−3

Density of soil �s 1500 kg m−3

Density of bedrock �s 2500 kg m−3

Maximum cohesion of soil Co 1 kPa
Maximum cohesion of roots Cr 3.5 kPa
Time constant to reach maximum cohesion of roots and equilibrium soil depth Te 50 y
Depth at which root cohesion reaches a maximum a 0.8 m
Rate parameter in logistic root cohesion function b 50 y
Equilibrium soil production rate over upslope contributing area Cp 0.001 m y−1

Friction angle � 0.576 rad
Minimum effective event specific discharge qmin 25 m d−1

Maximum effective event specific discharge qmax 300 m d−1

Beta shape parameter 1 for effective specific discharge B1 1 –
Beta shape parameter 2 for effective specific discharge B2 12 –
Minimum inter-event time Imin 0.01 y
Mean inter-event time Imean 0.5 y
Transmissivity at soil depth of 1 m To 150 m2 d−1
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Power of soil depth/transmissivity function
Surface erosion coefficient
Excess pressure coefficient

here are very few vegetation communities that have not been
ffected by man, either directly or (as in the case of chestnut blight)
ndirectly or (as in the case of beetle infestations following the
mpacts of acid rain on trees in the north of the Czech Republic)
oth. Self-organisational principles have been invoked to explain
ome vegetation patterns, such as the banded patterns of the “tiger
ush” in the semi-arid Sahel region of Africa as a response to limited
ater supply (Galle et al., 1999; Valentin et al., 1999). Banded vege-

ation patterns are also found elsewhere (e.g. Dunkerley and Brown,
002; Pelletier et al., 2012).

An interesting example is the suggestion that more generally
atural vegetation is adapted to maximise net carbon profit within
he constraint of maximising entropy in the local energy and mois-
ure regime. Schymanski et al. (2007, 2009, 2010) have shown how

aximisation of entropy might be used as a quantitative constraint
n models of evapotranspiration processes. The interaction of vege-
ation, atmosphere, and the hydrological regime has been explored
n some detail as a problem of nonlinear dynamics, including the
ossibility that changes in one area might have consequences in
nother area at distance. Such consequences might be part of the
verall non-equilibrium response but would be seen in the affected
rea as a change in boundary condition with some degree of per-
istence.

However, consider the piñon pine–juniper community found in
reas of the American south-west. This community has been the
ubject of significant research (e.g. Huffman et al., 2012; Limousin
t al., 2013). In 2002–2003 an external forcing event, in this case
nd extended drought, caused the death of many of the piñon trees,
t sites that had already suffered mortality in the 1996 drought
Mueller et al., 2005). Such events are persistent. Other contingent
vents such as fire can also have a significant impact on water use
nd productivity, even where the area is recolonised by the same
pecies, such as in the Mountain Ash (Eucalyptus regnans) that is
ound in the water supply catchments for Melbourne, Australia. In
hese catchments it has been suggested that the effects of fire on
he water yield of these catchments can have a persistence of over
century (see Jayasuriya et al., 1993; Watson et al., 1999). What
e see now is the persistence of individual contingent events.
In these particular cases the impact and persistence of an event
an often be distinguished by aging the vegetation using tree rings
r other techniques. Where trees survive, a history of fires and
roughts can sometimes be distinguished at a site (McBride, 1983;
f 5 m
Ce 0.025 d m−3

Cx 0.1 –

Swetnam, 1993; Buechling and Baker, 2004; Li et al., 2006; Liang
et al., 2006). Such studies have also shown that death can be a func-
tion of the stand characteristics and local soil properties (e.g. Ogle
et al., 2000; Floyd et al., 2009; Peterman et al., 2012) and might also
involve other mechanisms such as increased sensitivity to insect
damage (Clifford et al., 2008). The occurrence of contingent per-
sistent events is not necessarily inconsistent with some organising
efficiency or optimality principle applying at different stages dur-
ing regrowth, but it must do so under continuously, and sometimes
dramatically, changing constraints.

8. A simple case study: surface erosion and shallow slope
failure in a hillslope hollow

We can illustrate some of these issues by a simple model of
soil accumulation and erosion in a single hillslope hollow where
soil cohesion is a function of vegetation succession with increasing
soil depth, and surface erosion is also affected by the vegetation
cover (as in Fig. 1). To keep the example very simple we assume
that the infinite slab model of shallow landslip failure holds (e.g.
Montgomery and Dietrich, 1994; Borga et al., 2002). In this case,
the slope will fail if the ratio of water table depth to soil depth
satisfies the inequality

�sdg sin ˛ cos ˛ > C + (dg�s − hg�w − heg�w cos2 ˛ tan ϕ) (1)

where d is soil depth (m), h is the water table depth above the base
of the soil (m), he excess pressure head (m), C is the total cohesion
of the soil, (kPa) and the other variables are defined in Table 1.

The water table depth will depend on the effective discharge
from upslope and a transmissivity function that we will assume to
be a simple power law that is constant in time. Implicitly there-
fore we assume that as the soil depth increases the transmissivity
increases as a result of root and other channels in the soil as the
vegetation develops on the site. Thus:
T = Tod(i)f (2)

where To (m2 s−1) is the transmissivity at a scaling depth of 1 m and
f controls the nonlinearity. In a similar way, cohesion due to roots
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Fig. 2. The evolution of soil depths over time at a hillslope hollow

e a logistic function of soil depth, reaching a maximum strength
t a soil depth a, reached at a time scale of b years.

= Co + Cr

1 + exp(−b
{

d − a
}

)
(3)

nce the slope has failed, we assume that the soil depth starts to
ncrease as a function of both weathering and the dispersive trans-
ort of soil from the same effective contributing area upslope. It
ill, however, take time to reach an equilibrium soil depth. The

ccumulated soil depth is specified as a function of the rate of soil
roduction over the upslope catchment area, the current soil depth
nd time to reach an equilibrium soil depth as:

(i) = d(i − 1) +
(

�r

�s

)
de

(
1 − d(i − 1)2

d2
e

)(
I(i)
Te

)
(4)

here d(i) is the soil depth (m) prior to event i after an event inter-
rrival time I(i) (years) and de is the equilibrium soil depth due to
upply from the upslope contributing area of Ac Cp (m2). Potential
ailure events are generated randomly with effective event mag-
itudes of specific discharge over the upslope area generated as
beta distribution with specified minimum and maximum values,
nd event inter-arrival times as an exponential distribution, shifted
y a minimum event inter-arrival time.

Where the discharge supplied from upslope exceeds the downs-
ope flux capacity of the current soil depth then it is assumed that
here is some potential for surface erosion. This is represented as
simplified form of the Morgan–Morgan–Finney model (Morgan,
001; Vigiak et al., 2006; Morgan and Duzant, 2008) as:

= Ce(q(i) − qo(d))2 sin �; q(i) > qo(d) (5)

here q(i) is the specific discharge for event I, and qo(d) is the max-
mum specific discharge at the current soil depth, d. The effects of
edrock fractures on the potential for excess pore water pressures

n inducing failures is often revealed only after an event, (e.g. as
t the Coos Bay site, see Montgomery et al., 2002) but might be
mportant in controlling the occurrences of failures. This has been
ncluded here also in a very simple way by making excess pres-

ure proportional to the excess water depth (as predicted by an
xtrapolation of the transmissivity function) over the soil depth as:

e = Cx (q(i) − qo(d)) ; q(i) > qo(d) (6)
ears

re site for one realisation of the base parameter values of Table 1.

The model considered here allows for the evolution of soil depth
over time but considers only potential failures at that site and not
potential failures at other sites in the same drainage, i.e. we assume
we have chosen the most critical site in that drainage. However,
it already requires a large number of parameters to be specified
(Table 1), it assumes that those parameters are constant over time,
and it shows rather complex behaviours (Fig. 2) that are sensitive
to both realisation effects (Fig. 3) and changes in parameter values
(Fig. 4). In Fig. 3, the only difference between runs is the random
seed that starts the sequence of events. In Fig. 4 only the value of
the parameter b has been changed, all other parameters and the
sequence of events is the same. While this simple landslip model
could be further complicated (e.g. by introducing state dependent
parameters) this would not fundamentally change the inferences
that can be drawn from the complex simulated responses.

This is undoubtedly a very simple model of soil depth evolu-
tion at a site. Similar models have been employed to assess the
potential for failures in space (Montgomery et al., 2000) and, in
some cases have been linked to equilibrium soil depth models
(Dietrich et al., 1995), but many factors have been left out. It does
not take any account of the effects of man or disease on the soil
and vegetation characteristics and consequent cohesion at the site
(e.g. Montgomery et al., 2000); it does not allow for the effects
of geology and climate on weathering rates; it does not take any
explicit account of the effects of vegetation changes on flows and
antecedent conditions in the upslope contributing area; it does not
allow for the effects of wetting and drying sequences on weath-
ering and soil creep from upslope; and it does not allow for any
non-stationarity of the parameters of the functional relationships
incorporated in the model.

The time scales of these plots are long. What we see now at
a site will depend on where we are on the trajectory at that site.
We might see a site that is sensitive to failure with relatively shal-
low soil depths; we might equally see a site that is resistant to
failure. Fig. 5 shows the evolution of the factor of safety for one
run of the model, at the point where there is a transition from a
reduction of the factor of safety as soil depth increase, to where
increasing soil depth results in an increasing factor of safety if a
failure event does not occur (for those particular parameter val-

ues). The system exhibits a change in the mode of behaviour at
this point. What we see now will depend very much on whether
observations are made on one side of that transition or on the
other.
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Fig. 3. Different realisations of the evolution of soil depths over time in the slope failure model for the same base parameter values shown in Table 1. The runs vary only in
the random seed used to initialise the forcing events.
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An ergodic argument could be made at this point in that consid-
ration of multiple sites in space might give a better reflection of
he underlying nonstationarity and variability in the processes by
eflecting the potential distribution of expressions of soil depth in
ny time window. This is clearly true to some extent, but there is
lso the potential for variability of basic parameters between sites,
s well as other contingent auxiliary conditions that would increase
he potential dimensions of the joint distribution to be considered.
he number of sites required for robust inference might take on
he magnitudes of samples needed to estimate a fractal dimension
ith precision (see Theiler, 1990; Gallant et al., 1994).

. Mediating models in understanding and predicting the
uture

The point of all these examples is to show that it is not always
ossible to apply general constraining principles to explain the local

etail of what we see now, nor to validate those general principles
n the basis of short periods of observation. An event-persistence
pproach to explanation is not, of course, inconsistent with organi-
ational principles that integrate over time or space, but both might
ease time scale parameter. Upper panel: b = 25 years; lower panel: b = 50 years. All

contribute to a complete explanation of what we see now. This is
analogous to the discussion of dynamic equilibrium and nonequi-
librium in geomorphology (see for example, Renwick, 1992, and the
simplexity arguments of Phillips, 1997) and more recent state and
transition modelling methods that recognise the historical contin-
gencies of system evolution (e.g. Phillips, 2007, 2009, 2012, 2013).

This is clearly the case with landscape and the environment.
We have little reason to question the principles or capacities of
mass balance and thermodynamics, but given the limitations of
measurement techniques it is really not possible to disaggregate
those balances or apply thermodynamical principles in any other
than a very approximate way subject to significant uncertainties.
The models that we use then will be mediating models, mediating
between theory and observations, and subject to many auxiliary
assumptions that may not be verifiable (Morton, 1993; Gooding and
Addis, 2008). I have argued elsewhere that in many systems, includ-
ing catchments, it may then not be possible to distinguish between

different models as hypotheses about system function (e.g. Beven,
2002, 2006, 2009, 2012).

So there is scope for different types of mediating models, includ-
ing false models. Some of the current (sometimes conflicting)
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rganisational constraints that have been suggested might fall
nto this category. This is not necessarily a bad thing. As Frigg
2003) points out in his discussion of self-organised criticality con-
epts, false models can act as useful ways of changing entrenched
hinking: “to think differently about certain problems, motivate new
uestions, shed a different light on some issues, and finally make it eas-
er to adopt an altogether different point of view. In doing so, the model
cts as an antipode to stagnant assumptions, undercuts too readily
ccepted hypotheses, and helps to defamiliarise deeply entrenched
tyles of reasoning. In short, a false model can indicate alternative ways
o deal with a phenomenon” (Frigg, 2003).

The question that then arises, of course, is how best to test mod-
ls given limited boundary condition and evaluation data that are
ubject to epistemic as well as statistical error. This is particularly
mportant if we wish to use those models to make future predic-
ions on which decisions will be based. Once it is accepted that
pistemic errors are a significant constraint on model evaluation, it
eans that it is very difficult to make predictions associated with
realistic probability or likelihood that can be incorporated into

isk-based decision making (Beven, 2012; Beven and Young, 2013).
e might then need to develop some non-statistical methods of
odel evaluation, such as in the latest applications of the GLUE
ethodology (Beven and Binley, 2013; Beven and Smith, 2014).
lobal climate models are of this type; it is of some concern that

hey have not generally been rigorously evaluated even for short
erm decadal projections (Suckling and Smith, 2013). In this case,
ecognition of the epistemic uncertainties associated with the sce-
ario projections might lead to decisions being made in different
ays (Beven, 2011) but, this may not necessarily be a sufficient
rotection against an arbitrary future surprise (Beven, 2013).

ummary: the contingent, the arbitrary, and what we see
ow

What we see now in the landscape is the result of a long his-
ory of events with varying degrees of persistence. We have only
imited access to much of that history and we know that many

urrent events have only a minimal impact on what we see. Even
ather extreme events may have impacts that are not very long-
asting but can have the effect of changing the constraints for future
vents. That means that sampling of sequences of events might be
ing 298 (2015) 4–15 13

important in understanding the evolution of catchment hydro-eco-
geomorphology. In some cases, however, extreme events can have
persistence over hundreds or thousands of years. Any evolution of
the landscape is then constrained by the effects of those events,
however much it might be also constrained by self-organisational
principles at shorter time scales. It might be difficult to verify those
principles given the epistemic uncertainties that are generic to the
studies that are possible within a research project or career. Such
uncertainties also imply that it might therefore be difficult to test
different models of development as hypotheses about how catch-
ments and landscape systems function and even more difficult to
assess future evolution when that might be dependent on arbitrary
events in the future that could then have persistence. We search
for general principles and theories that will support predictability
but should recognise that what we see now may be subject to the
effects of such contingent persistent events that may instigate new
organisational structures.

Consequently predictability will be an issue for time scales
between the very long, where organisation is integrated over many
such contingent events, and the very short, in between contingent
events that modify the short term local organisation that integrates
over many small non-persistent events. The evidence presented
by persistence in the landscape suggests that this situation is not
uncommon such that an event-persistence conceptual framework
might often be useful.

As the results presented in this paper show, however, we can
also conceptualise that we might see rather different modes of
behaviour at different points in the time trajectory of a sequence
of events. Multiple sites might also be in quite different modes
of behaviour at any given time, making it difficult to generalise
and demonstrating a certain of uniqueness of place that is a result
of both spatial and temporal variations (see discussion of Beven,
2000). Drawing general inferences in such situations might be dif-
ficult but we can at least propose some interesting topics for further
study. This should include:

• What are the scales of persistence in any hydro-eco-
geomorphological system?

• How far is any short term process organisation dependent on the
effects of past persistent events?

• What are the potential future events, including anthropological
interventions, that might have the effect of changing the organi-
sation of those processes?

These questions suggest a promising line of research that should
be considered as complementary to the type of self-organisation
and short-term behavioural principles of such systems being advo-
cated elsewhere.
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