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Abstract

This paper proposes empirical likelihood based inference methods for causal effects identified
from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity
designs and treat the regression functions as nonparametric. The proposed inference procedures
do not require asymptotic variance estimation and the confidence sets have natural shapes, unlike
the conventional Wald-type method. These features are illustrated by simulations and an empirical
example which evaluates the effect of class size on pupils’ scholastic achievements. Furthermore,
for the sharp regression discontinuity design, we show that the empirical likelihood statistic admits
a higher-order refinement, so-called the Bartlett correction. Bandwidth selection methods are also
discussed.
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1 Introduction

Since the seminal work of Thistlethwaite and Campbell (1960), regression discontinuity design (RDD)
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of interest. There are numerous methodological developments and empirical applications of RDD analy-

sis particularly in the fields of economics, psychology, and statistics (see e.g. Trochim, 2001, and Imbens

and Lemieux, 2008, for surveys). The main purpose of this paper is to propose a new inference approach

to RDD analysis based on empirical likelihood.1

In the literature of RDD analysis, there are at least two important issues that have attracted sub-

stantial attention from researchers. First, although RDD analysis were initially discussed in the context

of regression analysis, recent research has focused on deeper understanding of the estimated parameters

of interest based on the theory of causal effects (see e.g. Rubin, 1974, Holland, 1986, and Angrist,

Imbens and Rubin, 1996). In causal analysis, RDDs are split into two categories, the sharp and fuzzy

RDDs. This categorization is based on how the treatment assignments are determined by a covariate

(called the forcing variable). For the sharp design, the treatment is completely determined by the forcing

variable on the either side of a cutoff value and we can identify and estimate the average causal effect

of the treatment at the cutoff value. For the fuzzy design, the treatment is partly determined by the

forcing variable and the treatment assignment probability jumps at the cutoff value. In this case, we can

identify and estimate the average causal effect of the treatment for the compliers (see Hahn, Todd and

van der Klaauw, 2001, and Section 2.1 below). The present paper adopts this framework and focuses

on inferences for the average causal effects identified in the sharp and fuzzy RDDs.

The second issue that has attracted researchers’ attention is the importance of nonparametric meth-

ods in RDD analysis (e.g. Sacks and Ylvisaker, 1978, Knafl, Sacks and Ylvisaker, 1985). Since RDD

analysis is concerned with the causal effects locally at some cutoff value of the forcing variable, it is

natural to allow flexible functional forms for regression and treatment assignment probability functions.

Hahn, Todd and van der Klaauw (2001) and Porter (2003) proposed nonparametric estimators for av-

erage causal effects in the sharp and fuzzy RDDs based on local polynomial fitting (Fan and Gijbels,

1996). Their nonparametric estimators possess reasonable convergence rates and are asymptotically

normal under certain regularity conditions. However, the asymptotic variances of these estimators,

which are required to construct Wald-type confidence sets, are rather complicated due to discontinu-

ities in the conditional mean, variance, and covariance functions. Typically, in order to estimate the

asymptotic variances, we need additional nonparametric regressions to estimate the left and right limits

of the conditional variances and covariances, and we also need nonparametric density estimation for the

forcing variable.

In this paper we construct empirical likelihood-based confidence sets for causal effects identified

from the sharp and fuzzy RDDs. Our empirical likelihood approach allows for nonparametric regression

functions but does not require complicated asymptotic variance estimation. The proposed confidence

sets have natural shapes, unlike the conventional Wald-type method. These features are illustrated

by simulations and an empirical example which evaluates the effect of class size on pupils’ scholastic

achievements. We study the first- and second-order asymptotic properties of the empirical likelihood-
1See Owen (2001) for a review on empirical likelihood.
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based inference. We show that the empirical likelihood ratios for the causal effects in the sharp and

fuzzy RDDs are asymptotically chi-square distributed. Therefore, similar to the existing papers such

as Chen and Qin (2000) and Fan, Zhang and Zhang (2001), we can still observe an analog of the

Wilks phenomenon in this nonparametric RDD setup. Furthermore, for the sharp RDD setup, we study

second-order asymptotic properties of the empirical likelihood ratio statistic and show that the empirical

likelihood confidence set admits a second-order refinement, so-called the Bartlett correction. Bartlett

correctability can be considered as an additional rationale of our empirical likelihood approach.2

The paper is organized as follows. In Section 2 we present the basic setup and construct the

empirical likelihood function for the causal effects. Section 3 studies first-order asymptotic properties

of the empirical likelihood ratios and confidence sets. Section 4 analyzes second-order properties of the

empirical likelihood statistic for the sharp RDD setup. Section 5 discusses bandwidth selection methods.

The proposed methods are examined in Section 6 through Monte Carlo simulations and an empirical

example which evaluates the effect of class size on pupils’ scholastic achievements investigated in Angrist

and Lavy (1999). Section 7 concludes. Appendix A contains the proofs, lemmas, and derivations for

the main theorems.

2 Setup and Methodology

2.1 Regression Discontinuity Design

We first introduce our basic setup. Let Yi (1) and Yi (0) be potential outcomes of unit i with and without

exposure to a treatment, respectively. Let Wi ∈ {0, 1} be an indicator variable for the treatment. We

set Wi = 1 if unit i is exposed to the treatment and set Wi = 0 otherwise. The observed outcome is

Yi = (1−Wi)Yi (0) +WiYi (1) and we cannot observe Yi (0) and Yi (1) simultaneously. Our purpose is

to make inference on the causal effect of the treatment, or more specifically, probabilistic aspects of the

difference of potential outcomes Yi (1)− Yi (0). RDD analysis focuses on the case where the treatment

assignment Wi is completely or partly determined by some observable covariate Xi, called the forcing

variable. For example, to study the effect of class size on pupils’ achievements, it is reasonable to consider

the following setup: the unit i is school, Yi is an average exam score, Wi is an indicator variable for the

class size (Wi = 0 for one class and Wi = 1 for two classes), and Xi is the number of enrollments.

Depending on the assignment rule forWi based on Xi, we have two cases, called the sharp and fuzzy

RDDs. In the sharp RDD, the treatment is deterministically assigned based on the value of Xi, i.e.

Wi = I {Xi ≥ c} ,

where I {·} is the indicator function and c is a known cutoff point. A parameter of interest in this case
2Baggerly (1998) showed that for testing the mean parameter, only empirical likelihood is Bartlett correctable in the

power divergence family.
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is the average causal effect at the discontinuity point c,

θs = E [Yi (1)− Yi (0)|Xi = c] .

Since the difference of potential outcomes Yi (1)− Yi (0) is unobservable, we need a tractable represen-

tation of θs in terms of quantities that can be estimated by data. If the conditional mean functions

E [Yi (1)|Xi = x] and E [Yi (0)|Xi = x] are continuous at x = c, then the average causal effect θs can

be identified as a contrast of the right and left limits of the conditional mean E [Yi|Xi = x] at x = c,

θs = lim
x↓c

E [Yi|Xi = x]− lim
x↑c

E [Yi|Xi = x] . (1)

In contrast to sharp RDD analysis, fuzzy RDD analysis focuses on the case where the forcing variable

Xi is not informative enough to determine the treatmentWi but can affect on the treatment probability.

In particular, the fuzzy RDD assumes that the conditional treatment probability ofWi jumps at Xi = c,

lim
x↓c

Pr {Wi = 1|Xi = x} 6= lim
x↑c

Pr {Wi = 1|Xi = x} .

To define a reasonable parameter of interest for the fuzzy case, let Wi (x) be a potential treatment for

unit i when the cutoff level for the treatment was set at x, and assume that Wi (x) is non-increasing in

x at x = c. Using the terminology of Angrist, Imbens and Rubin (1996), unit i is called a complier if

her cutoff level is Xi, i.e.3

lim
x↓Xi

Wi (x) = 0, lim
x↑Xi

Wi (x) = 1.

A parameter of interest in the fuzzy RDD, suggested by Hahn, Todd and van der Klaauw (2001), is the

average causal effect for compliers at Xi = c,

θf = E [Yi (1)− Yi (0)| i is complier, Xi = c] .

Hahn, Todd and van der Klaauw (2001) showed that under mild conditions the parameter θf can be

identified by the ratio of the jump in the conditional mean of Yi at Xi = c to the jump in the conditional

treatment probability at Xi = c, i.e.

θf =
limx↓c E [Yi|Xi = x]− limx↑c E [Yi|Xi = x]

limx↓c Pr {Wi = 1|Xi = x} − limx↑c Pr {Wi = 1|Xi = x}
. (2)

If additional covariates Zi are available, the same identification arguments for θs and θf go through

by slightly modifying the assumptions and adding conditioning variables Zi = z to the conditional

means and probabilities above. This paper focuses on how to make inference for these average causal

effect parameters θs and θf in the sharp and fuzzy RDDs.

To estimate the parameters θs and θf , it is common to apply some nonparametric regression tech-

niques (e.g. Hahn, Todd and van der Klaauw, 2001, and Porter, 2003). For example, the left and
3If limx↓Xi Wi (x) = 0 and limx↑Xi Wi (x) = 0, then unit i is called a nevertaker. If limx↓Xi Wi (x) = 1 and

limx↑Xi Wi (x) = 1, then unit i is called an alwaystaker.
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right limits of the conditional mean αl = limx↑c E [Yi|Xi = x] and αr = limx↓c E [Yi|Xi = x] can be

estimated by local linear regression estimators α̂l and α̂r, i.e. solutions to the following weighted least

square problems with respect to al and ar,

min
al,bl

∑
i:Xi<c

K
(
Xi − c
h

)
(Yi − al − bl (Xi − c))2 , (3)

min
ar,br

∑
i:Xi≥c

K
(
Xi − c
h

)
(Yi − ar − br (Xi − c))2 ,

respectively, with a kernel function K and bandwidth h = hn satisfying h → 0 as n → ∞. Then from

the identification formula (1), the parameter θs is estimated by

θ̂s = α̂r − α̂l. (4)

In the same manner a nonparametric estimator for θf can be obtained as

θ̂f =
α̂r − α̂l
α̂wr − α̂wl

, (5)

where α̂wl and α̂wr are estimators for the left and right limits of the conditional treatment probabilities

αwl = limx↑c Pr {Wi = 1|Xi = x} and αwr = limx↓c Pr {Wi = 1|Xi = x}, respectively, and are obtained

as solutions to the weighted least square problems with respect to awl and awr,

min
awl,bwl

∑
i:Xi<c

K
(
Xi − c
h

)
(Wi − awl − bwl (Xi − c))2 , (6)

min
awr,bwr

∑
i:Xi≥c

K
(
Xi − c
h

)
(Wi − awr − bwr (Xi − c))2 ,

respectively. The kernel functions and bandwidths in (3) and (6) can be different. But to simplify the

presentation we assume that they are identical.

Porter (2003) derived the asymptotic distributions of the nonparametric estimators θ̂s and θ̂f . For

example, under certain regularity conditions the asymptotic distribution of the estimator θ̂s using the

local linear regressions in (3) is obtained as

√
nh
(
θ̂s − θs

)
d→ N

(
0,
σ2
l + σ2

r

f (c)
e′1Γ−1∆Γ−1e1

)
, (7)

where σ2
l = limx↑c Var (Yi|Xi = x), σ2

r = limx↓c Var (Yi|Xi = x), f (c) is the density function of Xi

evaluated at c, e1 = (1, 0)′, Γ =

(
γ0 γ1

γ1 γ2

)
, ∆ =

(
δ0 δ1

δ1 δ2

)
, γj =

´∞
0 K (z) zjdz, and δj =

´∞
0 K (z)2 zjdz. The estimator θ̂f is also asymptotically normal with the asymptotic variance depending

on σ2
l , σ

2
r , limx↑c Var (Wi|Xi = x), limx↓c Var (Wi|Xi = x), limx↑c Cov (Yi,Wi|Xi = x),

limx↓c Cov (Yi,Wi|Xi = x), and f (c). The conventional Wald-type confidence sets for θs and θf are

obtained by estimating these asymptotic variances of θ̂s and θ̂f . Typically, we estimate the above non-

parametric components by additional nonparametric regressions and plug those estimated components
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into the asymptotic variance formulae. The obtained Wald-type confidence set is symmetric around the

estimator θ̂s or θ̂f .

This paper proposes alternative confidence sets for the parameters θs and θf based on empirical

likelihood, which circumvent the asymptotic variance estimation issues mentioned above and have data-

determined shapes.

2.2 Empirical Likelihood for RDD

We now construct empirical likelihood functions for the average causal effect parameters θs and θf .

We extend the empirical likelihood construction of Chen and Qin (2000) for local linear fitting to the

sharp and fuzzy RDD contexts. Let Ii = I {Xi ≥ c} be an indicator for whether the forcing variable Xi

exceeds the cutoff level c. Note that Wi = Ii in the sharp RDD, but Wi 6= Ii in the fuzzy RDD.

We first consider the sharp RDD case. Observe that the local linear estimators α̂l and α̂r defined in

(3) satisfy the first-order conditions (see Fan and Gijbels, 1996)

n∑
i=1

(1− Ii)Kli (Yi − α̂l) = 0,

n∑
i=1

IiKri (Yi − α̂r) = 0, (8)

where

Kli = K
(
Xi − c
h

){
Sln,2 −

(
Xi − c
h

)
Sln,1

}
, Sln,j =

1

nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)(
Xi − c
h

)j
,

Kri = K
(
Xi − c
h

){
Srn,2 −

(
Xi − c
h

)
Srn,1

}
, Srn,j =

1

nh

n∑
i=1

IiK
(
Xi − c
h

)(
Xi − c
h

)j
. (9)

If we regard (8) as estimating equations for E [α̂l] and E [α̂r], the empirical likelihood function for

(E [α̂r]− E [α̂l] ,E [α̂l]) is defined as

Ls (t, a) = sup
{pi}ni=1

n∏
i=1

pi, (10)

s.t. 0 ≤ pi ≤ 1,

n∑
i=1

pi = 1,

n∑
i=1

pi (1− Ii)Kli (Yi − a) = 0,

n∑
i=1

piIiKri (Yi − t− a) = 0.

Also, the log empirical likelihood ratio is defined as `s (t, a) = −2 {logLs (t, a) + n log n}. By applying

the Lagrange multiplier method, under mild conditions (see Theorem 2.2 in Newey and Smith, 2004),

we can use the dual problem in place of (10). The dual form for `s (t, a) is

`s (t, a) = 2 sup
λ∈Λn(t,a)

n∑
i=1

log
(
1 + λ′gi (t, a)

)
, (11)

where Λn (t, a) =
{
λ ∈ R2 : λ′gi (t, a) ∈ V for i = 1, . . . , n

}
, V is an open interval containing 0, and

gi (t, a) = [(1− Ii)Kli (Yi − a) , IiKri (Yi − t− a)]′ . (12)
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Also, after profiling out the nuisance parameter a, the concentrated empirical likelihood ratio for E [α̂r]−
E [α̂l] is defined as

`s (t) = min
a∈A

`s (t, a) , (13)

where A is a parameter space of αl.4

In practice, we use the dual representations in (11) and (13) to implement empirical likelihood infer-

ence. Note that (i) the optimization problem for the Lagrange multiplier λ in (11) is two-dimensional,

and (ii) the objective function
∑n

i=1 log (1 + λ′gi (t, a)) for λ is typically concave in λ. Therefore, the

computational cost to evaluate the empirical likelihood ratio `s (t, a) is not expensive.

The above construction gives us the empirical likelihood ratios for E [α̂r]− E [α̂l] and E [α̂l], rather

than for θs = αr − αl and αl. However, if we choose a relatively fast decay rate for the bandwidth h

(i.e. undersmoothing), the bias components θs− (E [α̂r]− E [α̂l]) and αl−E [α̂l] become asymptotically

negligible. Therefore, the functions (11) and (13) can be employed as valid empirical likelihood ratios

for the parameters θs and αl.

We next consider the fuzzy RDD case. Similar to (10), we consider the following likelihood maxi-

mization problem:

Lf (t, a, awl, awr) = max
{pi}ni=1

n∏
i=1

pi, (14)

s.t. 0 ≤ pi ≤ 1,

n∑
i=1

pi = 1,

n∑
i=1

pi (1− Ii)Kli (Yi − a) = 0,
n∑
i=1

piIiKri (Yi − t (awr − awl)− a) = 0,

n∑
i=1

pi (1− Ii)Kli (Wi − awl) = 0,
n∑
i=1

piIiKri (Wi − awr) = 0.

Note that the last two conditions come from the first-order conditions for the local linear estimators of

αwl and αwr. The dual form of the empirical likelihood ratio for (θf , αl, αwl, αwr) is written as

`f (t, a, awl, awr) = −2 {logLf (t, a, awl, awr) + n log n}

= 2 sup
λ∈Λn(t,a,awl,awr)

n∑
i=1

log
(
1 + λ′hi (t, a, awl, awr)

)
, (15)

where Λn (t, a, awl, awr) =
{
λ ∈ R4 : λ′hi (t, a, awl, awr) ∈ Vh for i = 1, . . . , n

}
, Vh is an open interval

containing 0, and

hi (t, a, awl, awr) = [(1− Ii)Kli (Yi − a) , IiKri (Yi − t (awr − awl)− a) ,

(1− Ii)Kli (Wi − awl) , IiKri (Wi − awr)]′ . (16)
4Note that since the two-dimensional estimating functions gi (t, a) contain two parameters (t, a), the empirical likelihood

estimator for θs (i.e., argmint `s (t)) coincides with the estimator θ̂s in (4) based on local linear regressions.
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Also, the concentrated empirical likelihood ratio for θf is defined as5

`f (t) = min
(a,awl,awr)∈A×[0,1]×[0,1]

`f (t, a, awl, awr) . (17)

3 First-order Asymptotic Properties

This section investigates asymptotic properties of the empirical likelihood ratios proposed in the last

section and proposes asymptotically valid empirical likelihood confidence sets for the average causal

effects θs and θf identified from the sharp and fuzzy RDDs.

First, we consider the empirical likelihood ratios `s (t, a) in (11) and `s (t) in (13) for the sharp RDD.

We impose the following assumptions.

Assumption 3.1.

(i) {Yi,Wi, Xi}ni=1 is i.i.d.

(ii) There exists a neighborhood N around c such that (a) the density function f of Xi is continuously

differentiable and bounded away from zero in N , (b) E [Yi|Xi = x] − θsI {x ≥ c} is continuously

differentiable in N \ {c} and is continuous at c with finite left and right hand derivatives, (c)

E
[
Y 2
i

∣∣Xi = x
]
is continuous in N \ {c} and has finite left and right hand limits at c, and (d)

E
[
|Yi|ζ

∣∣∣Xi = x
]
is uniformly bounded on N for some ζ ≥ 4. Also, Vl and Vr defined in (22) are

positive.

(iii) K is a symmetric and bounded density function with support [−k, k] for some k ∈ (0,∞).

(iv) As n→∞, h→ 0, nh→∞, nh5 → 0, and n1/ζ−1/2h−1/2 → 0.

(v) A is compact and αl ∈ int (A).

Assumption 3.1 (i) is on the data structure. Since RDD analysis is typically applied to cross section

data, this assumption is reasonable. Assumption 3.1 (ii) restricts the local shape of the data distribution

around x = c. Note that this assumption allows discontinuity of the conditional moments E [Yi|Xi = x],

E
[
Y 2
i

∣∣Xi = x
]
, and E

[
|Yi|ζ

∣∣∣Xi = x
]
at x = c. Assumption 3.1 (iii) is on the kernel function K and

imposes that we use a second-order kernel. Assumption 3.1 (iv) is on the bandwidth parameter h.

If h ∝ n−η, this assumption is satisfied for η ∈
(

1
5 , 1−

2
ζ

)
. The bandwidth h can be stochastic: in

that case, we replace “→” with “ p→” in this assumption. The requirement nh5 → 0 corresponds to an

undersmoothing condition to remove the bias components in the construction of empirical likelihood.

See Section 4.1 for further discussion. Assumption 3.1 (v) is required for the concentrated empirical

likelihood ratio `s (θs).
5Similarly to the sharp RDD case, the empirical likelihood estimator for θf (i.e., argmint `f (t)) coincides with the

estimator θ̂f in (5) based on local linear regressions.

8



Under these assumptions, we obtain the asymptotic distributions of the empirical likelihood ratios

`s (θs, αl) and `s (θs).

Theorem 3.1.

(i) Under Assumption 3.1 (i)-(iv), `s (θs, αl)
d→ χ2 (2).

(ii) Under Assumption 3.1, `s (θs)
d→ χ2 (1).

See Appendix A.1 for a proof of this theorem. Theorem 3.1 says that the empirical likelihood ratios

`s (θs, αl) and `s (θs) are asymptotically pivotal and converge to chi-square distributions, i.e. the Wilks

phenomenon emerges in this nonparametric RDD context. This result can be compared with earlier

works which have also demonstrated the Wilks phenomenon for empirical likelihood in other nonpara-

metric models, such as Chen and Qin (2000), Fan, Zhang and Zhang (2001), Xu (2009), and Chan, Peng

and Zhang (2011). Intuitively, the moment restriction E [gi (θs, αl)] ≈ 0 can be viewed as a “localized”

moment restriction at Xi = c with an effective sample size nh, instead of n for standard moment re-

strictions. By undersmoothing, we can neglect the bias in E [gi (θs, αl)] from 0, and an adaptation of a

standard argument from the empirical likelihood literature for standard moment restrictions implies the

Wilks phenomenon in our nonparametric context. Also, based on Theorem 3.1 (ii), the 100 (1− ξ) %

asymptotic empirical likelihood confidence set for the average causal effect parameter θs is obtained as

ELCSs,ξ =
{
t : `s (t) ≤ χ2

1−ξ (1)
}
,

where χ2
1−ξ (1) is the 100 (1− ξ) % critical value for the χ2 (1) distribution.

We now compare with the conventional Wald-type confidence set

WCSs,ξ =

[
θ̂s ± z1−ξ/2

√
̂

Asy.V ar
(
θ̂s

)]
,

where z1−ξ/2 is the 100 (1− ξ/2) % standard normal critical value and
̂

Asy.V ar
(
θ̂s

)
is some (typically

nonparametric) estimator of the asymptotic variance of θ̂s presented in (7). There are at least four im-

portant differences. First, the empirical likelihood confidence set does not require the variance estimator
̂

Asy.V ar
(
θ̂s

)
, which typically requires additional nonparametric estimation for σ2

l , σ
2
r , and f (c). In

Section 4.2, we argue that in some special case this circumvention of variance estimation can yield a

better higher-order coverage property for the empirical likelihood confidence set. Second, the empirical

likelihood confidence set is not necessarily symmetric around the point estimator θ̂s: the shape of the

confidence set is determined by that of the empirical likelihood function. Intuitively, the Wald-type

confidence set is derived from a quadratic approximation of some criterion function to obtain θ̂s. The

empirical likelihood confidence set is derived directly from the empirical likelihood function without

relying on such a quadratic approximation. Third, in finite samples the empirical likelihood confidence

set may not be an interval (it could be disjoint or unbounded) but the Wald-type confidence set is
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always an interval. At first glance, this feature might seem like a drawback to the empirical likelihood

approach. However, as Stock and Wright (2000) argued in a GMM context, disjoint or unbounded

confidence sets can be viewed as a symptom of weak identification, in which case the GMM or (nega-

tive) empirical likelihood criterion function tends to be flat or wiggly around the bottom. Under weak

identification, it is known that the Wald-type confidence set can yield highly misleading conclusions

(Stock and Wright, 2000). See also Lemieux and Marmer (2009) for a discussion of the weak identifica-

tion problem in a fuzzy RDD context. Although formal analysis on weak identification in our setup is

beyond the scope of this paper, it is at least beneficial to use the empirical likelihood confidence set as a

complement to the Wald-type one. Finally, although the empirical likelihood confidence set circumvents

asymptotic variance estimation, it requires numerical search to find endpoints for the confidence set

satisfying `s (t) = χ2
1−ξ (1), so it is more computationally expensive than the Wald-type confidence set.

Based on these differences, we recommend the empirical likelihood confidence set as a complement to

the conventional Wald-type confidence set.

Next, we consider the empirical likelihood ratios `f (t, a, awl, awr) in (15) and `f (t) in (17) for the

fuzzy RDD. For this case, we add the following assumption.

Assumption 3.2.

There exists a neighborhood N ′ around c such that E [Wi|Xi = x]− (αwr − αwl) I {x ≥ c} is contin-
uously differentiable in N ′ \ {c} and is continuous at c with finite left and right hand derivatives. Also,

αwl, αwr ∈ (0, 1).

This assumption corresponds to Assumption 3.1 (ii) in the sharp RDD case. The asymptotic prop-

erties of the empirical likelihood ratios `f (θf , αl, αwl, αwr) and `f (θf ) are presented as follows.

Theorem 3.2.

(i) Under Assumptions 3.1 (i)-(iv) and 3.2, `f (θf , αl, αwl, αwr)
d→ χ2 (4).

(ii) Under Assumptions 3.1 and 3.2, `f (θf )
d→ χ2 (1).

Since the proof is similar to that of Theorem 3.1, it is omitted. Based on Theorem 3.2 (ii), the

100 (1− ξ) % empirical likelihood confidence set for the average causal effect parameter θf is

ELCSf,ξ =
{
t : `f (t) ≤ χ2

1−ξ (1)
}
.

Similar comments to Theorem 3.1 apply here. However, we mention that the asymptotic variance of

θ̂f is more complicated than that of θ̂s. In addition to σ2
l , σ

2
r , and f (c), the asymptotic variance

of θ̂f contains four more nonparametric components: limx↑c Var (Wi|Xi = x), limx↓c Var (Wi|Xi = x),

limx↑c Cov (Yi,Wi|Xi = x), and limx↓c Cov (Yi,Wi|Xi = x). Also, the Wald-type confidence set relies

upon a linear approximation (or delta method) to the ratio θ̂f = α̂r−α̂l
α̂wr−α̂wl .
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4 Second-order Asymptotic Properties

In this section, we focus on the sharp RDD setup and study second-order asymptotic properties of the

empirical likelihood statistic and confidence set. We impose the following additional assumptions, which

are required to develop an Edgeworth expansion.

Assumption 4.1.

(i) E
[
|Yi|15

]
<∞ and nh/ log n→∞ as n→∞.

(ii) K is continuously differentiable and
{

1, uK (u) , u2K (u)
}
are linearly independent in its support.

To study second-order properties of the empirical likelihood statistic `s (θs) in (13) for the sharp RDD

case, we adopt a similar approach to Chen and Cui (2006), which studied Bartlett correctability of the

empirical likelihood statistic in the presence of a nuisance parameter (αl in the sharp RDD case). Note

that while Chen and Cui (2006) considered moment functions for finite-dimensional parameters, our

moment functions gi (θs, αl) in (12) are used for the nonparametric object θs and contain the bandwidth

parameter h. Thus, although the basic idea of the second-order analysis follows from Chen and Cui

(2006), the technical detail is different from theirs.

Let V = 1
hE
[
gi (θs, αl) gi (θs, αl)

′] and T be a 2× 2 orthonormal matrix satisfying

TV −1/2 1

h
E

[
∂gi (θs, a)

∂a

∣∣∣∣
a=αl

]
=

(
ω−1

0

)
,

for some non-zero constant ω. We transform the moment functions as wi (t, a) = TV −1/2gi (t, a) so that
1
hE
[
wi (θs, αl)wi (θs, αl)

′] = I. The (profile) empirical likelihood ratio for θs in (13) can be rewritten

as

`s (t) = min
a∈A

2
n∑
i=1

log
(

1 + λ̃ (t, a)′wi (t, a)
)
,

where λ̃ (t, a) solves
∑n

i=1
wi(t,a)

1+λ′wi(t,a) = 0 with respect to λ for given values of (t, a). To simplify notation,

let wi (a) = wi (θs, a), ã = arg mina∈A `s (θs, a), and λ̃ = λ̃ (θs, ã). The first-order conditions for λ̃ and

ã are written as Q
(
λ̃, ã
)

= 0, where

Q (λ, a) =

(
1

nh

n∑
i=1

wi (a)′

1 + λ′wi (a)
,

1

nh

n∑
i=1

λ′ (∂wi (a) /∂a)

1 + λ′wi (a)

)′
.

The fourth-order Taylor expansion of Q
(
λ̃, ã
)

= 0 around
(
λ̃′, ã

)
=
(
0′2×1, αl

)
and inversions yield

expansion formulae for λ̃ and ã− αl. By inserting those formulae to the fourth-order Taylor expansion

of `s (θs) = 2
∑n

i=1 log
(

1 + λ̃′wi (ã)
)

around λ̃′wi (ã) = 0, we can obtain an expansion formula for

`s (θs).

11



To present the expansion formula for `s (θs), we introduce further notation. Define η = (λ′, a)′,

S = E

[
∂Q(η)
∂η′

∣∣∣
η=(0′,αl)

′

]
, vj = j-th element of a vector v,

αj1...jk =
1

h
E
[
wj1i (αl) · · ·wjki (αl)

]
,

Aj1...jk =


1
nh

∑n
i=1w

j1
i (αl) · · ·wjki (αl)− αj1...jk for k ≥ 2

1
nh

∑n
i=1w

jk
i (αl) for k = 1

,

βj,j1...jk = S−1E

[
∂kQj (η)

∂ηj1 · · · ∂ηjk

∣∣∣∣
η=(0′,αl)

′

]
,

Bj,j1...jk =


S−1 ∂kQj(η)

∂ηj1 ···∂ηjk

∣∣∣
η=(0′,αl)

′ − β
j,j1...jk for k ≥ 1

S−1Qj (0, αl) for k = 0 (i.e., Bj)
,

γj1,m1;j2,m2 =
1

h
E

 ∂m1wj1i (a)

∂am1

∣∣∣∣∣
a=αl

∂m2wj2i (a)

∂am2

∣∣∣∣∣
a=αl

 ,
Cj1,m1;j2,m2 =

 1

nh

n∑
i=1

∂m1wj1i (a)

∂am1

∣∣∣∣∣
a=αl

∂m2wj2i (a)

∂am2

∣∣∣∣∣
a=αl

− γj1,m1;j2,m2 .

Hereafter, the ranges of the superscripts are fixed as g, h, i, j ∈ {1, 2} and q, s, t, u ∈ {1, 2, 3}. Also,

by the convention, repeated superscripts are summed over (e.g.,BjAj =
∑2

j=1B
jAj). Based on this

notation, `s (θs) can be presented as

(nh)−1 `s (θs)

= −2BjAj −BjBj + 2Ci,1BiB3,qBq +
1

2
βj,uqβ3,stγj,1BuBqBsBt

−βj,uqBuBqB3,sBsγj,1 − β3,uqBuBqCi,1Bi −BjBiAji − 2

3
αjihBjBiBh

+2Cj,1
{
BjB3 −Bj,qBqB3 [2, j, 3] +

1

2
βj,uqBuBqB3 [2, j, 3]

}
−2

3
AjihBjBiBh −Bj,uBuBj,qBq − 1

4
βj,uqβj,stBuBqBsBt + βj,uqBuBqBj,sBs

+2γj;i;h,1BjBiBhB3 +BjBi,qBqAji [2, j, i]− 1

2
βj,uqBuBqBiAji [2, j, i]

+2γj;i,1
{
BjBiB3 −BjBiB3,qBq −B3BiBj,qBq [2, j, i] +

1

2
β3,uqBjBiBuBq +

1

2
βj,uqBuBqBiB3 [2, j, i]

}
+2BjBiB3Cj;i,1 − γj,1;i,1BjBiB3B3 + 2αjihBjBiBh,qBq − 2αjihβj,uqBuBqBiBh

−1

2
αjihgBjBiBhBg +Op

({
(nh)−1/2 + h

}5
)
, (18)

where [2, j, i] means the sum of two terms by exchanging the superscripts i and j. For this expansion, we

rewrite the components of Bj,j1...jk and βj,j1...jk in terms of Aj1...jk , αj1...jk , Cj1,m1;j2,m2 , and γj1,m1;j2,m2 ,

and evaluate the stochastic order of each term in (18). Then by collecting the terms having the same

12



stochastic order and completing the square for the expansion, the formula in (18) is written as

(nh)−1 `s (θs) = (R1 +R2 +R3)2 +Op

({
(nh)−1/2 + h

}5
)
,

where

R1 = A2,

R2 = −1

2
A2A22 +

1

3
α222

(
A2
)2 − ωC2,1A1 + ωγ2;2,1A2A1,

R3 = ω2C1,1C2,1A1 +
1

2
ωC2,1A22A1 − 1

2
ω2
(
C2,1

)2
A2 +

3

8

(
A22
)2
A2 + ωC2,1A12A2

+

{
ωγ2;2,1α122 − 1

2
ω2
(
γ2;2,1

)2
+

4

9

(
α222

)2 − 1

4
α2222

}(
A2
)3

+ω

{
2ω
(
γ2;1,1 + γ1;2,1

)
γ2;2,1 +

5

3
α222γ2;2,1 − γ2;2;2,1

}
A1
(
A2
)2

+ω2

{
−1

2
γ2,1;2,1 +

3

2

(
γ2;2,1

)2}(
A1
)2
A2 +

1

3
A222

(
A2
)2

+ ω2γ2;2,1C2,1
(
A2
)2 − ωγ2;2,1A12

(
A2
)2

−ω2γ2;2,1C1,1A1A2 − ω2
(
γ1;2,1 + γ2;1,1

)
C2,1A1A2 − ω2γ2;2,1C2,1

(
A1
)2 − 3

2
γ2;2,1ωA22A1A2

+ωC2;2,1A1A2 − ωα122C2,1
(
A2
)2 − 2

3
ωα222C2,1A1A2 − 5

6
α222A22

(
A2
)2
.

Therefore, the leading term of the statistic (nh)−1 `s (θs) is given by R2 = (R1 +R2 +R3)2, where R1 =

Op

(
(nh)−1/2 + h

)
, R2 = Op

({
(nh)−1/2 + h

}2
)
, and R3 = Op

({
(nh)−1/2 + h

}3
)
. An application

of the delta method (see, Hall, 1992, Section 2.7) yields

Pr {`s (θs) < c} = Pr
{

(nh)R2 < c
}

+O

({
(nh)−1/2 + h

}4
)
, (19)

for c > 0. Thus for the second-order analysis of `s (θs), it is enough to establish a valid Edgeworth

expansion of Pr
{

(nh)R2 < c
}
. Observe that the term R is a smooth function of the recentered sample

moments Ū =
(
A1, A2, A12, A22, C1,1, C2,1, C2;2,1

)
and that the Edgeworth expansion for the distribution

of the vector of means Ū is shown to be valid by using the result in Chen and Qin (2002) combined with

Assumption 4.1. Therefore, we can derive a valid Edgeworth expansion of Pr
{

(nh)R2 < c
}
by applying

Bhattacharya and Ghosh (1978). By (19), we obtain a valid Edgeworth expansion of Pr {`s (θs) < c}.
To present the second-order property of the empirical likelihood statistic `s (θs), let cξ and f1 (·) be the

(1− ξ)-th quantile and probability density function of the χ2 (1) distribution, respectively.

Theorem 4.1. Under Assumptions 3.1 and 4.1,

(i) Pr {`s (θs) ≤ cξ} = 1− ξ − cξf1 (cξ)Bc +O
(

(nh)−2 + h4
)
,

(ii) Pr {`s (θs) ≤ cξ (1 +Bc)} = 1− ξ +O
(
n2h10 + (nh)−2

)
,
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where the Bartlett factor Bc is defined as

Bc = (nh)
(
α2
)2

+ h2Ξ + (nh)−1

{
∆ +

(
−1

6
α222 − ωγ1;2,1

)2
}
,

and Ξ and ∆ are defined in (38) and (39), respectively.

Theorem 4.1 (i) says that the error in the null rejection probability of the empirical likelihood test

for θs using the critical value cξ based on the first-order χ2 (1) asymptotic distribution is of order Bc.

Since α2 = O
(
h2
)
, Ξ = O (1), and ∆ +

(
−1

6α
222 − ωγ1;2,1

)2
= O (1), it holds Bc = O

(
nh5 + (nh)−1

)
(note: the second term h2Ξ cannot be a leading term). On the other hand, Theorem 4.1 (ii) says

that the error in the null rejection probability by the modified critical value cξ (1 +Bc) (called the

Bartlett correction) is of order O
(
n2h10 + (nh)−2

)
. Note that Assumption 3.1 (iv) guarantees h→ 0,

nh → ∞, and nh5 → 0. Therefore, the error in Pr {`s (θs) ≤ cξ (1 +Bc)} is of smaller order than that

in Pr {`s (θs) ≤ cξ}. For comparison, suppose h ∝ n−η for some η ∈
(

1
5 , 1−

2
ζ

)
so that Assumption 3.1

(iv) is satisfied. Then the above theorem implies

Pr {`s (θs) ≤ cξ} =

 1− ξ +O
(
n−(5η−1)

)
if η ∈

(
1
5 ,

1
3

]
1− ξ +O

(
n−(1−η)

)
if η ∈

(
1
3 , 1−

2
ζ

) ,

Pr {`s (θs) ≤ cξ (1 +Bc)} =

 1− ξ +O
(
n−2(5η−1)

)
if η ∈

(
1
5 ,

1
3

]
1− ξ +O

(
n−2(1−η)

)
if η ∈

(
1
3 , 1−

2
ζ

) .

Therefore, for any η ∈
(

1
5 , 1−

2
ζ

)
, the test based on the Bartlett corrected critical value cξ (1 +Bc)

has smaller orders of the errors in the null rejection probabilities than the test based on the asymptotic

χ2 (1) critical value cξ. For example, if h ∝ n−1/4, we have Pr {`s (θs) ≤ cξ} = 1 − ξ + O
(
n−1/4

)
and

Pr {`s (θs) ≤ cξ (1 +Bc)} = 1− ξ +O
(
n−1/2

)
. In practice, the Bartlett factor Bc has to be estimated.

The method of moments estimator of Bc can be obtained by substituting all the population moments

involved by their corresponding sample moments.

5 Bandwidth Selection

To implement our empirical likelihood inference, we need to choose the bandwidth h. One way to select

the bandwidth is to conduct a higher-order expansion, derive some Edgeworth expansion formula for

the coverage probability (say, Pr {ELCSs,ξ} = 1 − ξ + r (n, h) with r (n, h) → 0 as n → ∞ for the

sharp RDD case), and then choose h to minimize the dominant term of the coverage error r (n, h).

This approach was adopted by Chen and Qin (2000) for their empirical likelihood confidence interval

of the conditional mean. Our setup is more complicated than that of Chen and Qin (2000) due to the

existence of more than one moment restriction and additional profile-out steps needed to obtain `s (θs)

and `f (θf ). Thus, we leave this analysis for future research.
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An alternative would be to adopt some bandwidth selection procedure that is effective for point

estimation of nonparametric regression functions. Although our interest is on interval estimation or

hypothesis testing for θs or θf , desirable properties for point estimation can reflect favorably on the

performance of the empirical likelihood-based inference. For local linear nonparametric regression,

Imbens and Kalyanaraman (2009) proposed a plug-in bandwidth selection method to minimize the

asymptotic mean squared error to estimate θs. Also Li and Racine (2004) studied data-driven cross-

validation methods under a general setup and presented desirable theoretical and simulation evidence.

However, there are two difficulties that prevent us from applying Li and Racine’s (2004) results to our

context. First, the results of Li and Racine (2004) are not directly applicable because we need to choose

the bandwidths to estimate the regression functions at the boundary points, such as limx↓c E [Yi|Xi = x]

and limx↑c E [Yi|Xi = x]. Second, to obtain the limiting χ2 null distributions for the empirical likelihood

ratios in Theorems 3.1 and 3.2, we need to undersmooth the bandwidth to satisfy nh5 → 0 (Assumption

3.1 (iv)), which excludes Li and Racine’s (2004) convergence rate Op
(
n−1/5

)
for their least square cross-

validation bandwidth. If we allow nh5 → c for some constant c, modified arguments imply the limiting

non-central χ2 null distributions for the empirical likelihood ratios, where the non-centrality parameters

depend on c. Although full investigation of these issues is reserved for future work, we suggest the

following modified cross-validation bandwidth selection method motivated by Li and Racine (2004):

(i) choose the bandwidths for the local linear regressions in (3) and (6) by the cross-validation method

discussed in Li and Racine (2004), and then (ii) modify those cross-validated bandwidths by multiplying

n−ε (say, ε = 0.1) for undersmoothing. Also, as suggested by Imbens and Lemieux (2008), one may

implement this procedure for observations which are close enough to the cutoff point (i.e. observations

with |Xi − c| ≤ δ for some given δ > 0).

6 Numerical Examples

In this section we study the finite sample performance of the proposed empirical likelihood method

through simulations and an empirical application, and compare with the conventional Wald or t-test

based on the asymptotic normality of the average causal effect estimators θ̂s and θ̂f .

6.1 Simulations

We consider the following data generating process of the sharp RDD:

Yi = µ (Xi) + θsWi + σ (Xi) εi, (20)

where µ (x) = x2, Wi = I {Xi ≥ c}, Xi ∼ iid Uniform [−2, 2], εi ∼ iid N (0, 1), and

σ (x) = 2.5 exp (− |x|) I {x ≥ c}+
√

1.4 (1− I {x ≥ c}) . (21)

The cutoff point is set to c = 0.5 so that the conditional mean E [Yi|Xi = x] jumps at x = 0.5 from

αl = 0.25 to αr = 3.25. Thus, in this setup, the average causal effect is θs = αr−αl = 3. The conditional

15



variance function Var (Yi|Xi = x) = σ2 (x) is homoskedastic for x < c and heteroskedastic for x ≥ c.

This specification of σ2 (x) is adopted to assess the impact of heteroskedasticity. A representative sample

with 100 observations is displayed in Figure 1 (a).

We consider two kinds of t-tests based on different estimators for the asymptotic variance of θ̂s: (i)

Porter’s (2003) residual-based kernel estimator of the variance function on boundaries (denoted as AN1),

and (ii) its improved version based on local linear estimators of the variance function as in Ruppert et

al. (1997) and Fan and Yao (1998) (denoted as AN2).6 We compare these t-tests for the null hypothesis

H0 : θs = 3 with the empirical likelihood test (denoted as EL) introduced in this paper.

To implement these tests, we need to choose the kernel function K and bandwidth h. In our experi-

ments, we use the Epanechnikov kernel function K (z) = 3
4

(
1− z2

)
I {|z| ≤ 1} and six fixed bandwidths

ranging from h = 0.8 to h = 1.3 when the sample size is 100 and from h = 0.7 to h = 1.2 when the sam-

ple size is 200. We also consider a data-dependent bandwidth selected via least square cross-validation,

in which we discard 50% of the observations on each side far from the cutoff value, as recommended by

Imbens and Lemieux (2008, Section 5.1). Figure 1 (b) plots the distribution (over replications) of the

data-driven bandwidths selected for the two sample sizes.

Tables 1 and 2 report the rejection rates of the two t-tests (AN1 and AN2) and the empirical

likelihood test (EL) over 1000 replications with the nominal sizes 5% and 10%, when the sample sizes

are 100 and 200, respectively. In addition, we report the averages and standard errors (over replications)

of the estimates α̂r and α̂l of the right and left limits of the conditional mean, and those of the estimates

σ̂2
r (c) and σ̂2

l (c) of the right and left limits of the conditional variance. We also record the averages

and variances (over replications) of the estimate θ̂s in the columns labeled as “ θ̂s” and “var
(
θ̂s

)
”. The

column labeled as “
̂

var
(
θ̂s

)
” gives the averages and standard errors (over replications) of the estimated

asymptotic variances, where σ2
r (c) and σ2

l (c) are estimated by the kernel (AN1) or the local linear

method (AN2). It should be compared with var
(
θ̂s

)
, the true value of the asymptotic variance of θ̂s

presented in (7).

Several observations are in order. The three tests (AN1, AN2, and EL) for H0 : θs = 3 are generally

oversized. Over all bandwidths considered including the data-driven one, EL appears to have the least

amount of size distortion among the three tests. Using the cross-validated bandwidth does not help

much to reduce size distortions. When the larger sample size is used, the empirical sizes of the three

tests are closer to the nominal ones, with the largest improvement observed for the EL test. Noticeable

biases are observed for α̂r and α̂l, especially when large bandwidths are used. On the other hand, these

estimates happen to be biased in the same direction so that the bias of their difference θ̂s = α̂r − α̂l
6Local linear fitting is generally preferred in estimating nonparametric functions at boundary points because of au-

tomatic boundary bias correction. But in finite samples the local linear fitting may give negative estimates of variances

occasionally (see e.g. Xu and Phillips, 2011). In our simulations, the percentages of negative local linear estimates of

σ̂2
r (c) or σ̂2

l (c) over replications range from 5.8% to 0.8% for six bandwidths considered when n = 100, and from 1.1% to

0.1% when n = 200. But we did not observe negative estimates for σ̂2
r (c) + σ̂2

l (c).
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is negligible. The variance of θ̂s is quite close to the sum of the variances of α̂r and α̂l. Marked size

distortions of AN1 are largely explained by the fact that the variance of θ̂s is poorly estimated when

σ̂2
r (c) and σ̂2

l (c) are estimated using the kernel method. In particular, σ̂2
r (c) is seriously biased, with the

average (over replications) just about half of the true value of σ2
r (c). On the other hand, σ2

l (c) appears

to be estimated satisfactorily. Take the case when n = 100 and h = 1.0 for example. The average (over

replications) of σ̂2
r (c) is 1.17 with standard error 0.48, which is far below the true value σ2

r (c) = 2.3,

while the average (over replications) of σ̂2
l (c) is 1.38 with standard error 0.47, which is fairly close to

the true value σ2
l (c) = 1.4. Consequently, the average (over replications) of the estimated asymptotic

variances of θ̂s is 0.46 with standard error 0.13, which underestimates the true value var
(
θ̂s

)
= 0.63.

This explains the serious over-rejection of AN1. Similar comments apply for other bandwidths and for

the case of n = 200. This is not surprising in view of our design of the variance function (with significant

non-zero derivatives on the right side but zero derivatives of any order on the left side). In contrast, the

estimates of var
(
θ̂s

)
are considerably improved when we use the local linear estimators for σ2

r (c) and

σ2
l (c) (still with appreciable downward bias for σ̂2

r (c)). This is consistent with the better size property

of AN2 compared to that of AN1.7

The P-value plots (Davidson and MacKinnon, 1998) displayed in Figure 2 compare the actual null

rejection rates of each of the two squared t-tests and the EL test with a range of nominal null rejection

rates from 0.2%-25%, when (n, h) = (100, 1.0) and (200, 0.9). The P-value discrepancy plots (Figure

3) show the differences of actual and nominal null rejection rates. These plots are useful to evaluate

the quality of asymptotic approximations for the test statistics in finite samples. It is clear from these

figures that all p-values of the EL test are closer to the nominal null rejection rates than those of the

t-tests. This means that the χ2 (1) distribution serves as a better approximation for the finite sample

distribution of the EL test statistic than that of the two (squared) t-test statistics. Similar results are

obtained for other bandwidths.

Figures 4 and 5 show the calibrated powers of the three tests under the alternative HA : θs = θA

for the cases of n = 100 and 200, respectively. These calibrated powers are computed by using adjusted

critical values (see Table 3) at which the null rejection rates are 10% under the data generating process

in (20). We observe that all tests are more powerful when a larger bandwidth is used. AN1 and AN2

generally have similar power properties except that AN2 is less powerful for small bandwidths due to
7The performance of the t-tests AN1 and AN2 can be alternatively improved by using the standard error estimated

via bootstrap. To be concrete, generate B bootstrap samples by resampling the pairs (Xi, Yi) and for each bootstrap

sample we obtain the estimate of θs, denoted by θ̂∗s (b), where b = 1, . . . , B. Define the test statistic
(
θ̂s − θs

)
/se∗

(
θ̂s
)
,

where se∗
(
θ̂s
)

is the standard error of the estimates θ̂∗s (b) over B bootstrap replications. Although this test statistic

avoids nonparametric regressions to estimate the asymptotic variance of θ̂s, it is computationally more expensive. In our

experiments, the bootstrap test takes about ten times longer than the EL test if the number of bootstrap replications

is B = 399. Our preliminary simulation results (not reported here) show that (i) the bootstrap method has smaller

estimation errors for var
(
θ̂s
)
than those of AN1 and AN2; and (ii) the bootstrap test shows similar size properties to

the EL test. To our best knowledge, there is no theoretical study on bootstrap methods in the RDD context and further

research is needed.
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the relatively higher variability of the local linear variance estimates. It is clear from the figures that

EL has dominant power for all bandwidth values except when the value of θA is on the far right side of

the null hypothesis. This exception disappears when the sample size is 200. In this case, for all values

of θA, EL has the highest power among all tests considered.

Overall, our simulation result suggests that the empirical likelihood method is very promising because

the resulting test has better size and power properties than the conventional Wald or t-tests.

6.2 An Empirical Application

We use the data of Angrist and Lavy (1999) to study the effect of the number of classes on pupils’

scholastic achievement. In Israeli public schools, Maimonides’s rule, which stipulates that a class should

be split when it has more than 40 students, has been used to determine the division of enrollment

cohorts into classes. Here we only consider schools which have one or two classes and focus on 4th

graders, although Angrist and Lavy’s original analysis involved schools with up to six classes and

studied 3rd, 4th, and 5th graders. We end up with a sample with 1177 observations (after removing

2 observations with missing values), with 307 schools having only one class (the controlled group) and

870 schools having two classes (the treated group).

Plots of average math scores and verbal scores (outcome variables) against enrollment sizes (forcing

variable) are displayed in Figures 7 and 8, respectively. The round circles represent the controlled group

and the pentagrams represent the treated group. Actual class size may not be the same as what would

be predicted by a strict application of Maimonides’s rule. It is clear from the figures that there are

schools with enrollments near the cutoff point 40 appearing both in the treated and controlled groups.

In other words, this is an fuzzy RDD. Local linear fits are also plotted for the two groups. We use the

bandwidth h = 10 for illustration, which is close to the one selected via least square cross-validation.

The jump size for the average verbal scores seems to be larger than that for the average math scores.

The local linear estimate of the propensity score function (i.e. Pr {Wi = 1|Xi = x}) is plotted in Figure

6 with treatment assignments (jiggled with small random noises so that overlapped observations are

distinguishable). A discontinuity at the enrollment count c = 40 is clearly visible.

We construct confidence sets for the average causal effect θf in (2) for the fuzzy RDD by the Wald

test (AN CSs) and the empirical likelihood test (EL CSs) with confidence level 90%. Figure 9 (a)

presents the estimates and confidence sets for the discontinuity size in the propensity score function

(i.e. αwr − αwl), which can be obtained by applying our method for the sharp RDD to the dependent

variable Wi. The estimates of αwr − αwl are between 0.54 and 0.70 and the EL CSs for αwr − αwl
are wider than the AN CSs in both the lower and upper tails. Figures 9 (b) and 10 present the AN

and EL CSs together with the local linear point estimates using a group of bandwidths for the math

score and the verbal score, respectively. Depending on the choice of the bandwidth, the estimate for

the average causal effect θf ranges from 1.8 to 7.4 for the math score and from 5.0 to 12.0 for the

verbal score. The AN CSs are symmetric around the point estimates by construction. In contrast, the
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EL CSs are typically asymmetric around the point estimates and wider than the AN CSs. This result

is consistent with the simulation evidence in Section 5.1 that the AN CSs are potentially subject to

under-coverage (or over-rejection). For both the math and verbal scores, the AN and EL CSs have

similar lower endpoints. On the other hand, these two CSs yield rather different upper endpoints. For

example, if we take h = 10, which is close to the one selected via least square cross-validation, the upper

endpoints of the AN and EL CSs for the verbal scores are considerably different: around 19 and 30,

respectively. This contrast suggests that compared to the lower endpoints, we may not have enough

sample information to determine the upper endpoints of the confidence set for θf .

For further graphical illustration, in Figures 11 and 12 we plot the values of the Wald and EL

test statistics for a range of candidate parameter values for the jump in the propensity score and the

causal effect. The critical values at different confidence levels are also marked. These plots show how

the empirical likelihood confidence sets are constructed via inversion of the test statistics. Also they

show how the EL CIs are asymmetric around the point estimates. Both AN and EL CSs show that

splitting a large class into two small classes has a significant impact to improve the pupils’ verbal scores,

but not to improve their math scores. Also, from Figure 12, we can see that the empirical likelihood

function is relatively flat for the right tail. This result indicates that we may not have strong sample

information to determine the upper endpoint of the confidence set of θf . Note that the Wald approach

never provides such additional information. This difference demonstrates that the empirical likelihood

approach can provide useful information in practice that is not available by the conventional Wald

approach. In practice, the Wald approach tends to yield too small confidence sets. On the other hand,

the empirical likelihood approach tends to yield relatively larger confidence sets. Thus, the researcher

can feel confident in her results if she obtains the same conclusion from both approaches (e.g. θf > 0 in

the verbal score example). Meanwhile, if she obtains different conclusions from these approaches (e.g.

θf > 15 in the verbal score example with the 5% significance level), she needs to be cautious about

whether she has enough sample information to extract a definitive conclusion.

7 Conclusion

This paper proposes empirical likelihood inference methods for average causal effects in regression dis-

continuity designs. Our methods allow for sharp and fuzzy regression discontinuity designs and do not

need to specify parametric functional forms on the regression functions. Compared to the conventional

Wald-type confidence sets, our empirical likelihood confidence sets do not require asymptotic variance

estimation and can be asymmetric around the point estimates. Monte Carlo simulations and an empir-

ical example evaluating the effect of class size on pupils’ performance are used to illustrate the benefits

of the proposed methods.
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A Mathematical Appendix

In the appendix, we provide mathematical proofs of the main results. Define

sl,j1j2 = f (c)

ˆ 0

−k
K (z)j1 zj2dz, sr,j1j2 = f (c)

ˆ k

0
K (z)j1 zj2dz,

Vl = σ2
l

(
s2
l,12sl,20 − 2sl,12sl,11sl,21 + s2

l,11sl,22

)
,

Vr = σ2
r

(
s2
r,12sr,20 − 2sr,12sr,11sr,21 + s2

r,11sr,22

)
,

V =

(
Vl 0

0 Vr

)
. (22)

A.1 Proof of Theorem 3.1

Proof of (i). From Lemma A.1 (iii), the first-order condition for λ̂ (θs, αl), which solves the optimization

problem in (11), satisfies

0 =
1

nh

n∑
i=1

gi (θs, αl)

1 + λ̂ (θs, αl)
′ gi (θs, αl)

=
1

nh

n∑
i=1

gi (θs, αl)− V̂1λ̂ (θs, αl) , (23)

w.p.a.1 (with probability approaching one), where V̂1 = 1
nh

∑n
i=1

gi(θs,αl)gi(θs,αl)
′

(1+λ̇′gi(θs,αl))
2 , the second equal-

ity follows from an expansion around λ̂ (θs, αl) = 0, and λ̇ is a point on the line joining λ̂ (θs, αl)

and 0. Since
∣∣∣V̂1 − V

∣∣∣ ≤ max1≤i≤n

∣∣∣ 1
1+λ̇′gi(θs,αl)

∣∣∣2 ∣∣ 1
nh

∑n
i=1 gi (θs, αl) gi (θs, αl)

′ − V
∣∣ p→ 0 (by Lemma

A.1 (ii) and (iii)) and V is positive definite (Assumption 3.1 (ii)), V̂1 is invertible w.p.a.1. Thus,

we have λ̂ (θs, αl) = V̂ −1
1

1
nh

∑n
i=1 gi (θs, αl) w.p.a.1, and a second-order expansion of `s (θs, αl) =

2
∑n

i=1 log
(

1 + λ̂ (θs, αl)
′ gi (θs, αl)

)
w.p.a.1 (by Lemma A.1 (iii)) around λ̂ (θs, αl) = 0 yields

`s (θs, αl) = 2λ̂ (θs, αl)
′
n∑
i=1

gi (θs, αl)− λ̂ (θs, αl)
′ V̂2λ̂ (θs, αl)

=

(
1√
nh

n∑
i=1

gi (θs, αl)

)′ [
2V̂ −1

1 − V̂ −1
1 V̂2V̂

−1
1

]( 1√
nh

n∑
i=1

gi (θs, αl)

)
, (24)

w.p.a.1, where V̂2 = 1
nh

∑n
i=1

gi(θs,αl)gi(θs,αl)
′

(1+λ̈′gi(θs,αl))
2 and λ̈ is a point on the line joining λ̂ (θs, αl) and 0. Since∣∣∣V̂2 − V

∣∣∣ p→ 0 by the same argument to V̂1, we have 2V̂ −1
1 − V̂ −1

1 V̂2V̂
−1

1
p→ V −1. Therefore, Lemma A.1

(ii) implies the conclusion.

Proof of (ii). Let α̂ = arg mina∈A `s (θs, a). Based on Lemma A.1 (v)-(vi), we can apply the same

argument to derive (24), which yields

`s (θs) =

(
1√
nh

n∑
i=1

gi (θs, α̂)

)′ [
2Ṽ −1

1 − Ṽ −1
1 Ṽ2Ṽ

−1
1

]( 1√
nh

n∑
i=1

gi (θs, α̂)

)
, (25)
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w.p.a.1., where Ṽ1 = 1
nh

∑n
i=1

gi(θs,α̂)gi(θs,α̂)′

(1+λ̇′gi(θs,α̂))
2 , Ṽ2 = 1

nh

∑n
i=1

gi(θs,α̂)gi(θs,α̂)′

(1+λ̈′gi(θs,α̂))
2 , and λ̇ and λ̈ are points on

the line joining λ̂ (θs, α̂) and 0. Also, by Lemma A.1 (v), we obtain 2Ṽ −1
1 − Ṽ −1

1 Ṽ2Ṽ
−1

1
p→ V −1.

We now derive the asymptotic distribution of 1√
nh

∑n
i=1 gi (θs, α̂). From Lemma A.1 (vi), λ̂ (θs, α̂)

satisfies the first-order condition

0 =
1

nh

n∑
i=1

gi (θs, α̂)

1 + λ̂ (θs, α̂)′ gi (θs, α̂)
, (26)

w.p.a.1. Since the derivative of this condition with respect to λ̂ (θs, α̂) converges in probability to the

positive definite matrix V (by Lemma A.1 (v)-(vi)), we can apply the implicit function theorem, i.e.

λ̂ (θs, a) is continuously differentiable with respect to a in a neighborhood of α̂ w.p.a.1. Let ∂gi(θs,a)
∂a =

− ((1− Ii)Kli, IiKri)
′ = −Gi. The envelope theorem implies

0 =
1

nh

n∑
i=1

−G′iλ̂ (θs, α̂)

1 + λ̂ (θs, α̂)′ gi (θs, α̂)
= −Ĝ′1λ̂ (θs, α̂) , (27)

w.p.a.1, where Ĝ1 is implicitly defined. On the other hand, an expansion of (26) around
(
α̂, λ̂ (θs, α̂)

)
=

(αl, 0) yields

0 =
1

nh

n∑
i=1

gi (θs, αl) +
1

nh

n∑
i=1

−Gi (α̂− αl)
1 + λ̃′gi (θs, α̃)

− 1

nh

n∑
i=1

gi (θs, α̃) gi (θs, α̃)′(
1 + λ̃′gi (θs, α̃)

)2 λ̂ (θs, α̂)

=
1

nh

n∑
i=1

gi (θs, αl)− Ĝ2 (α̂− αl)− V̂3λ̂ (θs, α̂) , (28)

where
(
α̃, λ̃

)
is a point on the line joining

(
α̂, λ̂ (θs, α̂)

)
and (αl, 0), and Ĝ2 and V̂3 are implicitly

defined. Combining (27) and (28),

0 =

(
0

1
nh

∑n
i=1 gi (θs, αl)

)
+ M̂

(
α̂− αl
λ̂ (θs, α̂)

)
, where M̂ =

(
0 −Ĝ′1
−Ĝ2 −V̂3

)
. (29)

By Lemma A.1 (v)-(vi), we have V̂3
p→ V , Ĝ1

p→ G, and Ĝ2
p→ G, where G = f(c)

2 (1, 1)′. Thus, M̂ is

invertible w.p.a.1. By solving (29) for
√
nh (α̂− αl), we have

√
nh (α̂− αl) =

(
G′V −1G

)−1
G′V −1 1√

nh

n∑
i=1

gi (θs, αl) + op (1) .

From this and an expansion of 1√
nh

∑n
i=1 gi (θs, α̂) around α̂ = αl,

1√
nh

n∑
i=1

gi (θs, α̂) =
[
I −G

(
G′V −1G

)−1
G′V −1

] 1√
nh

n∑
i=1

gi (θs, αl) + op (1) . (30)

From (25), (30), and 1√
nh

∑n
i=1 gi (θs, αl)

d→ N (0, V ) (by Lemma A.1 (ii)),

`s (θs)
d→ φ′V 1/2

[
I −G

(
G′V −1G

)−1
G′V −1

]′
V −1

[
I −G

(
G′V −1G

)−1
G′V −1

]
V 1/2φ

= φ′
[
I −A

(
A′A

)−1
A′
]
φ = χ2 (1) ,

where φ ∼ N (0, I) and A = V −1/2G. Therefore, the conclusion is obtained.
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A.2 Lemmas

Define µ (x) = E [Yi|Xi = x] − θsI {x ≥ c}, µ′l = limδ↑0
µ(c+δ)−µ(c)

δ , and µ′r = limδ↓0
µ(c+δ)−µ(c)

δ . Recall

the definitions of Sln,j and Srn,j in (9), and sl,j1j2 and sr,j1j2 in (22).

Lemma A.1. Suppose that Assumption 3.1 (i)-(iv) holds. Then

(i) Sln,1 − sl,11 = Op

(
(nh)−1/2

)
+ O (h), Sln,2 − sl,12 = Op

(
(nh)−1/2

)
+ O (h), Srn,1 − sr,11 =

Op

(
(nh)−1/2

)
+O (h), and Srn,2 − sr,12 = Op

(
(nh)−1/2

)
+O (h),

(ii) 1
nh

∑n
i=1 gi (θs, αl) gi (θs, αl)

′ p→ V , and 1√
nh

∑n
i=1 gi (θs, αl)

d→ N (0, V ),

(iii) there exists λ̂ (θs, αl) ∈ int (Λn (θs, αl)) satisfying∑n
i=1 log

(
1 + λ̂ (θs, αl)

′ gi (θs, αl)
)

= supλ∈Λn(θs,αl)

∑n
i=1 log (1 + λ′gi (θs, αl)) w.p.a.1,∣∣∣λ̂ (θs, αl)

∣∣∣ = Op

(
(nh)−1/2

)
, and max1≤i≤n

∣∣∣λ̂ (θs, αl)
′ gi (θs, αl)

∣∣∣ p→ 0.

Furthermore, if Assumption 3.1 (v) additionally holds, then

(iv) Sln,0 − sl,10 = Op

(
(nh)−1/2

)
+O (h), and Srn,0 − sr,10 = Op

(
(nh)−1/2

)
+O (h),

(v) 1
nh

∑n
i=1 gi (θs, α̂) gi (θs, α̂)′

p→ V , and
∣∣ 1
nh

∑n
i=1 gi (θs, α̂)

∣∣ = Op

(
(nh)−1/2

)
,

(vi) there exists λ̂ (θs, α̂) ∈ int (Λn (θs, α̂)) satisfying∑n
i=1 log

(
1 + λ̂ (θs, α̂)′ gi (θs, α̂)

)
= supλ∈Λn(θs,α̂)

∑n
i=1 log (1 + λ′gi (θs, α̂)) w.p.a.1,∣∣∣λ̂ (θs, α̂)

∣∣∣ = Op

(
(nh)−1/2

)
, and max1≤i≤n

∣∣∣λ̂ (θs, α̂)′ gi (θs, α̂)
∣∣∣ p→ 0.

Proof of (i). We only prove the first statement. The other statements can be shown in the same

manner. By the change of variables and an expansion f (c+ hz) around hz = 0,

E [Sln,1]− sl,11 =

ˆ 0

−k
K (z) zf (c+ hz) dz − sl,11 = h

ˆ 0

−k
K (z) z2f ′ (cz) dz = O (h) ,

where cz is a point on the line joining c and c + hz and the last equality follows from Assumption 3.1

(ii) and (iii). Also, a similar argument yields

Var (Sln,1) ≤ 1

nh2
E

[
(1− Ii)K

(
Xi − c
h

)2(Xi − c
h

)2
]

1

nh

ˆ 0

−k
K (z)2 z2f (c+ hz) dz = O

(
(nh)−1

)
.

Therefore, Lyapunov’s central limit theorem implies Sln,1−E [Sln,1] = Op

(
(nh)−1/2

)
. Combining these

results, the conclusion is obtained.

Proof of (ii). Proof of the first statement. It is sufficient to show that

1

nh

n∑
i=1

(1− Ii)K2
li (Yi − αl)2 p→ Vl,

1

nh

n∑
i=1

IiK
2
ri (Yi − θs − αl)2 p→ Vr.
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Since the proofs are similar, we only show the first statement. By the definition of K2
li,

1

nh

n∑
i=1

(1− Ii)K2
li (Yi − αl)2

= S2
ln,2

1

nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)2

(Yi − αl)2 + S2
ln,1

1

nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)2(Xi − c
h

)2

(Yi − αl)2

−2Sln,2Sln,1
1

nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)2(Xi − c
h

)
(Yi − αl)2 . (31)

By the same argument to the proof of Part (i) of this lemma,

E

[
1

nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)2

(Yi − αl)2

]
→ σ2

l sl,20,

Var

(
1

nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)2

(Yi − αl)2

)
→ 0, (32)

Thus, from Chebyshev’s inequality and Lemma A.1 (i), the probability limit of the first term in (31)

is σ2
l s

2
l,12sl,20. By applying the same argument to the second and third terms of (31), we obtain the

conclusion.

Proof of the second statement. From the definition of gi (θs, αl), it is sufficient to show that

1√
nh

n∑
i=1

(1− Ii)Kli (Yi − αl)
d→ N (0, Vl) ,

1√
nh

n∑
i=1

IiKri (Yi − θs − αl)
d→ N (0, Vr) .

Since the proofs are similar, we only show the first statement. From the definition of Kli,

1√
nh

n∑
i=1

(1− Ii)Kli (Yi − αl)

= (Sln,2 − sl,12)
1√
nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)
(Yi − αl)

− (Sln,1 − sl,11)
1√
nh

n∑
i=1

(1− Ii)K
(
Xi − c
h

)(
Xi − c
h

)
(Yi − αl)

+
1√
nh

n∑
i=1

 (1− Ii)K
(
Xi−c
h

){
sl,12 −

(
Xi−c
h

)
sl,11

}
(Yi − αl)

−E
[
(1− Ii)K

(
Xi−c
h

){
sl,12 −

(
Xi−c
h

)
sl,11

}
(Yi − αl)

] 
+

√
n

h
E

[
(1− Ii)K

(
Xi − c
h

){
sl,12 −

(
Xi − c
h

)
sl,11

}
(Yi − αl)

]
= T1 − T2 + T3 + T4.

For T1, Lyapunov’s central limit theorem implies

1√
nh

n∑
i=1

{
(1− Ii)K

(
Xi − c
h

)
(Yi − αl)− E

[
(1− Ii)K

(
Xi − c
h

)
(Yi − αl)

]}
d→ N

(
0, σ2

l sl,20

)
,
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and the change of variables and Assumption 3.1 (ii)-(iv) imply

E

[
(1− Ii)K

(
Xi − c
h

)
(Yi − αl)

]
= h

ˆ 0

−k
K (z) (E [Yi|Xi = c+ hz]− αl) f (c+ hz) dz = h2µ′lsl,10+O

(
h3
)
.

Thus, from Lemma A.1 (i) and Assumption 3.1 (iv), we have T1 = op (1). Similarly, we can show that

T2 = op (1). For T4, the change of variables and Assumption 3.1 (ii)-(iv) yield

T4 =
√
nh

ˆ 0

−k
K (z) (sl,12 − sl,11z) (E [Yi|Xi = c+ hz]− αl) f (c+ hz) dz

=
√
nhhµ′l

(
sl,12sl,10 − s2

l,11

)
+O

(√
nhh2

)
→ 0.

For T3, note that

E
[
T 2

3

]
=

ˆ 0

−k
K (z)2 (sl,12 − sl,11z)

2 E
[

(Yi − αl)2
∣∣∣Xi = c+ hz

]
f (c+ hz) dz

−h
(ˆ 0

−k
K (z) (sl,12 − sl,11z) (E [Yi|Xi = c+ hz]− αl) f (c+ hz) dz

)2

→ σ2
l

(
s2
l,12sl,20 − 2sl,12sl,11sl,21 + s2

l,11sl,22

)
= Vl,

where the convergence follows from a similar argument to (32). Therefore, Lyapunov’s central limit

theorem implies T3
d→ N (0, Vl). Combining these results, we obtain the conclusion.

Proof of (iii). Since the proof is similar to Newey and Smith (2004, Lemmas A1 and A2), it is

omitted.

Proofs of (iv)-(vi). Detailed proofs are available from the authors upon request. The proof of

Lemma A.1 (iv) is similar to that of Lemma A.1 (i). The second statement of Lemma A.1 (v) follows

from a similar argument to the proof of Newey and Smith (2004, Lemma A3) combined with Lemma

A.1. Since this statement implies the weak consistency of α̂ to αl, Lemma A.1 (ii) implies the first

statement of Lemma A.1 (v). Also, given the consistency of α̂ and Lemma A.1 (v), a similar argument

to the proof of Newey and Smith (2004, Lemma A2) implies Lemma A.1 (vi).

A.3 Proof of Theorem 4.1

Proof of (i). Based on (19), it is sufficient to derive a valid Edgeworth expansion for the distribution

of (nh)1/2R. Let κj be the j-th order cumulant of (nh)1/2R. In Section A.4 below, we obtain

κ1 = κ1,1 +O
(

(nh)−3/2 + (nh)−1/2 h2 + (nh)1/2 h4
)
,

κ2 = 1 + κ2,1 +O
(

(nh)−2 + (nh)−1 h2
)
,

κ3 = O
(

(nh)−3/2 + (nh)−1/2 h2
)
,

κ4 = O
(

(nh)−2 + (nh)−1 h2
)
,
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where

κ1,1 = (nh)1/2 α2 − (nh)−1/2

{
1

6
α222 + ωγ1;2,1

}
,

κ2,1 = h2Ξ +
1

3
α2α222 + 2α2ωγ1;2,1 + (nh)−1 ∆,

and Ξ and ∆ are defined in (38) and (39), respectively. By expanding the characteristic function of

(nh)1/2R using these cumulants and inverting it, we obtain the following Edgeworth expansion

Pr
{

(nh)1/2R < c
1/2
ξ

}
= Φ

(
c

1/2
ξ

)
−
{
κ1,1 +

1

2

(
κ2

1,1 + κ2,1

)
c

1/2
ξ

}
φ
(
c

1/2
ξ

)
+O

(
(nh)−3/2 + (nh)−1/2 h2 + (nh)1/2 h4

)
, (33)

where Φ (·) and φ (·) are the standard normal distribution and density functions, respectively. Using

symmetry of φ (·) around zero, the definition Bc = κ2
1,1 + κ2,1, and the fact that an even/odd order

Hermite polynomial is an even/odd function, we have

Pr
{

(nh)R2 < cξ
}

= Φ
(
c

1/2
ξ

)
− Φ

(
−c1/2

ξ

)
− c1/2

ξ φ
(
c

1/2
ξ

) (
κ2

1,1 + κ2,1

)
+O

(
(nh)−2 + (nh)−1 h2 + h4

)
= Pr

{
χ2

1 < cξ
}
− cξf1 (cξ)Bc +O

(
(nh)−2 + (nh)−1 h2 + h4

)
. (34)

It remains to show the validity of the expansion in (33). Observe that R is a smooth function of the

vector of centered means Ū =
(
A1, A2, A12, A22, C1,1, C2,1, C2;2,1

)
. By applying the results in and Chen

and Qin (2002), we can establish the valid Edgeworth expansion for the distribution of (nh)1/2 Ū , that

is

sup
A∈A

∣∣∣∣∣Pr
{

(nh)1/2 Ū ∈ A
}
− Φ0,Σ (A)−

m∑
k=1

(nh)−k/2
ˆ
A
pk (x)φ0,Σ (x) dx

∣∣∣∣∣ = O
(

(nh)−(m+1)/2
)
, (35)

for each m ∈ N, where A denotes a class of Borel sets A ⊆ R7 satisfying

sup
A∈A

ˆ
(∂A)ε

φ0,Σ (x) dx = O (ε) ,

as ε → 0. Here, Σ = V ar
(

(nh)1/2 Ū
)
, Φ0,Σ and φ0,Σ denote the distribution and density functions of

N (0,Σ) respectively, pk is a polynomial of degree k+ 2 with uniformly bounded coefficients, and (∂A)ε

is the ε-neighberhood of the boundary of A. By Bhattacharya and Ghosh (1978), the expansion in (35)

and smoothness of the function R = ϕ
(
Ū
)
imply the validity of the expansion in (33).

Proof of (ii). By (19) and the Edgeworth expansion in (34),

Pr {`s (θs) < cξ (1 +Bc)}

= Pr
{

(nh)R2 < cξ (1 +Bc)
}

+O

({
(nh)−1/2 + h

}4
)

= Pr
{
χ2

1 < cξ (1 +Bc)
}
− cξ (1 +Bc) f1 (cξ (1 +Bc))Bc +O

(
(nh)−2 + (nh)−1 h2 + h4

)
. (36)

25



By an expansion and Bc = O
(
nh5 + h2 + (nh)−1

)
, the first term of (36) satisfies

Pr
{
χ2

1 < cξ (1 +Bc)
}

= Pr
{
χ2

1 < cξ
}

+ cξf1 (cξ)Bc +O
(
n2h10 + nh7 + (nh)−1 h2 + h4 + (nh)−2

)
.

By another expansion, we have

f1 (cξ (1 +Bc)) = f1 (cξ) +O
(
nh5 + h2 + (nh)−1

)
.

By inserting these results into (36), we obtain

Pr {`s (θs) < cξ (1 +Bc)} = 1− ξ +O
(
n2h10 + nh7 + (nh)−2 + (nh)−1 h2 + h4

)
.

A.4 Computation of Cumulants

A.4.1 1st Cumulant

For R1 = A2, we have

E [R1] =
1

h
E
[
w2
i (αl)

]
= α2.

For R2 = −1
2A

2A22 + 1
3α

222
(
A2
)2 − ωC2,1A1 + ωγ2;2,1A2A1, the first term satisfies

E

[
−1

2
A2A22

]
= −1

2
E

[(
1

nh

n∑
i=1

w2
i (αl)

)(
1

nh

n∑
i=1

(
w2
i (αl)

)2 − 1

)]
= −1

2
(nh)−1 α222+O

(
(nh)−1 h2

)
,

the second term satisfies

E

[
1

3
α222

(
A2
)2]

=
1

3
α222E

[(
1

nh

n∑
i=1

w2
i (αl)

)(
1

nh

n∑
i=1

w2
i (αl)

)]
=

1

3
(nh)−1 α222+O

(
(nh)−1 h2 + h4

)
,

the third term satisfies

E
[
−ωC2,1A1

]
= −ωE

[(
1

nh

n∑
i=1

∂w2
i (αl)

∂a
− γ2,1

)(
1

nh

n∑
i=1

w1
i (αl)

)]
= − (nh)−1 ωγ1;2,1+O

(
(nh)−1 h2

)
,

and the fourth term satisfies

E
[
ωγ2;2,1A2A1

]
= ωγ2;2,1E

[(
1

nh

n∑
i=1

w2
i (αl)

)(
1

nh

n∑
i=1

w1
i (αl)

)]
= O

(
(nh)−1 h2 + h4

)
.

Combining these results,

E [R2] = −1

6
(nh)−1 α222 − (nh)−1 ωγ1;2,1 +O

(
(nh)−1 h2 + h4

)
.

Also, similar but more lengthy calculation yields

E [R3] = O
(

(nh)−2 + (nh)−1 h2 + h4
)
.

Therefore, the 1st cumulant κ1 = E [R1] + E [R2] + E [R3] is written as

κ1 = α2 − 1

6
(nh)−1 α222 − (nh)−1 ωγ1;2,1 +O

(
(nh)−2 + (nh)−1 h2 + h4

)
.
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A.4.2 2nd Cumulant

Observe that

κ2 = E
[
R2
]
− (E [R])2

=
{
E
[
R2

1

]
− (E [R1])2

}
+ E

[
R2

2

]
+ 2 {E [R2R1]− E [R1]E [R2]}+ 2E [R3R1]− (E [R2])2

+O
(

(nh)−3 + (nh)−2 h2
)
. (37)

The first term of (37) satisfies

(nh)
{
E
[
R2

1

]
− (E [R1])2

}
= 1 + h2Ξ +O

(
(nh)−1 h2 + (nh)−2

)
,

where

Ξ = the (2, 2) -th element of h−2TV −1/2

(
ξl 0

0 ξr

)
V −1/2T, (38)

and

ξl = s2
l,111sl,220 + s2

l,101sl,240 + 2sl,120sl,101sl,221 − 2sl,120sl,111sl,211 − 2sl,110sl,101sl,231

+2sl,110sl,111sl,221 − 2sl,101sl,111sl,230,

ξr = s2
r,111sr,220 + s2

r,101sr,240 + 2sr,120sr,101sr,221 − 2sr,120sr,111sr,211 − 2sr,110sr,101sr,231

+2sr,110sr,111sr,221 − 2sr,101sr,111sr,230,

sl,j1j2j3 =
1

h
E

[
(1− Ii)K

(
Xi − c
h

)j1 (Xi − c
h

)j2
(Yi − αl)j3

]
,

sr,j1j2j3 =
1

h
E

[
IiK

(
Xi − c
h

)j1 (Xi − c
h

)j2
(Yi − θs − αl)j3

]
.

The second term of (37) satisfies

(nh)2E
[
R2

2

]
=

1

4
α2222 − 1

6

(
α222

)2 − 1

4
+

1

3
ωγ2,1;1α222

+ω2
{
γ2,1;2,1 −

(
γ2,1;2

)2}
+ 2ω2

(
γ2,1;1

)2
+O

(
(nh)−1 + h2

)
.

The third term of (37) satisfies

{E [R2R1]− E [R1]E [R2]} = (nh)−2

{
−1

2
α2222 +

1

2
+

1

3

(
α222

)2 − γ1;2;2,1ω + γ2;2,1ωα122

}
+

1

3
(nh)−1 α2α222 +O

(
(nh)−3 + (nh)−2 h2

)
.
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The fourth term of (37) satisfies

(nh)2E [R3R1]

= ω2
(
γ1,1;2γ2,1;1 + γ1,1;1γ2,1;2

)
+

1

2

(
γ2,1;1α222 + γ2,1;2α221

)
−1

2
ω2
(
γ2,1;2,1 + 2

(
γ2,1;2

)2)
+

3

8

(
α2222 + 2

(
α222

)2 − 1
)

+ ω
(
γ2,1;2,1 + 2γ2,1;2α122

)
+ 3ωγ2;2,1α122

−3

2
ω2
(
γ2;2,1

)2
+

4

3

(
α222

)2 − 3

4
α2222 + ω2

(
−1

2
γ2,1;2,1 +

3

2

(
γ2;2,1

)2)
+α2222 + 3ω2γ2;2,1γ2,1;2 − 4ωγ2;2,1α122 − ω2γ2;2,1γ1,1;1 − ω2

(
γ1;2,1 + γ2;1,1

)
γ2,1;1 − ω2γ2;2,1γ2,1;2

−ωγ2;2,1α122 + ωγ2;2,1;1 − 3ωα122γ2,1;2 − 2

3
ωγ2,1;1α222 − 5

2

(
α222

)2
+O

(
(nh)−1 + h2

)
.

Combining these results,

κ2 = (nh)−1 + (nh)−1 h2Ξ +
1

3
(nh)−1 α2α222 + (nh)−2 ∆ +O

(
(nh)−3 + (nh)−2 h2

)
,

where

∆ =
1

2
α2222 − 13

36

(
α222

)2
+ 2ωγ1;2;2,1 − ωγ2;2,1α122

−ω2γ2,1;2,1 − 1

3
ωγ2,1;1α222 + ω2γ2;2,1γ2,1;2. (39)

A.4.3 3rd Cumulant

Using the results to derive the first and second cumulants, the third cumulant is written as

κ3 = E
[
R3
]
− 3E [R]E

[
R2
]

+ 2 (E [R])3

= E
[
(R1 +R2)3

]
− 3E [R1 +R2]E

[
(R1 +R2)2

]
+O

(
(nh)−3 + (nh)−2 h2

)
=

{
E
[
R3

1

]
− 3E [R1]E

[
R2

1

]}
− 3E [R2]E

[
R2

1

]
+ 3E

[
R2R

2
1

]
+O

(
(nh)−3 + (nh)−2 h2

)
.(40)

The first term of (40) satisfies{
E
[
R3

1

]
− 3E [R1]E

[
R2

1

]}
= (nh)−2 α222 +O

(
(nh)−3 + (nh)−2 h2

)
.

The second term of (40) satisfies

−3E [R2]E
[
R2

1

]
= (nh)−2

(
1

2
α222 + 3ωγ1;2,1

)
+O

(
(nh)−3 + (nh)−2 h2

)
.

The third term of (40) satisfies

3E
[
R2R

2
1

]
= (nh)−2

(
−3

2
α222 − 3ωγ2,1;1

)
+O

(
(nh)−3 + (nh)−2 h2

)
.

Combining these results, we obtain κ3 = O
(

(nh)−3 + (nh)−2 h2
)
.
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A.4.4 4th Cumulant

In this subsection, let t1 = α2222, t2 = 3, t3 = 4
(
α222

)2, and t4 = 3
(
α222

)2. Using the results to obtain

the first, second, and third cumulants,

κ4 = E
[
R4
]
− 3

(
E
[
R2
])2 − 4E [R]E

[
R3
]

+ 12 (E [R])2E
[
R2
]
− 6 (E [R])4

=
{
E
[
R4

1

]
− 3

(
E
[
R2

1

])2 − 4E [R1]E
[
R3

1

]
+ 12 (E [R1])2E

[
R2

1

]
− 6 (E [R1])4

}
+
{

4E
[
R2R

3
1

]
− 12E [R2R1]E

[
R2

1

]
− 12E

[
R2R

2
1

]
E [R1]

}
+
{

6E
[
R2

2R
2
1

]
− E

[
R2

2

]
E
[
R2

1

]}
+
{

4E
[
R3R

3
1

]
− 12E [R3R1]E

[
R2

1

]}
−
{

4E [R2]E
[
R3

1

]
− 12E [R2]E

[
R2R

2
1

]
+ 12 (E [R2])2E

[
R2

1

]}
+O

(
(nh)−4 + (nh)−3 h2

)
.(41)

The first term of (41) satisfies

(nh)3
{
E
[
R4

1

]
− 3

(
E
[
R2

1

])2 − 4E [R1]E
[
R3

1

]
+ 12 (E [R1])2E

[
R2

1

]
− 6 (E [R1])4

}
= t1−t2+O

(
(nh)−1 + h2

)
.

The second term of (41) satisfies

(nh)3 {4E
[
R2R

3
1

]
− 12E [R2R1]E

[
R2

1

]
− 12E

[
R2R

2
1

]
E [R1]

}
= −6t1 + 2t2 −

1

6
t3 +

2

3
t4 − 4ωγ2,1;1α222 +O

(
(nh)−1 + h2

)
.

The third term of (41) satisfies

(nh)3 {6E
[
R2

2R
2
1

]
− E

[
R2

2

]
E
[
R2

1

]}
= 3t1 − t2 +

1

6
t3 −

5

9
t4 + 4ωγ2,1;1α222 +O

(
(nh)−1 + h2

)
.

The fourth term of (41) satisfies

(nh)3 {4E
[
R3R

3
1

]
− 12E [R3R1]E

[
R2

1

]}
= 2t1 −

1

9
t4 +O

(
(nh)−1 + h2

)
.

Using the results to derive the first, second, and third cumulants, the fifth term of (41) is of order

O
(

(nh)−4 + (nh)−3 h2
)
. Combining these results, we obtain κ4 = O

(
(nh)−4 + (nh)−3 h2

)
.
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Figure 1: (a) A representative sample with 100 observations; (b) The distributions of the bandwidths

selected by cross validation over 1000 replications when the sample sizes are 100 and 200.
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Figure 2: P-value plots (Davidson and MacKinnon, 1998) for the two squared t-test statistics (AN1

and AN2) and empirical likelihood-based test statistic (EL).
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Figure 3: P-value discrepancy plots (Davidson and MacKinnon, 1998) for the two squared t-test

statistics (AN1 and AN2) and empirical likelihood-based test statistic (EL).
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Table 1: The rejection rates (under the null) of two t-tests and the empirical likelihood-based test with

various fixed bandwidths and the one selected via cross validation, when the nominal sizes are 5% and

10% and the sample size is 100. (Standard errors are in the parentheses.)

Bandwidth Tests 5% sizes 10% sizes α̂r α̂l θ̂s var
(
θ̂s

) ̂
var

(
θ̂s

)
σ̂2
r σ̂2

l

True parameter values 3.25 0.25 3 2.30 1.4

h = 0.8 AN1 0.092 0.154 3.15
(0.69)

0.20
(0.59)

2.95 0.78 0.60
(0.19)

1.29
(0.57)

1.32
(0.52)

AN2 0.103 0.163 0.70
(0.38)

1.83
(1.14)

1.24
(0.99)

EL 0.084 0.135

h = 0.9 AN1 0.093 0.149 3.17
(0.62)

0.16
(0.57)

3.01 0.70 0.53
(0.15)

1.22
(0.53)

1.35
(0.48)

AN2 0.087 0.138 0.62
(0.31)

1.83
(1.09)

1.22
(0.88)

EL 0.079 0.124

h = 1.0 AN1 0.103 0.158 3.13
(0.59)

0.13
(0.52)

2.99 0.63 0.46
(0.13)

1.17
(0.48)

1.38
(0.47)

AN2 0.088 0.146 0.57
(0.25)

1.82
(0.97)

1.30
(0.79)

EL 0.075 0.125

h = 1.1 AN1 0.097 0.166 3.11
(0.55)

0.12
(0.54)

2.99 0.59 0.42
(0.11)

1.16
(0.47)

1.39
(0.46)

AN2 0.084 0.143 0.52
(0.22)

1.79
(0.90)

1.35
(0.77)

EL 0.068 0.122

h = 1.2 AN1 0.087 0.140 3.07
(0.52)

0.06
(0.48)

3.01 0.49 0.39
(0.09)

1.14
(0.44)

1.42
(0.43)

AN2 0.057 0.113 0.49
(0.19)

1.87
(0.88)

1.39
(0.80)

EL 0.053 0.102

h = 1.3 AN1 0.082 0.147 3.05
(0.50)

0.06
(0.45)

2.99 0.44 0.36
(0.08)

1.12
(0.42)

1.45
(0.41)

AN2 0.069 0.116 0.45
(0.18)

1.82
(0.89)

1.37
(0.75)

EL 0.048 0.098

hcv AN1 0.105 0.173 3.11
(0.63)

0.11
(0.58)

3.00 0.70 0.47
(0.25)

1.22
(0.51)

1.39
(0.47)

AN2 0.085 0.142 0.55
(0.34)

1.84
(1.00)

1.33
(0.83)

EL 0.076 0.122
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Table 2: The rejection rates (under the null) of two t-tests and the empirical likelihood-based tests with

various fixed bandwidths and the one selected via cross validation, when the nominal sizes are 5% and

10% and the sample size is 200. (Standard errors are in the parentheses.)

Bandwidth Tests 5% sizes 10% sizes α̂r α̂l θ̂s var
(
θ̂s

) ̂
var

(
θ̂s

)
σ̂2
r σ̂2

l

True parameter values 3.25 0.25 3 2.30 1.4

h = 0.7 AN1 0.077 0.143 3.18
(0.51)

0.19
(0.43)

3.00 0.45 0.35
(0.08)

1.39
(0.45)

1.34
(0.39)

AN2 0.075 0.131 0.42
(0.16)

1.94
(0.88)

1.30
(0.69)

EL 0.061 0.116

h = 0.8 AN1 0.086 0.142 3.16
(0.47)

0.18
(0.41)

2.98 0.38 0.31
(0.07)

1.32
(0.42)

1.37
(0.38)

AN2 0.060 0.114 0.37
(0.13)

1.96
(0.84)

1.34
(0.67)

EL 0.058 0.113

h = 0.9 AN1 0.080 0.130 3.14
(0.42)

0.18
(0.37)

2.96 0.31 0.27
(0.05)

1.26
(0.38)

1.38
(0.36)

AN2 0.068 0.118 0.33
(0.11)

1.98
(0.82)

1.34
(0.61)

EL 0.050 0.105

h = 1.0 AN1 0.062 0.122 3.14
(0.39)

0.15
(0.36)

2.99 0.27 0.24
(0.05)

1.23
(0.35)

1.40
(0.34)

AN2 0.074 0.120 0.30
(0.09)

1.92
(0.72)

1.37
(0.58)

EL 0.047 0.096

h = 1.1 AN1 0.087 0.148 3.12
(0.40)

0.11
(0.35)

3.01 0.28 0.21
(0.04)

1.16
(0.33)

1.44
(0.33)

AN2 0.057 0.094 0.28
(0.08)

1.97
(0.70)

1.39
(0.58)

EL 0.056 0.097

h = 1.2 AN1 0.079 0.143 3.05
(0.37)

0.09
(0.32)

2.96 0.24 0.20
(0.03)

1.15
(0.31)

1.46
(0.30)

AN2 0.052 0.098 0.25
(0.07)

1.95
(0.70)

1.43
(0.54)

EL 0.048 0.099

hcv AN1 0.111 0.170 3.17
(0.51)

0.14
(0.45)

3.02 0.33 0.29
(0.16)

1.28
(0.47)

1.40
(0.37)

AN2 0.080 0.130 0.36
(0.19)

1.96
(0.87)

1.38
(0.63)

EL 0.070 0.119
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Figure 4: The calibrated powers of the two t-tests (AN1 and AN2) and the empirical likelihood-based

test (EL) for various fixed bandwidths and the one selected via cross validation, when the nominal size

is 10% and the sample size is 100.
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Figure 5: The calibrated powers of the two t-tests (AN1 and AN2) and the empirical likelihood-based

test (EL) for various fixed bandwidths and the one selected via cross validation, when the nominal size

is 10% and the sample size is 200.
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Table 3: The calibrated 10% critical values (used to obtain the calibrated powers) of the two squared

t−tests (AN1 and AN2) and the EL test.
n = 100

h = 0.8 h = 1.0 h = 1.2 hcv uncalibrated

AN1 5.186 5.632 5.167 5.862 2.706

AN2 6.208 4.968 4.038 5.078 2.706

EL 3.335 3.368 2.785 3.432 2.706

n = 200

h = 0.7 h = 0.9 h = 1.1 hcv uncalibrated

AN1 4.876 5.024 5.301 5.408 2.706

AN2 4.812 4.627 4.014 5.194 2.706

EL 3.123 2.803 2.893 3.331 2.706
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Figure 6: The plot of the assignment (with imposed random noises) by the enrollment count, and

the local linear estimates of the conditional probabilities of getting treated (splitting into two classes)

given the enrollment counts for the controlled sample (enrollment≤ 40) and the treatment sample

(enrollment> 40).
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Figure 7: The plot of the average math scores by the enrollment counts, and the local linear fits for

the controlled sample (enrollment≤ 40) and the treatment sample (enrollment> 40).
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Figure 8: The plot of the average verbal scores by the enrollment counts, and the local linear fits for

the controlled sample (enrollment≤ 40) and the treatment sample (enrollment> 40).
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Figure 9: The local linear estimates and the 90% asymptotic normality confidence intervals (AN

CIs) and empirical likelihood confidence intervals (EL CIs) of (a) the jump in the propensity score and

(b) the average causal treatment effect of splitting into two classes on pupils’ math score.
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Figure 10: The local linear estimates and the 90% asymptotic normality confidence intervals (AN

CIs) and empirical likelihood confidence intervals (EL CIs) of the average causal treatment effect of

splitting into two classes on pupils’ verbal score.
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Figure 11: The Wald and empirical likelihood (EL) test statistics for (a) the jump in the propensity

score and (b) the average causal treatment effect of splitting into two classes on pupils’ math score. The

smoothing bandwidth h = 16 is used. Both test statistics have χ2 (1) limit distribution and the 90%,

95%, and 99% critical values are marked in the figures.
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Figure 12: The Wald and EL test statistics for the average causal treatment effect of splitting into

two classes on pupils’ verbal score. The smoothing bandwidth h = 16 is used. Both test statistics have

χ2 (1) limit distribution and the 90%, 95%, and 99% critical values are marked in the figure.
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