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RELATIONAL DELEGATION

Ricardo Alonso Niko Matouschek
University of Southern California Northwestern University

Abstract

We analyze a cheap talk game with partial commitment by the principal. We first treat the
principal s commitment power as exogenous and then endogenize it in an infinitely repeated
game. We characterize optimal decision making for any commitment power and show when it
takes the form of threshold delegation - in which case the agent can make any decision below a
threshold - and centralization - in which case the agent has no discretion. For small biases
threshold delegation is optimal for any smooth distribution. Outsourcing can only be optimal if
the principal s commitment power is sufficiently small.
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1. Introduction

The internal allocation of decision rights is a key determinant of the behavior of firms.
While owners have the formal authority to make all decisions on behalf of their firms, they
typically delegate at least some important decision rights to their employees. These employees,
however, often have consistent biases and can be expected to make different decisions than the
owners would (Jensen, 1986). An understanding of what determines the internal allocation
of decision rights is therefore a prerequisite for understanding, and potentially being able to
predict, the decisions that firms make, such as how much to invest and how many workers
to hire and fire. In this paper we investigate the optimal allocation of decision rights within
firms. In particular, we investigate how the owner of a firm should delegate decision rights to
a biased employee.

While the formal authority to make decisions is concentrated at the top of firms, the
information needed to make effective use of this authority is often dispersed throughout their
ranks. The legal right to decide on the allocation of capital, for instance, resides with the
owners of firms but CEOs, division managers, and other employees are often better informed
about the profitability of different investment projects. The benefit of delegating decision
rights is that it allows the owners to utilize the specific knowledge that their employees might
have (Holmstrom, 1977, 1984; Jensen and Meckling, 1992).

There are two main difficulties in delegating decision rights, however. First, as mentioned
above, there is ample evidence which suggests that employees have consistent biases and are
therefore likely to make different decisions than the owners would want them to. Agency costs
therefore place a limit on the ability of owners to delegate decision rights (Holmstrém, 1977,
1984; Jensen and Meckling, 1992). Second, delegated decision rights are always “loaned, not
owned” (Baker, Gibbons, and Murphy, 1999, p. 56). In other words, while owners can delegate
decision rights ex ante they can always overrule the decisions that employees make ex post.
Anticipating the possibility of being overruled the employees in turn may act strategically and,
as a result, their specific knowledge might not get used efficiently. Imperfect commitment
therefore places a second limit on the ability of owners to delegate decision rights (Baker,
Gibbons, and Murphy, 1999).

Due to the presence of agency costs and the lack of perfect commitment owners rarely



engage in complete delegation, that is they rarely delegate decision rights without putting in
place rules and regulations that constrain the decisions their employees can make. Consider,
for instance, the decision over the allocation of capital which is often delegated to lower level
managers and, in particular, to division managers. While in some firms these division man-
agers have almost full discretion in deciding between different investment projects, in most
they face a variety of constraints. In some firms, for instance, division managers are allowed
to decide on investment projects that affect the daily operation of their divisions but not on
those that are deemed to affect the future of the firm as a whole. In other firms division man-
agers can decide on investment projects that do not exceed a certain threshold size and their
superiors decide on larger projects.! In this paper we show that many of the organizational
arrangements that we observe in practice arise optimally in a model in which a principal with
imperfect commitment delegates decision rights to a better informed but biased agent.

Our analysis is based on a model with three main features: (i.) a firm that consists of a
principal and an agent has to implement a project and the principal has the formal authority
to decide which project is implemented. The potential projects differ on one dimension, for
instance investment size, and the principal and the agents have different preferences over this
dimension. (ii.) the agent is better informed about the projects’ payoffs than the principal. In
particular, only the agent observes the state of the world which determines the identity of his
preferred project and that of the principal. Before making her decision the principal asks the
agent for a recommendation. The principal then either rubber-stamps the recommendation or
overrules it and implements another project. (iii.) the principal has some commitment power.
In particular, before the agent makes his recommendation, the principal makes a promise
about how she will respond to the agent’s recommendation. In case the principal reneges
on this promise, for instance by not rubber-stamping a recommendation that she promised to
approve, she incurs a certain cost. This cost measures the principal’s commitment power:
the higher the cost, the more commitment power the principal has. We interpret this cost
as the damage that an agent can impose on the principal through unproductive behavior in
a repeated relationship. We first follow MacLeod (2003) in considering a static model in

which the cost of conflict is exogenous and then develop a repeated game in which this cost is

LA large number of studies have described the capital budgeting rules that firms use. See, for instance,
Marsheutz (1985), Taggart (1987) and, in particular, Bower (1970).



endogenously determined.

Although the principal always has the formal authority to decide on the projects, she can
engage in many different types of relational delegation. In other words, she can implicitly
commit to many different decision rules that map the agent’s recommendations into decisions.
For instance, she can engage in complete delegation by committing herself to always rubber-
stamp the agent’s recommendation. Other possibilities include threshold delegation — in
which case the principal rubber-stamps the agent’s recommendation up to a certain size and
implements her preferred project if he recommends a project that is above the threshold —
and menu delegation — in which case the principal rubber-stamps the agent’s recommendation
only if he proposes one of a finite number of projects. Of course the principal can also
choose to ignore the agent’s recommendation altogether and simply implement the project
that maximizes her expected payoff given her prior. In other words, she can engage in
centralization.

Should the principal centralize or delegate? And if she delegates, should she engage in
complete delegation, threshold delegation, or some other form of delegation? The key trade-
off that the principal faces when she considers the many different organizational arrangements
is between the direct cost of biasing her decisions in favor of the agent and the indirect benefit
of inducing the agent to reveal more information. Moreover, when optimizing this trade-off
the principal must keep in mind that the extent to which she is able to bias her decisions is
limited by her potentially imperfect commitment power. We show that in many cases the
organizational arrangements that the principal chooses in our setting are commonly observed
in the real world. In particular, we show that centralization, threshold delegation and menu
delegation are often optimal and that which one of these arrangements is optimal depends
only on the principal’s commitment power, on the one hand, and a simple condition on the
agents’ bias and the distribution of the state space, on the other. Moreover, we show that
for small biases threshold delegation is optimal for any smooth distribution. These results
are consistent with the pervasive use of threshold delegation in organizations. Having derived
our main characterization result we then investigate further implications, including the effects
of changes in the bias and the amount of private information on the optimal organizational

arrangement. Finally, we show that irrespective of the commitment power of the principal



complete delegation is never optimal and that outsourcing can only be optimal if the principal’s
commitment power is sufficiently small.

In the next section we discuss the related literature. In Section 3 we then present our
basic model in which the principal’s commitment power is exogenously given. We analyze
this model in Sections 4 and 5 and characterize the optimal organizational arrangements for
any given level of commitment. In Section 6 we then embed our basic model in a repeated
game in which the principal’s commitment power is endogenously determined. There we show
that the optimal relational contract corresponds to optimal organizational arrangements in the
static model for an appropriately specified discount rate. The repeated game allows us to
derive additional implications which we discuss in Section 7. Finally, we conclude in Section

8. All proofs are in the appendix.
2. Related literature

Suppose an organization, consisting of a principal and an agent, has to make a decision.
The principal and the agent have different preferences over the decision and only the agent
observes the state of the world which determines the principal’s and the agent’s preferred
projects. A large number of papers have analyzed this basic problem and they can be cate-
gorized in two dimensions: (i.) whether or not they allow for transfers between the principal
and the agent and (ii.) the extent of the principal’s commitment power.

Our paper contributes to the strand of the literature which argues that in many environ-
ments transfers between the principal and the agent are difficult or impossible. Within this
strand of the literature one can distinguish between delegation- and cheap talk models. In
the cheap talk models that follow Crawford and Sobel (1982) principals cannot commit to
arbitrary decision rules, that is they cannot commit to act on the information they receive in
a pre-specified way. In contrast, in the delegation models that follow Holmstrom (1977, 1984)
the principal can commit to a decision rule. Holmstrom (1977, 1984) considers a general
version of the set up described above and proves the existence of an optimal delegation set or,
equivalently, an optimal decision rule. He then characterizes optimal interval delegation sets,

i.e. delegation sets in which the agent can choose any decision from a specific interval.? Arm-

2For a specific example he shows that interval delegation is optimal among all compact delegation sets (see
p. 44 in Holmstrom, 1977).



strong (1995) considers a model similar to Holmstrém (1977, 1984) and allows for uncertainty
over the agent’s preferences. Like Holmstrom (1977, 1984) he focuses on interval delegation.
In a setting in which the players’ preferred decisions are linear functions of the state and the
state is uniformly distributed, Melumad and Shibano (1991) characterize the optimum among
all compact delegation sets. In a recent paper Alonso and Matouschek (2005) also solve for
the optimal delegation set in a setting that allows for more general distributions and for ar-
bitrary continuous state-dependent biases. Martimort and Semenov (2005) consider a setting
with multiple agents and provide a sufficient condition for threshold delegation to be optimal.
Since we allow for different degrees of commitment by the principal, varying from no com-
mitment all the way to perfect commitment, our paper bridges the cheap talk and delegation
literatures. Instead of making assumptions about what the principal can and cannot commit
to, we endogenize her commitment power and characterize the optimal decision rule for any
amount of commitment power.

The second strand of the literature that analyzes the principal-agent problem described
above does allow for transfers. Ottaviani (2000) and Krishna and Morgan (2006), in partic-
ular, both allow for message-contingent transfers but make different assumption about the
principal’s commitment power. In particular, Krishna and Morgan (2006) focus on the case
in which the principal can only commit to a transfer rule while Ottaviani (2000) allows the
principal to commit to a transfer- and a decision rule.

Finally, our work is related to several recent papers that investigate the role of relational
contracts within and between organizations. Baker, Gibbons, and Murphy (1994, 2002) inves-
tigate the use of objective and subjective performance measures and the ownership structures
of firms in a repeated setting. Levin (2003) investigates relational incentive contracts in the
presence of moral hazard and asymmetric information. MacLeod (2003) extends Levin (2003)
to the case of a risk averse agent. We first follow MacLeod (2003) in treating the cost of con-
flict as exogenous and then follow the previous papers by endogenizing them in an infinitely

repeated game.
3. The model with exogenous commitment

A firm needs to implement a project. A principal has the formal authority to decide what



project is chosen but she needs to hire an agent to implement it.

Preferences: The projects are represented by a positive real number y € ¥ C Ry. Al-
though one can interpret y as measuring any one dimension on which the projects differ — for
instance the number of workers to be hired for a new plant or the size of a new office building
— we interpret it as the financial size of an investment. This interpretation facilitates the
exposition and allows us to relate our findings to a number of papers that describe the capital
budgeting rules which firms use to regulate the internal allocation of capital.? The principal
and the agent have different preferences over the project. In particular, the principal’s payoff
from implementing project y is Up(y,0) = —(y — 0)2, where § € © = [0, 1] is the state of the
world. In contrast, the agent’s payoff is Ua(y,0,b) = —(y — 6 — b)?, where the parameter
b > 0 measures the congruence of the agent’s and the principal’s preferences. Given these
preferences, the principal’s preferred project is given by 6 and the agent’s is given by (6 + b).
There is ample anecdotal evidence that documents the tendency of many managers to engage
in empire building, i.e. to invest more than would be optimal from the perspective of their
principals (see for instance Jensen 1986). For this reason we assume b > 0 so that the agent
prefers a larger investment than the principal. The analysis can easily be adapted, however,
to allow for negative biases. Since we are interpreting y as the financial size of an investment
and since the agent’s and the principal’s preferred project sizes are increasing in the state 6, it
is natural to think of low realizations of 6 as bad states in which the business environment is
unfavorable to new investments and large realizations of 6 as good states in which the business
environment is more favorable.

Information: The agent learns the realization of the state # but the principal does not. It is
commonly known, however, that 6 is drawn from a cumulative distribution function F'(6). The
corresponding probability density function f(#) is absolutely continuous and strictly positive
for all 8 € ©.

Contracts and Communication: The principal has the legal right to decide on the projects.
We adopt the incomplete contracting approach in assuming that projects cannot be contracted
upon. The principal can therefore not rely on court-enforced contracts as a commitment

device. We do, however, assume that the agent is able to impose a cost on the principal if

3For studies describing the capital budgeting rules that firms use see Footnote 3. Theoretical papers seeking
to rationalize the observed rules include Harris and Raviv (1996) and Marino and Matsusaka (2005).



she reneges on a promise. This cost can be interpreted as the damage that an agent can
impose on the principal by engaging in unproductive behavior in a repeated relationship. In
our basic model we take this cost as exogenous but we endogenize it in Section 6. We follow
the delegation literature in ruling out monetary transfers between the principal and the agent.

The timing is as follows. First the principal ‘promises’ to make her decision according to a
decision rule y (m) : M — Y that maps the agent’s message space M into projects. Second,
the agent learns the state 8 and sends a costless message m € M. We assume that M =Y
and we say that the agent ‘recommends’ a project y if he sends a message m = y. Third,
the principal decides what project to implement. We say that the principal ‘rubber-stamps’
the agent’s recommendation if, in response to receiving the message m = y, she implements
project y. If she does not renege on her promise to make the decision according to y(m), then
the principal and the agent realize Up(y (m),0) and Ua(y (m),0,b) respectively. If she does
renege by making a decision 3’ # y(m) then the agent punishes her and she incurs a cost ¢2.
The principal’s payoff is then Up(y/,6) — ¢* while the agent’s is Us(y/,0,b). The parameter

q > 0 measures the principal’s commitment power.
3. The cheap talk benchmark

We start the analysis by considering the cheap talk benchmark in which the principal does
not have any commitment power, i.e. ¢ = 0. Crawford and Sobel (1982) show that all
equilibria of this game are interval equilibria in which the state space [0, 1] is partitioned into
intervals and the agent’s recommendation only reveals which interval the state 6 lies in. In
this sense communication is noisy and information is lost. Having learned what interval the
state lies in, the principal implements the project that maximizes her expected payoff, given
her updated beliefs.

Formally, an equilibrium of the stage game is characterized by (i.) the agent’s commu-
nication rule p(6) : ® — AM which specifies the probability of sending message m € M
conditional on observing state 6, (ii.) the principal’s decision rule y(m) : M — Y which maps
messages into projects and (iii.) the principal’s belief function g(6 | m) : M — AO which
states the probability of state € conditional on observing message m. In a Perfect Bayesian

Equilibrium the communication rule is optimal for the agent given the decision rule, the deci-



sion rule is optimal for the principal given the belief function and the belief function is derived
from the communication rule using Bayes’ rule whenever possible.

Since all equilibria are interval equilibria, we denote by a = (ag, ...,an) the partitioning
of [0,1] into N steps, with the dividing points between steps satisfying 0 = ag < a1 < ... <
any = 1. Moreover, we denote by ¥; = argmax, faaiil Up(y,0)dF(0)/(F(a;) — F(ai—1)), for
all a;_1, a; € [0, 1], the principal’s preferred project if she believes the state lies in the interval
(aj—1,a;). Finally, we denote by y; the project that the principal implements if she receives
a recommendation from interval i, i.e. y; = y(m) for m € (a;_1,a;). We can now state the

following proposition which follows directly from Theorem 1 in Crawford and Sobel (1982).

Proposition 1. If b > 0, then there exists a positive integer N (b) such that for every N with
1 < N < N(b), there exists at least one equilibrium (u(-), y(+), g(+)), where

i w0 =y it 0 € (a;—1, a;),
. y, =9 iftme (a;—1, a;),
. g(0|m)=f(0)/(F(a;) — F(ai-1)) if m € (ai-1, ai),
iv. a;=21(Gi+ i1 —2b) for i=1,.., N—1
All other equilibria have relationships between m and the principal’s induced choice of y

that are the same as those in this class for some value of N with 1 < N < N(b); they are

therefore economically equivalent.

Thus, when 6 lies in an interval (a;_1, a;), the agent recommends project y;, the principal’s
preferred project conditional on the state being in that interval. Given her updated beliefs, it
is then optimal for the principal to rubber-stamp the agent’s recommendation. If the agent
recommends a project that lies in an interval (a;—1,a;) but is not equal to the principal’s pre-
ferred project y;, then the principal believes that 6 is distributed on (a;_1, a;) according to part
iii. of the proposition. Given these off-the-equilibrium path beliefs, it is then optimal for the
principal to reject the agent’s recommendation and implement 3; instead. The dividing point
a; between the partitions is derived from the indifference condition Ua(¥;, a;) = Ua(Yit+1, a;)
which ensures that in state a; the agent is indifferent between projects y; and ;11. As an ex-
ample, suppose that 6 is uniformly distributed. It then follows from part iv. of the proposition

that



Aj+1 — G = Q5 — Q31 + 4b. (1)

The lengths of the intervals therefore increase by 4b > 0 as ¢ increases. Thus, less information
gets communicated by the agent, the larger his recommendation.?

Crawford and Sobel (1982) provide sufficient conditions under which the expected payoffs
of the principal and the agent are increasing in the number of intervals N. When these
conditions are satisfied, as they are in our specification, one may therefore expect the players
to coordinate on the equilibrium in which the number of intervals is maximized, i.e. in which
N = N(b). We denote this equilibrium by (u“ ,y“®, ¢©) and the corresponding payoffs by
UES and Ugs , where the superscript ‘C'S’ stands for ‘Crawford and Sobel.’

In this paper we interpret interval equilibria of the type described in the first proposition

as a form of ‘menu delegation,” as defined next.

Definition 1 (Menu Delegation). Under ‘menu delegation’ the principal offers a menu with a
finite number of projects and rubber-stamps any project on the menu. If the agent recom-
mends a project that is not on the menu, the principal overrules him and implements one of

the projects that is on the menu.

Under menu delegation, therefore, the agent can choose between a finite number of projects.

5. Delegation with exogenous commitment

Suppose now that the principal does have some commitment power, i.e. that ¢ > 0. Sup-
pose further that she has promised to use a specific decision rule y(m). For this promise to be
credible, it must be the case that her expected payoff from keeping the promise is always higher
than her expected payoff from reneging and implementing y(m) = argmax Eg [Up(y, 0) | m].

Thus, it must be that

4The specification of the communication equilibria in Proposition 1 is economically equivalent to the one in
Crawford and Sobel (1982). There is, however, a technical difference between their specification and ours: in
their specification an agent who observes 6 € (a;—1, a;) sends a message that is uniformly distributed on (a;—1,
a;). All possible messages M = [0, 1] are therefore used with positive probability so that off-the-equilibrium
path beliefs do not need to be specified. In contrast, we need to specify off-the-equilibrium path beliefs since
we assume that an agent who observes 0 € (a;—1, a;) sends a single message (see, for instance, Gibbons 1992,
pp.216-217). We adopt our specification solely for expositional convenience.



¢ > By [Up(g(m),0) | m] — Eq [Up(y(m),0) | m] = ((m) — y(m))?, (2)

where the equality is due to the quadratic loss function. The optimal delegation scheme

(y*(m;q), u*(0;q)) that maximizes the principal’s expected payoff therefore solves

max By [Up(y(m). 6) Q)

subject to the agent’s incentive compatibility constraint

w0) € arg max Ua(y(m), 0) (4)
and the reneging constraint
(H(m) —y(m))* < ¢ ()

The characterization of the optimal delegation scheme is greatly facilitated by the fact that

it has to be monotonic.

Definition 2 (Monotonicity). A delegation scheme (y(m), ©(0)) is monotonic if, for any two
states @' and 0” > @', the chosen projects satisfy y (,u (0")) >y (,u (0’)).

The fact that the optimal delegation scheme is monotonic is shown in the next proposition.
Proposition 2. Every optimal delegation scheme is monotonic.

The characteristics of the optimal delegation scheme depend critically on whether the
principal can credibly commit to implement the agent’s preferred project. Suppose that the
principal knows the state and has promised to implement the agent’s preferred project. This
promise is only credible if the punishment for reneging, ¢2, is more than the benefit b% of
implementing the principal’s preferred project rather than that of the agent. Whether or
not the principal can credibly commit to implement the agents’s preferred project therefore

depends on whether the commitment power ¢ is larger or smaller than the agent’s bias b.
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In the next sub-section we characterize the optimal delegation scheme for high commitment
power, i.e. for ¢ > b, and in the subsequent sub-section we characterize it for low commitment

power g < b.
High commitment power

In this subsection we show that when the principal’s commitment power is high, i.e. ¢ > b,
then the solution to the contracting problem (3) - (5) often resembles commonly observed orga-
nizational arrangements. In particular, we show that the optimal delegation scheme can take
the form of either centralization or threshold delegation, as defined next. To understand these
definitions, recall that we say that the principal ‘rubber-stamps’ the agents recommendation

if, in response to receiving a message m = y, she implements project y.

Definition 3 (Centralization). Under centralization the only project the principal rubber-
stamps is y = F[f], i.e. her preferred project given her prior beliefs. If the agent recommends

any other project she overrules him and implements y = E[6)].

Given this decision making by the principal, it is optimal for the agent to always recommend

y = E[f]. The agent’s information is therefore not used under this delegation scheme.

Definition 4 (Threshold Delegation). Under threshold delegation the principal rubber-stamps
any recommendation below a threshold project (a; + b) and she overrules the agent and im-

plements (a; + b) if he recommends a project above the threshold.

A graphical illustration of threshold delegation is given in Figure 1. The lower diagonal
line plots the principal’s preferred project 6 for any state and the higher diagonal line 6 + b
plots the preferred projects for the agent. Given the decision making by the principal, it is
optimal for the agent to recommend his preferred project if § < a; and to recommend the
biggest permissible project (a1 +b) if # > a;. The bold line in Figure 1 therefore graphs
the implemented projects as a function of the state. For a threshold delegation scheme
to maximize the principal’s expected payoff, the threshold project (a; + b) must be chosen
such that E(0 | § > a1) = (a1 +b). Threshold delegation schemes are widely observed

in organizations and, in particular, capital budgeting rules often take this form. Threshold

11
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Figure 1: Threshold Delegation

delegation is also consistent with the observation in Ross (1986) that in many firms lower
level managers can decide on small investments while senior managers can decide on larger
investments.

The next proposition shows that in many cases threshold delegation is in fact the optimal

delegation scheme.

Proposition 3. Suppose that ¢ > b and that G(0) = F(0) 4+ bf(0) is strictly increasing in 6 for
all # € ©. Then threshold delegation is optimal.

The distributional assumption stated in the proposition is satisfied for a large number
of distributions and a wide range of biases. For instance, for any distribution that has a
continuously differentiable density there exists a &’ > 0 such that the condition is satisfied for
all b < b'. Thus, it is satisfied for most common distributions when the bias is small.

To get an intuition for why, among the very many possible delegation schemes, threshold
delegation often does best for the principal, we first need to think about the trade-off that
she faces when deciding what projects to implement. The key question for the principal is
how much she should bias her decision-making in favor of the agent. On the one hand, the
principal clearly incurs a direct cost when she biases her decisions in favor of the agent. On

the other hand, however, the agent is more willing to give precise recommendations, the more

12



he expects his interests to be taken into account by the principal. Thus, the key trade-off that
the principal faces is between the direct cost of biased decision making and the indirect benefit
of better information. A feature of threshold delegation is that, conditional on the information
the principal receives, decision making is biased entirely in favor of the agent when the state is
below the threshold a; and it is not biased at all when the state is above the threshold. To see
this, note that when the principal receives a recommendation m = 6 < a; she knows exactly
the state but instead of using this information to implement her preferred project 6 she uses
it to implement the agent’s preferred project (6 + b). In contrast, when the principal gets a
recommendation m = 6 > a1, she does not know the exact state and only knows that it is
above the threshold. In this case it is optimal for her to implement the project E(6 | 6 > a;)
that maximizes her expected payoff and not bias the decision at all in favor of the agent. As a
result of this decision rule, the agent is willing to communicate all information when the state
is below the threshold and very limited information when it is above the threshold.

To get an intuition for Proposition 3 it is therefore key to understand why it is optimal
to bias the decisions entirely in favor of the agent in low states and not at all in high states.
For this purpose, it is instructive to compare threshold delegation to two benchmarks. In the
first benchmark the principal always implements her preferred projects and in the second she
always implements the agent’s preferred project.

When the principal always implements her preferred project, the agent is not willing to
reveal the state and instead only reveals the intervals that it lies in. An example of such an
equilibrium is illustrated in Figure 2 in which the principal implements the project 71 = E(0 |
0 < aj) = b if she receives a recommendation which is smaller than the threshold (a; + b) and
she implements a project 72 = E(0 | # > a1) if she receives a larger recommendation.® In this
equilibrium the agent then only reveals whether the state is above or below a;. If G (0) is
everywhere increasing in 6, then the principal can do better by rubber-stamping the agent’s
recommendation whenever he proposes a project that is smaller than 7> and by implementing
7o otherwise. In other words, she can do better by entirely biasing her decisions in favor of the
agent for low states. On the one hand, doing so is costly for the principal since, for small 6,

she now implements a project that is worse for her. In the example in Figure 3 the principal

’The assumption that 7, = b is not important and only facilitates the exposition.
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Figure 2: Implementing the Principal’s Preferred Projects

implements a worse project for all # € [0, a1] and the corresponding loss is indicated by triangle
A. On the other hand, precisely because she is implementing a project that is worse for her
when 0 is small, she is able to implement a project that is better for her when 0 is large. In the
example in Figure 3 this is the case when 6 € [a1,2a1] and the corresponding gain is indicated
by triangle B. Essentially, biasing her decision in favor of the agent for low states relaxes the
incentive constraint for higher states which in turn allows the principal to implement projects
that are better for her. As long as the probability of being in the loss making interval [0, a1]
is not too large compared to the probability of being in profiting interval [a1, 2a41], the gain of
biasing the decision in favor of the agent outweighs the costs and the principal is made better
off. The condition that G(0) is always increasing ensures that this is indeed the case.

To get a more formal intuition for the condition G’(6) > 0, consider

a1+t ai
A(al,t)——/ deF(9)+/

1—t a1—t

a1+t
(a1+b—t—9)2dF(9)+/ (a1+b+t—0)*dF(0),

h (6)

for t € [0,a1]. For ¢t = a; this function is equal to the principal’s expected utility under thresh-
old delegation minus her expected payoff if only the two projects 71 and 7> get implemented.

More generally, for ¢t € [0, a1] this function gives the difference between two delegation schemes
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Figure 3: Comparison of Delegation Schemes

which only differ in the projects that get implemented if 6 € [a; — ¢, a1 + ¢]: the first delegation
scheme implements the agent’s preferred project (6 + b) for all € [a; — ¢, a1 + t] and the sec-
ond implements y; = (a1 —t+b) for 0 € [a1 — t,a1] and y; = (a1 +t + b) for 0 € [a1,a1 + t].
Taking derivatives gives dA (a1,0) /dt = 0 and

d2A (aq,t)

o =2(Glar + ) — Glay — 1) (7)

Thus, if G(#) is always increasing, then A (aq,t) is convex in ¢t. Since A (a1,0) = dA (a1,0) /dt =
0 this implies that if G(6) is increasing, then A (a1,¢) > 0 for all ¢ > 0 and, in particular, for
t=aj.

In the second benchmark, the principal biases her decision entirely in favor of the agent
who in turn always reveals the state. While this arrangement allows the principal to elicit
all available information, it also commits her to implement projects y > 1 that cannot be
optimal for her in any state. This suggests an alternative arrangement in which the principal
implements the agent’s preferred project below a threshold a; < 1 and implements a single
project (a1 + b) above the threshold. If a; is sufficiently high, the principal is made better off
under the alternative scheme since she can realize the benefit of less biased decision making

without the cost of tightening the incentive constraint for any higher states.
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A key question we are interested in is what form delegation takes when a principal’s ability
to commit is limited. From our analysis above it follows that the optimal threshold delegation
scheme can be implemented for any ¢ > b and not just as ¢ — oo. This is the case since, under
threshold delegation, the principal never biases her decision by more than b and thus never
faces a reneging temptation of more than b2. Thus, when G(6) is everywhere increasing, a
principal with high commitment power ¢’ > b behaves in exactly the same way as a principal
with very high commitment power ¢” > ¢'.

Proposition 3 has shown that in many cases threshold delegation is optimal. In the next
proposition we show that when the conditions of that proposition are not satisfied, it is often
optimal for the principal to centralize, that is to implement the project y = E(f) that she

expects to maximize her payoff, given her prior.

Proposition 4. Suppose that ¢ > b and that G(0) = F(0) 4+ bf(6) is strictly decreasing in 6 for

all # € ©. Then centralization is optimal.

A necessary condition for G(0) to be decreasing for all # € © is that f(#) is everywhere
decreasing. In this sense, the condition is satisfied if bad states are more likely than better
states. This condition is satisfied, for instance, for exponential distributions with sufficiently
low means.

The formal proof of this proposition has two key parts. The first shows that if G(0) is
strictly decreasing, then separation can never be optimal, that is it can never be optimal
to induce the agent to reveal the true state. For a sketch of this part of the proof, con-
sider two delegation sets which only differ in the projects they implement if 6 lies in some
interval [a; —t,a; +t]. In particular, the first implements the agent’s preferred project
in this range, and therefore induces him to reveal the true state, while the second imple-
ments y; = (a1 —t+0b) for 6 € [a; — t,a;1] and yo = (a1 +t + b) for 6 € [a1,a; + t], inducing
him to only reveal what interval the state lies in. The principal’s expected payoff under
the first scheme minus that under the second scheme is given by A (aj,t) as defined in (6).
Equation (7) shows that A (aj,t) is concave in ¢t if G(6) is everywhere decreasing. Since
A (a1,0) = dA (aq,0) /dt = 0 this implies that if G(0) is decreasing, then A (a1,t) < 0 for all

t > 0. Thus, the principal can improve on any delegation scheme that involves separation.
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Having established this, the second part of the proof then shows that if G(#) is always decreas-
ing, centralization dominates any menu delegation scheme that offers two or more projects.

The proposition implies that in the absence of sophisticated monetary incentive schemes,
it is often optimal for a principal to forgo the information that her agent possesses and to
simply impose an uninformed decision. Essentially, when the principal is limited to delegation
schemes, the cost of extracting information from the agent can be so high that the principal
is better off making an ignorant but unbiased decision than to try to bias decisions in favor
of her subordinates to elicit more information. Business history and newspapers are abound
with descriptions of monolithic firms in which bureaucratic rules and regulations stifle the
creativity and flexibility of their employees.® The proposition suggests that such bureaucracy
may simply be a symptom of the firms’ optimal responses to the agency problems they face.

We have seen above that when G(6) is everywhere increasing, a principal with limited
ability to commit ¢ > b implements the same delegation scheme as a principal with unlimited
commitment power. The same is true when G(0) is everywhere decreasing. This is so since the
principal is always able to implement centralization, independent of the commitment power ¢
that she possesses.

From the two previous propositions it is clear that the key condition that determines the
optimal delegation scheme when commitment power is high is whether G(0) is increasing or
decreasing. To get a better sense for this condition and its implications we next consider an
example. In particular, suppose that 6 is drawn from a truncated exponential distribution
with cumulative density

Flo) = — (1 - e—"/ﬁ) ,
1—e1/8
where 5 > 0 is the scale parameter. An increase in 8 causes a first order stochastic increase
of the distribution and thus increases the mean E(6). Moreover, as  — oo, the distribution
approaches the uniform distribution. It can be verified that for this exponential distribution
G(0) is everywhere increasing if b < /3 and it is everywhere decreasing otherwise. Thus, if the
bias is smaller than the scale parameter, threshold delegation is optimal and if the bias is larger

than the scale parameter, centralization is optimal. To get some sense for the comparative

SFor a colorful historical example see the case of The Hudson Bay Company in Milgrom and Roberts (1992).
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statics, which we analyze more generally in Section 7, suppose that initially 8 > b and consider
the effect of an increase in the bias. Initially, such an increase leads to a reduction of the
threshold below which the principal rubber-stamps the agent’s recommendation. Eventually,
b > [ and the principal centralizes, i.e. she simply implements E(f). At this point further
increases in the bias do not affect the optimal delegation scheme or the decision that is made.
Similarly, suppose that initially 8 < b and consider the effect of an increase in 5. Such an
increase moves probability mass from low- to high states, making it less and less costly for the
principal to implement the agent’s preferred project when his recommendation is small. When
B is sufficiently high, i.e. when 8 > b, it then becomes optimal for the principal to switch
to threshold delegation and implement the agent’s preferred projects for low states. Further
increases in [ then simply increase the threshold up to the maximum value of a; = 1 — 2b.
While for any exponential- and many other distributions, G(0) is either everywhere increas-
ing or decreasing, this is, of course, not always the case. For instance, for normal distributions
with a sufficiently small variance, G(0) is first increasing and then decreasing. For such distri-
butions we can use a similar proof strategy as described above by dividing the support of this
distributions into intervals in which G(6) is monotonic. For an analysis of such distributions

in the full commitment limit see Alonso and Matouschek (2005).
Low commitment power

In this subsection we characterize the solution to the contracting problem (3) - (5) when
the principal’s commitment power is low, i.e. ¢ <b.  The key difference between the high-
and the low commitment power cases is that in the former the principal can credibly commit
to decision rules that induce the agent to reveal the true states for some ©' C © while in
the latter this is not possible. In other words, separation can be supported when ¢ > b but
it cannot be supported when ¢ < b. Together with the fact that optimal delegation schemes
are monotonic, as established in Proposition 2, this implies that when commitment power is
low, the optimal delegation scheme takes the form of menu delegation. We make this point

formally in the next proposition.

Proposition 5. Suppose that ¢ < b. Then menu delegation is optimal.
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Thus, when commitment power is low, the principal cannot do better than to let the agent
choose between a finite number of projects. Having established that for ¢ < b menu delegation
is optimal, the only remaining question is what projects the principal should put on the menu.

To address this question it is useful to restate the original contracting problem (3) - (5) as

N7y17"'9yN

N q

max Eo(Ur] ==Y [ (- 0/dF () (®)
i=1 v %i-1

subject to ag = 0, ay = 1,

1 )
aizi(yi+yi+1_2b) fori=1,.,N -1 (9)

and

Ay} < g fori=1,..,N, (10)

where Ay; = y; — y; is the difference between the project y; that the agent recommends if
the state lies in interval 7 and project y;, the project that maximizes the principal’s expected
payoff in this case.

Just as in the case with high commitment power, the key trade-off that the principal faces
is between the extent to which decision making is biased in favor of the agent, given her
information, and the amount of information that is communicated by the agent. To see this,
suppose that # is uniformly distributed and recall that in the cheap talk benchmark in which
g = 0, the intervals grow by 4b, as shown in (1). When ¢ < b, then it follows from the incentive
constraints (9) that

(ai+1 — CLZ‘) = (ai — ai,l) + (4b — 2Ayi+1 — 2Ayl) . (11)

The lengths of the intervals therefore increase by 4b — 2Ay;11 — 2Ay; > 0 as i increases.
Thus, just as in the cheap talk benchmark, less information gets communicated by the agent,

the larger his recommendation. The above expression, however, shows that when ¢ > 0 the
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principal can reduce the loss of information by committing to bias her decision in favor of the
agent, i.e. by setting Ay; > 0 for ¢ = 1,..., N — 1. Intuitively, the agent is more willing to
communicate information if the principal is committed to take his interests into account when
making a decision. It is because of the improved communication that the principal may be
willing to incur the direct cost of biasing her decisions in favor of the agent.

The solution to the above contracting problem again depends crucially on the distribution
of 6 and the bias b. It follows immediately from Proposition 4 that, when G(8) = F(0)+bf(0)
is decreasing in 0, centralization is optimal. This is the case since, under centralization,
the temptation to renege is equal to zero and can therefore be implemented for any level of

commitment power q. This result is stated formally in the next proposition.

Proposition 6. Suppose that ¢ < b and that G(0) = F(0) + bf(0) is decreasing for all § € ©.

Then centralization is optimal.

When G(0) is not everywhere decreasing, the optimal menu delegation scheme does de-
pend on the level of commitment power g. To get a better understanding of how changes
in ¢ affect the optimal menu delegation scheme in this case, the next proposition provides a

characterization for an example in which 6 is uniformly distributed on [0, 1].

Proposition 7. Suppose that ¢ < b and that F(f) = 0. Then there exists a g € (0,b) such that
i. for all ¢ <q, Ay; = g for all i and the number of intervals N is maximized.

ii. forall g >q, Ay; <q, Ay;=qfori=2,..., N —1, and Ayy <gq.

Thus, when the principal has very little commitment power, i.e. when ¢ < @, the benefit
of additional information is so large that the gain of biasing decisions dominates the costs. As
a result, it is optimal for her to bias her decision up to the maximum credible level. Note that
in this case the number of intervals is maximized and that intervals grow by 4(b — ¢), as can
been from (11). Thus, the amount of information that is being communicated is exactly the
same as the one that would be communicated in the best Crawford and Sobel equilibrium of
the static game when the agent has a bias of (b — ¢). In terms of information transmission,
therefore, commitment power is a perfect substitute for a reduction in the agent’s bias.

When the amount of commitment power grows beyond the threshold g, it is still the case

that the principal wants to extract more information by biasing all intermediate decisions

20



G () increasing G() decreasing
High Relational Threshold L.
Capital Delegation Centralization
Low Relational Menu Centralization
Capital Delegation

Figure 4: Summary of Optimal Organizational Arrangements

Yo, ...yN_1 as much as possible. However, it can now be optimal to reduce Ay; and Ayy so as
to economize on the cost of biased decision making. In fact, we know from Proposition 3 that
when ¢ = b, the bias of the last and largest interval is optimally set to zero. Thus, although
the principal could extract as much information as in a static game with bias (b — ¢), it is not
always optimal for her to do so when ¢ > §.

In summary, the analysis so far has shown that commonly observed organizational arrange-
ments are often optimal in our basic model. Moreover, we have seen that exactly what arrange-
ment is optimal depends crucially on two factors, namely the principal’s commitment power
and the interplay between the bias and the distribution of the state, as summarized in the
simple condition G(0) = F(6) + bf(6). In particular, Figure 4, which summarizes some of
the key results that we derived so far, shows that when G(0) is always increasing, threshold
delegation is optimal when commitment power is high and menu delegation is optimal when
commitment power is low while centralization is always optimal when G(0) is decreasing. Also,
we have seen that in many cases changes in the commitment power do not affect the optimal
delegation scheme. In particular, when either G(6) is decreasing or G(0) is increasing and
commitment power is high, increases in ¢ have no effect on the optimal delegation scheme.
Only when commitment power is small and G(#) is not everywhere decreasing can changes in

q lead to changes in the optimal delegation scheme.
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6. Delegation with endogenous commitment

So far we assumed that the agent is able to impose some exogenous cost ¢? on the principal
whenever she reneges on a promise. This cost is meant to capture the damage that an agent
can impose on the principal through unproductive behavior in a repeated relationship. In
this section we endogenize this cost in an infinitely repeated version of the above model. We
characterize the relational contract that maximizes the principal’s expected payoff and show
that it is closely related to the optimal delegation schemes described above. In the next

section we then describe additional implications of the model.

To endogenize the principal’s commitment power, consider an infinitely repeated version
of the static game in which a long-lived principal faces a series of short-lived agents. In
particular, there are infinitely many periods ¢t = 1,2,3,... and in every period the principal
and an agent play the same stage game. This stage game is identical to that described in
Section 3 except that the agent is not able to impose an exogenous cost on the principal.
The principal is infinitely long lived and in every period she aims to maximize the present
discounted value of her stage game payoffs, where the discount rate is given by 6 € [0,1). At
the beginning of every period t the principal is matched with a new, randomly drawn agent
who only interacts with her for one period. An agent who is matched with the principal in
period t aims to maximize his stage game payoff U4 (v, 04, b), where y, and 0, are, respectively,
the project and the state in period t. Note that all the agents have the same payoff function
and, in particular, the same bias b. We assume that the states 6; are i.i.d. over time and that
they become publicly known at the end of each stage game. The history of the game up to
date t is denoted by h! = (0o, mo, Yo, -, Or—1, Mt_1, Y¢—1), the null history is denoted by RO,
and the set of all possible date t histories is denoted by H*.

A relational contract describes the behavior over time in the repeated game, both on the
equilibrium path and following a deviation. Formally, a relational contract specifies for any
date t and any history h! € H, (i.) a communication rule j, (-) : ©x H* — A(M) which assigns
a probability distribution over M for any state 6;; (ii.) a decision rule y:(-) : M x H' — R
which assigns a project y; for every message my; (iii.) a belief function g;(-) : M x H! — A(©)

which assigns a probability distribution over the states 0; for every message m;. Note, in
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particular, that histories are public. The belief function g; is derived from p, using Bayes’ rule
wherever possible.

A relational contact is self-enforcing if it describes a sub-game perfect equilibrium of the
repeated game. We focus on self-enforcing relational contracts with two properties. First,
they are optimal, in the sense that they maximize the principal’s expected present discounted
payoff. Second, the most severe punishment that can be implemented off the equilibrium

cs ,CS
)

path calls for the agents and the principal to revert to the best static equilibrium (u Y-,

¢“%). In other words, in the punishment phase the principal and the agents play the strategies
that maximize their expected stage game payoffs. This assumption captures our belief that,
when relational contracts break down, members of the same firm are likely to coordinate on
the equilibrium that maximizes their respective payoffs in the absence of trust.” We discuss
this assumption further at the end of this section.

We start the analysis of the repeated game by showing that the search for the optimal

relational contract can be greatly simplified by focusing on stationary contracts.

Definition 5 (Stationarity). A relational contract is stationary if on-the-equilibrium path
() = p(-) and y.(+) = y(-) for every date t, where p(-) is some communication rule and y(-)

is some decision rule.

Under a stationary relational contract, each agent uses the same communication rule pu(-)
and in every period the principal uses the same decision rule y(-). We can now establish the

following proposition.
Proposition 8. There always exists an optimal relational contract that is stationary.

To characterize the optimal relational contract we therefore only need to characterize the

optimal relational delegation scheme (y**(m;d), pw**(0;9)) which solves

J(hax Eg [Up(y(m),0)] (12)

subject to the agent’s incentive compatibility constraint

"Baker, Gibbons, Murphy (1994) make a similar assumption for the same reason.
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p(0) € axg max U (y(m), 0 (13)

and the reneging constraint

J

1 — 5E9 [UP (y(),0) — Ugs] . (14)

(7 (m) =y (m))* <

The LHS of the reneging constraint is the principal’s one period benefit from making decision
y(m) = argmaxEg [Up(y,0) | m] rather than decision y(m). The RHS is the maximum
punishment that the agents can impose on the principal for reneging: by reverting to the
best static equilibrium, the agents ensure that the principal’s expected payoff in every post-
reneging period is Eg [U§®] rather than Eg [Up (y (-),0)]. The expression on the RHS therefore
corresponds to (the square of) the exogenously given commitment power ¢ in the previous
section.

We can use Propositions 3 to 7 to characterize the optimal relational delegation scheme
(y**(m;0), u**(0;9)). To see this, note that the only difference between the static contacting
problem (3) - (5) and the contracting problem in the repeated game (12) - (14) is the RHS
of the reneging constraint: in the static problem the commitment power is exogenously given
while it is endogenously determined in the repeated game problem. It then follows that
the solution to the static problem is equivalent to that of the repeated game problem for an
appropriately specified discount rate. In particular, if (y* (m;q), u* (0;q)) are optimal for a
given ¢, then the optimal relational delegation scheme is given by y** (m; 5 ) = y* (m;q) and

w* (0;6") = p* (0; q), where ¢ is the unique discount rate § € [0,00) that solves

Ey [Up (y* (m;q),0) — UE°] = ¢*. (15)

1—-9

We make this point formally in the next proposition.

Proposition 9. Let (y* (m;q), n* (6;q)) be the optimal delegation scheme for a given q. The
optimal relational delegation scheme is then given by p** (6;¢) = p* (6;¢) and y** (m;¢’) =
y* (m; q), where &' solves (15).
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The insights of Propositions 3 to 7 can therefore be directly applied to the repeated game.
Thus, for instance, Propositions 4 and 6 imply that centralization is optimal for any discount
rate if G(6) is always decreasing. If, instead, G(#) is always increasing then it follows from
Propositions 3 and 5 that threshold delegation is optimal if the discount rate is sufficiently
high and menu delegation is optimal otherwise.

To conclude this section it should be noted that our qualitative results do not depend on
what assumption is made about the off-the-equilibrium path punishment. Above we have
assumed that the worst punishment that can be imposed on the principal is to revert to the
best static equilibrium. More severe punishments would merely reduce the principal’s off-
the-equilibrium path payoff and therefore increase the principal’s commitment power for any
discount rate. The only effect of allowing for a more severe punishment would therefore be to

lower the critical discount rate above which threshold delegation can be implemented.
7. Implications

In this section we explore further implications of our analysis of optimal relational contracts.
Relational delegation for small biases

In the previous sections we have seen that in many cases three commonly observed organi-
zational arrangements are optimal. It turns out that for small biases only one organizational
arrangement is optimal. Specifically, as the next proposition shows, threshold delegation is

optimal for almost all distributions when the bias is sufficiently small.

Proposition 10. Suppose that f(6) is twice continuously differentiable. Then threshold dele-

gation is optimal for sufficiently small biases.

Recall that when f(6) is continuously differentiable, G(6) is increasing for a sufficiently
small bias b. To prove Proposition 10 we therefore only need to show that threshold dele-
gation can be credibly implemented when b is small enough. To see that this is indeed the
case, consider the reneging constraint v? < §/(1 — §)Eg [UFP — US®], where the LHS is the
maximum reneging temptation under threshold delegation, the RHS is the punishment for

reneging and U]ZD is the principal’s stage game payoff under the optimal threshold delegation
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scheme. Note that a reduction in the bias increases the payoff Ugs that the principal can
realize in the absence of a relational contract. Thus, a reduction in the bias not only reduces
the benefit of reneging — the LHS of the inequality — but also, potentially, the punishment
of doing so — the RHS. It is therefore not immediate that a reduction in the bias makes the
reneging constraint less binding. In the formal proof we show, however, that when f(0) is
twice continuously differentiable, then, as b goes to zero, the benefit of reneging goes to zero
faster than the punishment. Thus, for sufficiently small b the reneging constraint is satisfied

and threshold delegation can be credibly implemented.
The effects of changes in the bias and the amount of private information

Since threshold delegation and centralization play such prominent roles in our model we
next investigate how they are affected by changes in the economic environment.

Suppose first that threshold delegation is optimal and consider the maximization problem
that determines the optimal threshold a; below which the principal implements the agents’

preferred project and above which she implements her own preferred project:

1

ai
max Eg [Up] = — (/ V2 dF(0) + / (a1 +b— 0)%1?(9)) :
a1 0 ai
The optimal threshold level then solves the necessary first order condition

(E016> ar) — (a1 + b)) { =0 He=0

=0 ifa; >0.
Comparative statics can now be easily performed using the graphical representation of the
first order condition in Figure 5.

For instance, suppose that threshold delegation is optimal for a given b and consider the
effect of a reduction in the bias. Note that if G(0) is increasing for a given b then it is also
increasing for any ' < b; thus threshold delegation remains optimal after the reduction in the
bias. It can be seen in Figure 5 that a reduction in b shifts down (a; + b) but does not affect

E(@ | @ > a1). Thus, a reduction in the bias increases the optimal threshold, i.e. it leads to
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Figure 5: Comparative Statics

more delegation. This result is in line with Jensen and Meckling (1992) who argue that a
reduction in agency costs should generally lead to more delegation.

Suppose next that threshold delegation is optimal for a given distribution and consider the
effect of an increase in the amount of private information, as formalized by a mean preserving
spread of the distribution. At first glance one may think that such a change makes the agents’
information ‘more important’ and should thus lead to more delegation. In our model, however,
there are two reasons why this is not necessarily the case. First, a mean preserving spread can
affect the sign of G’(6). Thus, it is quite possible that after an increase in the amount of private
information threshold delegation is no longer optimal. Second, even if G(6) is still increasing
after the mean preserving spread, it has an ambiguous effect on the optimal threshold a.
To see this, consider Figure 5 and note that while a mean preserving spread does not affect
(a1 +b), it has an ambiguous effect on conditional mean E(6 | § > a;). Thus, in our model,
a change in the amount of private information can lead to more or less delegation, depending
on the exact parameter values and distributional assumptions.

Finally, consider the effects of changes in the economic environment on centralization.
Suppose that centralization is optimal for a given bias &’ and consider the effect an increase in
the bias to b” > /. If G(0) is everywhere decreasing for o’ then it is also everywhere decreasing

for " > /. Thus, after the increase in the bias centralization is still optimal. Moreover, since
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an increase in the bias does not affect E(6), the principal implements the same decision after
the increase in b as she did before the increase. While the effect of an increase in the bias on
centralization is unambiguous, the effect of an increase in the amount of private information
is less clear-cut. This is again the case since a mean preserving spread can change the sign
of G(#) so that centralization may no longer be optimal after the increase in the amount of
private information. If it does not change the sign of G(6) an increase in the amount of private
information does not affect the optimal delegation scheme and the decision that is implemented

by the principal remains E(0).
Threshold delegation and investment inefficiencies

Whenever the principal chooses threshold delegation, she optimally induces overinvestment

in low states and underinvestment in high states.

Corollary. Under the conditions in Proposition 3, it is optimal for the principal to induce

underinvestment if § > E(0 | 0 > a1) and to induce overinvestment otherwise.

To see this, consider Figure 1 which gives an example of a threshold delegation scheme.
From the principal’s perspective, the efficient investment level in state 6 is simply 6. In Figure
1, however, it can be seen that this efficient investment level is almost never achieved. Instead,
it is optimal for the principal to induce investments that are larger than § when the states are
low, i.e. below E(0 | 6 > a1), and to induce investments that are smaller than # when states
are high. In other words, given the informational asymmetry, the principal cannot do better

than to allow the agents to spend too much on small projects and too little on large projects.
Complete delegation and outsourcing

An organizational arrangement that has received a lot of attention in the literature (see in
particular Dessein 2002) and is notably absent from our discussion up to this point is complete

delegation, as defined next.

Definition 6 (Complete Delegation). Under complete delegation the principal always rubber-

stamps the agent’s recommendation.

Faced with this decision rule, an agent always recommends his preferred project.
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Proposition 11. Complete delegation is never optimal.

To see this, suppose that the principal does engage in complete delegation and note that
to do so she must be able to resist a maximum reneging temptation of b>. When she has
enough commitment power to implement complete delegation, however, she also has enough
commitment power to implement an alternative scheme in which she rubber-stamps the agents’
proposals when they are small and implements a threshold project when they are large. Such a
scheme increases the principal’s expected payoff but does not increase the maximum reneging
temptation, which remains to be b2. Thus, whenever complete delegation is feasible, it is not
payoff maximizing for the principal.

So far we have ruled out the possibility of outsourcing, by which we mean the transfer
of formal authority to the agents. If the principal could outsource, then agents would al-
ways choose their preferred project. Thus, outsourcing implements the same decision rule
as complete delegation. In contrast to complete delegation, however, it does not require any
commitment power by the principal. We have seen above that when commitment power is
high, the principal can implement complete delegation but does not find it optimal to do so. It
is then immediate that outsourcing cannot be optimal for a principal with high commitment
power. However, a principal with low commitment power cannot implement complete dele-
gation and may find it optimal to outsource since doing so allows her to credibly commit to
having the agents’ preferred projects being implemented. We can therefore state the following

proposition.

Proposition 12. There exists a critical level of commitment power ¢’ < b such that outsourcing

does better than relational delegation only if ¢ < ¢'.

This proposition is related to a key result in Dessein (2002). He considers a static game
that is very similar to our basic model and compares outsourcing to ‘communication,’” i.e. the
best equilibrium without any commitment.® The key result in his paper is that, in a static
setting, the principal is often better off outsourcing than relying on communication. The

above proposition shows that this can only be the case if the principal is sufficiently impatient.

¥Dessein (2002) uses the term ‘delegation’ to refer to what we call ‘outsourcing.’
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8. Conclusions

In this paper we investigated the allocation of decision rights within firms. In particular,
we analyzed a principal-agent problem in which an uninformed principal can elicit information
from an informed agent by implicitly committing herself to act on the information she receives
in a particular manner. We showed that commonly observed organizational arrangements arise
optimally in this setting. Specifically, we showed that centralization, threshold delegation and
menu delegation are often optimal. Which one of these organizational arrangements is optimal
depends only on the principal’s commitment power, on the one hand, and a simple condition
on the agents’ bias and the distribution of the state space, on the other. Moreover, we showed
that for small biases threshold delegation is optimal for any smooth distribution. Finally, we
showed that complete delegation is never optimal and that outsourcing can only be optimal if
the principal is sufficiently impatient.

The analysis in this paper can be extended in at least two directions. First, to take a
step towards investigating delegation in a setting with imperfect commitment power, we have
focused on the principal’s commitment problem and have abstracted from that of agents. We
believe that it would be interesting to investigate delegation when either only the agents or
the agents and the principal have some commitment power. Second, in the repeated game we
have assumed that the state is publicly observed at the end of each period. This assumption
ensures that histories are public and thereby facilitates the analysis. Relaxing this assumption
would surely be interesting and would shed more light on the internal organization of firms.

We leave the investigation of these issues for future research.
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Appendix

This appendix contains the proofs of all propositions. We first present the proofs of

Propositions 3 and 4 and then the proofs of all remaining propositions.
Proofs of Propositions 3 and 4

For the proofs of Propositions 3 and 4 it is useful to introduce some new notation. In partic-
ular, let F(0) = 1—F(0), S(6) = F(0)[(0 +b) — E[s|s > 0]] and T(8) = F(0) [(0 + b) — E[s |s < 4]].

It is also useful to introduce two lemmas. To do so, let

p—b+t p—b p—b+t
A(p,t) = —/ b2dF(0) — <—/ [p—t—0)>dF(0) —/ p+t— 9]2dF(9)> ,
p—b—t p—b—t p—>b
where (p —b—1t) and (p —b+t) belong to [0,1] and ¢ > 0. To understand the economic
meaning of this function, suppose that there are two decision rules which only differ in the
projects that are induced for 6 € [p — b —t,p+t — b]. In particular, the first decision rule
induces y = 0+ for § € [p—b—t,p+t—b] while the second decision rule implements y = p—t
forall@ € [p—b—t,p—b)andy =p+tforall @ € [p—>bp+t—>b]. The function A(p,t)

captures the difference in the principal’s expected payoff from these decision rules.

Lemma Al. Suppose that G(0) is strictly monotone in [6,0] C [0,1]. If G(@) is strictly
increasing in [0, 0] then A(p,t) > 0. If G(0) is strictly decreasing in [0, 0] then A(p,t) < 0,
withp=(0+6)/2+bandt=(0—10) /2.

Proof. We first note that,

—b bt
aAé;Z,t) :/p:_tQ[—p-FO]dF(G)-F/p: 2[p— 0]dF(0) + 2t[F(p —b+1t) — F(p — b —t)]
and
02%55@:2[F(p—b+t)+bf(p—b+t)_F(p_b_t)_bf(p_b_t)]_
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Thus, if G(0) is strictly increasing in 6 € [6,6], then 8*A((6+0) /2 + b,t)/ 0t* > 0 for
all 0 < ¢t < (0—0) /2. Since dA((0+6) /2 + b,0)/0t = 0 it follows that for all ¢ > 0,

(0+8)/2 )
OA(p,t)/ Ot > 0 and A((0+8) /2 + b, (0+0) /2) = / a(@r0)/208) 4y . . By a
0

similar reasoning, if G(6) is decreasing in 6, we have that A((6 +6) /2 +b, (6 +6) /2) < 0.
Q.E.D.

Lemma A2. Suppose that G(6) is strictly monotone in [0, 1], then (i.) if G(0) is strictly
decreasing in [0,1] then E[0]0 > a1] < a1 + b for all a1 € [0,1] (ii.) if G(@) is strictly
increasing in [0, 1] then the equation E [0 |0 > a1] = a1 + b, a1 € (0,1) has a solution if and
only if E[0] > b. Furthermore, this solution is unique.

Proof. (i.) Since G(0) is strictly decreasing we have that 1 — F(0) < 1 — F(1) + b(f(0) —
1

f(1)) = b(f(0) — f(1)). Integrating both sides between a; and 1 yields the inequality/

ai

0f(0)d0—F(a1)a; < F(a1)b—bf(1)(1—a1) < F(a1)b. It then follows that E [0 |0 > a1] < ai+b.

(ii.) Recall the definition of S(f) and note that dS(0)/df =1 — G(0) for 6 € (0,1). Thus,
S(0) is strictly concave from the assumptions on G(6). Since S(1) = 0, strict concavity implies
that there can be at most one point § € [0,1) at which S(0) = 0. The existence of this point in
turn requires S(0) to be non-positive, i.e. S(0) =b— E[] < 0 and thus establishes necessity.
Now suppose that E[6] > b. Since for 0 < & < b we have that (1—e¢+b) —E[s|s>1—¢] >
b — e > 0. Therefore S(0) < 0 and S(1 —¢) > 0 which guarantees the existence of a solution
to E[s|s > 0] = 0 + b thus proving sufficiency. Q.E.D.

PROOF OF PROPOSITION 3
To establish Proposition 3 we need to introduce two more lemmas.

Lemma AS3.. Suppose that G(0) is strictly increasing in [0,1]. Then if y(-) and u(-) is an
optimal delegation scheme there cannot be two consecutive pooling regions, i.e. there cannot
be two intervals [0;,6;+1] and [6;4+1,0i12] with 0 < 0; < 0,41 < 0;12 < 1 such that y(u(0)) =y
for all 6 € (0, 0i+1) and y(uu(0)) = yit1 (F yi) for all 0 € (0i41, 0iv2).
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Proof. We consider three cases: (i.) both consecutive projects y;, yi+1 € [b,1 + b, (ii.) y; < b
and b < yip1 <1+b (i) b<y; <1l+bandy+1 >1+Db.

CASE I. Let [0;,0;+1] and [0;4+1,60;+2] be the two pooling regions that, for all interior
points, induce the projects y; and y;11, respectively. Then from incentive compatibility, it
must be that y; — b € [0;,0,11] and y;11 — b € [0;11,0;12]. Now consider an alternative (y(-),
(+)) such that y(z(0)) =60 +bif 6 € [y; — b, yi+1 — b] and y(u(0)) otherwise. It is immediate
that (y(-),71(+)) is incentive compatible if y(-) and p(-) is. Since G(0) is strictly increasing in
[0,1] by Lemma Al we infer that A((y; + yi+1) /2 — b, (yit1 — vi) /2) > 0 and therefore the
principal strictly prefers (y(-), () to (y(-), u(+)). Hence (y(-), u(:)) cannot be optimal.

CASE II: If both y; and y;1are to be induced with positive probability it must be that b <
(yi + yix1) /2. From incentive compatibility of the agent, y; is induced in [0, (y; + yi+1) /2 —b)
and for ((y; + yi+1) /2 — b,yi+1 — b] we have y(u(0)) = yi+1. Now consider the alternative
incentive compatible (y(+), i(+)) such that

b if 0 €0, (yi + yit1) /2 — b]
PO Yi+yiyr —b it 0 € ((vi +yi+1) /2 = b,yi + yiy1 — 20]
y(u(0)) = .

0+b if 0 € [yi + Yi+1 — 2b,yir1 — b]

y(u(0)) otherwise.

Let a = (y; + yi+1) /2 — b. Then the increment in the principal’s expected payoff of switching
from (y(-), u(-))to (H(-), u(-)) is
a 2a
2
A = /0 (=07 =10 =02) @) + [ ([yes = 0 = s+ esa — b 6%) dF(0)
Yit1—b 9

+/ <[yi+1 - 0] - b2) dF(9>'

2

a

Note that

A>/Oa2<[yib] [yi;b6]>dF(6)+/a2a2<[byi] [WGDdF(Q).

Using T'(f) as defined at the beginning of this section, the above inequality can then be

rewritten as A > [b — ;] [2T(2a) — 4T (a)] + [b — yi)* F(2a). Since G(6) is strictly increasing,
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T'(0) is strictly convex which in turn implies that 7'(2a) > 27(a). This establishes that A > 0.
Thus, (y(-),u(-)) cannot be optimal.

CASE III: Suppose y;41 > 1+ b,b < y; < 1+ b. In this case if both y; and y;;11are to
be induced with positive probability it must be that (y; + yi+1) /2 < 1+ b. From incentive
compatibility of the agent, y; is induced in [y; —b, (y; + yi+1) /2—0) and for ((y; + yi+1) /2—0, 1]
we have y(u(0)) = yi+1. Now consider the alternative incentive compatible (y(-), zi(+)) such
that y(u(0)) = y; if 0 € [y; — b, 1] and y(u(0)) otherwise. Note that (y(-), u(-)) and (y(-), 1(-))
only differ for 6 € ((y; + yi+1) /2 —b,1]. Thus, the increment in the principal’s expected payoff

of switching to (y(-),u(+)) is

1
A= ([yi+1 - 0]2 - [yi - 9]2) dF(Q) =2 [yi+1 - yi] S((yi + yiv1) /2 —b).

(yityi+1)/2-b

If E[0] < b, then by the proof of Lemma A2 (ii.) we have S(f) > 0 for 6 € [0,1).
Hence, A > 0. If E[#] > b, then let 6" be the unique solution to E[s|s > 0] = 6 +b. If
(yi + yit1) /2 — b > 0" then again S((y; + yi+1) /2 —b) > 0 and A > 0.

For the case that E[f] > b and (y; + vi+1) /2 — b < 6" consider the alternative incentive
compatible (y(+),i(-)) which is derived from (y(-), u(-)) by replacing the project y;+1 with 7,
such that y; <y < yir1. Then (y(-), u(+)) is defined by y(7i(0)) = vi if 6 € [yi—b, (yi +y) /2—b),
g(u@) =yif 0 € [(y; +7) /2 — b,1] and y(u(f)) otherwise. Defining a = (y; + ) /2 — b and
¢ = (y; + yit+1) /2—0b the increment in the principal’s expected payoff of switching to (y(-), 12(-))

= [ (w-op-m-or)are)+ | ([ — 0 ~ G- 0) 4P ().

Noting that [} ([y; — 0] — [ 0" )dF(8) = 2(ys ~ [S(a) — S(c) + ((wis1 — §) /2) F(e)] and
fcl ([yi+1 - 9]2 - [y- 9}2) dF(0) = 2(y,., — y)[S(c) — ((yi —1)/2) f(c)] we can express the

increment A as

A =20y — §)S(a) + 2(yir1 — S(©). (A1)
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From a < ¢ < " and Lemma A2 (ii.) we have that S(a) < 0, which implies that the first
term on the RHS of (A1) is positive and the second term is negative. By selecting a project y
close enough to y;11 we have that A > 0 and (y(-), u(-)) cannot be optimal. Q.E.D.

Lemma A4. Suppose that G(6) is strictly increasing in [0,1]. Then if y(-) and pu(-) is an
optimal delegation scheme it must be that (i.) if E'[0] < b then y(u(0)) = E [0] for all 6 € [0, 1]
(ii.) if E[f] > b then there exists a threshold level §, such that y(u(6)) = 6 +bif 6 € [0,0] and
y(1u(6)) = 0+ b if 6 € [0,1]. Moreover the threshold level ¢ satisfies 6 +b = E [0 ]0 > 0].

Proof. From the previous lemma the optimal delegation scheme is characterized by two thresh-

old levels {6,60} with (a.)

0+b if 6€]0,0)
y(u0)=q 0+0b if 0€[0,0]
0+b if e (0,1

if0 <@ <60 <1,and (b.) y(u(d)) constant over [0,1] if § = 6. The expected utility of the

principal is given by

_ e _ p12 o 92 . - . 2
/0[9+b 02 dF(0) /bdF(Q) /[0+b 0% dF ().

A 0

Optimality of y(-) and p(-) requires that  and @ satisfy the first order necessary conditions
2F(0)[(0+b) —E[0]0 < 0]] = A — v and 2F(6) [(6+b)—E[0]0>6]] =v, where \,v are
nonnegative multipliers associated with the constraints > 0, and 6 > 6, respectively. First we
establish that that § = 0 is necessary. If at an optimum € > 0 then, since 6 +b > E[0]0 < 0],
we must have A — v > 0. This necessarily implies that A > 0 and the constraint ¢ > 0 binds,
reaching a contradiction.

Next suppose that E[f] < b. By Lemma A2 (ii.) there is no interior point at which
S(0) = F(6)[0+b—E[s|s > 0]] and therefore v > 0. But then 8 > 6 binds, i.e. § = § = 0.
In this case the principal selects a single project for all states. Since no information from
the agent is used in this case it must be that the principal implements y(u(6)) = E [0] for all
6 € [0,1].

35



Now suppose that E[f] > b. Then by Lemma A2 (ii.) there is a unique interior point
0 € (0,1) at which S(f) = 0. Then the quadruple {0,5, 0, 0} satisfies the necessary conditions
where 0 solves § +b=E [(9 ‘9 > 5]. Q.E.D.

Proof of Proposition 3. Follows from Lemmas A1-A4. Q.E.D.

PROOF OF PROPOSITION 4

The proof of Proposition 4 is carried out through a sequence of lemmas that gradually
reduce the class of potential optimal delegation schemes when G(#) is strictly decreasing in

[0, 1].

Lemma A5. Suppose that G(0) is strictly decreasing in [0, 1]. Then if (y(-),u(:)) is an optimal

delegation scheme, there cannot be a non-degenerate interval [0, 0] C [0, 1] where y(u(6)) = 0+b

for 6 € [0, 0].

Proof. Suppose on the contrary that y(u(6)) = 6+b for 6 € [0, 6]. Now consider the alternative
(9(+), 1i(+)) such that

0+b if 6, (0+96)/2
gu@) =<1 6+0b if 0 ((0+0)/2,6]
y((6)) otherwise.

It is immediate that y(ji(-)) is incentive compatible if y(u(-)) is. Furthermore, under
y(1(0)) only the extreme projects {Q +0,0+ b} are implemented in [#, f]. Since G(0) is strictly
decreasing in [0, 1] by Lemma A1l we infer that A((6 + 6) /2, (6 — 6) /2) < 0 and therefore the

principal strictly prefers (y(-),(+)) to (y(:),u(:)). Hence y(:) and p(-) cannot be optimal.
Q.E.D.

Lemma A6. Suppose that G(0) is strictly decreasing in [0, 1]. Then if (y(-),u(:)) is an optimal
menu delegation scheme then y(u(+)) induces at most two projects, i.e. y(u(0)) € {y1,y2} for
6 € [0,1].

Proof. Let Dy = {y € R:y(u(0)) =y,0 € [0,1]} be the set of projects induced by y(-) and

() and suppose that D4 contains more than two projects. We consider in turn two cases: (i.)
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there are three projects y1 < y2 < ys3, {y1,¥2,y3} C Dy, that are consecutive in the sense that
no other project is induced between them (i.e. such that (y1,y2) N Da = (y2,y3) N Dy = @),
(ii.) there do not exist three consecutive projects in Dy4.

i.) Consider then three consecutive projects y; < y2 < y3. Incentive compatibility implies
that (a.) y(u(0)) = y1 for 6 € [y1 —b, (y1 +y2) /2—0), (b.) y(u(0)) = y2 for 6 € ((y1 +12) /2—
b, (y2 +y3)/2—0b), and (c.) y(u(f)) =y for 6 € ((y2 +y3) /2 — b, y3 — b]. We now propose an
alternative delegation scheme in which the project y2 is not implemented by the principal, i.e.

o~

consider (y(-),zi(+)) such that

yi o if €y —b,(y1+ys3) /2]
y(u(0)) = ys  if 0€((y1+y3)/2—bys—b]
y(u(0)) otherwise.

Suppose that ya < (y1+y3)/2 (the analysis if yo > (y1+y3)/2 would follow the same argument).
Letting r = (y1 +y2) /2 —b, s = (y2+y3) /2 — b, t = (y2+y3) /2 — b, the increment in the
principal’s expected payoff when switching to (y(+), i(+)) is

AU

/: (fv2 = 017 = [sn — 0?) dF(6) + /: (fv2 = 01 ~ [y — 6) dF(0)
= 2y 1) / [”;yl - 0} dF(0) + 2(y — u3) /: {92;-”3 _ 9} dF(0).

Making use of T'(+) as defined above, we obtain

AU =2[(y3 —y1)T(s) = (y2 —y1)T(r) — (y3 — y2)T(t)] .

If we express s = (y2 + y3) /2 — b as a convex combination of r and ¢, s = A\r + (1 — \)t, and
noting that y3s —y2 = (1 — X\)(y3s —y1) and y2 —y1 = A(y3 — y1), we can write AU in the more
transparent form AU = 2(yz —y1) [T’ (Ar + (1 — \)t) = XT'(r) — (1 — N)T'(¢)].

Since G(0) is strictly decreasing, T'() is strictly concave and hence AU > 0. This es-
tablishes that the original delegation scheme (y(-),u(-)) where more than two projects are
implemented cannot be optimal.

ii.) Suppose that D4 does not contain three consecutive projects. From Proposition

2 y(u(0)) is weakly increasing and therefore continuous except in a countable set of points
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{a;},i € N. ¥ We will now introduce some notation pertinent to this part of the proof. Let
d =max D4 and d = min D4 be the maximum and minimum projects induced under y(u(6))
and, for each i € N, let y;” = hme—uj y(pu(0)) and y; = lime_)a; y(u(0)) be the two projects
induced to the left and to the right of the point of discontinuity «;, respectively . Finally let
A; ={0€[0,1] : y(u(9)) € {y;",y; }} be the set of states under which the projects {y;",y; }
are induced. For convenience we will order the set of discontinuity points {«;},i € N in such
a way that the probability of the projects y;r or y; being induced is (weakly) larger than the
probability of inducing y;ﬁrl or y; ., i.e. such that Prob[f € A;] > Prob[f € A;1]. By the
assumptions on y(u(#)) we have that lim;_. Prob[f € U{A;] = 1.

Consider now a sequence of incentive compatible delegation schemes (y;(-),u;(-)) @ =
0,1,2....to be defined momentarily. Denoting by D% = {y € R : y;(1;(0)) = y,0 € [0,1]} the
set of projects induced by (y;(-),u(+)), we define DY inductively as follows: DY = {d,d},
DZH = D{U {yi':_l, y;rl}. We note that this scheme fully identifies y;(u;(-)) except possibly
at its points of discontinuity. For completeness we define y;(-), p;(+) such that y;(p;(6)) is left
continuous at its points of discontinuity.

Since G(0) is strictly decreasing, the analysis of the case with three consecutive projects es-
tablishes that Eg [Up (yi(15(6)),6)] > Eg [Up(yit1(1i41(6)), 0)]. Next we show that Eg [Up(y;((6)), 0)]
converges to Eg[Up(y(1(0)), 0)] as i — oo.For e > 0 there exist an i such that Prob[§ € UjA;] >

1-— ﬁ. Therefore we have that for k£ > 4, with Si, = (U’fAj)c.

[5(1(6)) — 01 — [y: (1:(0)) — 01| AF () =

[Eo [Up (yr(111,(9)), 0)] — Eo[Up(y(1(0)), 0)]] < /S

= [ 200~ wtuto) [T | apie) < 2@ a)aprovip e s < -
Sk

Thus Eg [Up(yi(1;(0)),0)] — Eg[Up(y(1(0)),0)] for i — oo. Therefore Eg [Up(yi(1;(0)),0)] >
Eg[Up(y(u(0)),0)] for all i which implies that y(-) and u(-) cannot be optimal. Q.E.D.

Lemma A7. Suppose that G(#) is strictly decreasing in [0, 1]. Then any two-project delegation
scheme is dominated by centralization, i.e. by a decision rule that implements E [6] for all

messages the agent selects.

9We note that since D4 does not contain three consecutive projects and does not contain any nondegenerate
interval the set of discontinuity points of y(u(0)) must indeed be infinite.
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Proof.  Let y(u(0)) € {y1,y2} be an optimal two-project equilibrium with y; < ya. Since
both projects are selected with positive probability there must exist a state a;, with 0 <
a; < 1, at which the agent is indifferent between y; and yo, ie. (y1 +y2)/2 = a1 + b.
Since, for fixed a1, the projects {y1,y2} are optimal they must satisfy the first order condition

(y1 —E[0]0 < a1]) F(a1) = (y2 — E[0]0 > a1]) F(a1). Equivalently, these can be expressed as

S(a1) — T(a1) + 2 5 Y _o. (A2)

Now consider the difference in expected utility to the principal between the best centralized

decision E [0] and y(u(60))

1 1
AU:/—(E[O} +/y1—02dF +/y2— )2AF(6).
0 0

ai

Using the fact that S(a1) + T'(a1) = (y1 + y2) /2 — E[0] this expression can be rewritten as

AU =22 ~ B8 S(ar) + (16 - ) (Sta) Tl + 252 ). (a9

Using Lemma A2 (i.) we have that S(a;) > 0 for 0 < a; < 1, and, in particular, S(0) =
b—E[f] > 0. Since y2 > b the first term in (A3) is positive and the second term is zero from
the first order condition (A2) implying that AU > 0. Thus any two-project optimal delegation

scheme is dominated by centralization. Q.FE.D.
Proof of Proposition 4. Follows from Lemmas Al, A2 and A5-A7. Q.E.D.
Proofs of All Remaining Propositions

Proof of Proposition 1. We will follow Theorem 1 in Crawford and Sobel (1982) for the proof
of Proposition 1. In particular we will derive a well-defined second order difference equation
that the elements of the partition a must satisfy for any equilibrium. This difference equation
captures the idea that the agent of type a; must be indifferent between the decisions selected

by the principal when m € (a;—1,a;) and m € (a;,a;4+1), and is a necessary and sufficient
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condition for the communication rule of the agent to be a best response to the principal’s
decision rule (given in part ii.). Turning our attention to the principal it is immediate that
the beliefs in part iii are consistent with the agent’s equilibrium communication rule (given by
part i.). Also given these beliefs the principal’s optimal response would be to "rubberstamp"
¥i- We need only specify the beliefs of the principal when she observes a recommendation y #
Ui, © € {1,...,N}. As stated in the text we assume that off-the-equilibrium if the principal
observes y # y; she updates her beliefs according to part iii. This will lead her to overrule the
agent and select y; instead.

To complete the proof we turn to the indifference condition determining the partition a. In
particular given the principal’s decision rule (in part i.) an agent of type a; must be indifferent
between recommending decision y; and y;11, i.e. Ua(¥i, ai,b) = Ua(Yi+1, ai, b) which translates

into
a; +b= (’y} +’y\i+1) /2. (Bl)

Since y; and ¥;11 are functions of a; 1 and a; , and a; and a;y1, respectively, we have
that (B1) defines a (possibly non-linear) second order difference equation with the boundary
conditions a; = 0 and a; = N. Also note that since y; < a; + b and Ua(y,0,b) is strictly
concave w.r.t. y we must have g;11 > a; +b. This in turn implies that solutions to (B1) satisfy
ai+1 > a;. and thus the partition a that satisfies (B1) is well defined. We now argue that
given the principal’s decision rule (part ii.), which applies both to recommendations on and off
the equilibrium path, recommending decision ¥; is a best response for the agent whenever 6 €
(ai—1,a;). First we note that concavity of Ua(y, 0,b) w.r.t. y implies that Ux(¥;, a;,b) = max

1<j<N
Ua(yj,a;,b). Next, since %{299 [Ua(y,0,b)] >0 we have that for 1 <k <i<I< N

Y

UA(:/y\i’ea b) - UA(@\kH 0’ b) UA(/y\ia a;—1, b) - UA(:/y\ky a;—1, b) Z 0

UA(@,G,b) - UA(@\ive) b) = UA(/y\l)ai+1vb) - UA(:/y\iaaiJrl’b) <0

A

which establishes that recommending decision y; is a best response for an agent at state 6 €
(aj—1,a;). For the claim that there is a finite N(b) such that for every N < N(b) there exists
an equilibrium with a partition of IV intervals we refer to the proof of Theorem 1 in Crawford

and Sobel (1982). Q.E.D.
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Proof of Proposition 2. This proposition follows immediately from Proposition 1 in Melumad
and Shibano (1991) where it is shown that an optimal communication rule must induce deci-

sions that are weakly monotonic in the state 6. Q.E.D.
Proof of Proposition 5. Follows from the discussion in the text. @Q.E.D.
Proof of Proposition 6. Follows from Proposition 4. Q.FE.D.

Proof of Proposition 7. We first show that for given N, the solution to (8) subject to (9) and

(10) satisfies Ay; = ¢q for i = 2,..., N — 1. To see this, note first that the reneging constraint

(10) can be stated as Ay; = (3y1 —y2 +2b)/4 < q, Ayn = Byn —y~n—1 —2(1 — b)) < ¢q and
1

1 (2yi —Yi—1 — yit1 +4b) <q fori=2,.., N —1.

Thus, an increase in y; relaxes the reneging constraint for all < # j. Note second that

dEy (U, 1 ,
dEs (U] _ ~(Wir1 —¥i—1)Wir1 tyi-1 —2y;) fori=2,., N -1

dy; 4
If Ay; < q for any j € {2,...,N — 1}, then, from the above two equations, dEg [Up] /dy; > 0.
Since an increase in y; relaxes all the other reneging constraints it follows that Ay; < ¢ cannot
be a solution. Thus, the solution must satisfy Ay; = ¢ for i =2,...,N — 1.
We can now prove part (i.) of the proposition. We first prove that if ¢ < b/4, then Ay; = ¢
for ¢ = 1, N. Solving Ay; = q for i = 2,..., N — 1 we obtain

R
yz—N_lyl N _1

yn —2(i — 1)(N —i)(b—gq) fori =2,..., N — 1.
Substituting into (8) and differentiating then gives

N-1
dEe [Up] 6E9 [Up] dyi
O by — 1) — 2Ayar + Y |
Ay (Y2 — 1) Yyia1 — dyr  dy
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Note that the third term on the RHS is positive and that (y2 —y1) > a1. Thus, ¢ <b/2is a
sufficient condition for Ay; = q.

Suppose that ¢ < b/2 and Ay; = q. Note that Ayy < ¢ if and only if

yNn < (1+b—-(2N-1)(b—q)) =yn

and that gy < 1. Next, differentiating Eg [Up] twice gives

2 _
- izjngP] T (2N —21) v AN (N =1 (1 —yv)).

Note that the second derivative is negative for all yy < yn. Thus, it is optimal to set yy = yn,

and thus Ayy = ¢, if and only if

dEq [Up]

> 0.
dyn -

YN=YUN

Differentiating Eg [Up] once shows that this inequality is satisfied if and only if

¢ < (N—1;(2]\7(1\7—2)(5—@‘1'3)(5—(1)

(I4+2N(N—-1)(b—q))

Since ¢(N) is increasing in N, Ayy = ¢ for all N > 2 if and only if ¢ < ¢(2) = g. It is
straightforward to verify that g € (0,1).

We now know that for given N, the solution satisfies Ay; = g fori=1,...,N if ¢ <g. We
next argue that the optimal number of intervals is given by the maximum number of intervals
N that can be supported in equilibrium. We do so in two steps. First, we show that N is
increasing in Ay;. Second, we show that if Ay, = ¢ for i = 1,..., N, then Ey [Up] is increasing
in N.

From (9) it follows that

i—1
(a; — ai1) = ay +4(i — 1)b — 2Ay; — 2Ay; — 4 Ay for all i =2,..., N. (B2)
j=2
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In any equilibrium the intervals must add up to one, i.e. a; + ZfV:Q(ai —aj—1) = 1. Since it
must be that a; > 0, N is given by the largest integer for which Zi]\iz(ai —aj—1) < 1. From
(B2) it then follows that N is increasing in Ay; for i =1, ..., N.

Next, suppose that Ay; = ¢ for i =1,..., N. Then

Eg [Up] = — ((4(b — ¢)?N? (N — 1) (N + 1) + 1) + ¢*) / (12N?) .

The expression on the RHS is increasing in N for all N < N. This proves part (i.).
For part (ii.) note that from the above Ay; =g fori=2,..., N — 1 for any ¢ <b. Q.E.D.

Proof of Proposition 8. The proof will follow in two steps: (i) first we establish that for any
optimal relational contract it must be the case that along the equilibrium path the continuation
utility of the principal is constant (almost everywhere), (ii.) this allows us to construct a new
relational contract that is self-enforcing, stationary, and gives the principal the same expected
utility as the previous equilibrium.

Consider an optimal relational contract (Hy, p,(-),v:(+)), t € {0,1,...}, where p,(-) is sim-
ply a best response to y;(-), and any deviation by the principal along the equilibrium path
reverts play to the equilibrium with the highest number of partitions of the static cheap
talk benchmark. Let Vp(h:) = S22, 6" "Eq. [Up(y (- (0, hr), hr),0;)] be the principal’s
expected discounted utility at time ¢ after history hy, with Vp(hg) = v. Now define ¥ =
{60 : VP({0o0, 110(00), yo(g(60))}) < v} to be the set of states in the first period which generate
continuation utilities on the equilibrium path less than v. If Pr [0y € ¥] > 0 we can construct
a new relational contract that after the first period history {6o, (00),vo(g(60))},00 € ¥
calls for play of the original relational contract. To see that this new contract is subgame per-
fect note that, since histories are common knowledge and any deviation reverts to the static
cheap talk benchmark, the first period choice yo(po(6o)), remains optimal for the principal if
6o ¢ Vand she obtains a higher continuation utility by playing vyo(ug(fo)) whenever 6y € V.
Finally, since Vp(ho) = 0Eg, [Up(yo(19(00)),60)] + (1 — 6)Eg, [Vp(h1))] = v it follows that
Eo, [Up(y0(10(60)), 00)] = v.

Now consider a stationary contract (Hy, ui(+),y;(+)), t € {0,1,...} where along the equilib-
rium path p}(-) = po(+),y;(-) = yo(-). Note that on-the-equilibrium path the principal obtains
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the same continuation utility and thus his incentive to renege remains the same. Thus this

new contract is subgame perfect, stationary, and Vp(ho) =v. Q.E.D.
Proof of Proposition 9. Follows immediately from the discussion in the text. Q.E.D.

Proof of Proposition 10. Note that since f(6) is continuously differentiable, there exists a
b > 0 such that for all b < ¥, G(0) is increasing in 6 for all # € ©. Thus, for sufficiently
small b threshold delegation is optimal if it does not violate the reneging constraint. To see
that for sufficiently small b threshold delegation does not violate the reneging constraint, let
drp be the § for which the reneging constraint is binding under threshold delegation, i.e.
b2 = 0rp/(1 — 61p)Ey [UIT;D — Ugs]. Similarly, let §¢p = —b?/Eq [Ugs] be the ¢ for which
the reneging constraint binds under complete delegation. From Proposition 3 in Dessein (2002)
it follows that if f(€) is twice continuously differentiable, then limy_,g dcp = 0. Note next that

since Eg [UEP] > By [USP], 6¢p > drp. Thus, limy_gdcp = 0 > limy_d7rp. Q.E.D.
Proof of Proposition 11. Follows immediately from the discussion in the text. Q.E.D.

Proof of Proposition 12. Follows immediately from the discussion in the text. Q.E.D.
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