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Abstract

We analyze a class of sender-receiver games with quadratic payo¤s, which includes

the communication games in Alonso, Dessein and Matouschek (2008) and Rantakari

(2008) as special cases, for which the receiver�s maximum expected payo¤when players

have access to arbitrary, mediated communication protocols is attained in one-round

of face-to-face, unmediated cheap talk. This result is based on the existence for these

games of a communication equilibrium with an in�nite number of partitions of the

state space. We provide explicit expressions for the maximum expected payo¤ of the

receiver, and illustrate its use by deriving new comparative statics of the quality of

optimal communication. For instance, a shift in the underlying uncertainty that reduces

expected con�ict can worsen the quality of communication.
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1 Introduction

Con�icting interests often hinder communication between informed experts and uninformed

decision makers. This is certainly the case in Crawford and Sobel�s classic contribution

where an informed sender strategically sends costless messages to an uninformed receiver,

i.e. the sender engages in cheap talk (Crawford and Sobel, (CS) 1982). CS considers one-shot

communication: the sender makes a single recommendation and the receiver immediately

makes a decision based on that recommendation. The fact that the sender can foresee the

e¤ect of his in�uence, by anticipating how each recommendation will be interpreted and

which decision it will induce, implies that perfect information transmission is not credible.

The literature has since studied several communication protocols that improve the ef-

�ciency of the one-shot equilibria in CS, for instance, by engaging in repeated rounds of

communication (Krishna and Morgan, 2004), by using a noisy channel (Blume, Board and

Kawamura, 2007), by appealing to a correlation device on which to base the encoding and

decoding of messages (Blume, 2012) or, more generally, by relying on a trustworthy, or

even strategic, mediator (Goltsman, Horner, Pavlov and Squintani (GHPS), 2009; Ivanov,

2009).1 A driving force behind these e¢ ciency-enhancing communication protocols is that

they introduce noise in the sender�s message: a communication protocol that induces noisier

recommendations for decisions that on average favor the sender can discipline a risk-averse

sender and thus enhance information transmission.

In this vein, a natural question is when general communication protocols, including me-

diated communication, can improve upon one-shot communication and to understand when

these gains from mediation are likely to be either large or small. A limitation of this strand of

literature to address this question is that e¢ ciency bounds of communication equilibria exist

only for the leading example in CS; the characterization of optimal mediation in Goltsman,

Horner, Pavlov and Squintani (GHPS) (2009) is done for the case of quadratic preferences,

constant bias between sender and receiver and a uniformly distributed state. We extend the

analysis of GHPS to a broader class of sender-receiver games and study the structure of the

1The role of mediation with �nite messages is considered in Ganguly and Ray (2012). Ambrus et al (2010)

examine hierarchical cheap talk where the messages get passed through a sequence of agents and show that

mixed-strategy equilibria can exist that dominate the direct communication game.
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payo¤ set supported by communication equilibria.

Our main result is a characterization of a class of sender-receiver games for which there

exists a one-shot, unmediated communication equilibrium for which the receiver�s expected

payo¤ cannot be improved upon by using arbitrary mediation rules (Proposition 2). That

is, for these games the receiver obtains no e¢ ciency gains from prolonged conversations,

using noisy channels or arbitrary mediation; brief conversations are optimal. In particular,

the cheap talk equilibrium that achieves the maximum of the receiver�s payo¤ supports an

in�nite number of di¤erent decisions. That is, brief conversations that are optimal are also

very detailed. Importantly, the class of sender-receiver games for which this is true includes

the communication games in Alonso, Dessein and Matouschek (2008) and Rantakari (2008),

where the bias between the sender and the receiver is linear and increasing and vanishes at

some point of the state space.2

One lesson from GHPS is that the gains from mediation with respect to the most e¢ cient

equilibrium in CS are highest for intermediate levels of con�ict. Indeed, as the con�ict

vanishes one-shot communication approaches full revelation while intensifying the con�ict

leads to no information transmission, even in the presence of a mediator. Our results show,

however, that it is not only the magnitude of the con�ict that determines the gains from

mediation but also its shape. Indeed, Proposition 2 imposes no constraints on the average

con�ict (as measured by the expected bias between the sender and the receiver). Therefore,

for any level of expected con�ict one can �nd a sender-receiver game in our setup where the

receiver does not gain from mediation.

Apart from the insights on the gains from mediation, this result has also a more practical

appeal. The cheap talk model in CS, and speci�cally their leading example, has been a

workhorse model in applications featuring costless communication, where the restriction to

one-shot communication has often been defended on tractability grounds. A concern with

this approach, however, is that the insights derived in such settings may not be robust to the

parties agreeing to switch to welfare-improving communication protocols. However, for the

class of games and the one-shot in�nite equilibrium in those games identi�ed in Proposition

2, the receiver cannot strictly gain from having access to a neutral mediator. This implies,

2See also Alonso (2007) and Gordon (2010). A single round of unmediated communication obtains the

upper bound on the principal�s payo¤ also in Rantakari (2013).
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for instance, that the comparative statics in Alonso, Dessein and Matouschek (2008) and

Rantakari (2008) are derived under optimal communication.

Finally, we explicitly compute the receiver�s maximum expected payo¤ when brief con-

versations are indeed optimal (Proposition 3). This result is of separate applied interest, as

it provides the loss due to strategic communication without explicitly solving for the equi-

librium itself and for distributions other than the uniform distribution. We illustrate the use

of this result by deriving new comparative statics on optimal communication. For instance,

we show by example that a shift in the underlying distribution that reduces the expected

con�ict can actually worsen communication (Corollary 2).

The basic logic of the analysis is as follows. First, the revelation principle allows us to

restrict attention to games where the sender privately and truthfully discloses the state to

a mediator, who in turn issues a recommendation to the receiver which the latter is willing

to follow. The need to ensure the sender�s sincerity and the receiver�s obedience implies

that, for games with quadratic payo¤s, interim and ex-ante payo¤s can be expressed as

linear functionals of state-contingent average decisions (Lemma 1). From this representation

we identify a class of games for which a tight relationship exists between local and global

properties of the communication equilibria: the interim payo¤ to the sender for either the

lowest or the highest type is a linear function of the ex-ante payo¤ to the sender or the

receiver (Proposition 1). Therefore globally optimal communication equilibria must also be

locally optimal for either the highest or the lowest type of sender. We then show that if

the sender and the receiver are perfectly aligned for either the highest or the lowest state,

then there exists a one-shot in�nite communication equilibrium such that communication is

very detailed around the state of perfect alignment. In particular, an extreme type of sender

is able to fully reveal his type, and thus to obtain his preferred decision with certainty.

Since local properties of extreme types translate to global properties for these games, perfect

communication for an extreme type implies that this communication equilibrium is also ex-

ante optimal for the receiver. Moreover, this logic then naturally extends to settings where

the point of alignment is interior, when we can split the communication game around this

point of alignment

Our paper follows the recent literature that analyzes the gains from adopting more so-

phisticated communication protocols in sender-receiver games. The paper most related to
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ours is GHPS, who studies di¤erent con�ict resolution procedures, among them optimal me-

diation. While we expand their methodology to a broader class of games, our focus is on

characterizing the class of games where one-shot communication is optimal. Ivanov (2013)

provides su¢ cient conditions for mediation to be valuable, that is, for the receiver to bene�t

at all from communicating with the sender. Finally, Blume (2012) is also concerned with op-

timal mediation involving one-shot communication. In particular, Blume (2012) shows that

the e¢ ciency bound reported by GHPS for the leading example in CS can be achieved in

one-shot communication if parties can rely on a correlation device that sends private signals

before the sender becomes informed.3 In contrast, in our paper optimal communication is

face-to-face and does not rely on the use of a correlation device.

2 The Model

There are two players, the informed sender (he) and the uninformed receiver (she). The

payo¤s to both players depend on the realized state of nature � 2 � = [0; 1] and the chosen

action y 2 Y � R: The state of nature is distributed according to the distribution F (�)

which admits a continuous density f(�) with full support on �. The payo¤s of the receiver

and the sender are

uR(y; �) = � (y � �)2 ; (1)

uS(y; �) = � (y � yS(�))
2 ;

where yS(�) is a di¤erentiable function of the state. In our speci�cation, the sender�s pre-

ferred action matches the realized state � while the receiver�s preferred action is yS(�), where

the bias b (�) = yS(�)� � measures the distance between the sender�s and the receiver�s pre-

ferred choices. Apart from the di¤erentiability requirement, we don�t impose any additional

assumptions on the shape of yS(�). In particular, for our representation in Lemma 1 we

don�t require yS(�) to be non-decreasing.

While the sender observes �; the receiver has authority over the action y: Prior to the

receiver selecting an action, the players exchange messages according to a �xed commu-

nication protocol. While communication protocols may involve complex communication

3For implementation in correlated equilibria, see also Vida and Forges (2013).

4



procedures with multiple rounds in which messages are exchanged, possibly with the help

of a trustworthy mediator, the revelation principle applies: any equilibrium outcome of any

sender-receiver game with communication can be replicated by a (canonical) communication

equilibrium (Forges, 1986; Myerson, 1986). A communication equilibrium involves the use

of a neutral mediator to which the informed party sends a single, private, costless message,

which is a report of the state of nature, after which the mediator issues a recommendation

to the receiver. Moreover, in a communication equilibrium the sender is sincere and the

receiver obedient: reporting the true state is optimal for the sender, and abiding by the

mediator�s recommendation is optimal for the receiver. We can then restrict our attention

to communication equilibria where the message space is the type space � and the space of

mediator recommendations is the action space Y . Moreover, the receiver�s preferred choice

for any belief she may have about � cannot fall outside [0; 1]: Therefore, we can set Y = [0; 1].

Let F = B(Y ) be the Borel �-algebra in Y . Formally, a mediation rule M is a family

of probability measures on (Y;F) indexed by �, fp (:j�)g�2�, that completely describe the

mediator�s behavior: the mediator�s recommendation is distributed according to the measure

p (yj�) following a report �. Moreover, to ensure the sender�s sincerity and the receiver�s

obedience, the family fp (:j�)g�2� must satisfyZ
Y

� (y � yS(�))
2 (dp (yj�)� dp (yj�0)) � 0; 8�; �0 2 �: (IC-S)

y = E [�jy] ; 8y 2 Y: (IC-R)

The constraint (IC-S) is the sender�s truthtelling constraint: the sender has no incentive

to misrepresent the state when the mediator commits to randomizing its recommendation

according to p
�
yj~�
�
following a report ~�. The constraint (IC-R) ensures the receiver�s

obedience: given the mediation rule fp (:j�)g�2� ; and given the sender�s truthtelling behavior,

the mediator�s recommendation re�nes the receiver�s belief about the realized state. Then

(IC-R) simply states that whenever the mediator recommends action y, the receiver�s optimal

action given her updated beliefs over the state is indeed y. The particular form of (IC-R)

follows from the fact that, with quadratic payo¤s, the decision maker�s optimal action given

her beliefs equals the expected state. A mediation rule that simultaneously satis�es (IC-R)

and (IC-S) is called incentive compatible.

We are interested in mediation rules that maximize the ex-ante welfare of the receiver.
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We refer to a mediation rule as unimprovable for a player, if there is no incentive compatible

mediation rule that yields a higher ex-ante expected payo¤ for that player. An optimal

mediation rule is thus an incentive compatible mediation rule that is unimprovable for the

receiver. Our quadratic setup allows also a simple informational interpretation of optimal

mediation rules. Indeed, given the receiver�s behavior (IC-R) and the functional form of

the receiver�s preferences (1), the receiver�s payo¤ coincides with her residual variance after

listening to the mediator�s recommendation. Therefore optimal mediation rules also maxi-

mize the amount of information that is transmitted, when the informativeness of a signal is

measured in terms of its expected residual variance.

We are particularly interested in a class of sender-receiver games where optimal mediation

can be achieved through brief conversations. To be speci�c, we de�ne a brief conversation as

a Bayesian-Nash equilibrium of a game in which the sender sends a single, costless message

observed by the receiver who then takes an action. That is, a brief conversation is the

Nash equilibrium of a one-shot, face-to-face, unmediated cheap talk game. Formally, a brief

conversation is characterized by (i.) the sender�s communication rule �(�) : �! �M which

speci�es the probability of sending message m 2 M conditional on observing state �, (ii.)

the receiver�s response y(m) : M ! Y which maps messages into actions and (iii.) the

receiver�s belief function g(� j m) : M ! �� which states the posterior probability of �

after observing message m. In a Bayesian-Nash Equilibrium, the communication rule is

optimal for the sender given the receiver�s response, the receiver�s response is optimal for the

receiver given the belief function and the belief function is derived from the communication

rule using Bayes�rule whenever possible.

3 Analysis

We start by deriving an alternative representation of the equilibrium payo¤s induced by a

communication equilibrium. To this end, let US (�) be the sender�s interim payo¤ when the

state is �, and VS and VR the ex-ante expected payo¤s of the sender and the receiver in a

given communication equilibrium. As in GHPS, for any incentive compatible M , de�ned by

fp (:j�)g�2�, let �y(�) =
Z
Y

ydp (yj�) and ��2(�) =
Z
Y

(y � �y(�))2 dp (yj�) be the equilibrium

expected decision and variance of the decision. Quadratic payo¤s are convenient as knowledge
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of �y(�) and ��2(�) su¢ ces to obtain the state-dependent payo¤s for any mediation rule.

Indeed, one immediately has

US (�) = � (�y(�)� yS(�))
2 � ��2(�);

VS = �E
�
(�y(�)� yS(�))

2�� E
�
��2(�)

�
;

VR = �E
�
(�y(�)� �)2

�
� E

�
��2(�)

�
:

In principle, knowledge of both values �y(�) and ��2(�) would be required to obtain US (�) ;

� 2 [0; 1], and knowledge of the functions �y and ��2 would be necessary to deduce VS and VR.

However, the restrictions imposed on the set of equilibrium payo¤s by (IC-S) and (IC-R)

imply that, for games with quadratic payo¤s, interim and ex-ante payo¤s can be obtained

solely on the basis of the state-contingent average decision �y (�) ; � 2 [0; 1].

Lemma 1 Let M be an incentive compatible mediation rule that induces in equilibrium �y(�)

and �2(�); �2 [0; 1]. Then

US

�
�̂
�
= E

h
�y(�)KS(�̂) (�)

i
� y2S(�̂); �̂ 2 [0; 1]; (2)

VS = E [�y(�)KS (�)]� E
�
y2S(�)

�
; (3)

VR = E [�y(�)KR (�)]� E
�
�2
�
; (4)

where, letting I[0;�̂] be the characteristic function of the set [0; �̂], we have
4

KS(�̂) (�) = 2yS(�)� � � 2y
0
S(�)

f(�)

�
1� F (�)� I[0;�̂](�)

�
; (5)

KS (�) = 2yS(�)� �;

KR (�) = �:

Lemma 1 provides expressions for US (�) ; VS and VR as a¢ ne functionals of the average

decision �y without explicit recourse to either ��2 or to any additional information of the

mechanism M . Lemma 1 is analogous to well known results in mechanism design with

quasilinear utility and convex type spaces: if �y(�) plays the role of an "allocation" and

��2(�) (which enters additively in US (�)) plays the role of a type-dependent transfer, then

an application of the envelope theorem to (IC-S) implies that US (�) can be obtained from

4The characteristic function of the set A; IA, is such that IA(x) = 1 if x 2 A and IA(x) = 0 otherwise.
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knowledge of the interim payo¤ of one type and the entire allocation �y(�); � 2 [0; 1]. Under

mediation, however, we must also ensure that the receiver is obedient, i.e. (IC-R) must also

hold. Lemma 1 shows that this additional constraint eliminates the degree of freedom in

specifying the interim payo¤ to a �xed sender�s type. That is, knowledge of the "allocation"

�y su¢ ces to compute both interim and ex-ante expected payo¤s. Note, however, that Lemma

1 remains silent on the set of implementable �y. For example, the con�ict of interest may be so

severe that only a babbling equilibrium can be sustained (and thus the set of implementable

�y is a singleton), which nevertheless would still satisfy (2), (3) and (4).

3.1 Interim and ex-ante payo¤s under mediation.

In principle, if the space of implementable �y is su¢ ciently rich, one may conjecture that

knowledge of US (�) for some type � is not enough to derive US (�
0) for some other type �0, and

would also be insu¢ cient to infer the ex-ante welfare of the sender and the receiver. In other

words, if the set of mediation rules is su¢ ciently rich one would expect that mediation rules

that exhibit the same local behavior, by inducing the same US (�) for some type �; may have

widely di¤erent global properties and thus generate di¤erent ex-ante payo¤s. By contrast, the

following proposition characterizes a class of sender-receiver games in which local behavior

univocally determines the global welfare properties of any incentive compatible mediation

rule. For the remainder of this paper let h(�) = f(�)= (1� F (�)) and r(�) = f(�)=F (�) be

the hazard rate and reversed hazard rate of the distribution F (�).

Proposition 1 Suppose that, for some �; � 2 R; yS(�) takes one of the following forms

yS(�) = �E
h
~�j~� � �

i
+ �; (6)

yS(�) = �E
h
~�j~� � �

i
+ �; (7)

yS (�) = �

Z �

0

h(�0)d�0 + �; (8)

yS (�) = �

Z �

0

r(�0)d�0 + �: (9)

(i) If either (6) or (7) holds, then for any two mediation rules M and M 0 we have

UM
0

S (i)� UMS (i) = (2�� 1)
�
V M 0

R � V M
R

�
; (10)
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where i = 0 if yS(�) satis�es (6), while i = 1 if yS(�) satis�es (7).

(ii) If either (8) or (9) holds, then for any two mediation rules M and M 0 we have

UM
0

S (i)� UMS (i) = V M 0

S � V M
S ; (11)

where i = 0 if yS(�) satis�es (8), while i = 1 if yS(�) satis�es (9).

We can interpret Proposition 1 as a re�nement of Lemma 1. Lemma 1 shows that

knowledge of the function �y is su¢ cient to compute ex-ante and interim payo¤s for any

incentive compatible M . Nevertheless, the functional di¤erence in the linear functionals

de�ning (2), (3) and (4) implies that two average decisions �y and �y0 that induce the same

US (�) for some type � may very well yield di¤erent ex-ante payo¤s. Adding more structure

to our model, however, can lead to an equivalence between local interim payo¤s and global

ex-ante payo¤s. For instance, if yS(�) can be written as (6) or (7), then a linear relation

exists between the expected payo¤ to the receiver and the payo¤ to the sender at an extreme

type for any incentive compatible mediation rule, while if either (8) or (9) holds then the

change in the ex-ante payo¤ to the sender when switching from M to M 0 equals the change

in the payo¤ to an extreme type.

The intuition behind Proposition 1-i and 1-ii is based on the representation (2),(3) and

(4) in Lemma 1 coupled with the obedience constraint by the receiver (IC-R). Suppose

that (6) holds. Then, the function yS(�) � y0S(�)=h(�) is linear in the state, implying that

KS(0), obtained by setting �̂ = 0 in (5), can be expressed as an a¢ ne function of KR,

which de�nes the expected utility of the receiver. The �nal step is to observe that the law

of the iterated expectations applied to (IC-R) implies that E [�y(�)] is constant across all

mediation mechanisms (and equal to E [�]). Then (10) follows immediately from Lemma 1

as E
�
�y(�)KS(0) (�)

�
is a linear transformation of E [�y(�)KR (�)] in the set of implementable �y.

Similar reasoning shows that E
�
�y(�)KS(1) (�)

�
and E [�y(�)KR (�)] are linearly related if (7)

holds. Conversely, if (8) holds then KS(0) (�)�KS (�) is a constant, while KS(1) (�)�KS (�)

is constant if (9) holds. Again, as E [�y(�)] is constant over the space of mediation rules then

either case would imply (11).

We note that both (6) and (7) hold if the sender�s preferred decision is an a¢ ne function

of the state and the state is uniformly distributed.5 This includes the leading example in CS,
5We leave the analysis of other cases that satisfy (6) to Section 4.1.
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which has been the workhorse model in applications involving cheap talk communication.

Indeed, the main studies of optimal mediation in CS-type of games all consider this "uniform-

quadratic" example (see, Krishna and Morgan, 2004; Blume et al, 2007; GHPS; Ivanov, 2010;

Blume, 2012). In fact, for this case we have the following corollary.

Corollary 1 Suppose that � is uniformly distributed and yS(�) = a� + b. Then, if a > 1=2

the following statements are equivalent: (i) an optimal mediation rule maximizes VS, (ii)

an optimal mediation rule maximizes US (0) and (iii) an optimal mediation rule maximizes

US (1).

The observation that optimal mediation maximizes US (0) is exploited by GHPS to char-

acterize the optimal mediation rule for the constant bias case (i.e. when a = 1, b 6= 0):

Interestingly, as long as a > 1=2 a sender�s optimal mediation rule must also lead to the

maximum payo¤ for the sender at the extremes of the type space, as well as when comput-

ing the sender�s payo¤ at an ex-ante stage.

We end this section with two caveats regarding Proposition 1. First, the equivalence

(10) establishes a bijection in terms of payo¤s, not decisions or even average decisions. That

is, if either (6) or (7) holds, then di¤erent mediation rules that yield the same expected

utility for the receiver (and thus for either the lowest or highest type of sender) may induce

totally di¤erent decisions. This is simple to see by noting that in the constant bias-uniform

speci�cation and for the range of biases in which a three partition equilibrium is feasible,

one can construct a mediation rule that induces either the babbling equilibrium or the

three partition equilibrium with �xed probabilities and such that the expected payo¤ to the

sender is the same at the extreme types as the two partition cheap talk equilibrium. Clearly,

however, average decisions cannot coincide under both communication rules. Second, either

(6) or (7) are only su¢ cient for the existence of a bijection between US (0) or US (1) and

VR, as we don�t incorporate information about the set of implementable �y. For instance, a

bijection would trivially follow when the con�ict of preferences between sender and receiver

is so severe that any incentive compatible mediation rule implements a single decision.
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4 Art of Brevity

We now turn our attention to optimal mediation rules, and study when they involve brief

conversations. For the cases that satisfy (6) or (7) with � > 1=2, Proposition 1 establishes

thatM is optimal if and only if the sender�s payo¤ in state �̂ = i 2 f0; 1g cannot be improved

by any other mediation rule. Clearly, US (i) � 0 and US (i) = 0 if and only if the receiver

selects the sender�s preferred decision when his type is i. The next proposition describes a

class of games that satisfy (6) or (7) and admit a brief conversation where the receiver selects

the sender�s preferred decision at an extreme type, and this brief conversation must then be

optimal.

Proposition 2 Suppose that either

yS(�) = �
�
E
h
~�j~� � �

i
� E

h
~�
i�
; with � > max

�2[0;1]

�

E
h
~�j~� � �

i
� E

h
~�
i ; (12)

or

yS(�) = �
�
E
h
~�j~� � �

i
� E

h
~�
i�
+ 1; with � > max

�2[0;1]

1� �

E
h
~�
i
� E

h
~�j~� � �

i : (13)

Then, there exists a brief conversation that is unimprovable for the receiver. Importantly, this

equilibrium induces an in�nite number of di¤erent decisions, where y = 0 is an accumulation

point if (12) holds, and y = 1 is an accumulation point if (13) holds.

A notable feature of (12) and (13) is that they require full alignment between sender

and receiver at some extreme type.6 Thus Proposition 2 rules out the sender-receiver games

studied in CS where preferred decisions of sender and receiver never coincide. These types

of games, with an in�nite type- and action-space and where the bias b(�) may vanish or

even change sign, have been studied by Gordon (2010) who characterizes communication

equilibria and provides conditions for the existence of in�nite equilibria.

The logic behind Proposition 2 can be seen in two steps. First, the existence of a state of

full alignment implies in our case that an in�nite equilibrium exists. This is not immediate as

Alonso (2007) and Gordon (2010) show that even if the bias vanishes at some state only �nite

6Alternatively, the point of alignment may be some interior �0; where (12) holds for � � �0; conditional

on � 2 [�0; 1] while (13) holds for � � �0; conditional on � 2 [0; �0]:
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equilibria maybe possible. However, either (12) or (13) imply that the range of preferred

decisions of the sender contains the range of preferred decisions of the receiver (i.e. the

sender is more reactive than the receiver) and thus Theorem 2 in Gordon (2010) guarantees

the existence of an in�nite equilibrium. Second, an in�nite equilibrium on a bounded state

space must necessarily have an accumulation point at a state at which the bias disappears.

This implies that an in�nite equilibrium guarantees that the receiver selects the sender�s (and

receiver�s) preferred decision at some of point of alignment. Then (12) or (13) guarantee that

there is a unique point of alignment, which occurs at an extreme type. For instance, (12)

implies that yS(�) > � for � > 1, thus the only point of congruence is at � = 0 implying that

the in�nite equilibrium must necessarily have the sender of type � = 0 inducing decision

y = 0. As this equilibrium maximizes the sender�payo¤ at � = 0, it must also be optimal

for the receiver. Therefore, when (12) or (13) holds brief conversations that are optimal are

very detailed around the point of full alignment.

An important implication of Proposition 2 is that the one-shot communication equi-

librium characterized in many applied papers cannot be improved upon by having more

rounds of communication, communicating through a noisy channel, or, more generally, by

employing a neutral mediator. For example, Melumad and Shibano (1991), Stein (2002),

Alonso, Dessein and Matouschek (2008) and Rantakari (2008) study communication games

which are equivalent to sender-receiver games with preferences over actions given by (1) with

yS(�) = a�; a > 1; and � � U [0; 1]. Note that this case satis�es (12) with � = 2a. Propo-

sition 2 then establishes that the in�nite equilibrium studied in those papers is necessarily

the optimal communication protocol for the receiver. The relevance of this observation is

that it addresses a typical concern regarding applied models with cheap talk communication,

namely, that the results and insights may not be robust to the receiver adopting a more in-

formative communication protocol. For instance, Proposition 2 implies that the �ndings in

Alonso, Dessein and Matouschek (2008) and Rantakari (2008) regarding the impact of inter-

nal communication on organizational structure are obtain under the optimal communication

protocol.

There are other well known cases where brief conversations are optimal. First, when

the con�ict of interest between the sender and the receiver is extreme, either because the

12



di¤erence between preferred actions is large for states that are very likely7 or because the

sender�s preferred decision decreases with the state, then the receiver cannot do better than

simply choosing her preferred uninformed decision. In this case, optimal conversations are

necessarily brief as nothing can be credibly communicated. The equilibria described in

Proposition 2, however, always involve in�uential communication and the receiver strictly

bene�ts from the sender�s recommendation. Second, a more subtle example is presented in

GHPS were they show that in the leading example of CS, when the constant bias b satis�es

b = 1=(2N2) for some integer N; the most informative C-S equilibrium (which involves

N di¤erent decisions) is unimprovable through mediation. That is, the constant bias case

admits a non-generic set of cases where brief conversations are optimal.8 In contrast, applying

Proposition 2 one can construct sender-receiver games, as we do in Section 4.1, for which all

games have a brief conversation that is optimal.

It is instructive to contrast the �ndings in the literature on optimal mediation in CS-

type of games to Proposition 2. For the leading example in CS one has that: (i) For

b � 1=2 no information transmission is possible, (ii) for b < 1=2, one-shot communication is

generically not optimal, and (iii) if b < 1=8 multiple rounds of unmediated communication

can achieve the maximum payo¤ (see GHPS for details).9 In short, employing a mediator

is most valuable when the con�ict of interest is intermediate, since for small biases several

rounds of cheap talk is unimprovable through mediation, while if the con�ict is extreme

no meaningful communication is possible, even with a neutral mediator. Further, one-shot

communication can, generically, be improved upon either through long conversations or

mediation.

We �nd however that for a state-dependent con�ict of interest, the gains from mediation

depend not only on the magnitude of the con�ict of interest (as given by the expected bias),

7For instance, it is well known that for the leading example in CS, no in�uential communication is possible

for b > 1=2. Moreover, as a simple corollary of Proposition 2, if yS(�) = �
�
E
h
~�j~� � �

i
� E

h
~�
i�

+ E
h
~�
i

then yS(0) = E[�] and an optimal mediation rule implements a constant decision y = E[�]. Note that this

condition is compatible with a unifomly small bias in [0; 1].
8As we noted in Corollary 1, the leading example in CS satis�es (10). The cases with b = 1=(2N2) are

optimal as the sender at � = 0 obtains his preferred decision.
9More generally, Ivanov (2013) provides a simple su¢ cient condition for information transmission to be

possible in sender-receiver games.
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but also on the shape of the bias b(�). Indeed, (12) imposes no upper limit on the value of

� while the expected con�ict increases without bound as � increases. The key di¤erence,

however, with the constant bias case is that in spite of an increased average con�ict, full

alignment at an extreme type persists and in�uential communication remains feasible.

4.1 Brief conversations, Uncertainty and the Quality of Commu-

nication

While the cheap talk setting of CS has found wide acceptance as a model of communica-

tion under con�icting preferences, applications have generally restricted attention to the

"uniform-quadratic" example as expressions for the payo¤s in models beyond that case have

proven di¢ cult to come by. However, for the class of sender-receiver games characterized in

Proposition 2 we can explicitly compute the ex-ante payo¤ to the receiver under an optimal

communication equilibrium.

Proposition 3 For every yi�1; yi 2 Y , yi�1 < yi, de�ne g (yi�1; yi) by

g (yi�1; yi) = E [�j� 2 [yi�1; yi]] : (14)

If yS(�) satis�es (12), then the maximum expected payo¤ of the receiver is

V �
R = �E

�
�2
�
+ (1� F (y�)) g2 (0; 1)

g2 (y�; 1)� g2 (0; y�)

g2 (0; 1)� g2 (0; y�)
(15)

with y� 2 (0; 1) the unique solution to

2� (g (y�; 1)� g (0; 1)) = g (0; y�) + g (y�; 1) : (16)

To derive (15), the proof of the proposition constructs two incentive compatible mech-

anisms that give the sender the same interim utility at � = 0. The �rst mechanism is

equivalent to a two partition equilibrium where the sender only reports whether his type ex-

ceeds a threshold y�. Truthtelling by the sender and obedience by the receiver requires this

threshold to satisfy the "arbitrage" condition (16). To de�ne the second mechanism, M�,

let M� be the mechanism that implements the in�nite equilbrium described in Proposition

2-i, and let M? be the totally uninformative mediation rule (i.e. the babbling equilibrium).

Then after the sender�s report, with probability � M� issues a recommendation according to
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M?, while with probability 1 � � it follows M�. The probability � is chosen such that the

two partition equilibrium and M� yield the same US (0). Then the linear relation (10) for

games where yS(�) satis�es (6) implies that these two mechanisms must generate the same

ex-ante payo¤s for the receiver, from which we deduce that V �
R satis�es (15).

We now use (15) to compare V �
R for di¤erent distributions of the state. To ensure that

comparative statics follow from changes in the distribution rather than the bias, in the next

corollary we study three examples where the application of (12) leads to a sender�s linear

preferred decision yS(�) = a�.

Example 1 (exponential). For each truncated exponential f(�; ��; �) = �e���=(1 �

e��
��); � 2 [0; ��]; let yS(�; ��; �) be given by (12). Then f(�; ��; �) converges pointwise to �e���

and yS(�; ��; �) converges pointwise to a� as �� ! 1, where a = �.10 Finally, the limit

variance of the truncated exponentials is the variance of an exponential 1=�2.

Example 2 (linear) Consider a linear pdf that vanishes at the upper bound of the

support, f(�) = 2
��l
(1� �

��l
); � 2 [0; ��l], with V ar [�] = ��

2
l =18. Then, applying (12), we obtain

yS(�) = a� with a = 2�=3.

Example 3 (uniform) Finally, applying (12) to a uniform distribution f(�) = 1
��u
; � 2

[0; ��u], with V ar [�] = ��
2
u=12; we have yS(�) = a� with a = �=2:

Corollary 2 (i) For a � 1, the sender�s maximum expected payo¤ is

V �
R = �

x(a� 1)
xa� 1 V ar [�] ; (17)

where x = 2 for the limit of truncated exponentials, x = 3 for the linear case, and x = 4 for

the uniform case.11 (ii) Suppose that

2

3
<
��u
��l
<

s
4a� 1
2(3a� 1) and 3 < ���l <

r
12 (3a� 1)
2a� 1 : (18)

10See proof of Corollary 2.
11This expression for the uniform case already appears in Alonso, Dessein and Matouschek (2008) and

Rantakari (2008).
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Then the expected bias is highest for the uniform case while it is lowest for the limit of

truncated exponentials. However, the maximum expected payo¤ to the sender is highest for

the uniform case but lowest for the exponential case.

As expected, (17) shows that the quality of communication improves when the con�ict

between sender and receiver decreases (i.e. for lower a). More interestingly, the corollary

also shows that a shift in the distribution that lowers the expected bias E [yS(�)� �] can

actually worsen communication and lower the receiver�s expected payo¤ under an optimal

communication protocol. Indeed, Corollary 2-ii provides a range of parameter values such

that the distribution that leads to the the highest expected payo¤ for the receiver is also the

one with the highest expected con�ict.

Another way of stating this result is in terms of the receiver�s bene�t from communicating

with the sender relative to making an uninformed decision. To this end, de�ne the commu-

nication gain G = (V ar [�]� jV �
Rj)=V ar [�] as the increase in the receiver�s knowledge of the

state due to communicating with the sender. From (17) the communication gain in our three

examples is G = (x� 1) = (ax� 1) : As this expression increases in x; the communication

gain is highest for a uniform distribution and lowest for the exponential distribution.

The intuition relies on the two separate roles that uncertainty plays in determining the

gains from communication. All equilibria are partitional equilibria where intervals become

smaller as one approaches the point of congruence at � = 0. Therefore, holding constant the

partition of the state space, a shift in the distribution that puts more mass on the states

where communication is more detailed can only improve the receiver�s payo¤. However, the

change in the distribution also changes the "arbitrage condition" determining the equilibrium

partition. Suppose that the principal knows that the state lies in [y; y+�] so that her optimal

choice exceeds y by  (y;�) = g (y; y +�)�y. That is,  (y;�) measures the responsiveness

of the receiver when she knows that the state lies in an interval of length �. Then for a

uniform  (y;�) does not vary in y while it decreases in y for the linear case. That is, the

receiver becomes less responsive under a linear distribution than a uniform. To preserve

incentive compatibility by the sender, the size of the intervals must be larger for a linear

distribution so that the partitions are coarser under a linear distribution. Then Corollary

2-ii indicates that this second e¤ect dominates for the range of parameters in (18) and a
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lower expected con�ict actually leads to a lower expected payo¤ for the receiver.

5 Conclusion

The literature has emphasized the bene�cial role of mediation in sender-receiver games where

con�icting preferences hinder information transmission. We have identi�ed a class of games,

however, for which neither lengthy conversations nor mediation enhances the amount of

information exchanged in equilibrium. In short, brief conversations are optimal in these cases.

Importantly, the optimality of brief conversations persists even if the average con�ict between

the sender and the receiver is arbitrarily large. This shows that the value of mediation not

only depends on the magnitude of the con�ict between the sender and the receiver but also

on how this con�ict varies over the state space. In our case, as long as the con�ict vanishes

at one of the extreme points of the state space, brief conversations remain optimal.

Our proof of optimality of brief conversations (Proposition 2) relies on the existence of

a one-to-one relation between the sender�s interim payo¤s at extreme types and the ex-ante

expected payo¤s of the players. This bijection also implies that optimal mediation rules

are locally optimal for some sender�s type. A natural question is the extent to which this

assertion holds true in general. In other words, does an optimal mediation rule necessarily

maximize the interim utility of some sender�s type? Furthermore, our proofs made no use

of the characteristics of the set of implementable average decisions, as we rely instead on

properties of the payo¤ functions. Better understanding implementability can further our

understanding of the bene�ts of mediation. We leave these two observations for future work.

.

A Proofs

Proof of Lemma 1: Let M be an arbitrary incentive compatible mediation mechanism.

We will derive the relations (2), (3) and (4) in three steps. First, we have thatZ
Y��

y�dp(yj�)dF (�) =
Z
Y

y

�Z
�

�dg(�jy)
�
dH(y) =

Z
Y

y2dH(y); (19)
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where in the �rst equality we apply the Fubini-Tonelli Theorem and the second equality

follows from (IC-R). Therefore, VR can be written as

VR = �
Z
Y��

(y � �)2dp(yj�)dF (�) = �
Z
Y��

�
y2 � 2y� � �2

�
dp(yj�)dF (�)

=

Z
Y��

�
y� � �2

�
dp(yj�)dF (�) = E [�y(�)�]� E

�
�2
�
:

where we applied (19) to the third equality and the law of iterated expectations to the last

equality. This establishes (4) with KR (�) = �.

Second, as utilities are quadratic and given (19) we immediately have

VS = �E
�
(y � yS(�))

2
�
= �E

�
y2 � 2yyS(�) + y2S(�)

�
=

= �E
�
y� � 2yyS(�) + y2S(�)

�
= �E

�
�y(�) (� � 2yS(�)) + y2S(�)

�
; (20)

where we have again applied (19) to the third equality. This establishes (3) with KS (�) =

2yS(�)� �.

Third, �xing a probability measure p(�j�̂) from the mechanism M; the function �
Z
Y

(y�

yS(�))
2dp(yj�̂) has the same smoothness properties as yS(�). Our assumption that yS(�) is

di¤erentiable and Theorem 2 of Milgrom and Segal (2002) then imply that US (�) is absolutely

continuous, and for any two states � and �0 satis�es the integral representation

US (�
0)� US (�) =

Z �0

�

�Z
Y

2(y � yS(�))y
0
S(�)dp(yj�)

�
d�

= 2

Z �0

�

(�y (�)� yS(�)) y
0
S(�)d� :

Fixing a reference state ~�; integrating by parts, and rearranging we have

VS = US

�
~�
�
� 2
Z ~�

0

(y (�)� yS(�)) y
0
S(�)d� + 2

Z 1

0

(y (�)� yS(�)) y
0
S(�) (1� F (�)) d�

= US

�
~�
�
+ E

�
y(�)

�
2y0S(�)

1� F (�)

f (�)
� 2y

0
S(�)

f (�)
I[0;~�]

��
� E

�
y2S(�)

�
+ y2S(

~�)

where I[0;~�] is the characteristic function of the set [0; ~�] (i.e. I[0;~�](x) = 1 if x 2 [0; ~�] and

I[0;~�](x) = 0 otherwise). Using the expression for VS given in (20) and substituting above we

obtain (2) with KS(�̂) given by (5). �
Proof of Proposition 1: (i) Suppose that (6) holds so that

y0S(�) = �h (�) (E [�0j�0 � �]� �) ;
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implying

KS(0) (�) = 2yS(�)� � � 2y0S(�)
1

h (�)

= 2�E [�0j�0 � �] + 2� � � � 2� (�� + E [�0j�0 � �])

= (2�� 1)� + 2� = (2�� 1)KR + 2�:

Conversely, if (7) holds then

y0S(�) = �r (�) (� � E [�0j�0 � �]) ;

so that

KS(1) (�) = 2yS(�)� � + 2y0S(�)
1

r(�)

= 2�E [�0j�0 � �] + 2� � � + 2� (� � E [�0j�0 � �])

= (2�� 1)� + 2� = (2�� 1)KR + 2�

Let i = 0 if (6) holds, and i = 1 if (7) holds. Then,

US (i) = E
�
�y(�)KS(i) (�)

�
� y2S(i) = E [�y(�) ((2�� 1)KR + 2�)]� y2S(i) =

= (2�� 1)E [�y(�)KR] + 2E [�y(�)�]� y2S(i)

= (2�� 1)VR + (2�� 1)E
�
�2
�
+ 2�E [�y(�)]� y2S(i):

Applying the law of iterated expectations to (IC-R) one readily obtains

E [�y(�)] = E [y] = E [E [�jy]] = E [�] : (21)

Therefore, for any incentive compatible mediation rule we have

US (i) = (2�� 1)VR + CR; (22)

withCR = (2��1)E
�
�2
�
+2�E [�]�y2S(i) �nite and independent of the mediation mechanism.

This establishes (10). Finally, if � > 1=2 then (22) implies that there is a linear and increasing

relation between US (i) and the ex-ante payo¤ to the receiver VR. Therefore, a mediation

rule achieves the maximum US (i) if and only if it maximizes VR.

(ii) If y0S(�) = �h (�) ; then KS(0) can be written as

KS(0) (�) = 2yS(�)� � � 2� = KS (�)� 2�;
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while if y0S(�) = �r (�) ; then KS(1) can be written as

KS(1) (�) = 2yS(�)� � + 2� = KS (�) + 2�

As average decisions must equal the state (as shown in (21)), then letting i = 0 if (8) is

satis�ed, and i = 1 if (9) is satis�ed, we can write

US (i) = E
�
�y(�)KS(i) (�)

�
� y2S(i) = E [�y(�)KS (�)]� 2(1� 2i)E [�]� y2S(i) =

= VS + CS;

with CS = �2(1� 2i)E [�]� y2S(i) �nite and independent of the mediation mechanism, from

which (11) follows. �
Proof of Corollary 1: If yS(�) = a� + b then clearly (6) and (7) are both satis�ed with

� = 2a: Then (10) implies that if a > 1=4 a mediation rule is optimal if and only if it

maximizes US (i), i 2 f0; 1g: Moreover, as preferred decisions are linear, and applying both

(19) and (21) we have

VS = �E
��
y � (a� + b)2

��
= �E

�
y2 � 2ay� � 2by + (a� + b)2

�
=

= (2a� 1)E [y�]� E
�
�2by + (a� + b)2

�
= (2a� 1)VR + ~C

with ~C = E
�
(2a� 1)�2 + 2b� � (a� + b)2

�
. Thus for a > 1=2; VS is increasing in VR: Overall,

if a > 1=2 we have that optimal mediation rules maximize the interim payo¤of extreme types,

and also the sender�s expected payo¤ and, conversely, any mechanism that maximizes the

interim payo¤ at an extreme state must necessarily be ex-ante optimal for both the sender

and the receiver. �
Proof of Proposition 2: Let YS = fy : yS(�) = yg which is a connected set given the

continuity of yS(�) as implied by either (12) or (13). Then, if either (12) or (13) holds

then [0; 1] � YS. This implies that the sender is reactive and an in�nite equilibrium exists

(Gordon 2010, Theorem 2). Furthermore if (12) holds then yS(�) > � for � 2 (0; 1]: This

means that the unique point of alignment is � = 0 and the equilibrium with an in�nite

number of actions must necessarily have an accumulation point at y = yS(0) = 0; and thus

US (0) = 0. As (12) satis�es (6) and the bound condition on � guarantees � > 1 then (10)

holds and the in�nite equilibrium must be optimal. Conversely, if (13) holds then yS(�) < �

for � 2 [0; 1): This means that the unique point of alignment is � = 1 and the equilibrium with
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an in�nite number of actions must necessarily have an accumulation point at y = yS(1) = 1

and US (1) = 1. As (13) satis�es (7) and the bound condition on � guarantees � > 1; then

(10) holds and the in�nite equilibrium must be optimal. �
Proof of Proposition 3: To obtain (15) we will use the relation (10) and the fact that

the set of implementable �y is convex. To see this last point note that for any two incentive

compatible M 0 and M 00; that induce �y0 and �y00, a mediation rule that with probability �

issues recommendations according to M 0 and with probability 1�� according to M 00;where,

importantly, the probability � does not vary with the report of the sender, is incentive

compatible and induces an average decision ��y0 + (1 � �)�y00. Let M� replicate the in�nite

equilibrium described in Proposition 2 and let M? replicate the babbling equilibrium (i.e.

under M? the receiver selects a single decision E [�] is induced).

We now construct a two partition equilibrium of the cheap talk game when yS is given

by (12). In such equilibrium the sender only discloses whether the state is above or below

y�, the receiver selects g (0; y�) = E [�j� 2 [0; y�]] if � � y� and g (y�; 1) = E [�j� 2 [y�; 1]]

otherwise, and y� must satisfy the arbitrage condition

yS(y
�)� g (0; y�) = g (y�; 1)� yS(y

�): (23)

As yS(�) that satis�es (12) can be expressed as yS(�) = � (g (�; 1)� g (0; 1)) ; the existence

of a solution y� 2 [0; 1] to (23) then requires the existence of a solution to

2� =
g (0; y�) + g (y�; 1)

g (y�; 1)� g (0; 1)
(24)

The right hand side of (24) is decreasing in y� and achieves a minimum (1 + E[�]) = (1� E[�])

when y� = 1. From (12) then we have

2� > max
�

E
h
~�j~� � �

i
� E

h
~�
i � 2

1� E [�]
� 1 + E[�]

1� E [�]

This implies that we can always �nd an y� that solves (24) and a two partition equilibrium

exists. Denote by M2 the mediation rule that induces this two partition equilibrium. The

receiver�s expected utility under M2 is

V M2

R = �
Z y�

0

(g (0; y�)� �)2 dF (�)�
Z 1

y�
(g (y�; 1)� �)2 dF (�) =

= �E
�
�2
�
+ F (y�) g2 (0; y�) + (1� F (y�)) g2 (y�; 1) : (25)
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Next consider the mediation mechanism M� that is a convex combination of M� and M?,

that is with probability � the mechanism M� issues the same recommendation as M? while

with probability 1� � it issues the same recommendation as M�. We then have

V M�

R = ��V ar� + (1� �)V
�

R : (26)

From Proposition 2, under the optimal one-shot equilibrium we have UM
�

S (0) = 0. Moreover,

UM
2

S (0) = �g2 (0; y�) and UM?

S = �g2 (0; 1) < UM
2

S (0). Therefore, there exists �� such that

UM
�

S (0) = UM
2

S (0); which is then given by

�g2 (0; y�) = ���g2 (0; 1) + (1� ��)UM�

S (0);

�� =
g2 (0; y�)

g2 (0; 1)
; (27)

and (26) leads to

(1� ��)V M�

R = V M2

R + ��V ar�

substituting the value �� given by (27) and V M2

R given by (25) into this expression one obtains

(15). �
Proof of Corollary 2: First consider a truncated exponential of parameter �; f(�) =
�e���

1�e���� ; � 2 [0; ��]: Then (12) translates to

yS(�) =
�

1� e��(
����)

 
� � ��e��(����)

�
1� e���

��
1� e����

�! ;
and pointwise we have yS(�)! �� as �� !1: Taking the limit as �� !1 to the arbitrage

condition (16) gives

2 (1� �y� (a� 1)) = �y�

1� e��y�
;

and (15) gives

V �
R = � 2

�2
+
1

�2

"
1 +

y��
�
1� e��y

��
2 (1� e��y�)� y��e��y�

#

= �2 (a� 1)
2a� 1

1

�2
= �2 (a� 1)

2a� 1 V ar [�] :

Now consider the linear case where (12) translates to yS(�) = 2
3
�� with 2

3
� > 1; implying

that � = 3
2
a with a > 1: The solution to (16) is

y� =

�
1�

p
36a2 � 48a+ 17� 1

6a� 4

�
��l;
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which, substituted in (15) leads to

V �
R = � 1

18
��
2
l

�3��ly� + ��
2
l + (y

�)2

��ly� + ��
2
l � (y�)

2

= �(a� 1)
3a� 1

��
2
l

6
= �3 (a� 1)

3a� 1 V ar [�] :

Finally, consider the uniform case where (12) translates to yS(�) = �
2
� with �

2
> 1; so that

� = 2a with a > 1: The solution to (16) is

y� =
��u

2 (2a� 1) ;

which, substituted in (15) leads to

V �
R = �

��u � 2y�

12
�
��u + y�

���2u =
= � a� 1

3 (4a� 1)
��
2
u = �

4 (a� 1)
4a� 1 V ar [�] :

Part ii, follows from the fact that expected bias for the exponential, linear and uniform

case are (a� 1) =�, (a� 1) =3��l and (a� 1) =2��u while the maximum expected payo¤ to the

receiver in each case is 2 (a� 1) =�2 (2a� 1), (a� 1) ��2l = (18a� 6) and (a� 1) ��
2
u= (12a� 3).

�
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