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Gabriel M. Ahlfeldt, Kristoffer Moeller & Nicolai Wendland 

Chicken or egg? The PVAR econometrics 

of transportation 

Abstract: To analyse the mutually dependent relationship between local economic performance, de-

mand for and supply of transport services, we employ the structural panel VAR method that is popular in 

the macroeconomic literature, but has not previously been applied to the modelling of the within-city 

dynamics of transportation. We focus on a within-city panel of Berlin, Germany during the heyday of the 

construction of its dense public transit network (1890–1914). Our results suggest that economic out-

comes and a supply of transport infrastructure mutually determine each other. We find a short-run 

(long-run) elasticity of property prices with respect to transport supply of 2% (8.5%). Both transport 

demand and supply seem to be driven more by firms than by residents.  

Keywords: transport, land use, Berlin, history, panel vector autoregression 
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1 Introduction 

The relationship between transport infrastructure and various economic outcomes is 

plagued by a notorious simultaneity problem. Put simply, there are plenty of reasons to 

believe that an ease of access to other locations within a city, region, country, or beyond 

should have a positive impact on the attractiveness of a location. At the same time the de-

mand required to recover large investments into infrastructures like airports, highways or 

railways is most likely strongest among economically successful places. The allocation of 

transport infrastructure is therefore non-random in most cases, which has long complicat-

                                                             

 Corresponding author: London School of Economics and Political Sciences & Spatial Economics 

Research Centre (SERC). g.ahlfeldt@lse.ac.uk, www.ahlfeldt.com  

  Darmstadt University of Technology and Center for Metropolitan Studies TU Berlin 

mail@kristoffer-moeller.de, www.kristoffer-moeller.de.  

 Darmstadt University of Technology. wendland@vwl.tu-darmstadt.de  

 We thank Bill Kerr (the editor), one anonymous referee and seminar and conference participants 

in London (SERC), Bratislava/Palermo (ERSA) and Duisburg (EGIT) and especially Kurt Schmid-

heiny, Henry Overman, Jens Südekum, Volker Nitsch and Sevrin Waights for helpful comments 

and suggestions. Sascha Möbius and Neele Reimann-Phillip also provided excellent research as-

sistance. The German Science Foundation (DFG project code NI 938/2-1) and the Fritz-Thyssen-

Foundation (project code AZ.10.10.2.070) are acknowledged for financial support. The usual dis-

claimers apply. 

mailto:g.ahlfeldt@lse.ac.uk
http://www.ahlfeldt.com/
mailto:wendland@vwl.tu-darmstadt.de


Ahlfeldt/Moeller/Wendland: Chicken or egg? 2 

ed the interpretation of the evident positive correlation between accessibility and eco-

nomic performance. A priori, it is not clear to which extent this correlation is attributable 

to economic impact caused by the supply of transport infrastructure, or by transport sup-

ply being provided in response to demand, a bidirectionality that resembles the chicken-

or-egg problem. Moving beyond correlation and towards establishing causality, however, 

it is important to justify (public) expenditures on transport infrastructure that are sup-

posed to promote local economic development. 

Our approach to deal with the simultaneity of economic outcomes, demand for and supply 

of transportation is borrowed from a macro-econometric literature that faces similar 

econometric challenges, albeit in different economic contexts. In this literature, structural 

vector autoregressive (VAR) models are often used to model the complex temporal struc-

ture among economic outcome variables and policy variables that typically reflect causes 

and effects of economic performance. Typical fields of application of the panel version of 

VAR (PVAR) include monetary policy and investment behavior (Assenmacher-Wesche & 

Gerlach, 2008; Carlino & DeFina, 1998; Love & Zicchino, 2006), supply of development aid 

(Gillanders, 2011; Gravier-Rymaszewska, 2012; M'Amanja & Morrissey; Osei, Morrissey, & 

Lloyd, 2005) or security economics (Konstantinos & Konstantinou, 2013). Some applica-

tions of the VAR method have focussed on regional transport analyses, especially with 

respect to the crowding-in effects of public/private investment (Bogart, 2009; Pereira & 

Andraz, 2012a, 2012b; Pereira & de Frutos, 1999). In a nutshell, the (panel) VAR method is 

particularly useful if the theory offers some guidance as to the potential directions and the 

temporal sequence of the dependencies among variables, but does not deliver predictions 

that translate into a unidirectional impact of (an) exogenous variable(s) on a dependent 

variable. Identification is achieved by imposing restrictions on the temporal structure of 

causalities, i.e. by ruling out contemporary shocks of demand on supply. 

With this contribution, we make the case that the PVAR method can be applied to the 

chicken-or-egg problem of transportation, which resembles typical macro-policy problems 

at a spatial micro-level. We apply the PVAR method to a panel data set containing 

measures of land value, population density and transport services that is rich in spatial 

detail and spatiotemporal variation. We argue that assuming a concave production func-

tion in the construction sector there is a bidirectionally unambiguous relationship be-

tween the supply of transport services and the value of urban land. The chicken-or-egg 
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problem in transport economics can therefore in principle be investigated based on an 

analysis of these two variables alone. We further argue that (assuming land markets clear) 

a data set containing land value, population and transport supply measures can be used to 

analyse the extent to which firms or residents respond to transport shocks and whether 

transport infrastructure is in practice directed towards firms or residents.  

Rich variation in transport supply is typically difficult to find for contemporary cities of 

the developed world. Baum-Snow et al. (2012) have responded to that limitation by ana-

lysing economic growth and transport development patterns in a developing country 

(China) using a long-difference analysis. Limited data availability, however, makes it diffi-

cult to build a spatial panel with sufficient temporal coverage and spatial detail for a PVAR 

analysis of a developing country. Our analysis, therefore, remains located in the developed 

world, but is set in a period where many of today’s established cities were themselves de-

veloping. The focus of our analysis is on Berlin, Germany, 1890–1914, which was not only 

a period of massive economic growth—the population about doubled during this period—

but was also the period when the backbone of today’s within-city transit network was 

developed. A further important advantage of the historic setting is that automobiles can be 

ignored as a relevant transport mode. Our analysis benefits from one of the (world-wide) 

rare data sources offering land values at a high spatial detail and for various points in 

time: the so-called Müller maps, which present detailed categories of assessed land values 

on highly disaggregated geographical levels up to individual plots.1 While selected Müller 

land values have been utilised in previous research (Ahlfeldt & Wendland, 2009, 2011, 

2013) this is the first application of a complete digitised record of the information con-

tained in these maps. We complement the land value information with a neighbourhood 

panel of population records and information on historic transport networks that were 

digitally reproduced in GIS based on historic transport maps. 

Besides the methodological similarity to the macro-econometric literature, our research 

directly connects to a wide range of urban economics research that aims at establishing 

the unidirectional causal impact of transport supply on economic outcome measures using 

either quasi-experimental (Ahlfeldt, 2013; Ahlfeldt & Wendland, 2009; Gibbons & Machin, 

                                                             

1  Chicago is the notable exception in terms of availability of land value estimates. Hoyt and Olcott 

have provided spatially varying land value estimates covering a period of about 150 years (see 

McMillen, 1996 for details). 
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2005; McDonald & Osuji, 1995; McMillen & McDonald, 2004; Michaels, 2008) or instru-

mental variable (IV) designs (Baum-Snow, 2007; Baum-Snow, et al., 2012; Duranton & 

Turner, 2011, 2012; Holl & Viladecans-Marsal, 2011; Hornung, 2012; Hsu & Zhang, 2011). 

These studies typically implicitly or explicitly assume that the supply of infrastructure is 

uncorrelated with the previous trend in observed economic outcome in a particular case 

or that an IV is at hand that predicts transport supply, but is conditionally uncorrelated 

with the outcome. Provided the identifying assumptions are met, these approaches typi-

cally identify a positive causal effect of transport supply on an economic outcome at the 

expense of not being informative with respect to the feedback of economic development 

on transport supply. Fewer studies have provided evidence of the impact of economic de-

velopment on the provision of transport infrastructure (Cervero & Hansen, 2002; 

Levinson & Karamalaputi, 2003).  

In the sense that our method explores the bidirectional temporal relationship between 

transport demand and supply variables, our approach is most closely related to Levinson’s 

(2008), Xie & Levinson’s (2010) and Granger’s (1969) causality analyses of the relation-

ship between transport services supply and population density. Their results point to co-

development, i.e. a mutually causal relationship between demand for and supply of 

transport. The key advantage of our data set relative to their analysis is the additional 

availability of land value data. As we discuss in more detail in the next section, the (mutu-

al) relationship between transport supply and land value is presumably unambiguously 

positive, whereas the relationship between transport supply and residential use in both 

directions is affected by the competing commercial use. Combining measures of land val-

ue, transport supply and residential density, moreover, allows for additional insights to be 

gained into whether the relationship between transport demand and supply is driven 

primarily by residential or commercial use. Compared to a Granger causality test, the 

PVAR method we employ has the advantage of being able to accommodate multi-

directional causal impact in multivariate systems of equations and allows for a structural 

interpretation of reduced form coefficients under the assumption that the temporal struc-

ture of mutual dependencies of the endogenous variables is known. Methodologically, our 

approach is closely related to Graham et al. (2010) who make use of a PVAR model to test 

the direction of (Granger) causality between agglomeration economies and productivity. 

In (Melo, Graham, & Canavan, 2012) a PVAR approach is applied to examine the link be-
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tween investment in road transport and economic output allowing for simultaneously 

induced travel demand.2 

Previewing our findings, our application of the PVAR methods suggests that the relation-

ship between economic performance and transport supply within our research environ-

ment is bidirectional, that commercial activity tends to displace residential use in re-

sponse to transport improvements, and that transport planners have followed commercial 

activity more than residential demand, especially in the economic core of our study area.  

The remainder of the paper is structured as follows. In the next section we provide some 

theoretical guidance to the interpretation of our PVAR model results and show how we 

take the model to the data. Section 3 presents the results and the final section concludes. 

2 Empirical strategy 

To analyse the relationship between transport demand and supply researchers have relied 

on different indicators of economic activity. Some researchers have inferred transport 

demand from house or land price capitalisation (e. g. Ahlfeldt & Wendland, 2011; Gibbons 

& Machin, 2005). Other researchers have focussed on population (density) instead (e.g. 

Levinson, 2008). The purpose of the next subsection is to provide a simple theoretical 

framework that helps with the interpretation of bivariate and multivariate PVAR models 

which use different indicators of local economic demand. We will discuss three different 

settings. Firstly, a bivariate model using land values and a measure of transport supply 

that is sufficient to model the dynamics of demand and supply. Secondly, an alternative 

bivariate model which uses population density instead of land values. In this model the 

analysis then needs to be carried out separately by land use. The reason is that depending 

on the relative attractiveness of an area to firms and residents, the population will either 

be attracted to an area with improved transport supply, or outbid and thus displaced by 

firms that relocate to the area. The third setting involves a multivariate model which in-

cludes land values, population density and a measure of transport supply. This model is 

                                                             

2  Among the few applications of the PVARs method in urban/regional economics are Miller & Peng 

(2006), Lee (2007) and (Brady, 2011). (Calderón, Moral-Benito, & Servén, 2014) analyse the re-

lationship between economic outcome and infrastructure capital using panel time-series tech-

niques. 
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the most difficult to interpret since the effects of the two demand-side variables need to be 

interpreted conditional on each other. The advantage of this model is that it allows for 

some insights into the causes and effects of changes in the land use pattern that remain 

hidden in a two variable land value transport supply model.  

A motivating theoretical framework, the PVAR method and how we take it to our data are 

discussed in sections 2.1, 2.2, and 2.3. Section 2.4 then explains the nature of the historic 

data that we collected.  

2.1 Theoretical framework 

In our stylised world, accessibility positively shifts the local residential and commercial 

demand for space. The supply curve of usable floor space is upward sloping because the 

supply of land at a given location is fixed and the available construction technology impos-

es limits to densification. Accessibility therefore increases the equilibrium price and quan-

tity of space consumed as well as the land value at a given location. We assume that there 

is a unique mapping of equilibrium land value to equilibrium space (per land unit). As res-

idential and commercial use are mutually exclusive the land use mix is therefore exactly 

identified by a measure of land value and a measure of either the commercial or residen-

tial use. 

Let’s assume that local demand for residential space    and commercial space per land 

unit    is defined by the following demand functions: 

     (     ) 
   

  
   

   

  
   

   

  
     (1) 

     (     ) 
   

  
   

   

  
   

   

  
     (2), 

where v is the price of a homogenous unit of building floor space, T is a measure of locally 

available transport services and L captures time-invariant locational features that make a 

location more attractive. Demand for space is decreasing in the price of space and increas-

ing in the quality of transport services and amenities. All variables are expressed in per 

land unit terms.  

We further assume a competitive construction sector with a concave production function. 

As demonstrated by Epple et al. (2010), the price of land – the land value V – must be a 

monotonic function of the price of a homogenous unit of building space as long as the unit 
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price of developed land is a monotonic function of the price of building space, i.e. v=v(V). 

The local supply of building space qS increases at a decreasing rate in land value reflecting 

increasing incentives to use non-land inputs and limits to densification. 

     ( ) 
   

  
   

    

   
     (3) 

Market clearing implies that total demand for residential and commercial space must 

equal supply. 

          (4) 

The market clearing condition allows us to derive the equilibrium quantities   
 
 and   

 
, 

which add up to   
 
, and the equilibrium land value   . Assuming that the consumption of 

space per firm and household is constant   
 
 can be approximated by the local number of 

firms (alternatively as local employment) and   
 
 by the local number of residents (popu-

lation density), respectively. 

Transport planners design the infrastructure to accommodate demand such that transport 

services T increase in the number of local residents   
 
 and firms   
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Assuming market clearing (4) and the monotonicity of the relationship of the price of usa-

ble space and land value (v=v(V)), equations (1–3) jointly determine the equilibrium land 

value as a function of transport access and location amenities (     (   )).3 Since T is 

itself a function of QP and QE and market clearing implies that   
 
   

 
   

 
 we can ex-

press the land value as: 

     ( (  
 
   

 
(  )    

 
)  ))  (6) 

It is further straightforward to re-express transport access as a function of land value and 

the local number of residents QP: 

     (  
 
   

 
(  )    

 
)   (7) 

                                                             

3  See Brueckner (1987) for a detailed derivation of the urban equilibrium determined by the de-

mand (Alonso, 1964; Fujita & Ogawa, 1982; Lucas & Rossi-Hansberg, 2002) and supply side 

(Epple, et al., 2010; Mills, 1972; Muth, 1969; Saiz, 2010) of land markets. 
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Since residential demand for space is a function of transport access, equilibrium land value 

and time-invariant amenities (1), it is possible to further simplify the equation system.  

    (  (  
 
(       )   

 
(  )    

 
(       ))  )    (    ) 

   

   
   (8) 
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(  )    
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A nice feature of the bidirectional relationship between land value and transport access is 

that the mutual influence is theoretically unambiguously positive. Note that the panel na-

ture of our data set allows us to hold the effect of time-invariant amenities L constant so 

that we abstract from L in the remainder of this section. 

We chose the historic environment for this study due to the substantial spatiotemporal 

variation in transport access compared to most contemporary cities with already devel-

oped mass transit. Unfortunately, the historic environment also implies that it is more 

difficult to collect data that are sufficiently spatiotemporally disaggregated to be suitable 

for the relatively demanding PVAR method. It has proven impossible to collect spatiotem-

porally disaggregated data on employment or building stock that would be suitable for the 

analysis. What we are able to observe besides land values and a self-constructed measure 

of transport access is a within-city panel of population density. This is already a relatively 

rich data set given the historical setting.  

With a concave production function in the construction sector and the market clearing 

condition (4), introduced above, however, it is possible to rearrange equations (1–4) such 

that a unique equilibrium is defined with three (land values, transport access, population 

density) or even two (land values, transport access) variables (as shown above). Equation 

(6) can be rearranged to give: 

     (  
 
     ) 

   

   
   

   

   
       (10) 

A positive relationship is expected between the two endogenous variables    and T, but 

the expectations are unclear regarding the effect of population density on land value con-

ditional on transport access. The intuition is that the relationship between population 

density and land value critically depends on the degree to which transport access attracts 

firms, relative to population (
   

 

   
 
   

 

  
). 

Similarly, equation (7) can be rearranged to give:  
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     (  
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Since        
 
   and    

 
       we unambiguously expect the land value to be a 

positive determinant of transport access. Again, however, the expectation is ambiguous for 

the relationship with population density. 

The lack of data on employment and housing stock also complicates the interpretation of 

the population response to changes in transport access and land value. Under market 

clearing assumptions, the space consumed by residents is determined by their valuation of 

transport access relative to firms’ valuation. 
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(  )    
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(     ) 

   
 

   
   

   
 

   
     (12) 

There are generally no unambiguous theoretical expectations regarding the directions of 

the relationships involving population density. Nevertheless, equations (10–12) suggest 

that an empirical approximation facilitates interesting tentative interpretations. A positive 

(negative) impact of population density on land value caused by, e.g. a transport shock, 

will suggest a relatively higher (lower) WTP by residents vs. firms. Likewise, a positive 

(negative) impact of population density on transport access (conditional on land value) 

will be suggestive of a transport planner who targets residential (commercial) areas. Fi-

nally, positive (negative) population density responses to transport (and conditional land 

value) changes would again indicate a higher WTP by residents relative to firms.  

From a theoretical point of view the interpretation of a bidirectional relationship between 

population density and transport access alone is in principle even more complicated than 

in the three variable system since the demand linkage of population and transport supply 

works in the opposite direction of the competition between population and (unobserved) 

employment. One simple way to address this problem, however, is to break the city down 

into areas where residents are expected to outbid firms (demand effect dominates) and 

vice versa (competition effect dominates) (Levinson, 2008). 
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2.2  Methodology 

A VAR model consists of a system of equations which are estimated simultaneously. Each 

variable in this system is explained by its own lags and lagged values of the other varia-

bles.4  

                                      , 

(               ) 

(13) 

                (14) 

where      is a   x 1 vector of   panel data variables, the     are   x    coefficient matrices 

of the lagged variables     ,   denotes the number of lags and      is a vector of determinis-

tic terms (linear trend, dummy or a constant) with the associated parameter matrix   . 

The unobserved individual effect   , the time fixed effect    and the disturbance term      

jointly compose the error process     . We assume that      has zero mean, i.e.  (  )   , 

independent   ’s and a time invariant covariance matrix.  

We control for individual fixed effects by forward-mean-differencing (also Helmert trans-

formation), i.e. we remove the mean of all future observations available for each location i 

–time t pair.5 The Helmert transformation preserves the orthogonality between the varia-

bles and their lags which is essential for the use of lags as instruments in a system GMM 

estimation (Arellano & Bover, 1995).6 We also time-demean all series to control for time 

effects. 

Panel VAR estimation requires stationary variables. Acknowledging the short panel nature 

of our data set (N large, T small) we apply a modified Fisher-type unit root test. Following 

Choi (2001) we use the modified version of the inverse    transformation in order to test 

the null hypothesis of all panels having a unit root.  

                                                             

4  See Sims (1980) and Holtz-Eakin (1988) for the theoretical underpinnings.  

5  Applying standard mean-differencing procedures generates biased estimates as the fixed effects 

are correlated with the regressors due to the auto-correlated dependent variables (Arellano & 

Bond, 1991; Arellano & Bover, 1995; Blundell & Bond, 1998). 

6  We use the STATA routines pvar and helm developed by Inessa Love for an econometric analysis 

by Love & Zicchino (2006). The original programmes are available at http://go.worldbank.org/ 

E96NEWM7L0. 
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Based on the reduced form results and the moving average representation of the VAR 

model (Wold decomposition), the impulse response functions (IRF) can be derived to 

show how a variable reacts to a unit innovation in the disturbance term in period   holding 

all shocks constant. The confidence bands of the IRF are generated in Monte Carlo simula-

tions following Love & Zicchino (2006). 

2.3  Implementation 

We estimate two alternative equation systems to empirically approximate the bi-lateral 

relationship of land value V and transport supply T as well as the multilateral relationship 

between land value V, transport supply T and population P. Since all variables are in logs 

and we identify from variation over time using constant geographies, a spatial normalisa-

tion (transformation into density) becomes empirically obsolete.  

                                  (15) 

                                  (16) 

                                            (17) 

                                             (18) 

                                            (19) 

Since our short panel contains six time periods only, we set the lag length to    . In the 

first step, the reduced form VAR systems described above are estimated using system 

GMM (Arellano & Bover, 1995). In the second step, we compute the IRF orthogonalising 

the residuals to move from the reduced form coefficients to a more structural interpreta-

tion. For the identifying restriction we impose the following recursive ordering of causali-

ty (see for details on the Choleski decomposition Enders, 1995; Hamilton, 1994): 

Transport (T), population (P), land values (V). The earlier a variable appears in the system 

the presumably more exogenous it is. 

We suppose that the construction of a new transport infrastructure is not affected by any 

contemporaneous shocks, only by lagged variables. This is simply because it takes time to 

plan and build stations and networks (“time-to-build effects”) (Kilian, 2011; Love & 

Zicchino, 2006) and we therefore don’t expect instant responses to population or land 

value shocks. Population is assumed to react to contemporaneous transport shocks but 

not to contemporaneous shocks in land values. The construction of new lines is usually 

publicised in advance so that residents have time to adjust their location according to their 
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preference for accessibility. Land value adjustments, in contrast, are typically not readily 

observed by residents. There are likely information delays (Inoue, Kilian, & Kiraz, 2009) 

which are assumed to last one period in our system. The supposedly least exogenous vari-

able, land values, is assumed to be affected by contemporaneous transport and population 

shocks (plus lag of all variables). This is in line with the weak form efficient market hy-

pothesis according to which markets incorporate all realisations of relevant outcomes 

(Fama, 1970). According to the semi-strong (or strong) efficient market hypothesis, how-

ever, markets are expected to immediately respond to any information made publicly 

available. This would imply an adjustment to the announcement and not the completion of 

a new rail station if – even in the early days of metro rail development – markets were able 

to forecast land price effects. We address this concern in a robustness check using artificial 

historic transport networks based on the announcement, not the inauguration, of new 

transport infrastructures.  

We run and present the analysis in the following sequence. First, we concentrate on the bi-

lateral relationship between a measure of transport supply introduced in more detail in 

the next subsection and land value, which we consider a global economic output measure 

in the sense that it reflects the productivity of land irrespectively of the type of use. At this 

stage we are able to make full use of the extraordinary spatial detail of the land value in-

formation at hand. Second, we explore the mutual relationships between land value, 

transport supply and population in a multivariate PVAR model. At this stage, we lose some 

of the spatial detail as we aggregate our data to the neighbourhood level for which popula-

tion data is available. As discussed, we expect to gain insights into how different land uses 

(residential vs. commercial) respond to and impact on transport supply. Following the 

standard practice we report the reduced form estimates, the IRF and the variance decom-

position for both PVAR models.  

These main stages of the analysis are complemented by a range of robustness checks, 

model extensions and complementary analyses to cross-validate the implications drawn 

from the benchmark PVAR models. We repeat the benchmark estimates using transport 

variables generated based on announcement dates to assess the sensitivity of the results 

with respect to implicit market efficiency assumptions. We repeat the analysis using vary-

ing levels of spatial data aggregation and different measures of transport supply. We fur-

ther break down the estimation samples into presumably commercial (downtown) and 
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residential (periphery) areas where the theoretical implications regarding the population 

effects are less ambiguous. At this stage we explore the bivariate relationship between 

population and transport supply in more depth by making use of the longer time-

dimension in these data series (compared to the land value data). Finally, the conclusions 

regarding the causal effects of transport supply on land value and land use are contrasted 

with the results of a complementary analysis using an instrumental variable approach. 

2.4  Data 

For the estimation of our PVAR models we make use of information on land value, popula-

tion and transport infrastructure that are disaggregated by space and time. Our land value 

measures are constructed based on plot level land value maps published by Gustav Müller 

between 1890 and 1914. On these maps, various land value categories represented by 

items (e.g. circles, triangles, etc.) of different colours are assigned to individual plots that 

typically lie along a street front. The level of spatial detail is high. Categories typically 

change even within blocks of houses and across two sides of the same street and usually 

reflect the effect of being located at a corner. Each category corresponds to a numeric land 

value (e.g. 5 RM) that is specific to each issue. We digitise six cross-sections using the fol-

lowing procedure.7 First, we scan and georeference the historic maps in GIS. Second, we 

draw lines (polylines) along road sections of the same land value category and assign the 

respective land value interval. Third, we aggregate the polyline values to spatial units 

(polygons for grid cells or neighbourhoods), weighted by the line length within a polygon.  

All land values are given in Reichsmark per square meter. While Müller did not explicitly 

reveal the exact procedure of land value assessment, the imperial valuation law 

(Reichsbewertungsgesetz) of the German Reich contained strict orders to use capital val-

ues for the assessment of plots based on fair market prices. In line with the valuation laws, 

land values thus refer to the pure site value and are adjusted for all building and even gar-

den characteristics that are not an intrinsic feature of the location. Müller also corrects for 

specific plot characteristics such as single and double corner lots, subsoil and courtyard 

properties. In many respects, the Müller data are comparable to Olcott’s land values uti-

lised by, for example, McMillen (1996). A subset of Müller values has been used by Ahlfeldt 

& Wendland (2009, 2011, 2013), who also provide a more detailed discussion of the data 

                                                             

7  The land value data were extracted for 1890, 1896, 1900, 1904, 1910 and 1914.  
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along with some comparisons to later publications of land values in Berlin (Kalweit, 1928, 

1936; Runge, 1950).  

To make full use of the high spatial detail provided by the Müller maps, we aggregate the 

data to relatively fine 150x150m grid cells, which form the cross-sectional identifier in our 

bivariate PVAR models (see Figure 1). We note that due to the rapid expansion of the city 

during the study period the spatial extent covered the Müller map increases over time. To 

arrive at a balanced panel we assign the minimum land value observed in a given year to 

grid cells outside the city margin. This approach is rationalised by assuming that we ob-

serve some fraction of the urban margin where, in the absence of zoning regulation, the 

urban land value corresponds to the agricultural land rent (Alonso, 1964).  

In comparison to the land value data, the population data we collect provides an even 

more comprehensive coverage (basically the whole of Berlin), but at a lower spatial detail 

(see Figure 2). We collect 14 cross-sections (in five year intervals from 1870 to 1935) of 

93 neighbourhoods (“Ortsteile”) from the Statistical Yearbook of Berlin (Statistisches Amt 

der Stadt Berlin, 1920).  

Our measure of transport supply is an index of effective accessibility to stations connected 

to the heavy rail network in Berlin. This network effectively consist of two separate net-

works which are, however, close substitutes in terms of speed, comfort and transport 

fares. The suburban railway network (today the “S-Bahn”) mostly connects central areas 

to suburban areas and locations along a semi-central circular line to each other. It was 

largely developed during the last decades of the 19th century. The underground (“U-Bahn”) 

has formed a relatively dense network within central locations. Compared to the suburban 

rail network, it provides less coverage in the outer areas. Development of the U-Bahn did 

not start before 1902 (see also Table 1). We provide a detailed discussion of the history of 

the Berlin transport network in section 2 of the appendix. 

The rationale for focussing on the two heavy rail systems is twofold. First, the heavy rail 

systems, with an average velocity of 33km/h (Ahlfeldt & Wendland, 2011), provided a 

significant accessibility advantage over any other transport mode. Second, a dense bus and 

streetcar network had already been developed by the end of the 19th century, implying 

that variations in accessibility over time were primarily driven by stations that were add-

ed to the heavy rail network. Similar to Levinson (2008) we capture the effective accessi-
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bility to the heavy rail network using a kernel density measure which discounts surround-

ing stations on distance.8 Our kernel uses a radius of 2km (Silverman, 1986), which is in 

line with the catchment area of London underground stations identified by Gibbons and 

Machin (2005). Compared to a simple distance to the nearest station measure the kernel 

density measure incorporates the marginal benefit of having a second (or third, etc.) sta-

tion in vicinity. To the extent that different stations are connected to different lines, they 

will also offer different and potentially complementary transport services. To compute our 

density measure for different years we have collected, scanned, and digitised historic net-

works in GIS using various historic sources (Mauruszat, 2010; Schomacker, 2009; 

Straschewski, 2011). Figure 3 illustrates the remarkable increase in effective access to the 

rail network over our observation period.  

Fig. 1.  Land values by grid cells 

1890

 

1914

 
Note: Data are aggregated to 150x150m grid cells. 

                                                             

8  The kernel is defined as 
 

   
(    ) , for   

 

 
  , where   is the distance from the analysis 

location   to location  ,   denotes the bandwidth (radius from analysis point to edge of kernel 
area); 0 for    . 
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Fig. 2.  Population density 

1890

 

1915

 

Notes: Data aggregated to neighbourhoods (Ortsteile) 

Fig. 3.  Rail station density 

1890

 

1915

 
Notes:  Rail station density is first computed in continuous space using a kernel radius of 2km and then 

aggregated to a 150x150 meter grid. High densities are dark shaded using a consistent scale for 

both years. 

We combine the raw data shown in Figures 1–3 to three panel data sets for the PVAR anal-

yses. First, a bivariate data set containing grid-cell level (150x150m) land values and sta-

tion densities for six periods (1890–1914) in approximately five-year intervals. Second, a 

neighbourhood level (48 spatial unit) data set containing land values, rail densities and 

population for six periods (1890–1914). Third, we also construct a neighbourhood level 

(93 spatial unit) data set containing rail densities and population for 14 periods (1870–

1935). To keep the presentation compact we relegate the analysis of this data set to the 

appendix. Table 1 provides descriptive statistics of the three variable balanced panel data.  

In various robustness checks, we split the area into a core (primarily commercial) and a 

periphery (primarily residential) area in order to control for the diverging roles of central 
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and peripheral areas. In doing so we adhere to the historic definition of the CBD provided 

by Leyden (1933). A final data set utilised in a complementary land use analysis consists of 

a set of maps showing real land uses, which were digitised in a procedure similar to the 

land value extraction (Aust, 1986). 

Tab. 1. Descriptive statistics 

 Number of 
Stations 
(S-/U-Bahn) 

Land value Population Station density 
Year Mean 

(S.D.) 
Min 
Max 

Mean 
(S.D.) 

Min 
Max 

Mean 
(S.D.) 

Min 
Max 

1890 
(1890) 

65 
(65/0) 

113.680 
(175.395) 

2.510 
844.671 

38336.7 
(51894.2) 

0 
201681 

0.212 
(0.159) 

0.006 
0.424 

1895 
(1896) 

88 
(88/0) 

150.107 
(224.745) 

3.624 
1032.744 

43970.2 
(56294.5) 

0 
213384 

0.247 
(0.164) 

0.008 
0.490 

1900 
(1900) 

96 
(96/0) 

174.318 
(251.755) 

2.659 
1112.501 

52531.7 
(64722.3) 

0 
253149 

0.255 
(0.162) 

0.008 
0.490 

1905 
(1904) 

118 
(103/15) 

197.684 
(277.079) 

3.268 
1206.241 

61719.1 
(73030.2) 

0 
277095 

0.297 
(0.187) 

0.008 
0.607 

1910 
(1910) 

137 
(109/28) 

236.704 
(327.020) 

4.138 
1343.457 

70726.4 
(84175.4) 

1457 
309551 

0.411 
(0.311) 

0.008 
0.983 

1915 
(1914) 

155 
(109/46) 

181.394 
(232.511) 

3.673 
935.405 

70973.0 
(85554.2) 

1431 
313826 

0.524 
(0.427) 

0.008 
1.228 

Note:  Years in parenthesis refer to availability of land value data. All variables except the number of 

stations are in logs. Table shows raw values before time-demeaning and forward-mean-

differencing. 

3 Results 

In the presentation of the results we focus on two of the three models we introduced in 

section 2. In section 3.1 we analyse the interaction between land value, an independent 

land use measure of transport demand, and transport supply using a bivariate land value 

station density PVAR model. In section 3.2 we present estimates of a multivariate popula-

tion density land value station density PVAR model to gain additional insights into how the 

relationship between transport demand and supply is driven by land use (commercial vs. 

residential). To save space, the presentation of the third model discussed in section 2, the 

bivariate population density station density model, is largely contained to the appendix. A 

brief qualitative summary of the results of this model is presented at the end of section 

3.2. Moreover, we refer to both bivariate models (land value and population density vs. 

station density) in section 3.3 where we present a quantitative interpretation that con-

nects to the previous literature and we discuss the nature of the PVAR results relative to 

alternative estimation approaches.  
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We note that all of our time-demeaned and Helmert transformed (forward-mean-

differenced) variables (population, land value, rail density) pass the first generation unit 

root tests. Population and rail density also pass the second generation unit root test allow-

ing for cross-sectional dependency. We cannot apply the second generation unit root test 

(Pesaran, 2007) to the land value panel due to the limited number of consecutive periods. 

A more detailed discussion of the unit root test results is in section 4 in the technical ap-

pendix. 

3.1 Land value: Bivariate demand supply models 

Table 2 displays the reduced form results of the bilateral relationship between land value 

and effective rail network accessibility. The results are in line with a mutual dependence 

of economic impact and transport supply as expected theoretically. Past realisations of 

transport supply positively impact on the contemporary land values, which are a capitali-

sation of productive land use, and vice versa.  

Tab. 2. Reduced form: Bivariate land value model (150m grid level) 

 (1) (2) 
 log land value (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log land value (t-1) 0.590*** (0.008) 0.053*** (0.003) 
log station density (t-1) 0.099*** (0.006) 0.539*** (0.014) 
Obs. 34,244 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Figure 4 illustrates the computed IRF based on the reduced form results presented in Ta-

ble 2. The IRF summarise the temporal response pattern for a given variable to shocks in 

the other. The IRF are in line with the positive mutual dependency suggested by the re-

duced form results. Positive shocks to transport supply lead to positive adjustments in 

land values in a number of consecutive periods. The IRF converges towards zero without 

becoming negative, which implies that transport improvements lead to permanent level 

shifts in the intensity of land use. Over the six time periods the (log) land value adjustment 

to a one standard deviation shock in log station density accumulates to about 0.27 stand-

ard deviations (cumulative IRF are presented in Figure A3 in the appendix). This pattern is 

in line with a relatively large literature that has provided evidence of a causal impact of 

transport infrastructure on real estate prices. The station density IRF, however, also indi-

cates that positive economic shocks lead to increases in the supply of transport services. 
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Note that contemporary shocks are ruled out mechanically. The plateau from the first to 

the second period indicates that, in practice, it takes some time for transport infrastruc-

ture to fully adjust to demand shocks. This is comprehensive in light of the intensity of the 

heavy rail planning and construction process. 

Fig. 4.  Impulse responses: Bivariate land value model (150m grid level) 

 
Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

Compared to the effect of transport supply on land value, the reverse impact is somewhat 

smaller. The IRF of station density (Figure 4, right) shows a weaker amplitude than the 

land value IRF (left). A one standard deviation shock in (log) land value increases (log) 

station density by about 0.037 standard deviations in the second consecutive period, while 

similar station density shocks lead to land value responses of about 0.06 (again, in units of 

standard deviation). Also, the cumulative impulse response of supply to the demand shock 

is just about half the size of the demand response to the supply shock (0.14 standard devi-

ations over the six periods). This is not surprising as the supply of transport facilities is 

costly and is usually a matter of political dispute. We would not expect every economically 
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successful neighbourhood to instantly receive a train station. Finally, a variance decompo-

sition analysis9 (Table 3) indicates that the percentage of variation in station density ex-

plained by land value (0.5%) is just about half the magnitude of the share of variation in 

land value explained by station density (0.9%).  

Tab. 3. Bivariate land value model: Variance decomposition 

Percent of variation in  log land value log station density 
Explained by log land value  0.991 0.005 

 
log station density 0.009 0.995 

Notes:  Reduced form results (IRF) in Table 2 (Figure 4). 

Overall these results support the theoretically expected mutual dependency of economic 

output and transport infrastructure. While not unexpected, these results also have im-

portant implications for the growing literature that aims at estimating the causal impact of 

transport supply on economic output. The endogeneity of transport supply to transport 

demand empirically demonstrates the importance of identifying the economic impact of 

transport investments from exogenous variation in transport supply.  

To evaluate the robustness of the benchmark results presented and discussed in the pre-

vious section we have altered these models along a variety of dimensions. This section 

summarises the results of these complementary analyses. Detailed discussions are in sec-

tion 5 of the appendix. 

Modifiable areal unit problem (MAUP) 

A common concern in many spatial analyses is that the level of spatial aggregation of the 

underlying data may affect the results. This concern is typically directed towards arbitrari-

ly defined boundaries of official statistical units such as for our neighbourhoods used in 

the multivariate PVAR model. We are not able to alter the unit of analysis due to a lack of 

data in this model. However, we are able to evaluate the extent to which aggregation to 

larger grid cells affects the results in the bivariate land value station density models. Ag-

gregation results in very similarly shaped IRF (Figure A4). 

                                                             

9  More detailed variance decompositions for the geographical subsamples can be found in section 

6 of the appendix. 
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Transport accessibility measurement 

Our baseline transport access measure assumes that the impact of an additional station in 

a neighbourhood does not depend on the number of stations already there, which imposes 

a strong form of complementarity of the services offered. We have replicated our bench-

mark models using the distance to the nearest station, which is a popular measure in the 

literature and imposes that stations are perfect substitutes. The results remain qualitative-

ly and quantitatively similar (Figure A5).  

Announcement network 

Under the weak-form efficient market hypothesis we expect that asset prices should in-

corporate all available information that is publicly available, which implies the capitalisa-

tion of new transport infrastructures at the time of announcement (not completion). To 

accommodate such effects we rerun our benchmark models using historical station densi-

ty measures based on the dates of announcements. While the shape of the IRF, not surpris-

ingly, changes somewhat, all of the qualitative conclusions from the benchmark models 

still apply (Figure A6).  

Complementary IV analysis 

An important and policy relevant conclusion from the PVAR analysis presented so far is 

that transport supply shocks have a positive and permanent impact on the productivity of 

land use reflected in land value An interesting question is how these results generated by 

the novel application of the PVAR method compare to results produced by standard tech-

niques of causal inference. To answer the question we have estimated the impact of 

changes in station density on land value using the more established panel IV method. Our 

models are estimated in differences to remove unobserved spatial heterogeneity, allow for 

heterogeneous long-run trends at the plot level, and control for unobserved macroeco-

nomic shocks at the neighbourhood level. Following Gibbons et al. (2012) we argue that a 

quasi-experimental variation in transport supply on a fine geographical level is as good as 

random because the routing then becomes exogenous. 

To further strengthen our identification we use an IV to restrict the variation in station 

density used for identification to a fraction that we argue to be exogenous. Therefore we 

compute a station density measure based on a counterfactual heavy rail transport network 
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used by (Ahlfeldt & Wendland, 2011). The network consists of straight lines that connect 

the CBD to the most important nearby towns as well as an emerging secondary centre (the 

Kurfürstendamm). We distribute counterfactual stations every 1,089 metres along the IV 

tracks, where 1,089 metres is the average distance between rail-bound stations in 1915. 

We run locally weighted regressions (LWR) (Cleveland & Devlin, 1988; McMillen, 1996) of 

actual densities on the counterfactual density for each period and recover the predicted 

values, which form our time-varying IV. To rationalise this strategy, we argue that being 

closer to the potential transport corridors increases the chance of being connected to the 

network over the study period. At the same time, being closer to the hypothetical network 

the conditional neighbourhood x period effects is as good as random and there is little rea-

son why any (conditional) temporal trend correlated with this measure should exist for 

reasons other than the improvements in transport services supply we are interested in. 

Briefly summarised, we find positive and significant transport supply effects on land value, 

which, as we will discuss in section 3.3, are quantitatively close to the PVAR estimates. A 

detailed discussion of our complementary land value IV estimation is in section 7 of the 

appendix. 

3.2 Land use: Multivariate demand supply models 

Table 4 presents the reduced form results of the three variable PVAR model including 

population. To allow for a structural interpretation, the IRF are displayed in Figure 5. 

Compared to the bivariate model discussed above, the three variable model allows for 

additional insights into the effects transport supply shocks exert on land use pattern and 

vice versa.  

The population response to rail shocks (bottom right) is significantly negative over a 

number of consecutive periods. Under the assumption of market clearing, a negative popu-

lation response must correspond to a positive response in the competing commercial land 

use. The implication is that improvements in transport access tend to attract firms at the 

expense of displacing residents. Likewise, the negative response of transport supply (bot-

tom middle) to population shocks, in a world without perfectly elastic floor space, can be 

interpreted as a positive supply reaction to positive employment shocks that displace 

population. Thus, above and beyond a general supply response to increases in locational 

productivity reflected in land value shocks (upper middle), changes from residential to 

commercial land use lead to improvements in transport access. The implication is that the 
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transport planner targets commercial transport demand in particular, which seems sensi-

ble in light of the transport gravity. A higher density of economic activity potentially at-

tracts customers and employees from across the urban area and generates potentially 

larger local transport demand than pure residential use. 

The population response to land value shocks, all else equal, is positive and just about sig-

nificant (upper-right). Shocks that make a location fundamentally more attractive (higher 

land value) attract residents to that location. Similarly, positive population shocks capital-

ise into land values (bottom-left). At the same time, the land value response to population 

shocks is flat and is not statistically distinguishable from zero (upper-left). Taking together 

the insignificant conditional land value response to rail shocks (Figure 5, upper-left) and 

the positive unconditional land value response to transport shocks (Figure 4, left) we con-

clude that the positive effect of a transport improvement on the value of land operates 

primarily through increased residential demand for more accessible space. 

As in the bivariate models the variance decomposition (see Table 5) indicates that the 

presumably most exogenous variable – transport supply – explains a significantly larger 

fraction of the most endogenous variable – land value – than the other way round.  

Tab. 4. Reduced form: Multivariate land use model (neighbourhood level) 

 (1) (2) (3) 
 log land value (t) log station density (t) log population (t) 
 Coeff. S.E. Coeff. S.E. Coeff. S.E. 
log land value (t-1) 0.500*** (0.075) 0.104*** (0.048) 0.112* (0.067) 
log station density (t-1) 0.057 (0.066) 0.639*** (0.121) -0.146*** (0.069) 
Log population (t-1) 0.084*** (0.037) -0.088*** (0.027) 0.784*** (0.069) 
Obs. 188 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 4 out of 48 Ortsteile were not incor-

porated as they had zero population until the end of our observation period and are treated as 

missing values.  



Ahlfeldt/Moeller/Wendland: Chicken or egg? 24 

Fig. 5.  Impulse responses: Multivariate land use model (neighbourhood level) 

 
 Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

Tab. 5. Multivariate land use model: Variance decomposition 

Percent of variation in  log land value log population log station density 
Explained by log land value 0.938 0.060 0.002 

 
log population 0.006 0.947 0.047 

 
log station density 0.010 0.005 0.985 

Notes:  Reduced form results (IRF) in Table 4 (Figure 5). 

Both the bivariate and the multivariate PVAR model support the mutually dependent rela-

tionship between our economic outcome measure land value and our transport supply 

measure station density. The multivariate model further reveals that transport improve-

ments can be the cause and effect of land use changes. Improvements in transport tend to 

lead to an outbidding of residents by firms. Likewise, a switch from residential to commer-

cial use tends to improve transport supply, indicating that the transport planning process 

targets firms more than residents. Jointly, the bivariate and multivariate model results 

suggest that on average the transport effect on land value is primarily moderated by an 

increased residential demand for accessible locations. 
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As with the bivariate demand and supply model we have conducted a number of comple-

mentary robustness checks. While we only discuss models that address land use-related 

issues here we have also conducted a number of additional robustness checks that address 

other concerns (e.g. measurement of transport access, announcement effects). All robust-

ness checks are presented in section 6 in the appendix. 

Land use: Bivariate demand supply model 

We finally estimate an alternative bivariate model which uses population density as a 

measure of economic activity instead of land values (Levinson, 2008). In this model the 

analysis then needs to be disaggregated by land use. The reason is that depending on the 

relative attractiveness of an area to firms and residents, the population will either be at-

tracted to an area with improved transport supply, or displaced by firms that relocate to 

the area. We have therefore split our study area into a core (primarily commercial) and a 

periphery (primarily residential) and replicated our analyses using these spatial subsam-

ples. 

The models presented in the previous sections are somewhat constrained in their spatial 

and temporal coverage by the availability of land value data. Our population data ranges 

from 1870 to 1935 and covers an area that roughly corresponds to today’s Berlin. We run 

bivariate demand supply models for the subsample used in benchmark models (1890–

1915), the whole data set (1870–1935) as well as the core and the periphery area sepa-

rately. Expanding the spatial and temporal scope of the analysis only marginally altered 

the results. Similar to Levinson (2008) we find that the relationship between population 

and rail density are qualitatively distinct in the core and periphery sample. While new 

infrastructure tends to displace residents in the core area, it attracts residents in the pe-

ripheral area. The bivariate land use models are presented in detail in section 6.4 of the 

appendix. 

Complementary IV analysis 

To evaluate the main finding of this section—that transport supply shocks lead to conver-

sion of residential into commercial use—we use a complementary IV approach similar to 

the one discussed at the end of section 3.1. While we cannot explicitly compare the magni-

tudes of the implied land use changes across estimation techniques, it is notable that our 

analysis of real land use changes clearly indicates that increases in station density lead to a 
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conversion of residential to commercial use, especially in central areas, which is in line 

with the conclusions we have derived from the PVAR models. The analysis is presented in 

detail in section 7 of the appendix.  

3.3 Quantitative interpretation 

In this section we present some back-of-the-envelope calculations that help to express the 

results from the bivariate PVAR analysis in intuitive metrics that can be compared to pre-

vious research and alternative methods.  

We begin with the relationship between transport demand as measured by population 

density and transport supply as measured by station density, which was previously ana-

lysed by Levinson (2008), henceforth L. For a quantitative comparison we focus on the 

effect of station density on population in the peripheral sample of neighbourhoods in Lon-

don, for which L reports significant effects (unlike for the core). L reports a semi-elasticity 

of population with respect to station density of 0.33 (L, Table 3). At a mean station density 

of 0.1 (L, Figure 2), the implied elasticity of population with respect to station density is 

3.3% (=0.33/0.1). This is a short-run effect over one period that corresponds to 10 years. 

In our bivariate population station density PVAR model estimated for the periphery sam-

ple (lower-left panel in Fig. A13 in the appendix) we find that in the short run (one period 

corresponding to five years) a one SD increase in log station density increases log popula-

tion by 0.04 SD. Given an SD in log station density of 1.23 and an SD in log population of 

0.84 in our data the estimated effect corresponds to an elasticity of population with re-

spect to station density of 2.7% (=0.04 × 0.84 / 1.23). Our estimates are thus not only 

qualitatively but also quantitatively similar to L. The somewhat lower implied elasticity is 

probably at least partially attributable to the shorter time-frame of our short-run effect (5 

vs. 10 years).  

Next, we turn our attention to the relationship between transport supply and land price. A 

number of studies that have used cross-sectional hedonic methods or quasi-experimental 

designs such as DiD tend to report the percentage effects of one unit reductions in distance 

to a station on land prices or house prices. As an example, Gibbons & Machin (2005), 

henceforth GM, in one of the most careful analyses of the house price effects of mass trans-

it report a 1.5–5.5% effect caused by a 1km reduction in distance to the nearest metro rail 

station following the 1999 extension of the Jubilee Line and the DLR in London, UK. Ahl-

feldt & Wendland (2009), henceforth AW, report a 2–2.5% effect of a 100m reduction in 
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station distance on land values for Berlin (1890-1936). To allow for a rough comparison 

between GM’s reported effects on house prices and AW’s as well as our estimated land 

price effects it is useful to assume a Cobb-Douglas housing production function and a 

competitive construction sector. Following Combes et al. (2013) it is then possible to 

translate a house price effect into a land price effect by dividing the former by a land share 

parameter of 0.25.10 GM’s results then correspond to a land price effect of 0.6–2.2% per 

100m reduction in station distance, which is reasonably close to AW’s findings.  

In an attempt to make both GM’s and AW’s results comparable to our findings we now 

express all estimates as elasticity at the mean. The mean change in station distance in the 

group of treated properties reported by GM is -1,558m (GM, Table 1, column 7). For such a 

change in station distance the implied elasticity of land price with respect to station dis-

tance is –(9.3%-34.3%) (= -[0.6%-2.2%] × -1,558 / -100). The mean change in distance to 

station in AW’s data is -550m (own analysis of their data set). The implied elasticity of 

land price with respect to station distance is thus –(11-13.8%) (= -[2-2.5%] × -550 / -100). 

Because GM and AW identify their effects from a 2km station catchment area and because 

the kernel in our station density measure uses a radius of 2km it is reasonable to assume 

that the magnitudes of changes in station distance and station density following transport 

innovations are approximately proportionate. It is therefore reassuring that the results 

from our IV analysis (≈13%) are extremely close to AW, who analyse a small subsample of 

our data, and within the range of GM. 

In our bivariate land value station density model, we estimate a short-run (i.e. five years) 

land value increase of 0.06 SD in response to a transport shock (Fig. 4, left panel). Given an 

SD in log station density of 0.77 and an SD in log land values of 0.58 in our data the esti-

mated effect translates into an elasticity of 8% (= 0.06 x 0.77 / 0.58), which is only slightly 

below the implied elasticity effects in GM and AW. The cumulated long-run effect (six peri-

ods, 30 years) of 0.27 SD (Fig. A3) similarly corresponds to an elasticity of land price with 

respect to a transport supply of 36%. Applying the same transformation suggested by 

                                                             

10  Assume that housing services H are produced using the inputs capital K and land L as follows : 

        . Housing space is rented out at bid-rent   while land is aquired at land rent  . From 

the F.O.C.       (   ) (the price of capital is the numeraire) and the non-profit condition 

        it follows imediately that    ( )    (   )    ( )   , where c is some unim-

portant constant that cancels out in first-differences, i.e.     ( )    (   )    ( ). 
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Combes et al. (2013) as above, the implied elasticity of house price with respect to station 

density is 2% (short run) to 8.5% (long run). A tentative comparison of our PVAR esti-

mates to GM, AW and our own panel IV/DiD estimates suggest that the DiD method tends 

to deliver estimates that are closer to our short-run than long-run PVAR estimates. 

4 Conclusion 

With this contribution, we provide a novel analysis of the simultaneity of the supply of and 

demand for transportation, which resembles the well-known chicken-and-egg problem. 

We borrow a method from the macro-econometric literature designed to empirically ap-

proximate systems of mutually dependent variables: structural PVAR modelling.  

We argue that assuming market clearing and a competitive construction sector with a con-

cave production function, the relationship between transportation demand and supply can 

be approximated based on a measure of transport access and a measure of land value, 

which reflects the economic productivity of the land. Adding a measure capturing the in-

tensity of residential (or commercial) use to a PVAR system, it is further possible to con-

clude on how land use determines transport supply and vice versa.  

Our results confirm the long suspected mutually dependent relationship between local 

economic performances on the one hand and transportation supply on the other. An exog-

enous increase in the effective supply of transport services by one SD, all else equal, leads 

to a short-run adjustment in land values of about 0.06 SD and a cumulated effect of 0.27 SD 

after six periods. The implied short-run (long-run) elasticity of property price with respect 

to transport supply is 2% (8.5%). The reverse effect of an exogenous increase in economic 

activity that increases the value of land by one SD leads to a positive, but significantly low-

er 0.14 SD effect on transport supply. Moreover, transport supply shocks seem to trigger a 

displacement of residential for commercial land use. On the supply side, shifts from resi-

dential to commercial land use attract new transport supply. These results are robust to 

different measures of transport access, different forms of assumed market efficiency that 

determine the timing of capitalisation into land values, and are consistently found within 

the commercial core and the residential periphery of the city.  

Importantly, our results from the PVAR analysis are also qualitatively (land use) or even 

quantitatively (land value) consistent with the findings from a complementary analysis 
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that uses established toolkits of causal unidirectional inference. The DiD estimates we 

reviewed tend to be closer to our short-run than long-run PVAR estimates. Notwithstand-

ing these encouraging results we do not propose using the PVAR method as a replacement 

for conventional identification strategies when it comes to the impact analysis of transport 

projects. We do, however, argue that the PVAR method is a useful complementary tool that 

produces a generic picture of the dynamics of transportation demand and supply, which 

covers the multi-directionality of impact, the temporal structure of the dependencies and 

even the interactions with land use.  
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Technical appendix to Chicken or egg?  

The PVAR econometrics of transportation  

1 Introduction 

This appendix complements the main paper and is not designed to stand alone or replace 

the main paper. Sections 2 and 3 provide additional background on the development of the 

rail system in Berlin and the data used for the PVAR analyses. Section 4 provides the re-

sults of unit root tests which were carried out prior to the actual regressions. Section 5 

complements the bivariate land value model results presented in section 3.1 of the main 

paper by providing complementary results and robustness tests. Section 6 similarly pre-

sents complementary results and a range of robustness checks for the multivariate land 

use model discussed in section 3.2 in the main paper. The section also discusses a bivari-

ate model that shares similarities with Levinson (2008). Finally, section 7 presents a com-

plementary and independent panel IV analysis of the impact of transport infrastructure on 

land value and land use which we use to benchmark the interpretations derived from the 

PVAR models. 

2 Background 

The public rail network in Berlin is made up of two different modes, namely a suburban 

rail system and the underground. We give a short historic overview of its development in 

this chapter before giving a brief description of our data. 
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2.1  S-Bahn network 

The suburban rail (“S-Bahn”) as it is known today is a result of combining various subur-

ban lines (“Vorortsbahn”), the original city line (“Stadtbahn”) and the circular line (“Ring-

bahn”) in 1930. As a result, there are various reasons as to why, where and how the S-

Bahn was developed over the years which originate from the three different strands 

(Gottwaldt, 1994; Kiebert, 2004, 2008; Klünner, 1985): 

The suburban lines connected Berlin with its surrounding cities and suburbs. The early 

lines in particular originate from long-distance connections to other important cities like 

Potsdam (“Stammbahn” 1838), Hamburg (“Hamburger Bahn” 1846) or Dresden (“Dres-

dner Bahn” 1887), initially sharing their tracks with the new upcoming suburban lines. In 

1891 a new tariff system for local mass transit was introduced – pushing the passenger 

numbers up by about 30% – and the suburban lines increasingly started to run on their 

own tracks. The majority of these lines were developed by public companies and planned 

by the government. For instance, the “Ostbahn”, which was supposed to go through the 

Prussian regions of Pommern and East Prussia, was built in order to develop the periphery 

along the tracks. The “Görlizer Bahn” (1866/67) or the “Wetzlarer Bahn” (also “Canon 

Train”) linking Berlin with Metz at the French border was planned by the military to facili-

tate the rapid movement of troops. Later on, new lines were built specifically for local 

mass transit in order to improve the access of the periphery like the North-South connec-

tion (1934–39). However, private developers like J. A. W. Carsten, who financed the station 

“Lichterfelde” (1868) in order to sell his newly established country estates in that area, 

intervened in the expansion of the S-Bahn network as well. The electronic company Sie-

mens further financially supported the exploitation of the section between Fürstenbrunn 

and Siemensstadt (1905) in order to improve the commute for its workers. Moreover, the 

Brothers Spindler, who ran a laundry and dying factory in Köpenick at the Eastern border 

of the city, lobbied for a transport line between Schöneweide and Spindlersfelde (1891). 

Hence, the suburban lines were driven by both the public and the private sector. 

The city line went from Stralau-Rummelsburg to Westkreuz, Halensee, and was built in 

1882. This East-West connection, running through the historical city centre, was planned 

to decongest the traffic between Berlin’s terminal stations. The tracks were mainly built 

on land owned by the government and the project was carried out publicly. 
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The first sections of the circular line Moabit-Gesundbrunnen-Potsdamer-Ringbahnhof and 

Moabit-Charlottenburg-(Westend)-Grunewald-Tempelhof were opened in 1881 and 1882 

respectively. The circular line was financed by the state of Prussia but was run by the Nie-

derschlesisch-Märkische Eisenbahn, a public company owned by Prussia. The idea behind 

the circular line was to connect radian lines going out of the centre with each other and 

the important terminal stations. Various parts of the new line were built into undeveloped 

land and thus outside the city border. Or as Elkins & Hofmeister (1988, p. 114) state: “The 

actual position of the ring line was a compromise between the desire to maximise utilisa-

tion by being as close as possible to the core of the city and the desire to minimise land-

acquisition costs by avoiding areas of existing urban development.” 

Like the circular line, many other lines of the light rail system were built into undeveloped 

areas, connecting Berlin with other villages. Only the East-West and North-South connec-

tions went through the city centre. New villages were founded close to the new lines like, 

for instance, “Glienicke an der Nordbahn”. Companies like AEG or Borsigwerke in Tegel 

even built new factories in close proximity to the new stations (“Kremmener Bahn”). Even 

though a few S-Bahn lines were developed upon the request of the private sector, most of 

the lines were developed by the public sector. In the 1880s the majority of the long-

distance lines, which were closely related to the rise of the suburban lines, were national-

ised. However, most of the nationalised lines were still run independently. They had their 

own management as well as their own trains/coaches. From 1920 on, all lines were even-

tually nationalised under the “Reichseisenbahn”.  

2.2  U-Bahn Network 

The underground (“U-Bahn”) was developed about a third of a century later than Berlin’s 

light rail system. The first line was opened in 1902 and ran from Stralauer Tor (later War-

schauer Brücke) to Potsdamer Platz and then to Zoologischer Garten. The first “under-

ground” section was actually built on elevated tracks since the Berlin government was 

afraid of damaging its newly installed drainage system. The project was pushed forward 

by the company “Siemens & Halske”, which as early as 1891 had proposed a densely 

linked network, connecting the historic city centre with its surrounding municipalities. 

The new line was eventually developed by the “Hochbahngesellschaft”, a company jointly 

founded by Siemens & Halske and Deutsche Bank as the main financer. While the line’s 

Eastern section up to Nollendorfplatz was built on viaducts, the city of Charlottenburg 
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successfully negotiated the tracks to run underground when passing through their territo-

ry. Not obstructing the view of the prominent church “Kaiser-Wilhelm-Gedächtniskirche” 

was one of Charlottenburg’s reasons for the changed routing. In the West (Westend), the 

line was built into undeveloped land owned by Deutsche Bank. The bank expected to bene-

fit from rising land rents due to the improved access. Followed by the newly established 

connection Western Charlottenburg turned into an attractive business area. The extension 

of the first line leading into central Berlin was hampered by the tram operator “Große-

Berliner-Straßenbahn” which was afraid of losing its monopolistic role in that area. Even-

tually, the line ran via Mohrenstraße and Spittelmarkt through the city centre (Gottwaldt, 

1994). 

The municipalities in the South West showed particular ambition with their plan to devel-

op their unused land. They competed for wealthy citizens by turning it into attractive resi-

dential areas. The underground played a crucial role in developing these areas. The city of 

Schöneberg (“Schöneberger Linie” 1910) even planned and financed its own line between 

Nollendorfplatz and Hauptstraße (today Innsbrucker Platz) in order to develop its West-

ern territory. As the “Hochbahngesellschaft” did not expect the new line to generate any 

profits it was completely planned and financed publicly. The land where the lines went 

through was changed significantly with individually designed stations built at prominent 

squares. A similar approach was followed by the villages of Wilmersdorf and Dahlem. 

Newly planned country estates and academic institutes were supposed to benefit from an 

improved access by constructing the “Wilmersdorf-Dahlemer U-Bahn” (1913). The line 

was divided into three sections according to their ownerships: While the section between 

Wittenbergplatz and Nürnberger Platz belonged to the Hochbahngesellschaft, Nürnberger 

Platz-Breitenbachplatz was owned by the city of Wilmersdorf and Breitenbachpatz-

Thielplatz by Domäne Dahlem. The line was extended to the lake “Krumme Lanke” in 

1929. This extension was mainly financed by the land speculator and private developer 

Adolf Sommerfeld in order to connect his newly established residential quarters in 

Dahlem. Moreover, he wanted to improve the access to the surrounding woods, establish-

ing them as recreational areas (Kurpjuweit & Meyer-Kronthaler, 2009). 

In contrast to the S-Bahn network, the initial idea of Berlin’s underground was to serve the 

local mass transit. The lines were built into more central areas. Moreover the network was 

developed later than the suburban rail system; the technology was superior, allowing for 
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underground tracks, and both the planners and investors had already gained some initial 

experience by evaluating the effects of the S-Bahn. Anecdotal evidence suggests that the 

rise of the U-Bahn was mainly driven by the idea of developing empty land close to the 

historical core (especially in the South West). Public and private planners alike competed 

for wealthy citizens and increasing land rents. 

Even though the link between transport and land development is not completely clear 

when analysing the history of Berlin’s transport system, the majority of the projects and 

newly constructed lines appeared to lead the development in an area rather than the other 

way around.  

Fig. A1. Rail network in 1880, 1900 and 1915 

 

3 Data 

3.1  Separate neighbourhood and grid level models 

The different data sources we consider offer information that varies significantly in terms 

of spatial and temporal coverage. Depending on the data sources we use in our empirical 

models our analyses are therefore conducted at different levels. We estimate the interac-

tion between transport and population using a panel of 93 neighbourhoods (“Ortsteile”) 

and 14 periods, approximately every five years from 1870 to 1936 (14 time periods). The 
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interaction between land values and station density can instead be analysed at a level as 

detailed as 150 x 150 or 300 x 300 metres. Figure A2 illustrates the development of the 

land values in Reichsmark between 1890 and 1914 on a 300m grid level. Tables A1 to A3 

provide the summary statistics for the different samples including the 150m grid sample 

from the main paper. 

Fig. A2. Land values on 300m grid level (in Reichsmark) in 1890 and 1914 

 

1890 

 

1914 
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Tab. A1. Neighbourhood sample summary statistics 

Variable   Mean Std. Dev. Min Max Observations 

         overall 0.211 0.3539 0 1.995 N =    1,302 

 
between 

 
0.268 0.001 0.834 n =      93 

 
within 

 
0.233 -0.503 1.372 T =      14 

           overall 29,743.77 56,296.1 0 354,684 N =    1,302 

 between  47,686.39 0 216,328.3 n =      93 

  within   30,298.21 -146,107.2 221,449.6 T =      14 

 

Tab. A2. Grid (150m) sample summary statistics 

Variable   Mean Std. Dev. Min Max Observations 

         overall 0.265 0.276 0.000 1.769 N =  58044 

 
between 

 

0.217 0.000 0.961 n =    9674 

 
within 

 

0.171 -0.477 1.233 T =       6 

            overall 69.564 151.908 1.000 2180.000 N =  58044 

 between  145.259 1.100 1863.000 n =    9674 

  within  44.471 -654.716 1219.412 T =       6 

 

Tab. A3. Grid (300m) sample summary statistics 

Variable   Mean Std. Dev. Min Max Observations 

         overall 0.253 0.269 0.000 1.758 N =  17556 

 
between 

 

0.214 0.000 0.956 n =    2926 

 
within 

 

0.162 -0.481 1.208 T =       6 

            overall  139.266 1.000 1950.750 N =  17556 

 between 62.939 133.872 1.100 1651.143 n =    2926 

  within  38.450 -511.376 616.135 T =       6 

 

 

3.2 Core-periphery sample 

Following Levinson (2008), we distinguish between a core region and the periphery as 

defined by the historian Leyden (1933). The core area serves as a feasible approximation 

of the area where the vast majority of economic activity took place in historic Berlin. This 

concentration of commerce in central areas can be rationalised with agglomeration econ-
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omies that increase firm productivity as discussed in more detail by Ahlfeldt & Wendland 

(2013) in the context of historic Berlin.  

4 Unit root tests 

This section provides unit root tests for all models used in the main paper. The test results 

are illustrated in Table A4. Variables are logarithmised, time-demeaned and Helmert 

transformed as in the actual analysis. We use the Phillipps-Perron version (PP) of the 

modified Fisher-type test. The inverse    transformed test statistic (Choi, 2001) rejects 

the null hypothesis of all panels being non-stationary. Population is rejected at a signifi-

cance level of 1%. Rail station density turns out to be stationary at a 1% significance level, 

too. We then apply the Pesaran (2007) unit root test to control for potential cross-section 

dependence. The test rejects the null hypothesis of the series being non-stationary,  (1), 

for population and rail station density at a 1% level.  

We can only apply the second generation unit root test to the population and rail station 

density panel used in section 6.4 in this appendix. The other samples are too short and 

lack a sufficient number of consecutive periods for performing a Pesaran unit root test. 

However, according to Sarafidis & Robertson (2009) the bias caused by potential cross-

section dependence can be reduced when the series are time-demeaned prior to the esti-

mation. We therefore expect the other series to sufficiently fulfil the stationarity require-

ments, too, as we estimate the PVAR with time-demeaned and forward-mean-differed se-

ries. Having confirmed the stationarity of our (transformed) series, we can move on to the 

actual estimation of the PVAR. 

Tab. A4. Panel unit root tests 

 

  
Choi (2001) Phillipps-Perron Pesaran (2007) 

Variable Neighbourhood sample Grid 150m sample 
Neighbourhood 

sample 

    test statistic 23.592*** - -4.552*** 

 
p-value 0.0000 - 0.000 

         test statistic 51.403*** 93.561*** -4.646*** 

 
p-value 0.000 0.000 0.000 

   test statistic 10.198*** 185.959*** - 

 
p-value 0.000 0.000 - 
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Notes: (1) Variables shown are logarithmised, time-demeaned and Helmert transformed, (2)  *** p<0.01, ** p<0.05, * p<0.1., (3) 
Pesaran (2007) Test only applicable to sampled used in the bivariate population and station density models (A5.5). 

Our baseline transport access measure assumes that the impact of an additional station in 

a neighbourhood depends on the number of already existing stations, which imposes a 

strong form of complementarity of the services offered. We replicate our multivariate land 

use model using the distance to the nearest station, which is a popular measure in the lit-

erature and imposes that stations are perfect substitutes. 

The results of the panel unit root test for the new transport variable on a neighbourhood 

level are reported in Table A5. According to the Phillipps-Perron version of the Fisher-type 

test, the transport measure is stationary at a 1% level. 

Tab. A5. Panel unit root tests (distance to nearest station) 

  
Choi (2001) Phillips-Perron 

Variable Neighbourhood sample 

         test statistic 6.521*** 

 
p-value 0.000 

Notes: (1) Variables shown are logarithmised, time-demeaned and Helmert transformed, (2)  *** p<0.01, ** p<0.05, * p<0.1. 

5 Land value: Bivariate demand supply models 

This section provides a detailed discussion of the robustness checks briefly summarised at 

the end of section 3.1 in the main paper. 

5.1 Cumulative IRF 

The cumulative impulse responses for the bivariate PVAR reported in the main paper 

(standard IRF in Fig. 4) are shown in Figure A3. The curves illustrate the response to a 

shock accumulated over all time periods. The solid line indicates the cumulative land value 

response. The response is immediate and grows at a decreasing rate over time. It is about 

twice as strong as the planners’ cumulated response (dotted line) to a land value shock. 
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Fig. A3. Cumulative impulse responses: Bivariate land value model 

 

5.2 Modifiable areal unit problem (MAUP) 

To address concerns regarding the MAUP, we evaluate the extent to which aggregation to 

neighbourhoods affects the results in the bivariate land value station density models. We 

aggregate our data on land values and on station density to a 300m (see above) grid 

square level.  

Reduced form results for the 300m grid level bivariate models are reported in Table A6 

with their respective IRF in Figure A4. The IRF patterns are very similar to the ones de-

rived from the 150m grid sample used in the main text (Figure 4 in the main text). Overall, 

the impulse responses are slightly more pronounced in terms of standard deviations. 
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Tab. A6. Reduced form: Bivariate land value model (300m grid level) 

 (1) (2) 
 log land value (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log land value (t-1) 0.606*** (0.014) 0.058*** (0.006) 
log station density (t-1) 0.097*** (0.010) 0.519*** (0.028) 
Obs. 10,369 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Fig. A4. Impulse responses: Bivariate land value model (300m grid level) 

 
Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

The similarity of the IRF as derived at different levels of spatial aggregation relieves con-

cerns that a MAUP may be present in the data. 

5.3 Transport accessibility measurement 

Reduced form estimates for the bivariate 150m grid level Panel VAR are shown in Table 

A7 with its respective IRF in Figure A5. It is important to recall that the alternative 

transport measure is a distance measure, i.e. a positive transport shock is now reflected by 
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a reduction in the distance to the nearest station. Hence land values react negatively to an 

increase distance to station indicating that a transport improvement is capitalised into 

land values (left panel). Planners also respond to land value shocks, decreasing distance to 

stations with higher land values. Overall, the alternative transport measure estimates are 

in line with the results in the main text. 

Tab. A7. Reduced form: Bivariate land value model (150m grid level), nearest 
station 

 (1) (2) 
 log land value (t) log nearest station (t) 
 Coeff. S.E. Coeff. S.E. 
log land value (t-1) 0.616*** (0.007) -0.011*** (0.011) 
log nearest station (t-1) -0.127*** (0.011) 0.531*** (0.013) 
Obs. 38,696 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Fig. A5. Impulse responses: Bivariate land value model (150m grid level), nearest 
station 

 

Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 
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5.4 Announcement network 

According to the weak-form efficient market hypothesis, asset prices incorporate all avail-

able information that is publicly available. We would therefore expect transport infra-

structure to be capitalised into prices at the time of announcement (not completion). To 

accommodate such effects we reran our benchmark models using historical station densi-

ty measures based on the dates of announcements.1 

The reduced form results of the bivariate (announced) station density model are given in 

Table A8, its respective IRF are shown in Figure A6. As stated by the weak-form efficient 

market hypothesis, land values respond immediately to the announcement of new stations 

(left graph). We observe a slightly more spikey pattern which is, however, very similar in 

terms of magnitudes compared to the benchmark model discussed in the main text. In line 

with the actual station density, the IRF shown in the right graph of Figure A6 stresses the 

empiric relevance of the reverse impact of economic output (as capitalised in land value) 

on the planning process. The transport response is somehow weaker in terms of standard 

deviation than the land value response to transport innovation. This is also in line with the 

bivariate model in the main text. 

Tab. A8.  Reduced form: Bivariate land value model (150m grid level), 
announced network 

 (1) (2) 
 log land value (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log land value (t-1) 0.594*** (0.008) 0.040*** (0.003) 
log station density (t-1) 0.086*** (0.006) 0.417*** (0.013) 
Obs. 34,046 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

 

                                                             

1  The definition of the announcement dates is based on Dudczak & Dudczak (2012), Kurpjuweit & Meyer-

Kronthaler (2009), Mauruszat (2011), Loop (2007), Luisenstädtischer Bildungsverein e.V. (2012), Se-

natsverwaltung für Stadtentwicklung und Umwelt (2012) and Straschewski  (2011). Where no information 

on announcement is available we define the beginning of construction works as the announcement. 
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Fig. A6.  Impulse responses: Bivariate land value model (150m grid level), an-
nounced network 

 

Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

6 Land use: Multivariate demand supply models 

This section provides a detailed discussion of the robustness checks briefly summarised at 

the end of section 3.2 in the main paper. 

6.1 Cumulative IRF 

The cumulative impulse responses for the multivariate demand supply land use model 

(Fig. 5 in the main paper) are shown in Figure A7. We begin with the cumulative response 

of land values to transport as well as to population shocks (upper bar). As indicated in the 

main part, the transport innovation induces an immediate land value adjustment. We have 

argued that the contemporaneous effect reflects a short-run adjustment (increase in de-

mand with a constant building stock). Over time the effect diminishes due to an adjust-

ment in the intensity of land use. Land values steadily rise in response to population 
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shocks over time. This is explained by a relatively slow adjustment in building stock per 

land unit which hinders a quick adjustment to the new equilibrium land value. 

The cumulative transport response is shown in the middle panel of Figure A7. Rail re-

sponds positively to land values over time and negatively to population. We expect a nega-

tive population shock to be an indicator of a positive shock in commercial land use, espe-

cially in the short run where the supply of floor space is highly inelastic. The planner’s 

negative response to population is therefore interpreted as an increase in transport sup-

ply owing to a substitution of residential for commercial space. Moreover, the positive 

transport reaction to land values indicates that there is a substitution of land uses and no 

general negative (economic) shock to the city. 

Population declines negatively with transport and positively but insignificantly with land 

value shocks over time. This strengthens our interpretation of transport innovation lead-

ing to a relative increase in the intensity of commercial use. Limits to densification result 

in a displacement of residents. 

Fig. A7. Cumulative impulse responses: Multivariate land use model (neighbour-
hood level) 
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Notes:  Cumulative IRF illustrate accumulated effect of a one standard deviation shock (in logs) on the 

response variable (in logs) in units of standard deviation. In the legend, the response variable is 

written outside the bracket while the shock is inside the parentheses. 



Ahlfeldt/Moeller/Wendland: Chicken or egg? 17 

 

6.2 Transport accessibility measurement 

The reduced form estimates of the multivariate land use model using an alternative 

transport measure are shown in Table A9 and, as the IRF depicted in Figure A8, are com-

parable in terms of quality and quantity with the results in the main text. Due to the re-

verse interpretation of the transport measure, the majority of the IRF look like a mirrored 

version of the IRF from Figure 5 in the main text. The only notable difference to the 

benchmark model reported in the main paper is that the transport supply responses to 

land value (upper middle) and population shocks (bottom middle) are not statistically 

significant. 

Tab. A9.  Reduced form: Multivariate land use model (neighbourhood level), 
nearest station 

 (1) (2) (3) 
 log land value (t) log nearest station (t) log population (t) 
 Coeff. S.E. Coeff. S.E. Coeff. S.E. 
log land value (t-1) 0.182*** (0.038) -1E-5 (0.004) -0.126*** (0.061) 
log nearest station (t-1) -0.327 (0.346) 0.782*** (0.060) 2.589*** (0.524) 
log population (t-1) 0.109*** (0.032) -0.015*** (0.004) 0.972*** (0.073) 
Obs. 169 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Fig. A8. Impulse responses: Multivariate land use model (neighbourhood level), 
nearest station 

Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

6.3 Announcement network 

Estimates for the multivariate models using the announced network are shown in Table 

A10 (reduced form results) and in Figure A9 (IRF). The qualitative interpretations remain 

remarkably similar to the benchmark models. The main difference is the planners’ re-

sponse to population shocks, which is insignificant (bottom middle). Forward-looking 

planners did not incorporate residential developments when planning new transport 

routes. This is in line with the idea that planners are more likely to follow commercial ac-

tivity. 

Summing up, we find evidence of the weak-form efficient market hypothesis. Using an 

announced network instead of the actual one does not significantly change our findings on 

the interaction between transport and land values/population. 
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Tab. A10.  Reduced form: Three variable PVAR model (neighbourhood level), 
announced network 

 (1) (2) (3) 
 log land value (t) log station density (t) log population (t) 
 Coeff. S.E. Coeff. S.E. Coeff. S.E. 
log land value (t-1) 0.525*** (0.074) 0.124* (0.075) 0.121** (0.067) 
log station density (t-1) -0.016 (0.033) 0.415*** (0.124) -0.109*** (0.064) 
Log population (t-1) 0.086*** (0.039) -0.028 (0.048) 0.765*** (0.087) 
Obs. 188 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Fig. A9. Impulse responses: Three variable PVAR model (neighbourhood level), 
announced network 

 
Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

6.4 Land use: Bivariate supply demand model 

We now introduce an alternative bivariate model which uses population density instead of 

land values and hence follows the originally discussed Levinson (2008) approach. As dis-

cussed in detail in section 2 of the main paper, the analysis then needs to be disaggregated 

by land use in this model. The reason is that depending on the relative attractiveness of an 
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area to firms and residents, population will be either attracted to an area with improved 

transport supply, or displaced by firms that relocate to the area. 

We firstly report the results for the same sample we use for the benchmark multivariate 

model. Secondly, we make use of the full sample and extend the number of periods up to 

14.  

The reduced form estimates based on the sample used in the multivariate model are re-

ported in Table A12 for the total, Table A13 for the core and Table A14 for the periphery 

sample. The IRF are illustrated in Figure A10 (total sample) and Figure A11 

(core/periphery). Adopting the recursive order assumptions, we assume that population 

responds to contemporaneous transport shocks while transport only responds to lagged 

population and transport innovations. 

We begin the brief analysis with the full multivariate model sample. The immediate popu-

lation response is positive but insignificant in the following periods (Figure A10, left). As 

already indicated by the multivariate benchmark model there is no (significant) transport 

response with respect to population (right). Moving on to the spatial subsample IRF de-

picted in Figure A11, population response is negative in the core (top-left) and, except 

from a positive contemporary response, insignificant in the periphery (bottom-left). These 

patterns are in line with our interpretation of residents being displaced by firms following 

a positive transport shock in central areas. Also the reverse planner response with respect 

to population is in line with previous findings. Planners respond negatively to population 

shocks in the periphery (top-right). We interpret this as a positive response to an increase 

in the intensity of commercial use. We do not observe a significant transport reaction to 

population shocks in the periphery either (bottom-right). 

Tab. A11.  Reduced form: Population station density model (neighbourhood 
level), total sample, multivariate model sample 

 (1) (2) 
 log population (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log population (t-1) 0.893*** (0.028) 0.033 (0.040) 
log station density (t-1) -0.010 (0.021) 0.705*** (0.127) 
Obs. 559 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Tab. A12.  Reduced form: Population station density model (neighbourhood 
level), core sample, multivariate model sample 

 (1) (2) 
 log population (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log population (t-1) 0.531*** (0.151) -0.244*** (0.082) 
log station density (t-1) -0.308*** (0.099) 0.780*** (0.113) 
Obs. 77 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Tab. A13.  Reduced form: Population station density model (neighbourhood 
level), periphery sample, multivariate model sample 

 (1) (2) 
 log population (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log population (t-1) 0.889*** (0.029) 0.045 (0.045) 
log station density (t-1) -0.007 (0.021) 0.700*** (0.130) 
Obs. 482 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Fig. A10.  Impulse responses: Population station density model (neighbourhood 
level), multivariate model sample 

  

Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 
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Fig. A11. Impulse responses: Population station density model (neighbourhood lev-
el), core (upper graphs) and periphery (lower graphs), multivariate model 
sample 

  

  

Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

Table A14 (total sample), Table A15 (core) and Table A16 (periphery) provide the re-

duced form estimates for the bivariate population model making use of all available time 

periods. The respective IRF are shown in Figure A12 (total sample) and Figure A13 

(core/periphery). The patterns are comparable to the previously reported ones and fur-

ther strengthen our interpretations. Again, population responds negatively to transport 

improvements in the core (Figure A13, top-left). In the periphery (Figure A13, bottom-left) 

and for the total sample (Figure A12, left) the response is positive instead. The displace-

ment of residents is therefore not restricted to the observation period used in the main 

analysis but becomes even clearer when extending the panel. Transport supply responses 

are found to be insignificant in all spatial samples, indicating that land use changes might 

have been particularly influential in determining transport improvements during the peri-

od we have focussed on in our benchmark models (1890–1915).  
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Tab. A14.  Reduced form: Population station density model (neighbourhood 
level), total sample, full sample 

 (1) (2) 
 log population (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log population (t-1) 0.800*** (0.030) -0.029 (0.031) 
log station density (t-1) 0.029*** (0.015) 0.745*** (0.079) 
Obs. 1,015 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Tab. A15.  Reduced form: Population station density model (neighbourhood 
level), core sample, full sample 

 (1) (2) 
 log population (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log population (t-1) 0.818*** (0.049) -0.139 (0.118) 
log station density (t-1) -0.086*** (0.020) 0. 803*** (0.072) 
Obs. 132 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Tab. A16.  Reduced form: Population station density model (neighbourhood 
level), periphery sample, full sample 

 (1) (2) 
 log population (t) log station density (t) 
 Coeff. S.E. Coeff. S.E. 
log population (t-1) 0.792*** (0.031) -0.022 (0.035) 
log station density (t-1) 0.036*** (0.016) 0.739*** (0.084) 
Obs. 883 

Notes:  1-lag VAR is estimated by GMM. All variables are in logs time-demeaned and Helmert transformed. 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Fig. A12.  Impulse responses: Population station density model (neighbourhood 
level), full sample 

  

Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 
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Fig. A13.  Impulse responses: Population station density model (neighbourhood 
level), core (upper graphs) and periphery (lower graphs), full sample 

  

  

Notes:  IRF illustrate the effect of a one standard deviation shock (in logs) on the response variable (in 

logs) in units of standard deviation. Dashed lines indicate 5% error bands generated by Monte-

Carlo with 500 repetitions. 

Summing up our results, we find that the relationship between population and rail density 

is qualitatively distinct in the core and periphery sample. While new infrastructure tends 

to displace residents in the core area, it attracts residents in the periphery area. 

7  Complementary IV analyses 

In this section we present a complementary analysis of the causal effect of transit supply 

on land value and land using a panel IV strategy. A quantitative comparison of the results 

to the PVAR model results is provided in section 3.3 of the main paper. We begin with the 

impact of the station density of land value in section 7.1 before we discuss the impact of 

station density on land use in section 7.2.  
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7.1 Land value 

This section presents the empirical strategy and the results of a complementary analysis of 

the impact of station density on land value. Our approach shares similarities with the re-

search design employed by Gibbons & Machin (2005) and Ahlfeldt & Wendland (2009). To 

these established approaches we add an IV, which is supposed to restrict the variation in 

station density used for identification to the fraction that is presumably attributable to 

exogenous planning objectives.  

7.1.1 Strategy 

One advantage of our empirical setting is that we can exploit substantial variation not only 

across space, but also over a number of consecutive periods. We can therefore allow for a 

large degree of unobserved spatial heterogeneity in levels and trends in our identification 

strategy to strengthen the causal inference. Our point of departure is an empirical model 

that describes the (log) land value as a function of station density T. We allow for a fixed 

composite location amenity L, which impacts on the level of land value and the long-run 

yearly trend (t), as well as trends that are specific to a period (Y) and neighbourhood (O).  

                ∑       
 

 ∑     
 

 ∑ ∑    (       )
  

     

We remove the unobserved location-specific effect on levels at the plot level by taking first 

differences (Gibbons & Machin, 2005). Our final empirical specification then describes the 

relationship between changes in (log) land values and (log) station density conditional on 

a set of plot fixed effect and neighbourhood × period effects.  

                  ∑     
 

 ∑ ∑    (     )
  

      

With this specification we only identify variation within neighbourhoods in a given year. 

We follow Gibbons et al (2012) in arguing that at a very small spatial level the variation 

provided by the infrastructure is as good as random because the exact routing is deter-

mined by local particularities that are exogenous to economic development (e.g. soil con-

ditions and other geographical features). Our neighbourhoods are relatively small areas; 

frequently smaller than 10 sq km.2 Under the identifying assumption that the routing 

                                                             

2  For comparison, Gibbons, et al (2012) use UK wards as a unit of analysis with an average size of 

about 16.6 sq km. 
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within a neighbourhood is exogenous to demand OLS estimation of this model will deliver 

unbiased estimates of the causal effect of station density on land prices.   

To further strengthen identification and to relax this identifying assumption we make use 

of an IV based on a counterfactual network used by Ahlfeldt & Wendland (2011). The net-

work consists of straight lines that connect the CBD to the most important nearby towns 

as well as an emerging secondary centre (the Kurfürstendamm). We distributed counter-

factual stations every 1,089 metres along the IV tracks before computing a counterfactual 

density measure. The average distance between railway stations in 1915 was 1,089 me-

tres. By definition, this is a time-invariant instrument. To introduce time variation into our 

IV we run i×t locally weighted regressions (LWR) (Cleveland & Devlin, 1988; McMillen, 

1996) of station density on counterfactual station density for each year and every plot. In 

each iteration we weight all observations within a given year based on the distance to a 

plot i using the following kernel function:    ̃             ̃
  , where we set   so that the 

function flattens out after about 5km. The predicted values of these regressions form a 

panel variable that varies over space and time, provides a reasonable fit to the overall evo-

lution of the city structure, and yet removes some of the local co-variation between land 

values and actual station density. The variable qualifies as an instrument for station densi-

ty because, by construction, it has predictive power, and because conditional on being 

located within a certain neighbourhood in a certain time period, the variation provided by 

the counterfactual network is as good as random. 

To rationalise this strategy we argue that being closer (i.e. in a denser area with respect to 

IV rail stations) to the potential transport corridors defined by the counterfactual network 

increases the chance of being connected to the network. At the same time, being closer to 

the hypothetical network conditional on distance to the CBD (and other amenities) is as 

good as random. Put simply, our IV restricts the variation in changes of station density to 

the portion that can reasonably be assumed to be exogenous.  

7.1.2 Results 

The results of the complementary IV analysis are presented in Table A17. We begin with 

the baseline specification (column 1), where we regress the change in land values on the 

change in station density (both in logs) while controlling for period fixed effects. We find a 

positive relation significant at the 1% level. Controlling for individual heterogeneity (col-
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umn 2) as well as period fixed effect interacted with neighbourhood effects (column 3) 

slightly increases the coefficient. Our instrumental variable is introduced from column (4) 

onwards; transport continues to positively and significantly drive land values throughout 

all remaining specifications. The results consistently point to an elasticity of about 12%. 

Our preferred estimate implies that a one SD increase in station density leads to a 0.08 SD 

in land value. The IV estimates are within the same range, suggesting that the OLS models 

are not biased due to reverse causality,  

Tab. A17.  Complementary IV analyses 1: Land values 

 (1) (2) (3) (4) (5) (6) 
 ∆ log land values 

 
∆ log station density 0.110*** 

(0.010) 
0.145*** 
(0.011) 

0.124*** 
(0.012) 

0.111*** 
(0.009) 

0.153*** 
(0.010) 

0.128*** 
(0.011) 

Plot FE NO YES YES NO YES YES 
Period FE YES YES NO YES YES YES 
Ortsteil x period FE NO NO YES NO NO YES 
IV NO NO NO YES YES YES 
N 48370 48370 48370 48370 48370 48370 
F (first stage) - - - 660.62 20862.23 636.63 

Notes:  Instrument variable: Log station density of counterfactual network. Standard errors in parentheses, *** 

p<0.01, ** p<0.05, * p<0.1. 

The complementary land value analysis builds on the popular instrumental variable ap-

proach. By repeating a similar exercise as in the bivariate Panel VAR model but using a 

distinct and well-established empirical approach, we try to add some validity to the PVAR 

estimates discussed in the main paper. The consistency of the findings is reassuring given 

the fundamental differences of the models and the underlying data transformations. The 

(dynamic) panel model is not estimated simultaneously and describes the relationship 

between variables, while the PVAR approach describes the relation between innovations 

(shock view). 

7.2 Land use 

In this section we present causal estimates of changes in station density on land use using 

a strategy that is similar to the one presented in the previous section. 

7.2.1  Land use data and empirical strategy 

The information on land use was extracted from a series of map publications that provide 

detailed reconstruction of real land use in 1880, 1910 and 1940 (Aust, 1986, 1987). On 
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these maps, each parcel of land is assigned to one of the following categories: industrial, 

public, residential, business or mixed use. From the maps it is also evident if a parcel at a 

given point in time was undeveloped. Lastly, the maps show the boundaries of green 

space, water spaces and overground rail tracks.  

To process this information in a statistical analysis, we intersect the raster data with our 

150m grid, whose cells form the cross-sectional unit of a panel data set. This approach 

flexibly accommodates changes in land use at a fine level without imposing arbitrary offi-

cial boundaries. As such, the grid does not imply a density bias, i.e. implicitly higher 

weights to smaller geographic areas typically encountered in more central areas. We cal-

culate the individual share of land use each grid cell covers. The empirical strategy we use 

to estimate the causal effect of increasing the supply of transport services on land use is 

similar to the one discussed in the previous section. We replicate the land value in perfect 

analogy but replace the dependent variable with the log share of land within a 150m grid 

cell that is at least partially used for commercial purposes (commercial land and mixed 

use).  

7.2.2 Results 

Estimation results are shown in Table A18. We use the same set of specifications as before. 

The results confirm the implications of the PVAR model in that an increase in station den-

sity significantly increases the share of commercial land use. In our preferred IV models 

(columns 5 and 6) the elasticity is about 0.3. 

As a further interpretation from the PVAR models we derive that the displacement of resi-

dential for commercial use occurs at a faster rate within the urban core area. To accom-

modate the treatment heterogeneity, we allow for an interaction effect between station 

accessibility and distance to the CBD. The results (Table A19) reported below are support-

ive of this heterogeneity, especially in our preferred IV models (columns 5 and 6).  

Tab. A18.  Complementary IV analyses 2: Land use 

 (1) (2) (3) (4) (5) (6) 
 ∆ log share of land with significant commercial use 

∆ log station density 0.267*** 
(0.015) 

0.246*** 
(0.018) 

0.199*** 
(0.029) 

0.359*** 
(0.015) 

0.310*** 
(0.019) 

0.303*** 
(0.041) 

Plot FE NO YES YES NO YES YES 
Period FE YES YES NO YES YES YES 
Ortsteil x period FE NO NO YES NO NO YES 
IV NO NO NO YES YES YES 
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N 8914 8914 8914 8914 8914 8914 
F (first stage) - - - 305.68 8413.72 655.51 

Notes:  Instrument variable: Log station density of counterfactual network. Standard errors in parentheses, *** 

p<0.01, ** p<0.05, * p<0.1. Beta coefficients in squared bracket. 

 

Tab. A19.  Complementary IV analyses 2: Land use and treatment heterogeneity 

 (1) (2) (3) (4) (5) (6) 
 ∆ log share of land with significant commercial use 

∆ log station density 0.316*** 
(0.023) 

0.420*** 
(0.038) 

0.430*** 
(0.064) 

0.318*** 
(0.023) 

0.433*** 
(0.043) 

0.638*** 
(0.090) 

∆ log station density 
x distance to CBD 

-0.012*** 
(0.004) 

-0.043*** 
(0.007) 

-0.056*** 
(0.012) 

0.011** 
(0.005) 

-0.031*** 
(0.010) 

-0.089*** 
(0.022) 

Plot FE YES YES YES YES YES YES 
Period FE YES YES NO YES YES YES 
Ortsteil x period FE NO NO YES NO NO YES 
IV NO NO NO YES YES YES 
N 8914 8914 8914 8914 8914 8914 
F (first stage) - - - 501.28 3622.59 204.43 

Notes:  Instrument variable: Log station density of counterfactual network. Standard errors in parentheses, *** 

p<0.01, ** p<0.05, * p<0.1. Beta coefficients in squared bracket. 
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