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Abstract 
 

We analyze the design of decision rules by a principal who faces an informed but biased agent 
and who is unable to commit to contingent transfers. The contracting problem reduces to a 
delegation problem in which the principal commits to a set of decisions from which the agent 
chooses his preferred one. We characterize the optimal delegation set and perform comparative 
statics on the principal’s willingness to delegate and the agent’s discretion. We also provide 
conditions for interval delegation to be optimal and show that they are satisfied when the agent’s 
preferences are sufficiently aligned. Finally, we apply our results to the regulation of a privately 
informed monopolist and to the design of legislatives rules. 
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1 Introduction

Organizations are governed by rules. A key function of these rules is to limit the agency

costs that principals incur when they involve better informed but biased agents in the decision

making. The decision rules that organizations employ for this purpose take many different

forms. Some rules allow the agents to make any decisions but give the principals the right

to overrule or otherwise adjust them. When the U.S. House of Representatives delegates

the drafting of bills to standing committees, for instance, it employs a variety of legislative

rules that specify if and how the committees’ proposals can be amended. Other rules simply

specify what decisions agents are and are not allowed to make and give them the right to

freely choose among the permissible decisions. Regulators who delegate pricing decisions, for

instance, often specify price caps below which the regulated firms can set any prices. In this

paper we analyze the optimal design of such rules. In particular, we analyze the design of

decision rules by a principal who faces an informed but biased agent and who is unable to

commit to contingent monetary transfers.

To illustrate the issues we are interested in, consider the classic problem of regulating a

monopolist who is privately informed about his costs (Baron and Myerson 1982). In contrast

to the standard literature, however, suppose that transfers between the regulator and the

monopolist are ruled out by law.1 In this setting, how should the regulator decide on the

monopolist’s price? Should she simply impose the welfare maximizing price given the expected

costs or should she involve the monopolist in the price setting process? In the latter case,

what form should the monopolist’s involvement take? Should he be allowed to set any price

below a price cap, for instance, or should the regulator opt for some other decision making

process? In short, what is the best decision rule the regulator can adopt?

The regulation problem illustrates the three main features of our model: (i.) an orga-

nization that consists of a principal and an agent must make a decision. The principal and

the agent have different preferences over the possible decisions and their preferred decisions

depend on the state of the world. In the regulation problem, the regulator and the monopolist

disagree on the price that should be charged and their respective preferred prices vary with

1 In many countries and industries, regulators are legally forbidden to make transfers to firms (Laffont and
Tirole 1990, 1993; Armstrong and Sappington 2004; see also our discussion below).
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the monopolist’s costs. (ii.) there is a mismatch between authority and information: while

the principal has the legal right to make the decision, only the agent is informed about the

state. The regulator, for instance, has the legal right to set the price but the monopolist is

better informed about his costs. (iii.) as mentioned before, contingent transfers between the

principal and the agent are not feasible, for instance, because of legal constraints as in the

regulation problem.

In this set-up the principal can commit to any deterministic decision rule.2 The problem

of finding the optimal decision rule reduces to a delegation problem (Holmström 1977, 1984).

In this problem the principal simply decides on a set of decisions and the agent is then allowed

to make any decision from this delegation set. In other words, the principal merely needs to

decide what decisions the agent should and should not be allowed to make.

The first step in addressing this problem is to decide whether the principal should delegate

any decision rights to the agent. In other words, the principal needs to decide whether she

should let the agent choose between at least two alternatives or whether she should simply

impose her best uninformed decision. In our setting the principal benefits from delegation if

and only if the principal and the agent are minimally aligned, a condition that depends on the

preferences and the agent’s information. As one would expect, the principal is more willing to

delegate to a more aligned agent. More surprisingly, in many cases the principal’s willingness

to delegate does not depend on the agent’s informational advantage. In many specifications

of the regulation problem, for example, the regulator benefits from giving the monopolist some

discretion over pricing if and only if the expected marginal costs are above a threshold that

depends only on the demand characteristics. An increase in the monopolist’s informational

advantage, as captured by a mean preserving spread of the cost distribution, therefore does

not affect the regulator’s willingness to give the monopolist some discretion over pricing.

Once the principal has determined that she can benefit from delegation, she must decide

how much discretion the agent should have. In other words, she needs to decide which

decisions the agent should be allowed to make and which should be ruled out. At first glance

one might think that the principal simply rules out those decisions for which the agent is very

biased. A key insight of our analysis is that this is not the case. In particular, whether a

2The analysis therefore encompases decisions rules that can be implemented through cheap talk (Crawford
and Sobel 1982; Dessein 2002) and veto-delegation (Marino 2006; Mylovanov 2006), among many others.

2



decision should be ruled out depends not just on the level of the bias but also on its slope. To

see this, suppose that for some states the slope of the agent’s bias is not very big, that is, his

preferred decisions are flat relative to the principal’s. If this agent were allowed to make any

decision, his decisions would, from the principal’s perspective, be too insensitive to changes in

the state. The principal may then rule out intermediate decisions to encourage more state-

sensitive decision making and she may do so even if the agent is locally very aligned. This

insight allows us to derive a full characterization of optimal delegation sets which is the central

result in the paper.

We then build on the characterization result to gain additional insights into the design

of decision rules. In practice principals often engage in interval delegation, that is, they let

their agents make any decision from a single interval (Holmström 1977, 1984). To understand

why this is so, we provide simple conditions for interval delegation to be optimal. These

conditions imply that interval delegation is optimal whenever the agent is sufficiently aligned.

This suggests that the apparent widespread use of interval delegation may be due to the ability

of organizations to carefully screen their employees or to use incentive schemes that closely

align their interests. Applied to the regulation problem, our results on interval delegation show

that optimal regulation without transfers often takes a remarkably simple form. In particular,

for any linear or constant elasticity demand curve and any unimodal cost distribution a welfare

maximizing regulator cannot do better than to either give the monopolist no discretion at all

or to impose a price cap below which the monopolist can choose his preferred price. This

result is consistent with the widespread use of price cap regulation in the United Kingdom

and the United States (Armstrong and Sappington 2004).

It may seem intuitive that a principal gives more discretion to a more aligned agent and

to one with a bigger informational advantage. Indeed, in the political economy literature

on delegation these comparative statics have been shown to hold in a number of models and

have become known as the Ally Principle and the Uncertainty Principle respectively.3 Also,

Holmström (1977, 1984) has shown that if delegation sets are required to take the form of a

single interval, then the Ally Principle holds under general conditions. In contrast, we show

that these principles do not hold when delegation sets can take any form. In other words,

3See, for instance, Huber and Shipan (2006).
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when the principal’s ability to delegate is unrestricted, she may give less discretion to an agent

with a bigger informational advantage or, indeed, to one who is less biased.

Our analysis can be used to gain new insights into well-known economic problems. We

have already illustrated this for the problem of regulating an informed monopolist. Another

example is the optimal design of legislative rules. As mentioned above, the U.S. House

of Representatives uses a wide variety of such rules to regulate the relationship between the

legislature and its standing committees. A large literature in political economy argues that

these rules are designed to motivate the acquisition and transmission of information by the

committees (Gilligan and Krehbiel 1987, 1989; Krishna and Morgan 2001).4 The standard

approach taken in this literature is to compare the performance of specific rules that are

observed in practice. In contrast, our analysis can be used to determine the optimal among

all possible rules. In particular, we show that the optimal legislative rule is closely related to,

but different from, those considered in the literature.

A key feature of our set up is that the principal cannot commit to contingent transfers.

We focus on such situations since we believe that they are widespread in practice and not yet

sufficiently well understood in theory.5 There are various reasons for why a principal may

not be able to commit to contingent transfers. In some situations such transfers are simply

ruled out by law. As mentioned above, for instance, there are many countries and industries

in which regulators are legally forbidden to make transfers to firms.6

The inability to observe the agents decision and the associated payoffs are another reason

for why a principal may be unable to commit to contingent transfers. In such a situation

our analysis applies if the principal can restrict the decisions the agent can make through

technological constraints. For instance, parents cannot observe what TV shows their children

watch in their absence and are therefore unable to reward or punish them depending on their

decisions. However, if they own a Tivo recorder, or a similar device, they can restrict the

4The literature almost exclusively assumes that the legislature is not able to use transfers to motivate the
committees (a notable exception is Baron 2000).

5Most of the literature on mechanism design, and its applications to organizational structure (for an overview
see Mookherjee 2006), assumes that the principal is able to commit to contingent transfers. In contrast, most
of the literature on delegation rules out contingent transfers (see, for instance, Holmström 1977, 1984; Aghion
and Tirole 1997; Dessein 2002; Szalay 2005).

6This fact has been explained by regulatory failures due to collusion (Laffont and Tirole 1990) and commit-
ment problems (Laffont and Tirole 1993). See also Armstrong and Sappington (2004).
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channels their children can watch while they are gone. Similarly, in larger organizations it

can be prohibitively expensive for principals to observe all the decisions their agents make

and available performance measures may depend on so many decisions, as well as external

factors, that they cannot be used to influence the decision making of individual agents. In

such organizations, however, the principals may still be able to rule out certain decisions

altogether, such as making long-distance phone calls, using the internet etc.7

It should also be noted that in some situations the extra benefit of committing to contingent

transfers, in addition to limiting an agent’s discretion, can be quite limited, as we show in an

example below. Moreover, in some cases, such as the regulation problem, optimal delegation

takes a very simple form that does not depend on the details of the information structure. In

contrast, optimal transfers rules are in general sensitive to changes in the information structure

and they can be computationally difficult to derive. This suggests that in some situations

principals may find it more economical to simply restrict the agent’s discretion than to commit

to a potentially complicated complete contract.

The rest of the paper is structured as follows. In the next section we briefly discuss the

related literature and we then present the model in Section 3. In Section 4 we show that the

problem of finding the optimal decision rule reduces to the delegation problem. The solution

to this problem is characterized in Sections 5 and 6. In Section 7 we then discuss applications

of our analysis before revisiting three of our main assumptions in Section 8. Finally, we

conclude in Section 9. All proofs are in the appendices.

2 Literature Review

Our paper builds on, and borrows from, Holmström (1977, 1984). He was the first to pose

the general class of delegation problems to which our model belongs. After posing the general

problem, he provides conditions under which a solution exists. He also considers a series of

examples in which he characterizes optimal delegation sets assuming, for the most part, that

7Even when a principal is able to commit to contingent transfers, she may choose not to do so due to multi-
tasking considerations (Holmström and Milgrom 1991). Suppose, for instance, that in addition to making a
decision, the agent has to put effort into two tasks, ‘A’ and ‘B.’ Suppose also that there is only one performance
measure which depends on the agent’s decision and the effort he puts into task A. The principal may then
refrain from tying the agent’s pay to the available performance measure since doing so might induce him to
substitute effort from task B to task A (for an adverse selecion version of this multi-tasking argument see
Armstrong 1995).
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they consist of single intervals.8 The main contribution of our paper is to provide a general

characterization of the solution to Holmström’s delegation problem when no restrictions are

made on the set of feasible delegation sets and the principal’s preferences take a generalized

quadratic form.

Melumad and Shibano (1991) were the first to fully characterize the solution to the dele-

gation problem in the absence of restrictions on the feasible delegation sets. They do so in

a model with quadratic loss functions in which the preferred decisions are linear functions of

the state and the state is uniformly distributed. We differ from Melumad and Shibano (1991)

in that we allow for general distributions and more general utility functions. Allowing for

more generality enables us to derive new insights into delegation. It also allows us to show

which salient features of optimal delegation sets are robust to perturbations in the economic

environment. Finally, it makes our results applicable to a large class of economic problems.

Another related paper is Green (1982) who considers a version of the delegation problem

with general preferences and a finite number of states and feasible decisions. He shows that

the search for the optimal decision rule reduces to a linear programming problem and that

the principal may benefit from randomizing over decisions. In a setting with a continuum of

states and decisions, Kovac and Mylovanov (2006) also show that the optimal mechanism may

not be deterministic. We discuss stochastic mechanisms in Section 8.

Most of the literature that builds directly on Holmström (1977, 1984) focuses on charac-

terizing the optimal delegation set. In contrast, Mylovanov (2006) concentrates on how to

implement the optimal delegation set and provides conditions under which this can be done

through veto delegation.

A number of recent papers have analyzed versions of the delegation problem in which the

agent’s bias does not vary with the state. Dessein (2002) considers a model in which a principal

can either let an agent make any decision or engage in cheap talk communication and then

make the decision herself.9 Martimort and Semenov (2006b) provide a sufficient condition for

interval delegation to be optimal. In contrast to these static models Alonso and Matouschek

(2007) develop an infinitely repeated delegation game to endogenize the commitment power

8For a particular example he shows that a single interval is optimal among all compact delegation sets (see
page 44 in Holmström 1977).

9See also Harris and Raviv (2005) and Marino and Matsusaka (2005).
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of the principal. Ottaviani (2000) and Krishna and Morgan (2006) also analyze the basic

delegation problem with a constant bias but, in contrast to the previous papers, allow for

contingent monetary transfers.10

Variants of the delegation problem have also received attention in the political economy

literature. A large literature uses this basic set up to analyze the delegation of public policy

making from elected politicians to bureaucrats (Epstein and O’Halloran 1999; Huber and

Shipan 2006) and from legislatures to their standing committees (Gilligan and Krehbiel 1987,

1989; Krishna and Morgan 2001). Martimort and Semenov (2006a) consider a delegation

problem with multiple agents to analyze the organization of lobbying by interest groups.

Our paper is also related to the literature on cheap talk (Crawford and Sobel 1982). The

key difference with this literature is that we allow the principal to commit to a decision rule

while this is ruled out in cheap talk models. Finally, our model is related to the mechanism

design approach to organizational structure (for an overview see Mookherjee 2006). In contrast

to our paper, this literature assumes that the principal can commit to contingent transfers.

3 The Model

An organization that consists of a principal and an agent has to make a decision. The principal

has the legal right to make the decision but only the agent has the information necessary to

make the ‘right’ decision. The principal is unable to make contingent transfers and must

decide on the decision making rules that the organization should adopt.

Preferences: The principal’s and the agent’s utilities depend on the implemented decision

and on the state of the world. The decision is represented by y ∈ Y , where the set of admissible

decisions Y is a large compact interval of R, and the state is denoted by θ ∈ Θ = [θ1, θ2] ⊂ R.
For most of the paper we assume, without loss of generality, that Θ = [0, 1].

The principal has a von Neumann-Morgenstern utility function that takes the generalized

quadratic form uP (y, θ) = −r(θ)(y − yP (θ))
2, where yP (θ) is continuous in θ ∈ Θ and r(θ)

is a continuously differentiable and strictly positive function of the state θ. The assumption

that the principal’s preferences are quadratic allows us to fully characterize the solution to

this model. We discuss more general utility functions in Section 8. The agent has a von

10On delegation with transfers see also Filipi and Singh (2006).

7



Neumann-Morgenstern utility function given by uA(y, θ) = vA(y − yA(θ), θ), where yA(θ) is

continuously differentiable and strictly increasing in θ ∈ Θ and, for each θ ∈ Θ, the function
vA(·, θ) is single peaked and symmetric around zero. Thus, given the state θ, the principal’s
preferred decision is yP (θ) and the agent’s is yA(θ). Below we often work with the inverse of

the agent’s preferred decisions which we denote by θA(y) ≡ y−1A (y). Note that the ranges

of the principal’s and the agent’s preferred decisions, YP = {y ∈ Y : yP (θ) = y} and YA =

{y ∈ Y : yA(θ) = y} respectively, are intervals of the form YA =
£
dA, dA

¤
and YP =

£
dP , dP

¤
.

Note also that the specified utility functions allow for an arbitrary continuous divergence of

preferences (yA(θ) − yP (θ)). Moreover, they allow for variable degrees of risk aversion of

the principal with respect to the decision y for each realization of θ, as characterized by the

function r(θ).

Information: The agent knows the state θ but the principal does not. Her prior beliefs over

its realization are represented by the cumulative distribution function F (θ). The corresponding

probability density function f(θ) is absolutely continuous and strictly positive for all θ ∈ Θ.
Contracts: The principal can offer the agent any mechanism (M,h), whereM is a message

space and h :M → X is a decision rule that maps the messages into a set of allocations X, to

be defined momentarily. Note that we restrict attention to deterministic mechanisms where,

after receiving a messagem ∈M , the principal makes a particular decision h(m) with certainty.

Also, as discussed in the introduction, we rule out contingent transfers. We discuss stochastic

mechanisms and contingent transfers in Section 8. Finally, we assume that the participation

of the agent in any mechanism (M,h) is assured so that the principal does not have to pay the

agent any wages to guarantee his participation.11 The set of feasible mechanisms is therefore

restricted to those in which the set of allocations X is the set of admissible decisions Y .

Timing: The principal selects a mechanism (M,h). The agent then observes the state and

sends a message m ∈M to the principal who chooses a decision according to the decision rule

h. Finally, payoffs are realized and the game ends.

Transformations: Without loss of generality we can restrict attention to the case in which

the principal’s preferences take the simple quadratic form uP (y, θ) = −(y − yP (θ))
2 and the

agent’s preferred decisions are a linear function of the state of the form yA(θ) = α+βθ, where

11This assumption is not crucial. See the working paper version of this paper (Section 8 in Alonso and
Matouschek 2005).
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β > 0. Transforming the model in this way simply requires making appropriate adjustments

to the density and the principal’s preferred decisions.12 In what follows we work with this

transformed version of the general model.

Measuring the Preference Divergence: We make use of three different measures of the

agent’s and the principal’s preference divergence. First, for a given state θ the agent’s bias

b(θ) ≡ yA(θ)−yP (θ) measures the difference between the agent’s and the principal’s preferred
decisions. Second, for a given state θ the backward bias

T (θ) ≡ F (θ) [yA(θ)− E [yP (z) |z ≤ θ ]] (1)

measures the difference between the agent’s preferred decision in state θ and the principal’s

preferred decision if she believes that the state is smaller than θ, weighted by the probability

F (θ) that the state is indeed smaller than θ. Similarly, for a given state the forward bias is

given by

S(θ) ≡ (1− F (θ)) [yA(θ)− E [yP (z) |z ≥ θ ]] (2)

and measures the difference between the agent’s preferred decision in state θ and the principal’s

preferred decision if she believes that the state is bigger than θ, weighted by the probability

(1− F (θ)) that the state is indeed bigger than θ. The backward bias T (θ) and the forward

bias S(θ) are key in determining the solution to the contracting problem.

Regulation Example: It is useful to introduce a simple application that we will use through-

out the analysis to illustrate and interpret our results. For this purpose, consider the regula-

tion of an informed monopolist with a linear demand curve.13 In particular, suppose that the

‘principal’ is a welfare maximizing regulator and the ‘agent’ is a profit maximizing monopolist.

The monopolist can produce q ≥ 0 units of a good at costs θq and he faces a linear inverse de-
mand function y = A−Bq, where y is the price. Marginal costs θ are drawn from a unimodal
distribution with support [0, 1] and the maximum willingness to pay is higher than the highest

cost, i.e. A > 1. Profits can then be expressed as a linear function of (y − yA (θ))
2, where

12Suppose that uP (y, θ) = −r(θ)(y − yP (θ))
2 and that yA(θ) is non-linear and let the density be denoted by

f(θ). First, to restrict attention to uP (y, θ) = −(y− yP (θ))
2, we simply need to redefine the density function

as f(θ) = r(θ)f(θ)/
1

0
r(t)f(t)dt. Second, to further restrict attention to a linear yA(·), the state needs to be

redefined as θ ≡ yA(θ)− α /β.
13We further generalize this application in Section 7.
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Figure 1: The Linear Regulation Model

yA (θ) = (A + θ)/2 is the profit maximizing price, and welfare can be expressed as a linear

function of (y − yP (θ))
2, where yP (θ) = θ is the price that maximizes welfare. This linear

regulation model is illustrated in Figure 1. In the context of this model, the key question is

what rules the regulator should adopt to determine the monopolist’s price.

4 The Delegation Problem

The contracting problem that the principal solves is to choose a deterministic mechanism that

maximizes her expected utility. In this section we show that this problem can be stated in

two equivalent ways, as a direct mechanism design problem and as a delegation problem in

which the principal offers the agent a compact set of decisions from which he then chooses his

preferred one.

In our search for the optimal deterministic mechanism we can restrict attention to di-

rect deterministic mechanisms in which the agent truthfully reports the state. This fact is

reminiscent of the Revelation Principle and proven formally in the next lemma.

Lemma 1. The principal’s contracting problem can be stated as

max
X(θ)

Eθ [uP (X(θ), θ)] (3)

10



subject to the incentive compatibility constraint

uA(X(θ), θ) ≥ uA(X(θ
0), θ) ∀ θ, θ0 ∈ Θ,

where X(θ) : Θ→ Y is an outcome function that maps states into decisions.

The outcome functions that satisfy the incentive compatibility constraint take a simple

form, as shown in the next lemma. This lemma is the adaptation to our setting of Proposition

1 in Melumad and Shibano (1991). To be able to state it, let X−(bθ) ≡ lim
θ→θ

− X(θ) and

X+(bθ) ≡ lim
θ→θ

+ X(θ).14

Lemma 2. An incentive compatible outcome function X(θ) must satisfy the following: (i.)

X(θ) is weakly increasing, (ii.) if X(θ) is strictly increasing and continuous in (θ1, θ2), then

X(θ) = yA(θ) for θ ∈ (θ1, θ2), (iii.) if X(θ) is discontinuous at bθ, then the discontinuity must
be a jump discontinuity that satisfies: (iii.a.) uA(X

−(θ),bθ) = uA(X
+(θ),bθ), (iii.b.) X(θ) =

X−(bθ) for θ ∈ [max{0, θA(X−(bθ))},bθ) and X(θ) = X+(bθ) for θ ∈ (bθ,min{1, θA(X+(bθ))}] and
(iii.c.) X(bθ) ∈ {X−(bθ),X+(bθ))}.

An illustration of this lemma is provided in Figure 2. It can be seen that the outcome

function is weakly increasing and consists of flat segments as well as strictly increasing segments

in which the agent’s preferred decisions are implemented. Also, if the outcome function is

discontinuous, then it must be symmetric around the agent’s preferred decision at the point of

discontinuity. Finally, there must be flat segments to the left and the right of the discontinuity

point. For the remainder of the analysis we denote by X(θ) any incentive compatible outcome

function that satisfies the conditions in Lemma 2.

The direct mechanism design problem (3) is equivalent to the delegation problem in which

the principal offers the agent a delegation set, i.e. a set of decisions from which he chooses his

preferred one (Holmström 1977, 1984). Essentially, this is the case since the same decisions

are implemented whether the principal commits to an outcome function X(θ) or lets the agent

choose among the decisions D = {y : y = X(θ), θ ∈ Θ} that are in the range of X(θ).
To state this result formally, let XD denote the set of outcome functions with range D, i.e.

XD = {X(θ) : D is the range of X(θ)}.
14Note that X−(θ) and X+(θ) are well defined since any implementable X(·) is monotone.
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Figure 2: An Incentive Compatible Outcome Function

Lemma 3. The principal’s contracting problem can be stated as

max
D∈N

Eθ [uP (y
∗(θ), θ)] (4)

subject to

y∗(θ) ∈ XD(θ) ≡ argmax
y∈D

uA(y, θ),

where N is the collection of compact sets of the decision space Y .15

It follows from Theorem 1 in Holmström (1984) that a solution to the delegation problem

exists, as stated in the next lemma.

Lemma 4. The delegation problem (4) has a solution.

In general the solution to (4) will not be unique. For example, different optimal delegation

sets can be created by adjoining to an optimal delegation set decisions that are never chosen

by the agent. We therefore focus on optimal minimal delegation sets, defined as a solution

D to (4) such that all decisions y ∈ D are chosen. For the remainder of this paper, ‘optimal

delegation sets’ refers to optimal minimal delegation sets unless otherwise stated.
15Note that if for an arbitrary delegation set (not necessarily compact) a solution to the agent’s problem

exists, then the range of decisions implemented by the agent is compact. Hence, there is no loss of generality
in restricting delegation sets to being compact.
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Finally, we partially order delegation sets by how much discretion they bestow on the

agent. Specifically, we say that a delegation set D1 gives the agent more discretion than a

delegation set D2 6= D1 if and only if D2 ⊂ D1.

5 The Value of Delegation

When is delegation valuable? In other words, when does the principal benefit from letting

the agent choose between at least two alternatives? In this section we address this question

and show that delegation is valuable if and only if the principal and the agent are minimally

aligned, a condition on the players’ preferences and the agent’s information that we formally

define below. We also analyze how the value of delegation is affected by changes in the

agent’s preferences and his informational advantage. In the Section 6 we then investigate

what decisions the principal should delegate when delegation is indeed valuable.

5.1 When Is Delegation Valuable?

A principal who does not delegate any decision rights simply implements her best uninformed

decision y∗P ≡ E(yP (θ)). Delegation is therefore valuable if the principal can improve on

implementing y∗P by letting the agent choose between at least two alternatives. To understand

when this is the case, we first need to introduce the concept of aminimally aligned principal and

agent. For this purpose consider Figure 3 which illustrates the principal’s preferred decisions

for different beliefs. In particular, E(yP (z) |z ≥ θ ) gives her preferred decision if she believes

that the state is above θ while E(yP (z) |z ≤ θ ) gives her preferred decision if she believes

that it is below θ. The principal’s best uninformed decision y∗P is a convex combination of

E(yP (z) |z ≤ θ ) and E(yP (z) |z ≥ θ ) and therefore lies in-between these two curves. We say

that the principal and the agent are minimally aligned if there exists a state θ∗ ∈ (0, 1) such
that E(yP (z) |z ≤ θ∗ ) < yA (θ

∗) < E(yP (z) |z ≥ θ∗ ). Note that this is equivalent to requiring

that there exists a state θ∗ ∈ (0, 1) such that T (θ∗) > 0 and S(θ∗) < 0, where T (·) and S(·)
are, respectively, the backward bias defined in (1) and the forward bias defined in (2).

Delegation is valuable if the principal and the agent are minimally aligned. To see this,

suppose that the principal and the agent are minimally aligned and let θ∗ ∈ (0, 1) denote
a state such that T (θ∗) > 0 and S(θ∗) < 0. Suppose also that yA (θ∗) > y∗P and define
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Figure 3: The Value of Delegation

∆ ≡ yA (θ
∗)− y∗P .

16 The principal can then improve on implementing y∗P by letting the agent

choose between yA (θ
∗)−∆ = y∗P and yA (θ

∗) +∆. Faced with the choice between these two

decisions the agent implements y∗P if θ ≤ θ∗ and yA (θ
∗) +∆ if θ > θ∗. The key observation,

which is illustrated in Figure 3, is that yA (θ∗) +∆ is closer to the decision E(yP (z) |z ≥ θ∗ )

that maximizes the principal’s expected utility if θ > θ∗ than y∗P is. This of course implies

that the principal prefers the delegation set {y∗P , yA (θ∗) +∆} to always making decision y∗P .

Delegation is therefore valuable if the principal and the agent are minimally aligned. It

turns out that the reverse is also true: if the principal and the agent are not minimally

aligned, then delegation is not valuable. The following lemma is the key step in proving

this result. To state the lemma, we define the value of delegation V as the increase in the

principal’s expected utility when, instead of making y∗P , she employs the optimal delegation

set. Formally, V ≡ Eθ [uP (XD∗(θ), θ)]−Eθ [uP (y∗P , θ)], whereD∗ solves the delegation problem
(4).

Lemma 5. Let X = {X(θ) ∈ XD,D ∈ N} be the set of incentive compatible deterministic
outcome functions. Then the value of delegation is given by

V = max
X(θ)∈X

− (y∗P −X(1))2 + 2

Z 1

0
T (θ)dX(θ) (5)

16The argument for yA (θ∗) < y∗P is analogous.

14



or, equivalently,

V = max
X(θ)∈X

− (y∗P −X(0))2 − 2
Z 1

0
S(θ)dX(θ). (6)

Since the first term on the right hand sides of (5) and (6) are weakly negative, it follows

immediately that if, for all θ ∈ (0, 1), T (θ) < 0 and S (θ) > 0, then V = 0. In other words,

if the principal and the agent are not minimally aligned, then delegation is not valuable. We

can therefore establish the following proposition.

Proposition 1. Delegation is valuable if and only if the principal and the agent are minimally

aligned, i.e. if and only if there exists a state θ ∈ (0, 1) such that T (θ) > 0 and S(θ) < 0.

The proposition shows that, in general, the principal’s willingness to delegate depends on

the players’ preferences and the agent’s information.17 In the next sub-section we discuss

how changes in the preferences and the information structure affect the principal’s willingness

to delegate. Before we do so, however, it is illustrative to apply our results to the linear

regulation model that was introduced in Section 3.

Regulation Example: Should the regulator give the monopolist any discretion over its

price? It is evident that the monopolist always wants to set a higher price than the regulator

and thus T (θ) > 0 for all θ ∈ (0, 1). It is also straightforward to verify that S(θ) ≥ 0 for
all θ ∈ (0, 1) if and only if A/2 ≥ E(θ), where A is the intercept of the demand curve. The

following result then follows from Proposition 1.

Result 1. Delegation is valuable if and only if A/2 < E(θ).

Note that the bias b(θ) = yA(θ)−yP (θ) = (A− θ)/2 is increasing in A. We therefore have

the intuitive result that the regulator gives the monopolist some discretion over pricing if and

only if the monopolist’s preferences are sufficiently aligned. The effect of an increase in the

monopolist’s informational advantage, however, may at first be less intuitive. In particular,

the result shows that mean preserving spreads have no effect on the regulator’s willingness

to delegate. Essentially, the regulator can benefit from delegation if and only if there exists

a state in which the monopolist’s preferred price yA(θ) coincides with the principal’s best

17We say that the principal is willing to delegate if and only if delegation is valuable, i.e. V > 0.

15



uninformed price y∗P . Since y∗P = E(θ) this condition only depends on the mean and not on

other properties of the cost distribution.

5.2 Comparative Statics on the Value of Delegation

How does the value of delegation depend on the agent’s preferences and his informational

advantage? The next corollary shows that, for a given information structure, the principal

is more likely to delegate to a more aligned agent. To state the corollary, we introduce the

concept of an agent whose preferences are uniformly closer to the principal’s than those of

another agent: suppose there are two agents, A and A, with preferred decisions yA(·) and
yA(·) respectively. We say that A’s preferences are uniformly closer to the principal’s than

A’s if, for each θ ∈ Θ, yA(·) lies between yA(·) and yP (·).

Corollary 1. Suppose that agent A’s preferences are uniformly closer to the principal’s than

agent A’s. Then, if delegation to A is valuable, delegation to A is also valuable.

In general, little can be said about the effect of changes in the agent’s informational advan-

tage on the value of delegation. This is the case since such changes have an ambiguous effect

on the backward and forward biases. However, we can still shed light on this comparative

static with the help of examples. We have already seen that in the linear regulation model

the agent’s informational advantage has no effect on the principal’s willingness to delegate.

In Section 7 we show that this is also the case in another applications of our model. What

these examples have in common is that the principal’s preferred decisions are increasing in the

state. For this case we can establish the following general result.

Corollary 2. Suppose that yP (θ) is weakly increasing for all θ ∈ (0, 1). Then delegation is
valuable if y∗P ∈ Y ◦A.

In this class of models the principal is therefore willing to delegate if her best uninformed

decision lies in the range of the agent’s preferred decisions. Changes in the information

structure then only matter to the extent that they affect y∗P = E(yP (θ)). Once the principal

has determined that she can benefit from delegation, she of course still needs to figure out

exactly what decision rights she should delegate. We turn to this question next.
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6 Optimal Delegation

What decisions should the principal delegate when delegation is valuable? In other words,

what is the solution to the delegation problem (4)? The difficulty in solving this problem is the

need to optimize over sets which precludes us from using standard optimization techniques.

To characterize the solution, we investigate the effect on the principal’s expected utility of

changing the agent’s discretion by adding decisions to, and removing decisions from, a del-

egation set. Roughly speaking, the next sub-section shows that the principal benefits from

reducing the agent’s discretion by removing intermediate decisions if the principal’s preferred

decisions are sufficiently steep relative to the agent’s. We then use this insight to provide

a general characterization of optimal delegation sets in Section 6.2 and to provide optimality

conditions for interval delegation in Section 6.3. Finally we conclude this section by discussing

comparative statics on the agent’s discretion in Section 6.4.

6.1 Changing the Agent’s Discretion

We first analyze the effects of adding a single intermediate decision to, and removing such a

decision from, a delegation set. After having considered such a discrete change in the agent’s

discretion, we then analyze the effects of adding and removing decision intervals.

Adding and Removing Discrete Decisions: Consider a delegation set D+ that contains

three consecutive decisions y1 < y2 < y3, all of which are within the range of the agent’s

preferred decisions YA. Removing the intermediate decision y2 from D+ yields a delegation

set D− ≡ D+ \ y2 that gives the agent strictly less discretion. To compare the decision

making under the two delegation sets, consider Figure 4 in which the solid step functionXD+(θ)

describes the agent’s decision making underD+ and the dashed step functionXD−(θ) describes

his decision making under D−. Recall that θA(y) ≡ y−1A (y) and note that the discontinuities

occur at the states r ≡ θA((y1+y2)/2), s ≡ θA((y1+y3)/2) and t ≡ θA((y2+y3)/2) at which the

agent is indifferent between decisions y1 and y2, y1 and y3, and y2 and y3 respectively. It can

be seen that decision making only differs between the two delegation sets for the intermediate

states θ ∈ [r, t]. In particular, removing the intermediate decision forces the agent to make

more extreme decisions: instead of implementing the intermediate decision for all intermediate

states, he implements the low decision for sufficiently low states and the high decision for
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Figure 4: The Effect of a Change in Discretion on Decision Making

sufficiently high states. Which delegation set the principal prefers therefore depends simply on

whether, over the relevant interval, the principal’s preferred decisions are better approximated

by a flat function or by a step function. This suggests that if the principal’s preferred decisions

are sufficiently steep relative to the agent’s, then she prefers to reduce the agent’s discretion.

The formal analysis to which we turn next makes this intuition precise.

Let ∆U ≡ E(uP (y, θ) |D+ ) − E(uP (y, θ) |D− ). Using the definitions of r, s and t intro-

duced above, it follows that ∆U = −2 [(y3 − y1)T (s)− (y2 − y1)T (r)− (y3 − y2)T (t)]. We

can further simplify ∆U by expressing y2 as a convex combination of y1 and y3, i.e. y2 =

(1 − λ)y1 + λy3 for λ ∈ (0, 1). Substituting into the above expression for ∆U gives ∆U =

−2 (y3 − y1) [T (s)− λT (r)− (1− λ)T (t)]. Since s = λr+(1−λ)t, it follows that if the back-

ward bias T (θ) is strictly concave over the interval [θA (y 1) , θA (y 3)] then ∆U < 0. Note

that this sufficient condition is independent of y2. Thus, under this condition, the principal

strictly benefits from removing any y2 ∈ (y1, y3) from the delegation set D+. Similarly, if the

backward bias T (θ) is strictly convex over the interval [θA (y 1) , θA (y 3)] then ∆U > 0 and if

it is linear then ∆U = 0.

The agent’s discretion therefore depends crucially on the curvature of the backward bias.

Before turning to the intuition for this condition, we summarize the above analysis in the

following lemma.

Lemma 6. Let D+ be a delegation set which contains three consecutive decisions y1 < y2 < y3
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that are within the range of the agent’s preferred decisions, i.e. y1, y2, y3 ∈ YA. Let D− ≡
D+ \ y2 be a delegation set derived from D+ by excluding the decision y2. Then,

(i.) removing decision y2 from D+ strictly increases the principal’s expected utility if the

agent’s backward bias T (θ) is strictly concave over the interval [θA (y1) , θA (y3)] and

it does not change the principal’s expected utility if T (θ) is linear over the interval

[θA (y1) , θA (y3)].

(ii.) adding any decision y2 ∈ (y1, y3) to D− strictly increases the principal’s expected utility

if T (θ) is strictly convex over the interval [θA (y1) , θA (y3)] and it does not change the

principal’s expected utility if T (θ) is linear over the interval [θA (y1) , θA (y3)].

We can now relate this lemma to our previous intuition. The lemma shows that the

principal prefers to reduce the agent’s discretion if the backward bias is convex or, equivalently,

if b0(θ) < − [β + b(θ)f 0(θ)/f(θ)], where β = y0A(θ). Thus, as anticipated, the principal gives

the agent less discretion if her preferred decisions are sufficiently steep relative to the agent’s.

Note that she may prefer to restrict the agent’s discretion even if his bias is close to zero.

Essentially, when the principal’s preferred decisions are relatively steep, she wants to force the

agent’s decision making to be more sensitive to the state and she can ensure this, albeit in a

coarse manner, by removing the intermediate decision. Moreover, she may want to do so even

if the agent is locally very aligned.

Exactly how steep yP (θ) has to be depends on the agent’s private information. To focus

on the agent’s information, suppose that b(θ) = b > 0, in which case the backward bias is

convex if f 0(θ)/f(θ) < −β/b. Thus, the principal can only benefit from a reduction in the

agent’s discretion if the density is decreasing. To understand this, note that if the agent has

a positive bias b > 0, the principal benefits from reducing the agent’s discretion in low states

but not in high states. A decreasing density then ensures that low states are sufficiently

more likely than high states so that the principal benefits overall. In Figure 5, for instance,

removing decision y2 makes the principal better off in states θ ∈ [r, s] but it makes her worse
off in states θ ∈ [s, t]. Overall the principal then benefits if the probability of being in interval
[r, s] is sufficiently high relative to the probability of being in the interval [s, t].

Adding and Removing Decision Intervals: We have just seen that if T (θ) is convex over the

interval [θA (y 1) , θA (y 3)], then the principal benefits from adding any decision y2 ∈ (y1, y3) to
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Figure 5: The Costs and Benefits of Removing a Decision

the delegation set D−. This suggests that the principal would benefit even more from adding

any number of decisions or, in fact, a continuum (y1, y3) of decisions, to the delegation set.

The following lemma considers the effect of adding decision intervals to, and removing such

intervals from, a delegation set and shows that this is indeed the case.

Lemma 7. Let D+ be a delegation set that contains an interval [y1, y3] ⊂ YA and let D− ≡
D+ \ (y1, y3). Then
(i.) removing decisions (y1, y3) from D+ strictly increases the principal’s expected utility if

T (θ) is strictly concave over the interval [θA (y1) , θA (y3)] and it does not change the

principal’s expected utility if T (θ) is linear over the interval [θA (y1) , θA (y3)].

(ii.) adding decisions (y1, y3) to D− strictly increases the principal’s expected utility if T (θ)

is strictly convex over the interval [θA (y1) , θA (y3)] and it does not change the principal’s

expected utility if T (θ) is linear over the interval [θA (y1) , θA (y3)].

Having derived these lemmas, we can now turn to the analysis of optimal delegation sets.

6.2 Characterizing the Optimal Delegation Set

In this section we build on the above analysis to characterize the optimal delegation set.

Essentially, we define a partition {y1, ..., yi, ...} of Y such that for each interval [yi,yi+1], the
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backward bias T (θ) is either convex, concave or linear for all θ ∈ [θA(yi), θA(yi+1)]. We then
use Lemmas 6 and 7 to characterize the number of decisions that the optimal delegation set

can contain in each interval. For instance, if T (θ) is concave for all θ ∈ [θA(yi), θA(yi+1)],
the optimal delegation set can contain at most two decisions within [yi, yi+1]. The optimal

delegation set can then be obtained by comparing the principal’s expected utility under the

different possible combinations of decisions in the different intervals.

The following proposition states the main characterization result. To understand the

proposition, recall that the ranges of the principal’s and the agent’s preferred decisions are

denoted by YP =
£
dP , dP

¤
and YA =

£
dA, dA

¤
respectively.

Proposition 2. Let D∗ be an optimal delegation set and let y1, y2 ∈ YA ∩ YP . Then,
(i.) if T (θ) is strictly convex for all θ ∈ [θA(y1), θA(y2)], then D∗ ∩ [y1, y2] is a connected

set, i.e. it contains either no decision, one decision or an interval of decisions.

(ii.) if T (θ) is strictly concave for all θ ∈ [θA(y1), θA(y2)], then D∗ ∩ [y1, y2] contains at
most two decisions.

(iii.) if T (θ) is linear for all θ ∈ [θA(y1), θA(y2)], then there exists a delegation set D∗0 ⊆ D∗

such that iii.a. the principal is indifferent between D∗0 and D∗ and iii.b. D∗0 ∩ [y1, y2]
is a connected set.

(iv.) D∗∩ [min{dA, dP},∞) and D∗∩ (∞,max{dA, dP}] contain at most one decision respec-
tively.

As anticipated, the first three parts of the proposition characterize the number of decisions

that the optimal delegation set can contain within intervals for which the backward bias is

either convex, concave or linear. Together, these parts of the proposition characterize the

optimal delegation set in the region of the decision space in which the ranges of the principal’s

and the agent’s preferred decisions intersect, i.e. in YA ∩ YP . Part (iv.) completes the

characterization by showing that the optimal delegation set can contain at most one decision

above and one decision below YA ∩ YP .
The characterization result enables us to generically reduce the delegation problem to a

finite dimensional problem that can be solved with standard techniques.18 As an illustration

18Specifically, we can reduce the delegation problem to a finite dimensional problem as long as T 0(θ) has a
finite number of extrema.
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of how this result can be applied, we now return to the linear regulation model.

Regulation Example: In this model T 00(θ) = 1
2 (A− θ) f 0(θ). The backward bias is therefore

convex if f 0(θ) > 0 and it is concave if f 0(θ) < 0. Part (i.) of Proposition 2 then implies

that the optimal delegation set contains either no price, one price or a price interval within

[A/2,min [(A+ θm)/2, 1]], where θm is the mode of the distribution, and part (ii.) implies that

it contains at most two prices within [min [(A+ θm)/2, 1] , 1]. Moreover, part (iv.) implies

that the optimal delegation set contains at most one price below y = A/2 and one above y = 1.

The next result shows which one of the different possible combinations is optimal.

Result 2. Suppose that delegation is valuable, i.e. A/2 < E(θ). Then, D∗ =
£
A/2,

¡
A+ θ

¢
/2
¤
,

where θ ∈ (0, 1) solves yA(θ) = E(θ
¯̄
θ ≥ θ ). Moreover, the regulator gives the monopolist more

discretion, the more aligned the monopolist’s preferences, i.e. the smaller A.

In the case of linear demand curves, regulation without transfers therefore often takes a

remarkably simple form. In particular, for any unimodal distribution, the regulator cannot do

better than to engage in price cap regulation. Essentially, faced with a monopolist who prefers

higher prices than herself, the regulator simply imposes a price cap and lets the monopolist

choose any price below this threshold. The result also confirms the standard intuition that an

agent gets more discretion the more aligned he is with the principal. In Section 6.4, however,

we will see that this comparative static does not hold in general.

6.3 Interval Delegation

In practice organizations often allow their agents to make any decision from a single interval,

that is, they engage in interval delegation (Holmström 1977, 1984). To understand why this

may be so, we now investigate when interval delegation is optimal.

Formally, the principal engages in interval delegation if the optimal delegation set consists

of a single, non-degenerate interval [y, y], where y < y. A particular type of interval delegation

is threshold delegation, in which case the interval lies strictly within the range of the agent,

i.e. y > minYA and y < maxYA. The next proposition provides conditions for threshold

delegation to be optimal.19

19The conditions under which other types of interval delegation, such as complete delegation, are optimal are
closely related to those stated in Proposition 3 and we therefore relegate them to the appendix (see Propositions
6 and 7).
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Proposition 3. Threshold delegation is optimal if and only if there exist two states θ, θ ∈ (0, 1)
and θ > θ such that (i.) S(θ) = 0 and S(θ) ≥ 0 for θ > θ, (ii.) T (θ) = 0 and T (θ) ≤ 0 for
θ < θ and (iii.) T (θ) is convex for all θ ∈ £θ, θ¤ .

For an intuition, consider first condition (i.). By requiring that the forward bias is weakly

positive for all θ ≥ θ, this condition ensures that for any bθ ≥ θ the agent’s preferred decision

yA(bθ) is larger than the principal’s preferred decision given that θ ≥ bθ, E hyP (θ) ¯̄̄θ ≥ bθi. In
this sense the agent has an incentive to make decisions that are too large from the principal’s

perspective, leading her to impose an upper threshold. The intuition for condition (ii.) is

similar: it implies that for any bθ ≤ θ the agent’s preferred decision yA(bθ) is smaller than
the principal’s preferred decision given that θ ≤ bθ, E hyP (θ) ¯̄̄θ ≤ bθi. The principal therefore
imposes a lower threshold to prevent the agent from making decisions that are too small from

her perspective. Finally, by requiring that the backward bias is convex between θ and θ,

condition (iii.) ensures that it is optimal for the principal to include all decisions between the

two thresholds in the delegation set.

To understand why interval delegation may be widespread in organizations, consider the

next proposition.

Proposition 4. Suppose the preferred decisions yP (θ) and yA(θ) are strictly increasing and

twice continuously differentiable and let yA(θ, λ) = (1 − λ)yA(θ) + λyP (θ), where λ ∈ [0, 1].
Also, let D∗ be the optimal delegation set that the principal offers to an agent with preferred

decisions yA(θ, λ). Then there exists a λ ∈ (0, 1) such that D∗ takes the form of a single

interval for all λ ≥ λ.

The proposition shows that interval delegation tends to be optimal when the agent’s pref-

erences are sufficiently aligned with those of the principal. This suggests that the apparent

widespread use of interval delegation in organizations may be due to their ability to carefully

screen their agents or to employ incentive schemes that sufficiently align their interests.

6.4 Comparative Statics on the Agent’s Discretion

It seems intuitive that a principal gives more discretion to a less biased agent, that is, to an

agent whose preferences are uniformly closer to hers. In fact, Holmström (1977, 1984) shows

that this comparative static holds under general conditions if delegation sets are required to
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Figure 6: A Less Biased Agent May Have Less Discretion

take the form of a single interval. It turns out, however, that it does not hold if the principal’s

ability to delegate is unrestricted. In particular, this can be the case if the less biased agent is

locally very unresponsive to changes in the state. Suppose, for instance, that the principal’s

preferred decisions are given by yP (θ) = θ and that θ is uniformly distributed on [0, 1]. Suppose

also that there is an agent A with preferred decisions yA(θ) = βθ, where β ∈ (1/2, 17/20).
The principal cannot do better than to let this agent make any decision. Consider now

another agent, agent A, with the preferred decisions yA(θ) =
1+β
2 θ

³
1 + 1−β

1+β sin
3
2πθ

´
which

are illustrated in Figure 6. It can be seen that while this agent is uniformly closer to the

principal than agent A is, he is also much less responsive to changes in the state if θ ∈ [v, w].
To encourage more state-sensitive decision making, the principal restricts agent A’s discretion

by ruling out the intermediate decisions (yA(v), yA(w)).20 This confirms our previous insight

that the agent’s discretion depends not only on the level of his bias but also, and importantly,

on its slope.

It may also seem intuitive that a principal gives more discretion to an agent with a bigger

informational advantage. However, in general, this is not the case either.21 Technically this

20The fact that agent A is allowed to make any decision follows from Proposition 7. The result that agent
A’s gets strictly less discretion follows from the fact that if β ∈ (1/2, 17/20) then there exist v,w ∈ (0, 1) such
that the backward bias is concave.
21Holmström (1977, 1984) shows that changes in the agent’s informational advantage have an ambiguous

effect on optimal interval delegation sets.
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is so since changes in the agent’s informational advantage have an ambiguous effect on the

backward and forward biases. Situations in which the principal gives less discretion to an

agent with a bigger informational advantage arise naturally in settings in which it is optimal

for the principal to encourage more state-sensitive decision making by ruling out intermediate

decisions. It is easy to show that ruling out such decisions may be more costly for the principal

the bigger the agent’s informational advantage, and that, as a result, she may rule out fewer

decisions. For an illustration we refer to Section 7, where we provide a simple example in

which the effect of changes in the agent’s informational advantage on his discretion depend

only on the slope of his bias.

7 Applications

Our analysis can be used to gain new insights into well-known economic problems. We have

already shown that our framework can be applied to a version of the classic regulation problem

in Baron and Myerson (1982) in which transfers are ruled out by law. In the linear regulation

model, we restricted attention to linear demand curves and showed that for any unimodal

distribution the regulator cannot do better than to engage in price cap regulation. This result

can also been shown for constant elasticity demand curves (see Appendix B).22 Thus, for

a large class of distributions and for common demand functions, optimal regulation without

transfers takes a remarkably simple form. Moreover, it is widely observed in practice.23

As discussed in the introduction, our analysis can also be used to gain new insights into

the design of legislative rules. In the remainder of this section we apply our analysis to a

version of the standard model in the literature and show that the optimal legislative rules are

similar to, but different from, the rules that the literature has focused on.24

The Model: A legislature and a committee care about an outcome x ∈ R. The utility of the
legislature is given by uP (·) = −x2 and that of the committee is given by uA(·) = − (x− b)2,

where b ∈ R. The outcome x is determined by an outcome function x(y, θ) = y/θ − 1 that
22 In the case of constant elasticity demand curves, profits and welfare are no longer quadratic functions of the

price. However, we can reasonably approximate them as quadratic functions using Taylor series approximations.
23For the use of price cap regulation in practice see, for instance, Armstrong and Sappington (2004).
24We follow the strand of the literature that focuses on homogenous committees and on information trans-

mission rather than the incentives to acquire information.
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depends on the policy y ∈ Y ⊂ R and the state θ ∈ [−a, a], where a > 0.25 The committee

knows the state θ but the legislature does not. The prior of the legislature is given by a

truncated normal distribution with zero mean and support [−a, a].26 The legislature can

employ any legislative rule, that is, it can commit to any deterministic decision rule. Among

the many rules it could commit to is the open rule under which the committee proposes a billby ∈ Y and the legislature is free to choose any policy y ∈ Y. Another example is the closed

rule under which the committee proposes a bill by ∈ Y and the legislature can either chooseby or an exogenously given default policy y0 ∈ Y . Most of the existing literature has focused

on the relative performance of open and closed rules. In contrast, we are interested in the

optimal among all possible rules. The timing is as follows: first the legislature chooses the

legislative rule, then the committee proposes a bill and finally the legislature chooses a policy.

Optimal Legislative Rules: In a given state θ the legislature’s preferred policy is yP (θ) = θ

and the committee’s is yA(θ) = βθ, where β ≡ (1 + b). To ensure that yA(θ) is increasing we

now assume that β > 0. Moreover, to avoid having to discuss a large number of different cases,

we assume that the support is ‘sufficiently large,’ in the sense that βa ≥ 2σ2 [f(0)− f(a)]. The

model is illustrated in Figure 7. The first result shows that delegation is always valuable,

independent of the committee’s informational advantage.

Result 3. Delegation is always valuable.

Essentially, the legislature and the committee agree that a positive policy should be im-

plemented when the state is positive and a negative policy should be implemented when the

state is negative. The legislature can then always elicit the sign of the state by offering a

binary delegation set {−y, y}, where y = E [θ |θ ≥ 0].
To investigate which decisions the legislature should delegate, it is useful to distinguish

between three types of committees: responsive committees for which β > 1, moderate commit-

tees for which 1 ≥ β ≥ 1/2, and unresponsive committees for which 1/2 > β > 0. The next

proposition focuses on responsive committees.

25 In the standard model in Gilligan and Krehbiel (1987) and Krishna and Morgan (2001) the outcome function
is assumed to be linear, i.e. x(y, θ) = y − θ. We focus on multiplicative outcome functions since they yield
additional insights into delegation.
26 In the standard model in Gilligan and Krehbiel (1987) and Krishna and Morgan (2001) it is assumed that

the state is uniformly distributed. The normal distribution allows us to perform comparative statics on the
agent’s informational advantage in a straightforward manner.
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Figure 7: Decision Making with Multiplicative Outcome Functions

Result 4. Suppose the committee is responsive, i.e. β > 1. Then threshold delegation is

optimal and the optimal delegation set takes the form [−y, y], where y = E [yP (θ) |θ ≥ θA(y) ].

The committee’s discretion is increasing in its informational advantage and decreasing in its

bias.

A responsive committee always prefers more extreme policies than the legislature, i.e.

|yA(θ)| > |yP (θ)|. Moreover, the discrepancy between the preferred policies |yA(θ)− yP (θ)| is
increasing in |θ|. It is then intuitive that the legislature restricts the committee’s discretion by
imposing an upper and a lower bound on the delegation set. Moreover, since the committee’s

preferred decisions are sufficiently steep relative to the legislature’s, the committee is allowed

to make any decision within these bounds.

Moderate and unresponsive committees always prefer less extreme policies than the legis-

lature. For this reason the legislature does not impose a binding upper or lower threshold on

the delegation set. Indeed, in the case of a moderate committee, the legislature does not put

any restrictions on the committee, as shown in the next result.

Result 5. Suppose the committee is moderate, i.e. 1 ≥ β ≥ 1/2. Then it is optimal to let the
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committee make any decision.

In contrast, in the case of an unresponsive committee the legislature does limit the com-

mittee’s discretion, as shown next.27

Result 6. Suppose the committee is unresponsive, i.e. 1/2 > β > 0. Then the opti-

mal delegation set contains all policies Y except those in an interval (−y, y), where y =

E [yP (θ) |0 ≤ θ ≤ θA(y) ]. The committee’s discretion is decreasing in its informational ad-

vantage and its bias.

To understand why the legislature bans the policies (−y, y), note that the preferred policies
of an unresponsive committee are, by definition, much less sensitive to changes in the state than

the legislature’s. Essentially, by removing the intermediate decisions (−y, y) the legislature
forces the committee’s decision making to be more state-sensitive than it would be under

complete delegation. Figure 8 shows that doing so hurts the legislature in the states [−v, v]
but makes it better off in states [−w,−v] ∪ [v, w]. An increase in σ2 makes it relatively less

likely that the state lies in [−v, v] than in [−w,−v] ∪ [v, w]. As a result, the legislature bans
more decisions when the informational advantage of an unresponsive committee increases.

The open rule cannot implement the optimal delegation set for any type of committee.

This is so since optimal delegation requires a continuum of decisions to be implemented which

is not possible in a cheap talk equilibrium. Similarly, the closed rule can only implement the

optimal delegation set in the knife-edge cases.28 However, the optimal delegation set can be

implemented through a modified closed rule which is identical to the closed rule but allows the

legislature to set the appropriate default policy (see Theorem 1 in Mylovanov 2006).

8 Revisiting Key Assumptions

To conclude the formal analysis we now return to three key assumptions and discuss the

implications of relaxing them.

27Note that the optimal delegation set described in this result is not minimal, i.e. it includes decisions that
are never selected in equilibrium. We focus on this optimal delegation set to ensure that the comparative
statics are unambiguous.
28 In particular, the closed rule can implement the optimal delegation set for responsive and for unresponsive

committee’s only if the default policy happens to be equal to either y or −y. In the case of a moderate
committee, the default policy has to be sufficiently unattractive to the legislature to ensure that it never wants
to implement it.
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Figure 8: Decision Making with an Unresponsive Committee

8.1 Contingent Transfers

It is evident that in our setting the principal could always do weakly better by committing

to contingent transfers. To get a sense for how much better she would be able to do, we

now compare the performances of optimal delegation and complete contracting in the leading

example of Crawford and Sobel (1982). We leave a general analysis of the returns from

contracting for future research.29

In the leading example of Crawford and Sobel (1982), θ is uniformly distributed on [0, 1],

uP (y, θ) = − (y − θ)2 and uA(y, θ) = − (y − θ − b)2, where b > 0. The optimal delegation set

then takes the form D∗ = [b, 1− b] if b ≤ 1/2 and D∗ = {1/2} if b > 1/2. To characterize the
complete contract, we draw on Krishna and Morgan (2006) who provide such a characterization

under the assumption that the agent is liquidity constrained.30 We consider two ‘no contract’

benchmarks: under principal control the principal is free to implement any decision without

interacting with the agent and thus implements y∗P = 1/2. Similarly, under agent control the

agent is free to make any decision and therefore implements yA(θ) = θ + b.

Figure 9 illustrates the percentage increase in the principal’s expected utility of moving

29See also Krishna and Morgan (2006).
30 In particular, they require transfers to the agent to be positive.
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Figure 9: The Returns from Contracting: Agent Control
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Figure 10: The Returns from Contracting: Principal Control

from agent control to optimal delegation and complete contracting respectively. The figure

shows that there are strongly decreasing returns from contracting. In particular, when the

difference in the relative performances is the greatest, namely at b ' 0.4, optimal delegation
increases the principal’s expected utility by about 50% while complete contracting increases it

by about 56%. Moreover, for small and for large biases, the performances of the two types of

contracts are almost indistinguishable. Figure 10 shows that this is also true if the benchmark

is principal control. While in this case the maximum difference in the relative performances

is larger, it still does not surpass 15 percentage points.

In some cases, therefore, the benefits of using contingent transfers, in addition to restrict-
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ing the agent’s discretion, are quite limited. It should also be noted that optimal transfer

rules tend to be highly non-linear and sensitive to changes in the informational structure. In

contrast, in some cases, such as the regulation model, optimal delegation takes a very simple

form that is robust to changes in the informational structure. To the extent that deriving and

implementing sophisticated transfer rules requires resources, this suggests that it may some-

times be more economical to simply restrict an agent’s discretion than to design a potentially

complicated complete contract.

8.2 General Utility Functions

In Section 6 we characterized the solution to the delegation problem (4) by analyzing the

effects of adding decisions to, and removing them from, a delegation set. When the princi-

pal’s utility function is quadratic, this optimization technique delivers very simple optimality

conditions. Also, for such preferences the principal benefits from removing any number of

intermediate decisions whenever the sufficient condition for removing a single intermediate

decision is satisfied. These features greatly simplify the characterization of the optimal dele-

gation set. The key problem of allowing for more general preferences is that, in general, these

features do not hold for non-quadratic preferences. It should be noted, however, that while

the analysis is more complicated, in principle, the same optimization technique can be used

to obtain a characterization of the optimal delegation set when the principal’s utility function

takes a more general form.

Suppose, for instance, that the principal’s utility uP (y, θ) is strictly concave in y and that

yA(θ) = θ. The rest of the model is as in Section 3. Using the same approach as we did in

the analysis above, we can then establish a sufficient condition for interval delegation to be

optimal.

Proposition 5. Let R(θ) ≡ ∂uP (θ,θ)
∂y f(θ) and yP (θ) ≡ argmaxy uP (y, θ).. If yP (θ) is (weakly)

increasing and R(θ) is (weakly) decreasing in [0, 1] and there exists θ ∈ (0, 1) such that R(θ) = 0
then interval delegation is optimal.

To understand how this condition relates to the sufficient conditions derived above, note

that if the principal’s preferences are quadratic, then R(θ) = −2b(θ)f(θ) and T 0(θ) = F (θ)−
R(θ)/2. Thus, if R(θ) is weakly decreasing, then the backward bias T (θ) is convex.
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8.3 Stochastic Mechanisms

Our model follows most of the literature on mechanism design in restricting attention to

deterministic mechanisms. In general, this is not without loss of generality. In a recent

paper, however, Kovac and Mylovanov (2006) consider a version of our model with quadratic

preferences and provide a sufficient condition for the optimal mechanism to be deterministic.

When their condition is satisfied, the backward bias is everywhere convex and thus interval

delegation is optimal. In contrast, when interval delegation is not optimal, it is possible to

construct examples in which the optimal mechanism is stochastic.

Suppose, for instance, that θ is distributed on [−1, 1] according to a symmetric probability
density function f(θ), uA (y, θ) = −(y− βθ)2 and that uP (y, θ) = −(y− θ)2. Further suppose

that E [θ |θ ≥ 0] > 2β. The optimal delegation set then consists of only two decisions, −y
and y, where y = E [θ |θ ≥ 0]. Although the agent’s bias is very small for θ close to zero,
the principal rules out the intermediate decisions (−y, y) to encourage more state-sensitive
decision making. The principal can improve on this deterministic mechanism by letting the

agent choose between y, −y and a zero-mean lottery over two decisions −z and z, where z < y.

The agent will then prefer the lottery to either y or −y whenever θ is close to zero.31

We leave a full characterization of optimal stochastic mechanisms for future research. It

should be noted, however, that even if a stochastic mechanism is optimal, enforcing such a

mechanism may be impossible.32

9 Conclusions

Rules are a pervasive feature of organizations. In this paper we studied the optimal design

of decision rules in organizations in which there is a misalignment in the interests between

the managers who have the legal right to make decisions and those who possess the relevant

information. Our focus has been on situations in which it is impossible to commit to contingent

monetary transfer schemes. We believe that such situations are widespread in practice and

31 In particular, the agent chooses the lottery for |θ| ≤ θ ≡ y2 − z2 / (2βy). The incre-
ment in the principal’s expected utility when offering this stochastic mechanism is given by ∆U =
4y F (θ)− 1/2 βθ − E θ 0 ≤ θ ≤ θ . For a fixed β, there exist distributions with sufficient probability mass
at zero such that ∆U > 0.
32Enforcement is a standard concern with stochastic mechanisms. See, for instance, page 67 in Laffont and

Martimort (2002).
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not yet sufficiently well understood in theory.

The central result in the paper is the characterization of optimal decision rules. In general,

such rules can take many different forms. In practice, however, decision rules are often very

simple and merely specify an interval of decisions from which the agent is allowed to choose

his preferred one. We showed that such simple decision rules are optimal when the agent

is sufficiently aligned with the principal. When this is not the case, optimal decision rules

may contain gaps, that is, they may allow the agent to make high or low decisions but not

intermediate ones. Such gaps may be optimal since they can be used to induce more state-

sensitive decision making by an otherwise unresponsive agent. When such gaps are optimal,

some of the perceived wisdoms about decision making in organizations do no longer hold. For

instance, the principal may then give less discretion to a more aligned agent or to one with

a bigger informational advantage. In other words, the Ally Principle and the Uncertainty

Principle no longer hold.

Our theoretical results can be used to gain new insights into well-known economic problems

such as the regulation of a monopolist who is privately informed about his costs. This problem

was first analyzed in Baron and Myerson (1982) in a setting in which the regulator is able

to make contingent transfers to the monopolist. While there are industries in which such

transfers are indeed feasible, there are others in which they are ruled out by law. Our analysis

can be applied to study optimal regulation in such industries. In this context we showed that

for a large class of distributions and for common demand functions, optimal regulation without

transfers takes a remarkably simple form which, moreover, is often observed in practice. In

particular, the regulator cannot do better than to either give the monopolist no discretion at

all or to impose a price cap and let him choose any price below this threshold.

Some of the decision rules that are optimal in our setting are therefore widely observed

in practice. There are other rules, however, which are pervasive in organizations and which

our model cannot rationalize. For instance, organizations often engage in management by

exception, that is, they make the identity of the decision maker contingent on the state of

the world. Existing research has emphasized the importance of ability differences between

players in explaining management by exception.33 Such ability differences are absent in our

33See Athey, Gans, Schaefer, and Stern (1994) and Garicano (2000).
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model. While this assumption seems appropriate in some situations, such as setting a price

for a regulated monopolist, it is not in others. It would be interesting to extend our analysis

by allowing for ability differences.

Our analysis also assumes that decision rules do not affect the incentives of the agent to

acquire information. Again this assumption is appropriate in some situations. The incentives

of a regulated firm to learn its own production costs, for instance, are largely independent

of the regulatory environment it faces. In other situations, however, the rules that an agent

faces have a first order effect on his incentives to acquire information. A judge who knows

that he has to impose a sentence of exactly five years, for instance, has a smaller incentive to

learn about the specifics of case than a judge who is allowed to impose any sentence. In such

a situation rules must then be designed, not just to elicit information from an agent, but also

to motivate him to acquire information in the first place.34 This issue, and others, awaits

future research.
34Aghion and Tirole (1997) and Szalay (2005) analyze the effect of delegation on the incentives to acquire

information but they largely abstract from the need to elicit information.
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10 Appendix A

This appendix contains the proofs of all propositions and lemmas as well as the statements

and proofs of Propositions 6 and 7. For some of the proofs it is convenient to define eS(y) ≡
S(θA(y)) and eT (y) ≡ T (θA(y)). Thus eS (·) and eT (·) represent the forward bias and backward
bias as functions of the decision instead of the state.

Proof of Lemma 1: The proof is similar to the arguments presented in Strausz (2003).

Consider an arbitrary deterministic mechanism and an equilibrium of that mechanism that im-

plements outcome function σ(θ). First we establish that for θ0 > θ, inf
©
y : y ∈ supp σ(θ0)

ª ≥
sup {y : y ∈ supp σ(θ)}. In other words, for any deterministic mechanism offered by the prin-

cipal and any equilibrium of that mechanism, the agent always induces higher decisions for

higher realizations of the state of the world. Suppose on the contrary that for θ0 > θ there

exists y(θ0) < y(θ), where y(θ0) ∈supp σ(θ0) and y(θ) ∈supp σ(θ). From single-peakedness and
symmetry of uA(y, θ) it has to be the case then that yA(θ) ≥

¡
y(θ0) + y(θ)

¢
/2 and yA(θ

0) ≤¡
y(θ0) + y(θ)

¢
/2. Since yA(θ) is strictly increasing this leads to a contradiction. Therefore we

have that y(θ0) ≥ y(θ) for y(θ0) ∈supp σ(θ0) and y(θ) ∈supp σ(θ).

Next let u(θ) = Eσ(θ) [uP (m, θ)] be the interim expected utility of the principal for type

θ. For each θ define X(θ) ∈supp σ(θ) such that uP (X(θ), θ) ≥ Eσ(θ)) [uP (m, θ)]. Note

that X(θ) is non-decreasing and hence Borel-measurable. Therefore the direct determinis-

tic mechanism (Θ,X) is well defined, incentive compatible and satisfies Eθ [uP (s(θ), θ)] ≥
Eθ
£
Eσ(θ) [uP (m, θ)]

¤
. Thus we can reduce the search for an optimal deterministic mechanism

to the set of direct deterministic mechanisms that are incentive compatible. ¥

Proof of Lemma 2: Follows immediately from Proposition 1 in Melumad and Shibano

(1991). ¥

Proof of Lemma 3: To prove this claim we show that all outcome functions in XD yield the

same expected utility for the principal. Let D ⊂ Y be a compact set and define W = {θ ∈
Θ : X

0
(θ) 6= X 00(θ);X 0

,X 00 ∈ XD}. The set W contains all states where outcome functions

in XD differ. This in turn implies that for the agent at θ ∈ W , yA(θ) /∈ D. We will prove

that Prob[θ ∈W ] = 0 which then establishes that Eθ [ui(X 0(θ), θ)] = Eθ [ui(X 00(θ), θ)] for all

X 0,X 00 ∈ XD and i = A,P . To prove that Prob[θ ∈W ] = 0 we show next that the set W is
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countable. Since F is absolutely continuous it then follows that Prob[θ ∈W ] = 0.

Let θ,eθ ∈W and θ 6= eθ. It follows from single peakedness and symmetry of uA(y, θ) w.r.t.

to y that X(θ) ⊂ {sθ, s0θ}, where sθ < yA(θ) < s0θ . Since yA(θ) is strictly increasing, it must

be that {x : x = X(θ),X ∈ XD} 6=
n
x : x = X(eθ),X ∈ XD

o
. Next associate with each θ ∈W

the number s0θ − sθ > 0. Define the sets An = {θ ∈ W : 1n > s0θ − sθ ≥ 1
1+n}, n ∈ N and

A0 = {θ ∈ W : s0θ − sθ ≥ 1}. Note that each An is a finite set. Since W = ∪∞i=0Ai, S is

countable. ¥

Proof of Lemma 4: Follows immediately from Theorem 1 in Holmström (1984). ¥

Proof of Lemma 5: Since, following Lemma 2, for all X(θ) ∈ X, X(θ) is (weakly)

monotonic and bounded and T (θ) is continuous, the Riemann-Stieltjes integral
R 1
0 T (θ)dX(θ)

is well-defined and finite. Now consider a given X(θ) and compute the difference ∆(X(θ)) =

Eθ [uP (X(θ), θ)]−Eθ [uP (y∗P , θ)] between the expected utility of the principal under X(θ) and
under the delegation set {y∗P}

∆(X(θ)) =

Z 1

0

¡
(y∗P − yP (θ))

2 − (X(θ)− yP (θ))
2
¢
dF (θ)

= − (y∗P )2 +
Z 1

0
2X(θ)yP (θ)dF (θ)−

Z 1

0
X2(θ)dF (θ). (7)

First, integrating by parts the second term of the right hand side of (7) we haveZ 1

0
2X(θ)yP (θ)dF (θ) = 2X(1)y

∗
P −

Z 1

0

∙Z θ

0
2yP (z)dF (z)

¸
dX(θ).

Note that for every state θ, incentive compatibility of the agent implies that X−(θ)+X+(θ) =

2yA(θ), which implies that

(X+(θ))2 − (X−(θ))2 = 2yA(θ)
¡
X+(θ)−X−(θ)

¢
. (8)

We can then integrate by parts the third term of the right hand side of (7) to find thatR 1
0 X

2(θ)dF (θ) = X2(1)− R 10 2yA(θ)F (θ)dX(θ). Rearranging terms it follows that
∆(X(θ)) = − (y∗P )2 + 2X(1)y∗P −X2(1)

+

Z 1

0
2yA(θ)F (θ)dX(θ)−

Z 1

0

Z θ

0
2yP (z)dF (z)dX(θ)

= − (y∗P −X(1))2 + 2

Z 1

0
T (θ)dX(θ). (9)
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Alternatively we can integrate by parts the second term on the right hand side of (7) to obtainR 1
0 2X(θ)yP (θ)dF (θ) = 2X(0)y∗P +

R 1
0

hR 1
θ 2yP (z)dF (z)

i
dX(θ). By application of (8) and

integration by parts we have
R 1
0 X

2(θ)dF (θ) = X2(0)+
R 1
0 2yA(θ)(1−F (θ))dX(θ). Rearranging

terms we finally obtain

∆(X(θ)) = − (y∗P )2 + 2X(0)y∗P −X2(0)−
Z 1

0
2yA(θ)(1− F (θ))dX(θ)

+

Z 1

0

∙Z 1

θ
2yP (z)dF (z)

¸
dX(θ)

= − (y∗P −X(0))2 − 2
Z 1

0
S(θ)dX(θ). (10)

Therefore,

V = max
X(θ)∈X

∆(X(θ)) = max
X(θ)∈X

− (y∗P −X(1))2 + 2

Z 1

0
T (θ)dX(θ)

= max
X(θ)∈XD

− (y∗P −X(0))2 − 2
Z 1

0
S(θ)dX(θ). ¥

Proof of Proposition 1: Necessity : We will prove the contra-positive, i.e. if there exists

θ ∈ (0, 1) such that T (θ) > 0 and S(θ) < 0 then V > 0. Let θ∗ ∈ (0, 1) be such that S(θ∗) < 0 <
T (θ∗) and let y = yA(θ

∗). Consider the delegation set D comprised of only two decisions

such that at θ∗ the agent is indifferent between the two decisions, i.e. D = {y − d, y + d}
with d > 0. The difference in the principal’s expected utility from D and the delegation set

{y∗P} is given by ∆(X(θ)) ≡ − (y∗P −X(1))2+2
R 1
0 T (θ)dX(θ) = − (y∗P − (y + d))2+4T (θ∗)d.

Selecting d = T (θ∗)−S(θ∗) > 0 we have ∆(X(θ)) = − (2T (θ∗))2+4T (θ∗) [T (θ∗)− S(θ∗)] = −
4T (θ∗)S(θ∗) > 0. Therefore V > 0.

Sufficiency: Note that the condition in the proposition is equivalent to requiring that for

all θ ∈ (0, 1), T (θ) ≤ 0 or S(θ) ≥ 0. Suppose first that for all θ ∈ (0, 1) T (θ) ≤ 0. Then, for all
X(θ) ∈ X we have that

R 1
0 T (θ)dX(θ) ≤ 0 and from (5) − (y∗P −X(1))2+2

R 1
0 T (θ)dX(θ) ≤ 0.

Therefore V = max
X(θ)∈XD

− (y∗P −X(1))2 + 2
R 1
0 T (θ)dX(θ) = 0.

Next consider the case that S(θ) ≥ 0 for all θ ∈ (0, 1). Then, for all X(θ) ∈ X we have

that
R 1
0 S(θ)dX(θ) ≥ 0 and from (10) − (y∗P −X(0))2− 2 R 10 S(θ)dX(θ) ≤ 0. This implies that

V = max
X(θ)∈XD

− (y∗P −X(0))2 − 2 R 10 S(θ)dX(θ) = 0. ¥
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Proof of Lemma 6: Follows immediately from the discussion in the text. ¥

Proof of Lemma 7: Let y2 = (y1 + y3)/2 and consider the collection of delegation sets

D(t) = D \ (y2 − t, y2 + t) for t ∈ [0, t], where t ≡ (y3 − y1)/2. Note that D(0) = D and

D(t) = D. The difference in the principal’s expected utility from these two delegation sets

∆(t) ≡ E(uP (y, θ) |D )− E(uP (y, θ) |D(t)) is given by

∆(t) =

Z θA(y2)

θA(y2−t)
(y2 − t− yP (θ))

2 − (yA(θ)− yP (θ))
2 dF (θ) (11)

+

Z θA(y2+t)

θA(y2)
(y2 + t− yP (θ))

2 − (yA(θ)− yP (θ))
2 dF (θ).

Differentiating this expression gives ∆0(t) = 2 [T (θA (y2 + t)) + T (θA (y2 − t))− 2T (θA (y2))].
Thus, if T (θ) is strictly concave in [θA

¡
y2 − t

¢
, θA

¡
y2 + t

¢
] we have that ∆0(t) ≤ 0 for t ≤ t

and with strict inequality if T (θ) is strictly concave. Thus, in this case ∆(t) =

tZ
0

∆0(t)dt ≤ 0

for t ∈ (0, t] and with strict inequality if T (θ) is strictly concave in [θA
¡
y2 − t

¢
, θA

¡
y2 + t

¢
]. It

follows that, if T (θ) is concave in [θA
¡
y2 − t

¢
, θA

¡
y2 + t

¢
], then (11) is negative for all t ∈ [0, t]

and takes its minimum value for t = t. This proves part (i.).

Conversely, if T (θ) is convex in [θA
¡
y2 − t

¢
, θA

¡
y2 + t

¢
] we have that ∆0(t) ≥ 0 for t ≤

t and with strict inequality if T (θ) is strictly convex. Since ∆(0) = 0 this implies that

∆(t) =

tZ
0

∆0(t)dt ≥ 0 for t ∈ (0, t] and with strict inequality if T (θ) is strictly convex in

[θA
¡
y2 − t

¢
, θA

¡
y2 + t

¢
]. Hence, if T (θ) is strictly convex in [θA

¡
y2 − t

¢
, θA

¡
y2 + t

¢
], then

(11) is positive for all t ∈ [0, t]. This proves part (ii.). ¥

Proof of Proposition 2: Part (i.): Suppose on the contrary that D∗ ∩ [y1, y2] is not a
connected set. Since D∗ ∩ [y1, y2] is closed there exist two points u, v ∈ D∗ ∩ [y1, y2], u 6= v,

such that the interval (u, v) does not contain any points of D∗. Consider the alternative

(compact) delegation set bD = D∗ ∪ [u, v]. The difference in expected utility to the principal
under bD and D∗ is given by ∆ ((v − u)/2), where ∆ (·) is defined in (11) and the difference
is evaluated at (v + u)/2. Since T (θ) is strictly convex in [θA (u) , θA (v)] by Lemma 7.ii.

∆ ((v − u)/2) > 0. Thus, D∗ cannot be optimal.

Part (ii.): We establish this claim in two steps. We first show that if T (θ) is strictly concave

in [θA (y1) , θA (y2)] an optimal delegation set cannot contain any non-degenerate interval.
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Second, we establish that the principal strictly prefers a delegation set with only two decisions

in [y1, y2] to one with more than two decisions in [y1, y2].

Suppose first that D∗ ∩ [y1, y2] contains a closed interval [u, v]. Let bD = D∗ ∩ (u, v)C be
an alternative delegation set where all decisions in (u, v) are prohibited by the principal. The

difference in the principal’s expected utility under D∗ and bD is given by ∆ ((v − u)/2), where

∆ (·) is defined in (11) and the difference is evaluated at (v+u)/2. Since T (θ) is strictly concave
in [θA (u) , θA (v)] by Lemma 6.i., ∆ ((v − u)/2) > 0 contradicting the assumed optimality of

D∗. Thus, D∗ cannot contain any non-degenerate interval in [y1, y2].

Consider now the case in which D∗ ∩ [y1, y2] contains more than two points but does
not contain any non-degenerate interval. We will distinguish two cases: a. there exist three

decisions by1 < by2 < by3 with by1, by2, by3 ∈ D∗ ∩ [y1, y2] that are consecutive in the sense that
(by1, by2)∩D∗ = (by2, by3)∩D∗ = ∅, b. D∗∩[y1, y2] does not contain three consecutive decisions.35

a. Three consecutive decisions by1 < by2 < by3. Suppose that there are three consecutive
decisions by1 < by2 < by3. We now propose an alternative delegation set bD which coincides

with D∗ except for the decision by2 which is banned by the principal. Then, letting ∆U ≡
E(uP (y, θ) |D∗ )−E(uP (y, θ)

¯̄̄ bD ) be the difference in the expected utility of the principal from
D∗ and bD by Lemma 6.i. we have that ∆U < 0 so that E(uP (y, θ)

¯̄̄ bD ) > E(uP (y, θ) |D∗ ).
Therefore the delegation setD∗ with three consecutive decisions by1, by2, by3 inD∗∩[y1, y2] cannot
be optimal.

b. No three consecutive decisions. Let s = maxD∗ ∩ [y1, y2] and s= minD∗ ∩ [y1, y2] be
the highest and lowest decisions in the range [y1, y2] allowed in D∗. Note that the complement

in [y1, y2] of D∗ is an open set whose intersection with [s, s] can be described as the union of

a countable collection of pairwise disjoint intervals Ai ,i ≥ 1, of the form Ai = (ai, ai). For

convenience define Bi, i ≥ 1, the set of states in which the agent’s preferred decision lies in
(θA (ai) , θA (ai)). We now construct a sequence of delegation sets Di such that the expected

utility of the principal E(uP (y, θ) |Di ) converges to E(uP (y, θ) |D∗ ). Define D0 = {s, s} and
Di = Di−1∪ {ai, ai} for i ≥ 1. Next note that the agent’s optimal response under Di and D∗

35We note that the existence inD∗∩[y1, y2] of three decisions that are consecutive is equivalent to the existence
of an isolated point of D∗ ∩ [y1, y2] different from its extremal points (i.e. different from maxD∗ ∩ [y1, y2] and
minD∗ ∩ [y1, y2]). There are however compact sets that are nowhere dense (therefore do not contain any
nondegenerate interval) but have no isolated points, i.e. all its points are accumulation points. An example of
such a set would be the Cantor ternary set (see e.g. Rudin (1987)).

39



coincide in the set ∪ij=1Bj , and that lim
i→∞

Pr
h
θ ∈

³
∪ij=1Bi

´ci
= 0. Therefore we have that

for each i, |E(uP (y, θ) |Di )− E(uP (y, θ) |D∗ )| ≤
¯̄̄̄
max
y∈Y

y −min
y∈Y

y

¯̄̄̄
Pr

h
θ ∈

³
∪ij=1Bi

´ci
which

implies that E(uP (y, θ) |Di ) → E(uP (y, θ) |D∗ ) as i→∞.
By the previous proof for three consecutive decisions we know that E(uP (y, θ) |Di−1 ) >

E(uP (y, θ) |Di ). Thus E(uP (y, θ) |D0 ) > E(uP (y, θ) |D∗ ) and D∗ cannot be optimal.

Part (iii.): Let s = maxD∗∩ [y1, y2] and s = minD∗∩ [y1, y2] be the highest and lowest de-
cisions in the range [y1, y2] allowed in D∗. Consider the alternative delegation set bD =[s, s]∪D∗

where the principal offers the entire interval [s, s] to the agent. We will show that if D∗ is op-

timal then bD is also optimal. Suppose on the contrary that E(uP (y, θ)
¯̄̄ bD ) < E(uP (y, θ) |D∗ ).

Then there must exist an interval [u, v] , u 6= v such that E(uP (y, θ)
¯̄̄ bD ) < E(uP (y, θ)

¯̄̄ bD1 ),
where bD1 = bD ∩ (u, v)c , or, equivalently ∆ ((v − u)/2) < 0. However, since T (θ) is linear in

[θA (u) , θA (v)] we have by Lemma 7 that ∆ ((v − u)/2) = 0 reaching a contradiction. There-

fore if D∗ is optimal then bD, which follows by substituting the set of decisions D∗ ∩ [y1, y2] by
its convex hull [s, s], is also optimal.

Part (iv.): We first show that D∗ can contain at most one point above and one point below

the range of preferred decisions of the agent YA. Suppose that D∗∩ [dA,∞) and D∗∩(−∞, dA]

are non empty and let cA = minD∗∩ [dA,∞) and cA = maxD∗∩ (−∞, dA]. Single peakedness

of uA(y, θ) w.r.t. y implies that cA and cA are strictly preferred by the agent to all other points

in D∗ ∩ [dA,∞) and D∗ ∩ (−∞, dA]. Minimality of D
∗ implies that D∗ ∩ [dA,∞) = {cA} and

D∗ ∩ (−∞, dA] = {cA} .
Now we establish that D∗ can contain at most one point above and one point below the

range of preferred decisions of the principal YP . Suppose the set D∗∩ (−∞, dP ] contains more

than one point. The corresponding analysis for the set D∗ ∩ [dP ,∞) is entirely analogous.
Let cP = maxD∗ ∩ (−∞, dP ] be the highest decision in D∗ (weakly) below the principal’s

range of preferred decisions and define the set of states SD∗ = {θ |cP > argmaxy∈D∗ uP (y, θ)}
where the agent selects a decision strictly below cP . Now consider the alternative delegation

set eD = (D∗ ∩ [dP ,∞)) ∪ {cP} which is obtained by replacing all decisions in D∗ below dP

with the single decision cP . For states in Sc
D∗ the agent’s optimal choice remains unchanged

under eD while for states in SD∗ the agent will optimally select cP from the delegation seteD. Strict concavity of the principal’s utility w.r.t. y implies that uP (cP , θ) > uP (y, θ) for
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θ ∈ SD∗ , y ∈ D∗ ∩ (−∞, dP ). If Prob[θ ∈ SD∗ ] > 0 then E
h
uP (y, θ)

¯̄̄ eDi > E [uP (y, θ) |D∗ ]
contradicting the assumed optimality of D∗. ¥

Proof of Proposition 3: Necessity : Suppose that D∗ =
£
y, y
¤
is a minimal optimal delega-

tion set and let θ = θA(y) and θ = θA(y). From Proposition 2 it is then necessary that T (θ)

is convex for y ∈ £θ, θ¤. The expected utility of the principal under D∗ is given by
UP = −

Z θ

0
[yA(θ)− yP (θ)]

2 dF (θ)−
Z θ

θ
[yA(θ)− yP (θ)]

2 dF (θ)−
Z 1

θ

£
yA(θ)− yP (θ)

¤2
dF (θ).

Optimality of D∗ requires θ and θ to satisfy the first order conditions

∂UP

∂θ
= −2y0A(θ)

Z θ

0
[yA(θ)− yP (θ)] dF (θ) = 0

∂UP

∂θ
= −2y0A(θ)

Z 1

θ

£
yA(θ)− yP (θ)

¤
dF (θ) = 0

Since, by assumption, y0A(θ) > 0 we must have yA(θ) = E
£
yP (z)

¯̄
z ≥ θ

¤
and yA(θ) =

E [yP (z) |z ≤ θ ].

Finally, since D∗ =
£
y, y
¤
is optimal, UP cannot increase if the principal adds decisions

below y and above y to the delegation set D∗. First consider adding decisions below y and, for

each eθ <θ, consider adding the decision y to D∗ such that the agent at state eθ is indifferent
between the lower bound y and the new decision y, i.e. yA(eθ) = (y + y)/2. Let XD∗(θ) and

XD∗∪{y}(θ) be the outcome functions associated with D∗ and D∗∪{y} respectively. These two
functions only differ for θ ≤ eθ, where XD∗∪{y}(θ) selects the new decision y and has a jump

discontinuity at eθ of magnitude y−y. Using the representation (9) we have that the increment
in the expected utility of the principal by adding a new decision y is ∆UP = 2T (eθ) ¡y − y

¢
.

Optimality of D∗ implies that ∆UP ≤ 0 and therefore T (eθ) ≤ 0. A similar reasoning shows

that adding a decision y above y leads to a variation in the principal’s expected utility ∆UP =

−2S(eθ) (y − y), where eθ ≥ θ is such that yA(eθ) = (y + y) /2. Optimality of D∗ implies that

∆UP ≤ 0 and therefore S(eθ) ≥ 0.
Sufficiency: We establish sufficiency by proving that (i.) delegation set {y∗P} is not optimal,

(ii.) an optimal delegation set has no decisions above y and no decisions below y , and (iii.)

D∗ is an interval and D∗ =
£
y, y
¤
.

(i.) Delegation set {y∗P} is not optimal : Note that, since T (θ) = 0 and T (θ) ≤ 0 for θ < θ,

T (θ) is (weakly) increasing at θ = θ . Convexity of T (θ) in
£
θ, θ
¤
implies that T (θ) > 0 for

41



θ ∈ ¡θ, θ¢. A similar argument applied to S(θ) establishes that S(θ) < 0 for θ ∈ ¡θ, θ¢. By
Proposition 3 it follows that {y∗P} cannot be optimal.

(ii.) D∗ is empty outside of
£
y, y
¤
: First, since eT (y) ≤ 0 for y < y , by (5) it follows that

an optimal delegation set must have at most one decision below y. By a similar argument,

from eS(y) ≥ 0 for y > y and representation (6) an optimal delegation set must have at most

one decision above y.

Second, we establish that D∗ ∩ £y, y¤ 6= ∅, i.e. any optimal delegation set must contain
at least one decision in

£
y, y
¤
. Suppose not, i.e. D∗ ∩ £y, y¤ = ∅. Then, since delegation is

valuable D∗ must contain exactly two decisions. We will show that the optimal two-decision

delegation set necessarily has at least one decision in
£
y, y
¤
thus reaching a contradiction.

To this end, define eS(y) ≡ S(θA(y)) and eT (y) ≡ T (θA(y)) and let Dy∗ = {y∗ − d∗, y∗ + d∗}
be an optimal two-decision delegation set. Then we must have d∗ = eT (y∗) − eS(y∗) andeT (y∗) > 0, eS(y∗) < 0, which requires that y∗ ∈ ¡y, y¢. If D∗ ∩ £y, y¤ = ∅ it must be that

y∗ + d∗ > y and y∗ − d∗ < y which implies that 2eT (y∗) > eT (y) = eT (y) + eT (y) > 2eT (y+y2 )
and 2eS(y∗) < eS(y) = eS(y) + eS(y) < 2eT (y+y2 ), where in each case the last inequality follows,
respectively, from the convexity of eT (y) and the concavity of eS(y) in £y, y¤. Given that

both eT (y) and eS(y) are increasing, the last two inequalities imply that y∗ > ¡
y + y

¢
/2 and

y∗ <
¡
y + y

¢
/2 which leads to a contradiction. Therefore it must be that D∗ ∩ £y, y¤ 6= ∅.

Third, we prove that, since any optimal delegation set D∗ must contain at least one decision

in
£
y, y
¤
, if there are decisions allowed by the principal in D∗ ∩ £y, y¤c she can always increase

her expected utility by either banning these decisions or appropriately increasing the discretion

of her agent. This will contradict the assumed optimality of D∗ and hence prove that D∗ ∩£
y, y
¤c
= ∅. We will only explicit show that D∗ ∩ (y,∞) = ∅ since the analysis required to

prove D∗ ∩ (−∞, y) = ∅ is entirely analogous.

Suppose that D∗ ∩ (y,∞) = {y2} and let y1 be the highest decision allowed to the agent in
D∗ ∩ £y, y¤. If (y1 + y2) /2 > y by (6) we see that the principal could obtain a higher expected

utility by removing the decision y2 from D∗. Now suppose that (y1 + y2) /2 ≤ y, which implies

that y1 < y. Consider the delegation set D∗ ∪ {y1 + �} where 0 < � < 2y − y1 − y2. The

increment of the principal’s expected utility is

∆U = 2

∙ eT (y1 + �

2
)�+ eT (y1 + y2

2
+

�

2
) [y2 − y1 − �]− eT (y1 + y2

2
) (y2 − y1)

¸
> 0
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since eT (y) is convex in £y, y¤. We see that in both cases D∗ cannot be optimal. Therefore we
must have D∗ ∩ (y,∞) = ∅.

(iii.) D∗ is an interval and D∗ =
£
y, y
¤
. Since D∗∩£y, y¤c = ∅ and {y∗P } is not optimal, by

Proposition 1 D∗ must be a (non-degenerate) interval contained in
£
y, y
¤
. Therefore threshold

delegation is optimal. We will now show that indeed D∗ =
£
y, y
¤
. Since the value of delegation

from offering the agent an interval [y1, y2] is given by V = − (y∗P − y2)
2 + 2

R y2
y1
eT (y)dy =

− (y∗P − y1)
2 − 2 R y2y1 eS(y)dy, by differentiating this expressions w.r.t. y1 and y2, respectively,

we have that for an optimal [y1, y2], eT (y1) = 0 and eS(y2) = 0. Therefore D∗ = £y, y¤ . ¥
Proof of Proposition 4: Let bF (y, λ) = F (θA(y, λ)) and bf(y, λ) = f(θA(y, λ)). It suffices to

show that there exists a λ ∈ (0, 1) such that for λ > λ, eT (y, λ) = bF (y, λ)y−R θA(y,λ)0 yP (θ)dF (θ)

is strictly convex for all y ∈ YA(λ). If this condition is satisfied then for each λ > λ interval

delegation is optimal.

Let YA(λ) be the range of preferred decisions of an agent with preferred decisions yA(θ, λ).

For y ∈ YA(λ) define r(y, λ) ≡ ∂
∂y [θA(y, λ)]

bf(y, λ) = bf(y, λ)/ [1− λ+ λy0P (θA(y, λ)] . Given

our conditions on yA(θ), yP (θ) and f(θ), r(y, λ) is continuously differentiable in the compact

set Ω = {(y, λ) : y ∈ YA(λ), λ ∈ [0, 1]}. By successive differentiation, ∂2

∂y2
eT (y, λ) satisfies

£
1− λ+ λy0P (θA(y, λ)

¤ ∂2

∂y2
eT (y, λ) (12)

= bf(y, λ) + (1− λ)
£
1− λ+ λy0P (θA(y, λ)

¤ ∂

∂y
[(y − yP (θA(y, λ))) r(y, λ)] .

From the assumption min f(θ) = f > 0 and the fact that the term¯̄̄̄£
1− λ+ λy0P (θA(y, λ)

¤ ∂

∂y
[b(y)r(y, λ)]

¯̄̄̄
is uniformly bounded in Ω, say by M , we infer the existence of a λ ∈ (0, 1) such that f + (1−
λ)M > 0. Thus, ∀λ > λ the RHS of (12) is strictly positive and thus ∂2

∂y2
eT (y, λ) > 0 ∀λ > λ,

y ∈ YA(λ). This establishes the convexity of eT (y, λ) ∀λ > λ. ¥
Proof of Proposition 5: Letting D∗ be an optimal delegation set we will show that (i.) D∗

is non-empty in [0, 1], (ii.) D∗ is empty in [0, 1]c and (iii.) D∗ is an interval. We first note

that from R(0) > 0 and R(1) < 0 it follows that yP (0) > 0 and yP (1) < 1 and, since yP (θ) is

(weakly) increasing YP ⊂ [0, 1] where YP is the image of yP (θ).
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(i.) D∗ ∩[0, 1] 6= ∅. Since the only potential case that satisfies D∗ ∩[0, 1] = ∅ is when the
optimal delegation set consists of two decisions outside of [0, 1], it suffices to show that the

two decision optimal delegation set always has one decision in [0, 1]. For the purpose of this

proof we will define P (y, θ) =
R θ
0

∂
∂yuP (y, s) dF (s) and Q(y, θ) =

R 1
θ

∂
∂yuP (y, s) dF (s). Note

that if θ1 < θ2 are the optimal decisions then they must satisfy

P (θ1,
θ1 + θ2
2

) = Q(θ2,
θ1 + θ2
2

) ≡W.

Concavity of uP (y, θ) implies that P (y, θ) and Q(y, θ) are both decreasing in y while the

condition YP ⊂ [0, 1] results in P (0, θ) > 0 > P (1, θ) and Q(0, θ) > 0 > Q(1, θ). Now suppose

that W > 0. Then it must be that 0 < θ1 < θ2 < 1 and thus θ2 ∈ (0, 1). Equivalently if we
suppose that W < 0 we obtain θ1 ∈ (0, 1). In either case the optimal two-decision delegation
set contains at least one point in [0, 1] and thus D∗ ∩[0, 1] 6= ∅.

(ii.) D∗ ∩[0, 1]c = ∅. Suppose on the contrary that θ2 ∈ D∗ with θ2 > 1 (the proof for

the case that θ2 < 0 follows a similar argument), and let θ and θ1 be such that R
¡
θ
¢
= 0 and

θ1 = maxD
∗ ∩ [0, 1].

(ii-a.) θ1+θ2
2 > θ. Suppose first that θ1+θ2

2 > θ. We will consider two sub-cases depending

on whether θ1 < θ or θ1 > θ.

If θ1 < θ the principal can increase her expected utility by offering the delegation setbD = (D∗ − {θ2}) ∪ [θ1, θ1 + �] ∪ {θ2 − �} . The change in expected utility is then given by

∆U =

Z θ1+�

θ1

Z θ

θ1

∂

∂y
uP (s, θ) dsdF (θ) +

Z θ1+θ2
2

θ1+�

Z θ1+�

θ1

∂

∂y
uP (s, θ) dsdF (θ)

−
Z 1

θ1+θ2
2

Z θ2

θ2+�

∂

∂y
uP (s, θ) dsdF (θ).

We can compute lim�→0 ∆U
� to obtain

lim
�→0
∆U

�
=

Z θ1+θ2
2

θ1

∂

∂y
uP (θ1, θ) dF (θ)−

Z 1

θ1+θ2
2

∂

∂y
uP (θ2, θ) dsdF (θ) > 0.

Since R(θ1) > 0 and yP (θ) is increasing we must have ∂
∂yuP (θ1, θ) > 0 for θ > θ1 and

since R(1) < 0 and yP (θ) < 1 we must have ∂
∂yuP (θ2, θ) < 0 for θ >

θ1+θ2
2 . This implies that

lim�→0 ∆U
� > 0 and thus for sufficiently small � the expected utility of the principal increases

when offering the delegation set bD. and thus D∗ cannot be optimal.
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Now we turn to the case that θ1 > θ. Note that optimality of D∗ requires that θ2 satisfies

the first order conditionZ 1

θ1+θ2
2

∂

∂y
uP (θ2, θ) dF (θ) =

1

2

Z θ2

θ1

∂

∂y
uP

µ
s,
θ1 + θ2
2

¶
f(

θ1 + θ2
2

)ds. (13)

Now consider the delegation set bD = D∗ ∪ [θ1, θ1+ �] with � sufficiently small. The change

in the expected utility of the principal is given by

∆U =

Z θ1+�

θ1

Z θ

θ1

∂

∂y
uP (s, θ) dsdF (θ) +

Z θ1+θ2
2

θ1+�

Z θ1+�

θ1

∂

∂y
uP (s, θ) dsdF (θ)

−
Z θ1+θ2+�

2

θ1+θ2
2

Z θ2

θ1+�

∂

∂y
uP (s, θ) dsdF (θ).

We can compute lim�→0 ∆U
� to obtain

lim
�→0
∆U

�
=

Z θ1+θ2
2

θ1

∂

∂y
uP (θ1, θ) dF (θ)− 1

2

Z θ2

θ1

∂

∂y
uP

µ
s,
θ1 + θ2
2

¶
f(

θ1 + θ2
2

)ds =

=

Z θ1+θ2
2

θ1

∂

∂y
uP (θ1, θ) dF (θ)−

Z 1

θ1+θ2
2

∂

∂y
uP (θ2, θ) dF (θ)

where the last equality follows from application of (13). By a similar argument we can compute

∆U when the principal offers the delegation set bD = (D∗ ∩ [θ1, θ1 − �]c)∪{θ1 − �} . As a result,
optimality of D∗ would imply that lim�→0 ∆U

� = 0 and thus

Z θ1+θ2
2

θ1

∂

∂y
uP (θ1, θ) dF (θ) =

Z 1

θ1+θ2
2

∂

∂y
uP (θ2, θ) dF (θ) ≡W. (14)

Let eθ be such that Q(eθ, θ1) = R 1θ1 ∂
∂yuP

³eθ, θ´dF (θ) = 0. Then (14) implies that Q(θ1, θ1) >
0 > Q(θ2, θ1) and the principal can improve her expected utility by offering the delegation setbD = (D∗ ∩ {θ2}c) ∪

neθo and thus D∗ is not optimal.
(ii-b.) θ1+θ2

2 < θ. We now turn to the case that θ1+θ2
2 < θ. We will show that the principal

is made better off by allowing all decisions in [θ1, θ1 + �] for � > 0 sufficiently small.

Again, optimality of D∗ requires that θ2 satisfies the first order conditionZ 1

θ1+θ2
2

∂

∂y
uP (θ2, θ) dF (θ) =

1

2

Z θ2

θ1

∂

∂y
uP

µ
s,
θ1 + θ2
2

¶
f(

θ1 + θ2
2

)ds. (15)
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Now consider the delegation set bD = D∗ ∪ [θ1, θ1+ �] with � sufficiently small. The change

in the expected utility of the principal is given by

∆U =

Z θ1+�

θ1

Z θ

θ1

∂

∂y
uP (s, θ) dsdF (θ) +

Z θ1+θ2
2

θ1+�

Z θ1+�

θ1

∂

∂y
uP (s, θ) dsdF (θ) (16)

−
Z θ1+θ2+�

2

θ1+θ2
2

Z θ2

θ1+�

∂

∂y
uP (s, θ) dsdF (θ).

We can compute lim�→0 ∆U
� to obtain

lim
�→0
∆U

�
=

Z θ1+θ2
2

θ1

∂

∂y
uP (θ1, θ) dF (θ)− 1

2

Z θ2

θ1

∂

∂y
uP

µ
s,
θ1 + θ2
2

¶
f(

θ1 + θ2
2

)ds = (17)

=

Z θ1+θ2
2

θ1

∂

∂y
uP (θ1, θ) dF (θ)−

Z 1

θ1+θ2
2

∂

∂y
uP (θ2, θ) dF (θ)

where the last equality follows from application of (15). Since uP (y, θ) is strictly concave in y

we have thatZ θ1+θ2
2

θ1

∂

∂y
uP (θ1, θ) dF (θ) ≥

Z θ1+θ2
2

θ1

R (s) ds ≥ R

µ
θ1 + θ2
2

¶
θ2 − θ1
2

(18)Z 1

θ1+θ2
2

∂

∂y
uP (θ2, θ) dF (θ) ≤

Z 1

θ1+θ2
2

R (s) ds ≤ R

µ
θ1 + θ2
2

¶µ
1− θ1 + θ2

2

¶
, (19)

where in each case the first inequality follows from the concavity of uP (y, θ) w.r.t y and the

second from R (θ) being weakly decreasing. Therefore combining (18) and (19) in (17) we

obtain

lim
�→0
∆U

�
≥ R

µ
θ1 + θ2
2

¶
(θ2 − 1) > 0.

Therefore there exists � > 0 such that ∆U > 0 and D∗ cannot be optimal.

(iii.) D∗ is connected. Suppose that D∗ is not connected, i.e. there exist two decisions

θ1, θ2 ∈ D∗ with θ1 ≤ θ2, such that D∗ ∩ [θ1, θ2] = ∅. Now consider a new delegation setbD = D∗ ∪ [θ1, θ2] The change in the expected utility of the principal ∆U when offering bD
instead of D∗ is given by

∆U =

Z θ1+θ2
2

θ1

[uP (θ, θ)− uP (θ1, θ)] dF (θ) +

Z θ2

θ1+θ2
2

[uP (θ, θ)− uP (θ2, θ)] dF (θ) =

=

Z θ1+θ2
2

θ1

µZ θ

θ1

∂

∂y
uP (s, θ) ds

¶
dF (θ)−

Z θ2

θ1+θ2
2

µZ θ2

θ

∂

∂y
uP (s, θ) ds

¶
dF (θ). (20)
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Since uP (y, θ) is strictly concave in y we have thatZ θ

θ1

∂

∂y
uP (s, θ) ds >

∂

∂y
uP (θ, θ) (θ − θ1) , (21)Z θ2

θ

∂

∂y
uP (s, θ) ds <

∂

∂y
uP (θ, θ) (θ2 − θ) . (22)

Then using (21) and (22) in (20) we have that

∆U >

Z θ1+θ2
2

θ1

R (θ) (θ − θ1) dθ −
Z θ2

θ1+θ2
2

R (θ) (θ2 − θ) dθ =

=

Z θ1+θ2
2

θ1

ÃZ θ1+θ2
2

θ
R (s) ds

!
dθ −

Z θ2

θ1+θ2
2

ÃZ θ

θ1+θ2
2

R (s) ds

!
dθ ≥

≥ R

µ
θ1 + θ2
2

¶"Z θ1+θ2
2

θ1

Z θ1+θ2
2

θ
dsdθ −

Z θ2

θ1+θ2
2

Z θ

θ1+θ2
2

dsdθ

#
= 0,

where the first equality follows by integrating by parts each integrand, and the last inequality

follows from the assumption that R (θ) is weakly decreasing. Thus we have that ∆U > 0 and

reach the contradiction that D∗ is not an optimal delegation set.

As a result of steps (i.)-(iii.) D∗ must be an interval and interval delegation is optimal. ¥

To state the next proposition, we define upper-threshold delegation as a delegation scheme

in which D = [dA, y], where y ∈ ¡dA, dA¢, and lower-threshold delegation as a delegation
scheme in which D = [y, dA], where y ∈

¡
dA, dA

¢
.

Proposition 6. Upper-threshold delegation is optimal if and only if there exist a state θ ∈
(0, 1) such that

(i.) S(θ) = 0, S(θ) ≥ 0 for θ > θ and T (θ) ≥ 0 for θ ≤ θ and

(ii.) T (θ) is convex for all θ ∈ £0, θ¤ .
Lower-threshold delegation is optimal if and only if there exist a state θ such that
(i.) T (θ) = 0, T (θ) ≤ 0 for θ < θ, S(θ) ≤ 0 for θ ≥ θ and

(ii.) T (θ) is convex for all θ ∈ [θ, 1] .
Proof: We will present a proof for the case of upper-threshold delegation since the case of

lower-threshold delegation can be treated in a similar manner. Furthermore, we will explicitly

include those steps that differ from the proof of Proposition 3, referring to this proof for all

remaining details.
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Necessity : If D∗ =
£
dA, yA

¡
θ
¢¤
is a minimal optimal delegation set then by Proposition

2, T (θ) is convex for θ ∈ £0, θ¤. Since the principal cannot improve by adding decisions above
yA
¡
θ
¢
we must have S(θ) ≥ 0 for θ > θ. Furthermore, optimality of yA

¡
θ
¢
requires that

S(θ) = 0. Finally, if T (θ) < 0 for some θ ∈ ¡0, θ¢ then convexity of T (θ) and the fact that
T (0) = 0 implies that T (θ) < 0 for θ ∈ ¡0, θ¢. This leads to a contradiction since the principal
could increase her expected utility by an amount −2 R θ0 T (x)dx > 0 by banning all decisions

[dA, yA (θ)). Therefore we must have T (θ) ≥ 0 for θ ∈
£
0, θ
¤
.

Sufficiency: We establish sufficiency by proving that (i.) the delegation set {y∗P } is not
optimal, (ii.) an optimal delegation set has no decisions above yA

¡
θ
¢
, and (iii.) D∗ is an

interval and D∗ =
£
dA, yA

¡
θ
¢¤
.

(i.) The delegation set {y∗P}is not optimal : Note that, since S(θ) = 0 and S(θ) is concave

in
£
0, θ
¤
(since T (θ) is concave in

£
0, θ
¤
), it follows that S(θ) < 0 for θ ∈ ¡0, θ¢. Since by

assumption T (θ) > 0 in the same region, Proposition 1 implies that the delegation set {y∗P}
cannot be optimal.

(ii.) D∗ is empty above yA
¡
θ
¢
: This can be established by the same proof presented in

Proposition 3 and is thus omitted.

(iii.) D∗ is an interval and D∗ =
£
dA, yA

¡
θ
¢¤
. The value of delegation from offering

the agent an interval [yA(θ1), yA(θ2)] is given by V = − (y∗P − yA(θ2))
2 + 2

R θ2
θ1

T (θ)dθ =

− (y∗P − yA(θ1))
2− 2 R θ2θ1 S(θ)dθ. Since T (θ) ≥ 0, we must have θ1 = 0. Also by differentiating

w.r.t. θ2 we must have S(θ2) = 0 which implies θ2 = 1. ¥

To state the next proposition, we define complete delegation as a delegation scheme in

which D = [dA, dA].

Proposition 7. Complete delegation is optimal if and only if

(i.) YA ⊆ YP ,

(ii.) T (θ) and S(θ) are increasing and T (θ) is convex for θ ∈ [0, 1] and
(iii.) y∗P ∈ Y ◦A.

Proof : Necessity : Suppose complete delegation is optimal, i.e. D∗ = YA. Now, let

S = YA ∩ Y c
P . By Proposition 2-iv D∗ contains at most two points (one above and one

below) outside the range of the principal YP . If S 6= ∅, S contains an open interval and hence
D∗ 6= YA, and we reach a contradiction. Therefore it must be that S = ∅ which implies that
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YA ⊆ YP .

Next we show that T (θ) is increasing and convex and S(θ) is increasing and concave.

Convexity follows by noticing that for each [u, v] ⊂ YA the delegation set bD = YA∩[u, v]c cannot
improve upon YA, i.e. ∆ ((v − u) /2) > 0 (where the increment is computed at (v + u) /2).

By the proof of Lemma 7 this implies that T (θ). Next we show T 0(0) ≥ 0 which, coupled

with convexity of T (θ), entails that T (θ) is increasing in θ. Suppose not, i.e. T 0(0) < 0. Then

T (θ) < 0 in a region (0,eθ). Consider now the delegation set bD = YA ∩ [dA, yA
³eθ´)c. The

difference in expected utility from bD and D∗ can be expressed as ∆U ≡ E(uP (y, θ)
¯̄̄ bD ) −

E(uP (y, θ) |D∗ ) = −
R θ
0 T (θ)dθ > 0 which implies that D∗ is not optimal. Therefore it must

be that T 0(0) ≥ 0 and, consequently, T (θ) is increasing. A similar argument shows that S(θ)
is concave, S(θ) ≤ 0, and, since S(1) = 0, S(θ) is increasing.

Finally, since T (0)+S(0) = S(0) < 0 and T (1)+S(1) = T (1) > 0, continuity of T (θ)+S(θ)

implies that for some θ0 ∈ (0, 1) T (θ0) + S(θ0) = yA
¡
θ0
¢ − y∗P = 0 . This establishes that

y∗P ∈
¡
dA, dA

¢
.

Sufficiency: Note first that, under the conditions of the proposition, the delegation set

{y∗P} can never be optimal. Indeed, since y∗P ∈
¡
dA, dA

¢
, T (0)+S(0) = yA (0)− y∗P < 0. Since

T (0) = 0 this implies that S(0) < 0. By continuity and monotonicity of T (θ) there exists θ0

such that T (θ0) > 0 and S(θ0) < 0. It follows from Proposition 1, that the delegation set {y∗P}
can never be optimal.

Next we show that a two-decision delegation set cannot be optimal. To this end, recall

that eS(y) ≡ S(θA(y)) and eT (y) ≡ T (θA(y)) and let Dy∗ = {y∗ − d∗, y∗ + d∗} be the optimal
two-decision delegation set. Then we must have eT (y∗) > 0, eS(y∗) < 0 and d∗ = eT (y∗)− eS(y∗).
We first show that at least one of the decisions in Dy∗ belongs to the range of the agent YA.

Suppose not. Then it must be that y∗+ d∗ > dA and y∗− d∗ < dA which, given the convexity

of eT (y) and the concavity of eS(y) implies that 2eT (y∗) > eT (dA) = eT (dA)+ eT (dA) > 2eT (dA+dA2 )

and 2eS(y∗) < eS(dA) = eS(dA) + eS(dA) < 2eT (dA+dA2 ). Given that both eT (y) and eS(y) are
increasing, the last two inequalities imply that y∗ > dA+dA

2 and y∗ < dA+dA
2 which leads to a

contradiction. To prove that Dy∗ is not optimal, suppose that y∗ + d∗ ∈ ¡dA, dA¢. The case
that y∗−d∗ ∈ ¡dA, dA¢ can be treated similarly. Consider increasing the discretion of the agent
by adding the decision y∗ + d∗ − ε , i.e. offering the delegation set D = Dy∗ ∪ {y∗ − d∗ − ε} .
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The increment in the expected utility from offering D is given by

∆U = 4d∗
h eT (y∗ + d− �

2
)
�

2d∗
+ eT (y∗ − �

2
)
h
1− �

2d∗
i
− 2eT (y∗)i .

Since eT (y) is strictly convex, ∆U > 0 and two-decision delegation cannot be optimal. Applying

the same logic one can show that three-decision delegation also cannot be optimal. Since eT (y)
is strictly convex for y ∈ YA ∩ YP = YA and delegation with one, two or three decisions is

never optimal, the optimal delegation set must consist of an interval in YA. Moreover, sinceeT (y) ≥ 0 and eS(y) ≤ 0, the optimal interval D must indeed be D = YA.

To complete the proof, we show that the optimal delegation set has no decisions out-

side the range of the agent. Indeed, suppose that a decision by above dA is added to the

delegation set D such that by is selected with positive probability. The case for decisions

below dA is entirely analogous. Let y < dA be the highest decision allowed in the range

of the agent YA. Consider now the delegation set D ∪ {y + �} , where 0 < � < 2dA −by − y. Since eT (y) is convex, the increment of the principal’s expected utility is ∆U =

2
h eT (y + �

2)�+
eT (y+y2 + �

2) [by − y − �]− eT (y+y2 ) (by − y)
i
> 0. We therefore reach a contra-

diction implying that adding projects above and below YA can never be optimal. Therefore

complete delegation is optimal. ¥
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11 Appendix B

This appendix includes the proofs of all results and the analysis of the complete contract.

Proof of Result 1: The forward bias is given by S(θ) = (1− F (θ)) (A+ θ) /2− R 1θ xdF (x).

Differentiating gives S0(θ) = (1− F (θ)− (A− θ) f(θ)) /2 and S00(θ) = − (A− θ) f 0(θ)/2.

Thus we have that (i.) S(0) ≥ 0 if and only if A ≥ 2E(θ), (ii.) S(1) = 0 and S0(1) < 0

and (iii.) S00(θ) ≤ 0 for all θ ∈ [0, θm] and S00 (θ) > 0 for all θ ∈ (θm, 1] where θm is the

mode of the distribution. It follows from these facts that if A ≥ 2E(θ), then S(θ) > 0 for all

θ ∈ (0, 1) and if A < 2E(θ), then there exists a θ ∈ (0, θm) such that S(θ) = 0, S(θ) < 0 for

all θ ∈ £0, θ¢ and S(θ) > 0 for all θ ∈ ¡θ, 1¢. Since, as explained in the text, T (θ) > 0 for all

θ ∈ (0, 1), the result then follows from Proposition 1. ¥

Proof of Result 2: To economize on the calculations, we apply Proposition 6. From the

proof of Result 1 we know that if A < 2E(θ), then there exists a θ ∈ (0, 1) such that S(θ) = 0
and S(θ) > 0 for all θ ∈ ¡θ, 1¢. Since T (θ) ≥ 0 for all θ ∈ [0, 1], condition (i.) in Proposition
6 is satisfied. We also know from the proof of Result 1 that S00(θ) < 0 for all θ ∈ £0, θ¤. Since
T 00(θ) = −S00(θ) this implies that condition (ii.) in Proposition 6 is also satisfied. Finally,
implicitly differentiating S(θ) = 0 gives dθ/dA = −2S0(θ)/(1− F (θ)) < 0. ¥

Proof of Result 3: The backward and forward biases are given by T (θ) = F (θ)βθ +

σ2 [f(θ)− f(−a)] and S(θ) = (1− F (θ))βθ−σ2 [f(θ)− f(−a)]. Note that T (0) = σ2 [f(0)− f(a)] >

0 and S(0) = − T (0) < 0. The result then follows from Proposition 1. ¥

Proof of Result 4: In this proof we will make use of the following facts which are adaptations

to our setting of similar results proven in Holmström (1984): (a.) E [s |s ≥ θ ] > θ ∀θ ∈ (−a, a),
(b.) 0 < d

dθE [s |s ≤ θ ] < 1 and 0 < d
dθE [s |s ≥ θ ] < 1 ∀θ ∈ (−a, a), (c.) d

dσE [s |s ≥ θ ] ≥ 0.
We first note that T (θ) and S(θ) take both positive and negative values in (−a, a). To apply

Proposition 3 we will show that T (θ) = 0 and S(θ) = 0 have unique solutions in (−a, a) and
that T (θ) is convex in [θ, θ]. Note that for θ ∈ (−a, a), T (θ) = 0 if and only if R(θ) ≡ βθ −
E [s |s ≤ θ ] = 0. Since R0(θ) = β − d

dθE [s |s ≤ θ ] > 0, R(θ) = 0 has a unique solution

θ ∈ (−a, a). The same rationale applies to S(θ) = 0. Since it must be that θ < 0 < θ, these

two values define a non-degenerate interval [θ, θ] ⊂ [−a, a]. Furthermore, since T (θ) = −S(−θ)
we necessarily have that θ = −θ.

51



Since T 00(θ) =
£
2β − 1− (β − 1)θ2/σ2¤ f(θ) there is a value bθ such that T 00(θ) is strictly

convex for θ ∈ Ωc =
h
−bθ,bθi. Since T 0(−a) = f(−a)a [1− β] < 0 and T 0(θ) = F (θ)[β −

d
dθE [s |s ≤ θ ]

¯̄
θ=θ
] > 0 it must be that T 00(θ) > 0 and therefore θ ∈ Ωc and −θ = θ ∈ Ωc. This

proves that T (θ) is convex in [θ, θ].

S(θ) = 0 can be rewritten as βθ = E
£
s
¯̄
s ≥ θ

¤
. Totally differentiating and using results

(b.) and (c.) above we see that dθ/dβ < 0 and dθ/dσ > 0. ¥

Proof of Result 5: Note that YA ⊂ YP . We have shown above that if 1/2 ≤ β < 1,

then T (θ) is convex and S(θ) is concave in [−a, a]. Since T 0(−a) = f(−a)a [1− β] > 0 and

S0(a) = −f(a)a [β − 1] > 0, we must then have T 0(θ) > 0 and S0(θ) > 0 ∀θ ∈ [−a, a]. The
result then follows from Proposition 7 (in Appendix A). ¥

Proof of Result 6: For this proof it is useful to define eS(y) ≡ S(θA(y)) and eT (y) ≡ T (θA(y)).

We first partition the decision space Y in five regions Ωi i ∈ {1, ..., 5}. Ω1 and Ω5 denote the
region below and the region above the range of preferred decisions of the agent [−βa, βa]. In
the text it has been shown that if β < 1/2 then eT (y) is always concave in a neighborhood
of zero. Given the assumption that βa ≥ 2σ2 [f(0)− f(a)], there exists ey ∈ (0, βa) such
that eT 00(±ey) = 0, with eT (y) convex in the regions above ey and below −ey. Let Ω2 and Ω4
be the regions where eT (y) is convex, namely Ω2 = [−βa,−ey] and Ω4 = [ey, βa]. Finally let
Ω3 = (−ey, ey) be the region where eT (y) is concave. We will establish this result by proving that
ifD∗ is an optimalminimal delegation set then (i.) D∗∩(Ω1 ∪Ω2) 6= ∅ andD∗∩(Ω4 ∪ Ω5) 6= ∅,
(ii.) if D∗∩Ω2 is non-empty, then D∗∩Ω1 is empty, and if D∗∩Ω4 is non-empty, then D∗∩Ω5
is empty, (iii.) D∗∩Ω3 = ∅, iv. if βa ≥ 2σ2 [f(0)− f(a)] then D∗∩Ω1 = D∗∩Ω5 = ∅. These
steps show that an optimal delegation set D∗ consists of one interval for positive decisions

and one interval for negative decisions. We conclude by characterizing the bounds of both

intervals. The comparative statics follow immediately by the same considerations of Result 4.

(i.) D∗∩(Ω1 ∪Ω2) 6= ∅ and D∗∩(Ω4 ∪ Ω5) 6= ∅: Note that for 0 < β < 1/2 both effective

biases have a constant sign, i.e. eT (y) > 0 and eS(y) < 0 for y ∈ (−βa, βa). This implies that
D∗ ∩ (Ω1 ∪Ω2) 6= ∅ and D∗ ∩ (Ω4 ∪ Ω5) 6= ∅.

(ii.) D∗ ∩Ω2 6= ∅⇒ D∗ ∩Ω1 = ∅: Suppose on the contrary that y1 ∈ D∗ ∩Ω1 and let y2
be the smallest decision in D∗∩Ω2. We will show that the principal can improve by adding de-
cisions in Ω2, contradicting the assumed optimality of D∗. Consider adding the decision y2−2�
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to D∗, where � is such that (y1 + y2) /2− � belongs to Ω2. The increment of the expected util-

ity of the principal is∆U = 2
h eT (y2 − �)2�+ eT (y1+y22 − �) [y2 − y1 − 2�]− eT (y1+y22 ) (y2 − y1)

i
.

Letting eT (y1+y22 − �) = eT (y1+y22 ) − �dTdy (ξ) with ξ ∈ ¡y1+y22 − �, y1+y22

¢
we have that ∆U =

4�
R y2−�
y1+y2
2

dT
dy dy − 4�dTdy (ξ)

³
y2−y1−2�

2

´
. Since dT

dy is strictly increasing in Ω2 we must have

∆U > 0. Replacing eT (y) with eS(y) in the preceding argument allows also to establish that if
D∗ ∩Ω4 6= ∅, then D∗ ∩ Ω5 = ∅.

(iii.) D∗ ∩ Ω3 = ∅: Suppose on the contrary that D∗ ∩ Ω3 6= ∅. Let y
3
≤ y3 be the

two decisions allowed by the principal in Ω3 (where we could have y3 = y3) and y2 and y4 be

the highest decision in D∗ ∩ (Ω1 ∪ Ω2) and the lowest decision in D∗ ∩ (Ω4 ∪ Ω5), respectively.
Suppose first that y2 ∈ Ω2 and that

³
y2 + y

3

´
/2 < −ey. By offering instead the delegation set

D∗∪{y2 + 2�} such that
³
y2 + y

3

´
/2+� < −ey, the principal can increment his expected utility

by∆U = 4�
∙
dT
dy (ξ)

³
y
3
−y2−2�
2

´
− R y2+y3

2
y2+�

dT
dy dy

¸
, where ξ ∈

³
y2+y3
2 ,

y2+y3
2 + �

´
⊂ Ω2. Since dTdy

is strictly increasing in Ω2 we must have ∆U > 0 and thus we reach a contradiction. Suppose

now that y2 ∈ Ω1 and that
³
y2 + y

3

´
/2 < −ey. Then the first order condition on y2 requires

that −eT (y2+y32 ) + 1
2
dT
dy

³
y2+y3
2

´³
y
3
− y2

´
= 0 which can be written as dTdy

³
y2+y3
2

´³
y
3
−y2
2

´
=R y2+y3

2
−βa

dT
dy dy. Since

dT
dy is strictly increasing and positive in Ω2 we have that

R y2+y3
2

−βa
dT
dy dy <

dT
dy

³
y2+y3
2

´³
y2+y3
2 − (−βa)

´
implying that

³
y
3
−y2
2

´
<
³
y2+y3
2 − (−βa)

´
and y2 > −βa. This

contradicts the fact that y2 ∈ Ω1.
The same argument would reach a contradiction if we had assumed that

³
y4 + y

3

´
/2 > ey.

But if we assume that
³
y2 + y

3

´
/2 ≥ −ey and ³y4 + y

3

´
/2 ≤ ey then, from the concavity ofeT (y) in Ω3, the principal can improve by banning both decisions y3 and y3. In both cases we

reach a contradiction and thus conclude that D∗ ∩ Ω3 = ∅.
(iv.) If D∗∩Ω1 6= ∅ and D∗∩Ω5 6= ∅, the optimal delegation set consists of two decisions,

both outside the range of the agent. The optimal two-decision delegation set is given by

{−q, q} where q = E [s |s ≥ 0] = 2σ2 [f(0)− f(a)]. Therefore whenever E [s |s ≥ 0] < βa any

optimal minimal delegation set must have only decisions in the regions where eT (y) is convex.
(v.) Optimal upper and lower bounds y and y: Let D∗ = [−βa, y] ∪ [y, βa]. The first

order conditions on y, y are given by eT (y+y2 )− eT (y) = 1
2
dT
dy (

y+y

2 )
¡
y − y

¢
and eT (y)− eT (y+y2 ) =

1
2
dT
dy (

y+y

2 )
¡
y − y

¢
. Given the symmetry in the model we have y = −y and eT (y)− eT (0) = 1

2y

or y = σ2 f(0)−f(y/β)F (y/β)−1/2 . ¥
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11.1 Regulation with Constant Elasticity Demand Curves

Reconsider the linear regulation model but suppose now that demand is characterized by

constant elasticity demand curves for which y = (γ0/q)
1/γ1 if q ≥ ε and y = (γ0/ε)

1/γ1 if

q < ε, where ε > 0 is arbitrarily small, γ0 > 0 and γ1 > 1.36 The support of the marginal

costs is given by [θl, θh], where θh > θl > 0. Using Taylor series approximations we can

express profits and welfare, respectively, as Π(y) = Π(yA (θ)) + 1
2Π

00(yA (θ)) (y − yA (θ))
2 and

W (y) = W (yP (θ)) +
1
2W

00(yP (θ)) (y − yP (θ))
2, where yA(θ) = θγ1/(γ1 − 1) and yP (θ) = θ

are the profit and welfare maximizing prices. We can now establish the following result

Result 7. Delegation is valuable if and only if yA(θl) < E(θ). When delegation is valuable,

then D∗ =
£
yA(θl), yA(θ)

¤
, where yA(θ) = E(θ

¯̄
θ ≥ θ ). Moreover, the regulator gives the

monopolist more discretion, the more elastic the demand.

Proof of Result 7: The termW 00(·) that pre-multiplies the quadratic term (p− pP (θ))
2 in the

approximated welfare function depends on θ. We therefore need to transform the cumulative

density function as described in Section 3. Thus, let G(θ) =
R θ
c W 00(t)f(t)dt/

R θ
c W 00(t)f(t)dt

and note that g(θ) = Kθ−(γ1+1)f(θ) and g0(θ) = Kθ−(γ1+2) (θf 0(θ)− (γ1 + 1) f(θ)), where
K ≡ −γ0γ1/

R θ
c W 00(t)f(t)dt > 0. The backward bias is then given by T (θ) = G(θ)

³
γ1

θ
γ1−1

´
−R θ

c xg(x)dx and the forward bias is given by S(θ) = (1−G(θ))
³
γ1

θ
γ1−1

´
− R θθ xg(x)dx. Dif-

ferentiation gives T 00(θ) = K
γ1−1θ

−γ1f 0(θ), S0(θ) = (1−G(θ))
³

γ1
γ1−1

´
− θ

γ1−1g(θ) and S00(θ) =

− K
γ1−1θ

−γ1f 0(θ).

The backward bias is strictly positive for all θ ∈ (θl, θh) and it is convex for θ ∈ [θl, θm),
where θm is the mode of the distribution. Consider next the forward bias. Note first that

S(θ) > 0 for all θ ∈ [θm, θh). This follows from the facts that S(θh) = 0, S0(θh) < 0

and S00(θ) > 0 for all θ ∈ (θm, θh]. Note next that S00(θ) < 0 for all θ ∈ [θl, θm). Since

S(θm) > 0 we find that S(θ) > 0 for all θ ∈ (θl, θh) if and only if S(θl) ≥ 0, i.e. if and only if
yA (θl) ≥ E(θ). It then follows from Proposition 2 that the principal cannot do better than

to set y = E(θ). Moreover, if S(θl) < 0, then there exists a unique θ ∈ (θl, θm) for which
S(θ) = 0. It then follows from Propositions 6 that the regulator cannot do better than to let

the monopolist set any price below yA(θ) = E(θ
¯̄
θ ≥ θ ). Implicitly differentiating S(θ) = 0

36We assume � > 0 since welfare is not well-defined for � = 0. In particular, if y = (γ0/ε)
1/γ1 for q ≥ 0, then

welfare is infinite for any q > 0.
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shows that dθ/dγ1 > 0. ¥

11.2 Contingent Transfers

For the characterization of the complete contract (under limited liability) we draw on Krishna

and Morgan (2006).37 Suppose first that b ≤ 1/3. Then the optimal decision rule y(θ) and

the optimal transfers t(θ) are given by

y(θ) =

⎧⎪⎪⎨⎪⎪⎩
3
2θ +

1
2b if θ ≤ b

θ + b if b ≤ θ ≤ 1− 2b
1− b if 1− 2b ≤ θ

and t(θ) =

(
3
4

¡
b2 − θ (2b− θ)

¢
if θ ≤ b

0 if θ > b.

The principal’s expected utility is then given by E(uP (y(θ), θ)− t(θ)) = −12b2 (2− 3b). Sup-

pose next that 1/3 ≤ b ≤ 1. Then

y(θ) =

(
3
2θ +

1
2b if θ ≤ z

3
2z +

1
2b if z ≤ θ ≤ 1

and t(θ) =

(
3
4

¡
θ2 − 2bθ + z(2b− z)

¢
if θ ≤ z

0 if z ≤ θ ≤ 1

where z =
¡
1
2 − 1

6

√
3
√
4b− 1¢. The principal’s expected utility is then given by E(uP (y(θ), θ)−

t(θ)) = − 1
24

³
− (4b− 1)p3 (4b− 1) + 6b (b+ 1)− 1´. The principal’s expected utility under

optimal delegation, agent control and principal control can also easily be worked out. Full

numerical details for the comparisons in the text are available from the authors.

37 In particular, see Appendix C in Krishna and Morgan (2006).
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