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Abstract

Ethnic inventors play important roles in US innovation systems, especially in high-tech
regions like Silicon Valley. Do ‘ethnicity-innovation’ channels exist elsewhere? This paper
investigates, using a new panel of UK patents microdata. In theory, ethnicity might affect
positively innovation via ‘star’ migrants, network externalities from co-ethnic groups, or
production complementarities from diverse inventor communities. | use the novel ONOMAP
name classification system to identify ethnic inventors. Controlling for individuals’ human
capital, I find small positive effects of South Asian and Southern European co-ethnic group
membership on individual patenting. The overall diversity of inventor communities also helps
raise individual inventors’ productivity. I find no hard evidence that ethnic inventors crowd
out patenting by majority groups.

JEL Classification: J15, J24, J61, M13, O3, R11, R23
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1. Introduction

At first glance, ethnicity, diversity and innovati@lo not seem closely linked. However, in
recent years there has been growing policy and@urterest in the role of ‘ethnic inventors’

in innovative activity, both in the UK and elsewhéKerr and Kerr 2011, Leadbeater 2008,
Page 2007, Legrain 2004). These discussions andtefelhave largely drawn on recent
experience in the United States. Since the 198@snity communities, particularly those of

South / East Asian origin, have played increasimglyortant roles in ideas generation in the
science and technology sectors (Chellaraj et ab2@dephan and Levin 2001). US ethnic
inventors — who are often migrants — are spatietijcentrated at city-region level (Kerr

2008). High-tech US clusters like Silicon Valleywbabenefited from ‘ethnic entrepreneurs’
who both help connect South Bay firms to global kats, and are responsible for 52% of the
Bay Area’s startups (Wadhwa et al 2007). Therepastive links between the presence of
migrants and US regional patenting (Hunt and Gauthoiselle 2008, Peri 2007). Diasporic

communities appear to play important roles in tifeusion of knowledge both across US

cities, and between US regions and ‘home’ coun{kesr 2009, 2008).

By contrast, surprisingly little is known about thele of ‘ethnic inventors’ on
innovation in the UK. Over the past two decadegarihas become substantially more
ethnically diverse. The number of people from ndritev ethnic groups grew by 53%
between 1991 and 2001. For England and Wales bet@@@l and 2009, non ‘White British’
groups have grown from 6.6m to 9.1m and now statdse in six of the population (ONS
2011). Immigration has been a main driver, withumber of ‘new migrant communities’
forming since the early 1990s (Kyambi 2005). Thapgr asks: has UK innovation benefited

from these population shifts as it has in the US?

Changing demography could affect innovation ineatst four complementary ways.
First, migrants or individuals from minority comnities may be positively selected on the
basis of skills or entrepreneurial behaviour, aljtothis needs to be distinguished from other
human capital endowments (Borjas 1987). Secondpwegring transaction costs, co-ethnic
groups can accelerate within-group ideas generatamd transmission, although
discrimination may constrain knowledge spilloverBo¢quier and Rapaport 2011,

Kloosterman and Rath 2001). Third, cultural divigrsnay improve ideas generation across



all groups, if the benefits of a larger set of ®legerspectives outweigh trust or
communication difficulties between those groupsrliBet and Fujita 2009, Page 2007,

Alesina and La Ferrara 2004).

Finally, these channels may be more pronouncedbaruareas because of the spatial
clustering of minority communities, agglomeratiomoromies, or both. In addition,
cosmopolitan urban populations may raise demanddar goods and services, especially in
non-tradable sectors (Gordon et al 2007, Mazzalzadi Neumark 2009).

This paper looks at the role of ethnic inventorgnimovation in the UK, using a new
12-year panel of patents microdata. Using the nOIMOMAP name classification system to
build on pioneering US work by Kerr (2008) and Ageh et al (2007) | am able to explore
all four ‘population-innovation’ channels. | estitaaa knowledge production function linking
inventors’ patenting activity to individual, grougnd area-level characteristics. Using
techniques popularised by Blundell et al (1995¢xploit historic patent information to fit

inventor-level fixed effects.

Once human capital is controlled for, | find thahgly being an ethnic inventor has
no significant effect on individual patenting rat€onversely | find some positive effects for
members of specific co-ethnic groups: Indian, SAglan and Southern European inventors.
| also find small positive effects of inventor gpodiversity on individual patenting activity.
Effects on majority inventors are less clear: iasieg ethnic diversity has some negative
links to majority groups’ patenting activity inddaal level, but | find no effects of crowding
out at area level. Urban location has relativelyalbraffects on individual patenting after
other individual and area-level factors are inctidehe results survive extensive robustness

checks, although alternative measures of area-tawahn capital weaken diversity effects.

The paper adds to a small but growing empiricalditure on immigration, ethnicity
and innovation (Kerr and Kerr 2011). It also cdmites to the emerging field of inventor
microdata analysis (OECD 2009). It is one of vesw fstudies exploring multiple ethnicity-
innovation channels, at individual, group and desal. As far as | am aware, this is the first
research of its kind in Europe.



The paper is structured as follows. Section 2 setasearch questions and key terms.
Section 3 reviews relevant theoretical framewonkd ampirics. Sections 4 and 5 introduce
the main data sources and provide descriptivestitati Section 6 outlines the model and
estimation strategy. Sections 7 — 9 give resulgresions and robustness checks. Section 10

concludes.

2. Research questions

My research questions are:

* Do ethnic inventors or co-ethnic groups influenagepting rates in the UK?
* Does the cultural diversity of inventor groups ughce patenting rates?

» Do urban environments affect ethnicity- or diversitnovation effects?

‘Innovation’, ‘ethnicity’ and ‘diversity’ are fuzzyoncepts that need to be carefully
defined. The innovation process is commonly divided three phases: invention, adoption
and diffusion (Fagerberg 2005): a standard UK dksdim of innovation is thus ‘the successful
exploitation of new ideas’ (Department of Innovatitniversities and Skills 2008). My
chosen measure of innovation, patenting, is prigan indicator of invention (OECD 2009).

Specifically, | look at shifts in individual pateng rates, or ‘inventor productivity’.

Patent data has several advantages: it has aveastationship with other indicators
of overall innovation ‘performance’ such as prodkitt and market share; it provides
detailed information on geography and patent owrmh inventors and applicant firms; and
is available for long time periods at relativelywlaost. Not all inventions are patented,
however, and patents have variable coverage adndsstries (with a well-known bias
towards manufacturing) (OECD 2009). Patenting akssponds to policy shocks — for
example, US Supreme Court decisions in the 1980s1880s (particularljRe Alappatin
1994) led to spikes in software and informatiorhtedogy patenting (Li and Pai 2010).

| am able to deal with most of these challengesutin careful identification

strategies (see section 4). Unlike the majoritypafent data studies, | am able to work at



individual inventor level — using the KITES-PATSTAdatents dataset developed at Bocconi

University (more of which below).

‘Ethnicity’ is as hard to pin down. Ethnic identity a multifaceted concept with
objective, subjective and dynamic elements (Aspir8l09). Quantitative measures of
identity tend to be partial: they focus on iderisityisible, objective components, assuming
away self-ascription and endogeneity issues (Cttavi Bellini et al. 2007). Given these
limitations, quantitative researchers working watihnic identity will always need to use a
‘least-worst’ proxy. | deploy two such measuresngsthe ONOMAP system to analyse
inventor name information and read off likely ettity characteristics (see Section 4 for
details). The first proxy is the ethnic group sifisations prepared by the UK Office of
National Statistics (ONS). The ONS measures attempbmbine different aspects of ethnic
identity, but operate at a high level of generadityl tend to focus on ‘visible minorities’ such

as Black and Asian communities (Mateos, Webbel. @087).

| use ‘geographical origin’ as a second proxy meas@eographical origin can offer
very fine-grained information, but is one-dimensibas a measure of identity. In this case,
because name data conflates migrants and theiemidsots, origin effectively operates as a
measure of geographical ‘roofs’As such, it offers an alternative way of ideritify likely
ethnicity and co-ethnic group membership.

To measure the diversity of these ethnic groupsse a Fractionalisation Index as

commonly used in the development literature. Seti@e4 for details.

3. Theoretical frameworks and evidence

Conventional theories of innovation have relativétile to say to about ethnicity or the
composition of inventor communities. Schumpeter6@)9focuses on the ‘entrepreneurial
function’ inside and outside firms, and the role widividuals in identifying and

commercialising new ideas, in the face of sociartia or resistance. National ‘innovation

! Although not national identity: the vast majoritfthose born in the UK think of themselves asiShit
(Manning and Roy 2007). More broadly, ethnicitytiomality, sexuality and class are all elementa tsroader
sense of self (Fanshawe and Sriskandarajah 2010).
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systems’ approaches explore relationships betwears fand public institutions such as
government agencies and universities (Freeman 198@)e recently, spatial approaches
focus on clustering of innovative activity due tg@glbmeration-related externalities,
particularly local knowledge spillovers (Jaffe, jiemberg et al. 1993; Audretsch and
Feldman 1996).

Endogenous growth theories provide the basis fouraber of newer studies linking
demography to innovation. Endogenous growth mosigdgest that shifts in the technology
frontier help determine economic development. Talsyp highlight the importance of human
capital stocks and knowledge spillovers to levdlsnaovation (Romer 1990). In practice,
access to knowledge is likely to be uneven acrosations, sectors and social groups
(Agrawal, Kapur et al. 2008).

Recent work suggests four ways in which demograpaators could positively
influence ideas generation and transmission. Buglddin the material in the introduction,

theoretical frameworks and empirics are discusseddch in turn.

3.1 Individual selection

Migrants are mobile carriers of ideas — so highledimigrants, in particular, may
positively contribute to overall innovation raté&e(r and Lincoln 2010). More broadly, from
an economic perspective, migration decisions reféeeqected returns: potential migrants
balance out economic gains from migration and costaoving abroad (Borjas 1987). The
income maximisation approach implies that migramés‘pre-selected’ — and are more likely
to be entrepreneurial, seeking out new ideas (Wag¢dBaxenian et al. 2007).

Both these factors suggest migrant status mayipelgitpredict patenting rates, over
and above other human capital attributes. Disciatndm has ambiguous effects. It may lead
to ‘lock-out’ from conventional labour market opparities (Gordon 2001). Conversely, it
may operate as a spur to innovation if excludedonties are forced to develop new
economic opportunities (Rath and Kloosterman 2000)e challenge is to distinguish

ethnicity from wider human capital endowments agldwvant industry / area characteristics.

US experience suggests some positive selectiorctefi@ science and high-tech

sectors of the economy, particularly for migrantrkess. US employers in these sectors
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report heavy dependence on skilled migrants (Wadi®exenian et al. 2007; Kerr and
Lincoln 2010). Indo- and Chinese-American commesiti make disproportionate
contributions to US science and engineering, imseof workforce membership as well as
Nobel Prize counts, elections to scientific acadsnaind patent citations (Stephan and Levin
2001).

Anderson and Platzer (2007) report that immigrdrage founded 40% of venture
capital-backed technology companies currently trgdn the US, including Google, eBay,
Yahoo and Sun Microsystems. Wadhwa et al (2007) the national immigrant contribution
to patenting rose from 7.3% in 1998 to 24.6% in&®Q00dsing time series data, Chellaraj et al
(2005) report that foreign graduate students ailde@kmmigrants have a significant positive
impact on patent applications and grants. Howewera recent US study on immigrant
patenting, Hunt and Gauthier-Loiselle (2008) suggest once education and industry

characteristics are controlled for, effects of udiial migrant status disappear.

There is much less evidence from the UK. Nathan bee (2011) report some
evidence that migrant entrepreneurs in London aoeentikely to innovate than average
company founders. Basu (2002; 2004) suggests cemadilk variation in levels of
entrepreneurship across minority communities, withss, education and family status

important mediating influences.

3.2 Social networks and diaspora effects

A second set of theories suggests that culturahéseess’ or ‘proximity’ helps
knowledge spillovers (Agrawal, Kapur et al. 2008)p-ethnic social networks — such as
diasporas or transnational communities — providevok externalities that accelerate ideas

transmission (Docquier and Rapoport 2011).

Social networks offer their members higher socadital and levels of trust, lowering
transaction costs and risk. In turn, networks seéenpositively affect innovative activity
(Rodriguez-Pose and Storper 2006; Kaiser, Kongstead. 2011). Co-ethnic networks such
as diasporas may be an important channel for krdmelespillovers and ideas flow —
improving awareness of new technologies and passintacit knowledge, both within and
across countries (Kerr 2008; Kerr 2009).



Of course, other social networks — such as fanilgirship networks, or professional
associations — might be equally or more importaAind co-ethnic effects on individual
patenting are ambiguous. Matching and learning @toes may be present within the group
(‘enclave’ activity) and between different groupsifildleman minority’ activities) (Bonacich
1973). But externalities will be constrained by wposize, majority attitudes and links
between groups. First, within a minority group,iuidual members are less likely to match
ideas than those in the majority group since tiellebe a smaller set of possible matches.
Second, if members of majority group(s) discrimgnagainst minority groups, or if minority
groups lack social connections to majority acttings will limit matches across groups and

‘middleman minority’ activity (Zenou 2011).

In a closed economy, effects of co-ethnic groupsdatermined by group size and the
level of interaction between groups. Under glddalion, co-ethnic communities may be
more influential. Increasing numbers of businessesigh-cost countries are looking to
relocate research and development (R&D) activitg lower-cost countries (Mowery 2001;
Archibugi and lammarino 2002; Cantwell 2005; Yew@9). Diasporic communities with
members present in high-cost ‘host’ countries malp lirms move into lower-cost ‘home’
countries, identifying collaborators or accelergtjoint ventures (Kapur and McHale 2005;
Saxenian and Sabel 2008). This raises both theo$it®e innovating co-ethnic community

and the rate of information flow between its membar both ‘home’ and ‘host’ locations.

A number of case studies suggest that diasporasingpertant influences on
knowledge flows (Bresnahan and Gambardella 2004er8an 2006; Docquier and Rapoport
2011). In a 2002 survey, Saxenian finds that 82%lohese and Indian immigrant scientists
and engineers exchange technological informatidh wolleagues in ‘home’ countries. Jaffe
and Tratjenberg (1999) find that countries with @anmon language have larger R&D
spillovers and international patent citation ratestr (2008) , studying co-ethnic inventors,
finds that own-ethnicity citations are 50% highdrart citations to other ethnicities,
controlling for industry: co-ethnic communities thost’ countries positively influence

industrial performance in ‘home’ countries.

Patenting growth in US cities is also faster farhteologies that depend heavily on
communities of immigrant inventors (Kerr 2009). Bgntrast, Agrawal et al (2008; 2011)

compare co-ethnic and co-location effects on patitations, finding that physical location is
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up to four times more important.

US ethnic inventor communities are relatively reaceghenomena largely shaped by
migration flows since the 1960s (Saxenian 2006)e THK’s immigration story is very
different: migrant and minority communities are thesult of both colonial history
(Australasia, some African and South-East Asiarugsd and geographical proximity (many
European countries). British-based diasporas maytherefore, share the characteristics of

US-style transnational communities.

The existing UK evidence base is mixed. | am unavedrany European studies that
explicitly link co-ethnicity to patenting. Fairliet al (2009) find some support for co-ethnicity
effects on British-Indian business performancehalgh innovation is not considered.
Qualitative work by Nakhaie et al (2009) confirmsatt co-ethnicity effects both vary

significantly across groups, and are shaped byngdeio-economic contexts.

3.3 Diversity effects

‘Cultural distance’ between economic agents mayp atfluence innovation rates.
Specifically, individual inventors in a group magnefit from group-level diversity if this
brings a richer mix of ideas and perspectives.i8arland Fujita (2009) model a system of
firm-level knowledge creation, showing that workieeterogeneity can accelerate ideas
generation through individual-level production cdempentarities. Hong and Page (2001;
2004) similarly model scenarios in which ‘cognifiveliverse’ teams exploit a larger pool of
ideas and skills, suggesting that cultural mix goad proxy for cognitive diversity.

On the other hand, group-level cultural diversitgynhave a negative effect if it leads
to lower trust and poor communication between imhigls — for example, because of
language barriers, misunderstandings, discrimigaéttitudes or both. Spillovers (and co-
operation) will be limited, leading to fewer, lowguality solutions (Alesina and La Ferrara
2004). Fujita and Weber (2003) argue that positiireersity effects will be most likely
observed in research-based or ‘knowledge-intensaetivities — such as those leading to
patenting. Parrotta et al (2011) suggest that whinersity of knowledge is likely to be
positive for innovation, especially in researctemgive tasks, cultural diversity’s effects are

much harder to predict.
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The overall empirical evidence here is positivguih not uniformly so. At organisation
level, several recent studies link workforce diitgrand innovation in knowledge-intensive
environments. Parrotta et al (2011) find posiefects of workforce cognitive and cultural
diversity on Danish firms’ patenting rates. Studyinondon firms, Nathan and Lee (2011)
find that both management and workforce diversiglphraise product and process
innovation. However Ozgen et al (2011) find weakeks between cultural diversity and
product/process innovation in ‘white collar Dutdirms. Maré et al (2011) find no
systematic links between workforce characteristiog innovation among businesses in New

Zealand.

More broadly, reviews of organisational and managantiterature find a small but
significant workplace ‘diversity advantage’ on ma&s of business performance. Negative
communication and trust effects are present in dhert term but progressively decline
(Landry and Wood 2008).

3.4 Urban effects

We might observe bigger co-ethnicity and divergtiects on innovative activity in
cities because of population mix, agglomerationneatsies or both. Innovative activity,
migrant and minority communities tend to be spitielustered in urban areas. Kerr (2008)
finds that US ethnic inventors are spatially comedad, largely in the biggest urban

agglomerations.

Urban areas may also have positive or negative ligymy’ effects. For example, if
cultural diversity contributes to economic diveysit may help foster knowledge spillovers
across sectors at urban level (Jacobs 1969). Jaalsios argues that cities accelerate
innovation by fostering the recycling and recombora of existing products and ideas into
new forms. The more cosmopolitan the urban pomratthe greater the potential for
hybridisation (Hall 1998; Gordon, Whitehead et24l07). Conversely, members of minority
communities may be physically isolated in particulartban neighbourhoods. Spatial
segregation may limit the opportunity for knowledggllovers and interaction with other
groups (Zenou 2011).
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A number of US and European studies suggest ektikeen area level diversity and
innovative activity, although none look at the U&se. Peri (2007) finds that US states’ share
of foreign-born PhDs is positively associated wakels of patenting. Hunt and Gauthier-
Loiselle (2008) find that immigrant population skm raise state-level patenting, and that
these effects are greater than individual-leveledff — suggesting urban, group and
individual-level dynamics are all in play. Kerr amghcoln (2010) use shifts in US visa
guotas to identify effects of immigrant scientisie patenting in US cities, suggesting
positive effects of skilled migrants on both ‘ettirand overall innovative activity at urban
level. Ozgen et al (2010), studying EU NUTS2 regioiind positive connections between
migration, immigrant diversity and regional pategti Niebuhr (2006) finds a positive link
between the diversity of German regions and regdiamaovation, especially for highly
skilled employees.

4. Data and identification strategy

| have three main data sources for the analystenBainformation comes from the European
Patent Office (EPO), which is made available throtl,e OECD PATSTAT databaé&kaw
patent data cannot typically be used at inventegl]decause of common/misspelled names,
or changes of address: | use a cleaned form otd#ite provided by the KITES team at
Bocconi University, which allows robust identificat of individual UK-resident inventors
(Lissoni, Tarasconi et al. 2008)Ethnicity information is then derived from invennames
using the ONOMAP name classification system (selwje Finally, | combine this
individual-level information with area-level conksp assembled from UK Labour Force
Survey held in the Office of National Statisticsrtyal Microdata Lab. My data assembly
strategy builds on pioneering US studies of invermctivity by Kerr (2008; 2008; 2009;
2010), but makes important adaptations to the Ugecdhis is because of a number of
methodological challenges linked to both the patamtd diversity data, which are dealt with
briefly below.

2 In full: EPO Worldwide Patent Statistical Datahase
% Microdata from the PATSTAT-KITES databagetp:/db.kites.unibocconi.)t/ For details of the algorithmic
cleaning of the raw data, see Lissoni et al (2006).
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4.1 Working with patents data

The raw patents data covers the period 1977-2Git8ddy priority yeaf. The dataset
contains geocoded information on 141,267 uniqudidBrresident inventors and 131,738
patents with at least one British-resident inveAtBuring this time the UK experienced
generally low levels of immigration (from the 1ai®70s to the mid-90s), followed by an
upshift from the late 1990s onwards (Wadsworth 2010

| make a number of changes to the patents datake i fit for purpose. First, there
is typically a lag between applying for a patend @s being granted. This means that in a
panel of patents, missing values typically appedmial periods. Following Hall et al (2001),
| truncate the dataset by three years to end id4.200

Second, innovation and invention are processesevatts. Inventors typically work on an
invention for some time before filing a patent. §imeans that year-on-year variations in
patenting will not be driven simply by year-on-yeaariation in the things that drive
innovation. In principle, the simplest way of degliwith this issue is to lag independent and
control variables. However, it is not obvicaigpriori which length of lag should be fitted and
there is also the problem that current drivers stdlypartly explain current patenting levels,
even if other factors act with a lag.

| therefore follow the alternative approach of Men@009) and group patent
observations together, using mean citation laggpézify the appropriate interval. If patent B
cites patent A, the ‘citation lag’ between the tiwsadhe time period between the filing of A
and the filing of B: the lag offers a rough waydapture the relevant external conditions
affecting patenting. The mean citation lag for Epa@ents is four years (Harhoff et al 2006,
in OECD, 2009), so | group patents into four-yeariqus or ‘yeargroups’. | organise
independent variables and controls along the sames (except for areas’ historic patent

stocks, where lags are straightforward to apply).

* ‘Priority dates’ represent the first date the pagpplication was filed anywhere in the world. TBECD
recommends using priority years as the closeste@ttual time of invention (OECD 2009).

® The full dataset has 160,929 unique UK-residevetriiors: 19,492 observations lack postcode infaonatn
total 201,016 inventors are attached to these fmtlicating significant co-patenting.
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Third, the main analysis uses unweighted patentntsouo measure ‘inventor
productivity’, that is, the number of times an int@ engages in patenting activity in a given
time period. Some of the extensions and robustriessks are done at area level. In this case
| use weighted patent counts to avoid double-cagninnovative activity: raw counts are
divided by the number of inventors involved (OEC@DQ). For clarity, henceforth all patent

counts are unweighted unless stated otherwise.

Finally, | use a combination of technology fieldndmies and area-level industrial
structure controls to control for structural biases patenting activity across different

industrial sectors. These are described furtheeation 6.

4.2 Identifying ethnic inventors

| use the ONOMAP name classification system to gareethnicity information for
individual inventors. ONOMAP was originally desighér mining NHS patient data and
classifies individuals according to most likely tewmél, ethnic and linguistic (CEL)

characteristics identified from forenames, surnaamesforename-surname combinatiéns.

ONOMAP is built from a very large names databasawdr from UK Electoral
Registers plus a number of other contemporary dstbrital sources, covering 500,000
forenames and a million surnames across 28 coantMateos et al 2007). These are then
algorithmically grouped together, combining infotinoa on geographical area, religion,
language and language family. Separate classditaidf surnames, forenames and surname-
forename combinations are produced. This gives d&85c CEL categories, which can be
aggregated at different levels of detail, brokemvialanto constituent parts (such as likely
religion and language) and crosswalked onto othassdications (such as ONS ethnic

groups)’

® For a brief summary ségtp://www.onomap.org/FAQ.aspx

" Names information is drawn from 1998 and 2004 G&®ral Registers, Northern Ireland Electoral Resgi
2003, Irish Electoral Register 2003, plus electdath from Australia (2002), NZ (2002), United 8&€1997)
and Canada (1996). Experian MOSAIC geo-demogragdiia and the Experian Consumer Dynamics datafile
are used to boost the sample. This produces 2586@rses and 299797 first names. These are claksdiag

a combination of triage, spatio-temporal analyg-demographic analysis, text mining, ‘name-taxeity’
techniques from population registers and reseagdhternational name frequencies. ‘British namee’taken

as those originating in the British Isles (incluglineland) or arriving there before 1700. For fidtails see
Mateos et al (2007).

15



ONOMAP exploits similarities and differences betwemme families — so that ‘John

Smith’ is more likely to be ethnically British th&mench:

Each name ... [is] assigned an Onomap type (the lolegsl in the classification)
together with a probability score that summarisas likelihood of a particular name
belonging to such a type. Such probability scorelesived from the share of the
population with that (fore/sur)name that also hag¢sar/fore)name belonging to the
same Onomap type. When classifying a list of nathesDnomap software assesses
both components of a person’s name (forename anthsie). In cases of conflict
between ... forename and surname it assigns the Qmadyme with the highest
probability scorelLahka et al (2011), p3

Because ONOMAP uses surnasued forename information, it is able to deal with
many names with multiple cultural origins; the brstally fuzzy boundaries of many states
(e.g. Germany and the Netherlands), and the atterahd/or adoption of names traditional to
the UK® Like Kerr's similar work on US patents data (K&®08), ONOMAP has the
drawback of only observing objective charactersstof identity — the most conservative
interpretation is that it provides information amost likelyethnicity. However, unlike the
MELISSA commercial database used by Kerr, whichy adéentifies high-level ethnicities,
the ONOMAP system allows me to examine inventorattaristics from several angles and
at several levels of detail. ONOMAP also matche% 98 inventor names (compared with

Kerr's 92-98% success rates).

For the descriptive analysis | exploit the full ggnof CEL information, as well as
ONS ethnic groups and geographical origin. Forégeessions, | use ONS ethnic groups and
geographical origin only. This is because it is possible to use the CEL typology in the
controls, which would leave me unable to explore itifluence of area-level demographic

characteristics on inventor characteristics.

& The author's name is one of the more challengingassify. According to Mateos (by email), ‘Nathian
unclassified at the moment in Onomap, perhaps Isecduere are conflicting frequencies in India, Néaaland
and the UK. "Max" is classified as "Jewish", prolyatecause it is common in this community in the UK
compared to the national average. Therefore youduoe: classified as ‘Jewish’.” This is a good prday my
actual British/English/secular Jewish sense of self
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ONS ethnic group information is based on the nategories developed for the 1991
Census. These are relatively dated and lose someriamt detail — for example, the second
largest inventor group after ‘white’ is ‘other’ —-osare likely to be subject to some
measurement errér.

Geographical origin information provides finer-gradl information on twelve zones
across Europe, Africa, Asia and the AmerithBecause name information does not
distinguish migrants from their descendents, |likgdy geographical origin as a measure of
geographical ‘roots’ — an important, albeit partiabpect of ethnicity. | use this as my
preferred measure of ethnicity, as geographicgimis objective and provides a greater level

of detail.

Combining geography and name information in thisyws not problem-free.
ONOMAP does not distinguish geography if countsésre a common language, so that
North American and Australasian-origin inventorg dargely identified as British-origin
inventors (or unclassified). This may understate ttue extent of inventor diversity. In
practice, resulting measurement error is likelyb® small. First, although the largest
concentrations of these groups are in London, teatial distribution is not very different
from minority communities as a whole. Second, thegyresent a relatively small share of the
UK’s minority population. | use the LFS to expldree prevalence of American, Canadian,
Australian and New Zealand migrants. In 1994 thgssups comprised just 8.84% of
migrants, falling to 7.98% in 2004.

To measure diversity of ethnic groups, | use a tiraalisation Index. For identity

groupa in areg in yeart, the Index is given by:
FRAC= 1 —Y, [SHARE]? 1)

Where SHARE isa’s share of the relevant population (here, allv@ctnventors in a given

area). The Index measures the probability thatibeltviduals in an area come from different

® The full set of ONS 1991 groups is White, BlackiBlean, Black African, Indian, Pakistani, Banglsiig
Chinese and Other.

19 The full set of twelve geographical origin zone#frica, Americas, British Isles, Central Asia, el
Europe, East Asia, Eastern Europe, Middle EasttHéon Europe, South Asia, Southern Europe and &ld¢ke
World.
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geographical origin or ethnic groups. Similar measuware used widely in the development
literature, as well as some city and state-levatliss (Easterley and Levine 1997, Alesina
and La Ferrara 2004, Ottaviano and Peri 2005, 2006)

5. Data assembly and descriptive analysis

| assemble a panel of UK-resident inventors’ patenactivity between 1993 and 2004
inclusive, dividing the time period into three feygar ‘yeargroups’ as explained in the
previous section. Each inventor-yeargroup cell medow many times an inventor patents
in that time period. After cleaning, the basic darmvers 125,502 inventors across three
four-year yeargroups, giving 376,506 observati@el counts vary from zero to 36, with a
mean of 0.318!

| use postcode information to locate inventors i Travel to Work Areas (TTWAS),
which are good approximations of local economiesl (guperior to administrative units such
as local authority districtsf. Matching is done by postcode sector, which minémishe
number of observations lost through incomplete istyped postcode informatioi| then fit
an urban / rural typology of TTWAs developed in Bbs et al (2011), allowing me to

explore the potential effects of urban environmésée Appendix C for details and maps).

Working with inventors (rather than patents or agpits) presents three linked areas
where measurement error may arise. The first issu®bustly identifying individuals. |
minimise this risk by using appropriately cleaneddad The second issue is about inventor
activity. Inventors are only visible when patentiagd we do not know for certain what they
are doing the rest of the time. The most consareatolution is to blank all cells where the
inventor is not active. However, as most inventeia the UK and elsewhere — patent only
once, this would radically reduce sample size (aodild miss instances where inventors

were constrained from patenting for some reasam)the main analysis | thus zero all cells

1 Just over 39% of inventors invent pre-1993, buhdbinvent during 1993-2004.

12 TTWAs are designed to cover largely self-contaitadur markets: 75% of those living in a given TAW
also work in the TTWA, and vice versa. TTWAs aragla good approximation for local spatial econoraies
for city regions (Robson et al 2006).

13 Matching on full postcodes drops around 12% okokestions. Matching on postcode sector drops 5.87%
observations. | exclude information on inventosdent in Northern Ireland. A small number of poste
sectors cross TTWA boundaries, so matching is adept.
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when no inventor activity is recorded. Using a sample of inventors, | run robustness
checks comparing both ‘zeroed’ and ‘blanked’ apphes. | find sample construction has no

effect on the results (see Section 8).

The third issue is about inventor location. We adnpe sure where inventors are
when they are not actively patenting; and we needdéntify those inventors who have
moved location. | explore this issue by identifyiligely movers. Following Agrawal et al
(2006), | define movers as inventors with the sémnename and surname, who patent in the
same technology fields, in different TTWAs, at diffint points in time. As Agrawal and
colleagues point out, this strategy minimises tisk of false positive errors — identifying
inventors who are movers who are not — but doesleat with false negatives (identifying
movers as non-movers). Measurement error from dkterlis random, so will reduce the
precision of, but not bias, my main results. Tlaservative estimates that result suggest
around 14% of the sample are likely movers. Thiggests firstly that the vast majority of
inventors do not move during the sample period; thedefore it is reasonable to count non-
movers as present in the same TTWA in which thesy fiatent.

5.1 Descriptive statistics

Some basic descriptives are set out in Tablesale®g with some wider population

data from the Labour Force Survey.

Table 1 breaks down inventors by CEL subgroup, smgwhe 30 largest groups.
Because CEL classifications are not available emltRS, | do not present comparison data
for the wider population here (although see mytfpaper for some simple area-level
analysis). We can see that while English, Welsbft®t and Celtit inventors make up the
bulk of the sample, other inventor groups dividelfeevenly into geographically proximate
communities (e.g. Irish, plus a series of Europgaoups), groups reflecting the UK’s
colonial history in South and East Asia (e.g. Indidindi, Sikh, Pakistani, Hong Kong

Chinese) plus some largely recent migrant comnasg.g. Polish, Vietnamese).

14 Celtic’ denotes names common to Scottish, Wetsh lsish CEL types.
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Tables 2 and 3 recut the sample by probable gebgaporigin zones and by 1991
ONS ethnic groups. Geographical origin zones (T&blallow me to preserve some of the
detail from the full CEL classification, includirsggveral areas of Europe as well as South and
East Asia. As highlighted in the previous sectiONS ethnic groups (Table 3) are much less
flexible, focusing on visible majorities and mirt@s, relegating the rest of the inventors to

‘other’.

Tables 4 — 6 cut the sample geographically. Tabbee4ents the 40 Travel to Work
Areas with the largest shares of ethnic inventgrgdmographical origin, and for comparison
provides migrant shares in the wider TTWA workirgegopulation. High-ranking TTWAs
are predominantly urban, although a number of rawalas also feature, predominantly
university towns (St Andrews, Lancaster, Canterpwy areas adjoining TTWAS with
universities (Bude and Holsworthy) and/or manufantuclusters (Holyhead, Pembroke and
Tenby, Louth and Horncastl®).Comparing ethnic inventors with migrants in theeahl
population, we can see that areas in the top Hatlheo table mostly have bigger shares of
ethnic inventors than in the wider working-age dapan — London is one notable example.
Table 5 presents the same data as location quatieobfirming that ethnic inventors are

more spatially clustered than the wider migrantyaipon.

Table 6 compares Fractionalisation Index scoresafciive inventors and wider
working age populations. The cultural diversityimfentors is greater than that of the wider
population in most TTWAs (London, Bradford, Birmhegm, Brighton, Leicester and
Reading are the six exceptions in the top 40). Agiere are a number of rural areas in the
table. As some rural areas have fairly few invesitarsmall sample may lead to high values

of the Fractionalisation Index.

Finally, Table 7 gives weighted counts for the 4DMAs with the highest patenting
activity: to minimise double counting, | weight &apatent by the number of inventors
involved. The results follow the familiar geograpbiyUK innovative activity. A number of
these high-patenting areas also have large ethwentor shares and diverse inventor groups

(for example London, Southampton, Crawley, Oxfordl &£ambridge). However, another

15 Many inventors will work in professional / techaioccupations, which are characterised by longan+t
average commuting distances. Building commutingezam the basis of these workers’ commuting pattern
substantially reduces the total number of zone®$Bo et al 2006), suggesting that commuting across
conventional TTWAs is not uncommon.
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group of high-patenting TTWAs have rather more hgemmus inventor and general

populations (for example, Bristol, Manchester, Reg@nd Ipswich).

A number of broad lessons emerge from the deseestiFirst, the UK’s population
of ethnic inventors appears substantially differéoin that of the US. American ethnic
inventor communities are dominated by South andt Basan groups (Kerr 2008). By
contrast, the UK has a number of European groupth $outh Asian and East Asian
inventors drawn in large part from former coloni®econd, as in the US ethnic inventors are
spatially concentrated, and more clustered thamntynpopulations in general. Third, not all

high-patenting locations have large ethnic investares or diverse inventor communities.

6. Regression analysis: estimation strategy

| now explore whether these inventor, group anda-#eel characteristics influence
individual inventor productivity. The descriptiveghlight the distinctive composition of UK
ethnic inventors, as well as their spatial con@in. | therefore use the data to estimate a
modified knowledge production function, linking eds of patenting activity to individual,
group and area characteristics. | use aggregat&dcliént file microdata to construct a range
controls. As LFS microdata is only provided withcdb administrative district-level
identifiers, | aggregate to TTWA level using a poste weighting systedf. Summary
statistics for the 12-year panel are given in Ta&ble

For inventor in areg and yeargroup | estimate:

PCOUNT;; = alNV; +bDIVj + CONTROLSc+ P + U+ YG + @ )

18| aggregate individual-level data to local authehevel averages, and then aggregate these to T-TaAk{
using postcode shares. Local Authority District @)Aoundaries are not congruent with TTWA boundars®
straightforward aggregation is not possible. UsheyNovember 2008 National Postcode Sector Database
(NSPD), I calculate the number of postcodes in i TTWA and in each of its constituent LADs. each
TTWA, | then calculate constituent LADS’ ‘postcosleares’. Shares sum to one, and are used as weights
construct TTWA-level averageg&xample:suppose a TTWA consists of parts of three LAD® THWA has
100 postcodes, 60 of which are in LAD_a, 30 in LADand 10 in LAD_c. The relevant LAD weights are,0.6
0.3 and 0.1 respectively. The TTWA-level averaggasfablex is given by ) TTWA = 0.6*(x)_a + 0.3*«)_b

+ 0.1*(x)_c.
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Where PCOUNT is a simple count of the number oketimn inventor engages in patenting
during a given four-year period. My first varialdginterest is INV, a dummy variable taking
the value one if the inventor is a likely ethniwentor. (I later extend the model replacing
INV with a set of dummies for various co-ethnicgps.) My second key variable is DIV, the
diversity of active inventors in a given TTWA aniné period. DIV is given by the

Fractionalisation Index in Section 4.

CONTROLS represents a vector of largely TTWA-level contralsvering key
spatial, economic, and demographic characterigfilexting relationships between INV and
innovation, DIV and innovation or both. Unless othise stated, all controls are for the same
1993 — 2004 period as the patent data.

For example, innovative activity and patenting d@th spatially concentrated,
reflecting benefits from agglomeration that maysprover time (Simmie, Carpenter et al.
2008). Co-ethnicity or diversity effects on patagtmight then simply reflect agglomeration
and path-dependence. | fit a dummy for primary orbeeas, U, and fit log of population
density to explore agglomeration effects more bioddalso fit the model with measures of
1981-84 area weighted patent stocks to contrdhifsioric asset effects, and experiment using

different lags of the historic patent stocks colntro

Inventor demographic characteristics may be egtiegplained by area demographic
characteristics: for example, places with more ig@gopulations may produce more diverse
inventor groups. Failing to account for this leaolias on DIV. | control for this by using
area-level fractionalisation indices (and crosseghesing migrant population shares).

Human capital stocks are closely correlated wihovative activity (Romer 1990)
and as discussed in Section 3, may account forrappathnicity effects on patenting. Given
the role of ‘ethnic scientists’ in the US and elkeve, area-level human capital controls
include the share of degree-holders with Scieneehiiology, Engineering and Mathematics
(STEM) qualifications in the local working-age pdgion. (The share of degree-holders with
PhDs in any subject is used as an alternative @brats it is less precise in terms of subject.)
Patent data provides very little individual-levefarmation on human capital, but | am also

able to fit P, an individual-level fixed effect damed below.
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| fit various further controls for precision. Patieg is known to be higher in
‘knowledge-intensive’ high-tech and manufacturirecters, so | include measures of the
share of workers employed in ‘knowledge-intensiwgnufacturing, following The Work
Foundation’s definition of ‘knowledge-intensivettfis (Brinkley 2008}’ Patenting activity
is also vulnerable to sector-specific shocks, &edspike in software patenting since the mid-
1990s is well-covered in the literature (Li and R&iL0). To account for this | fit a dummy
for the IPC technology field ‘electrical engineeriand electronics™® Patenting is likely to
be lower in areas with a lot of entry-level jobsaneas of joblessness, so | include the share
of workers in entry-level occupations and the shafrdong term unemployed as further

controls.

6.1 Inventor fixed effects

Area-level controls for human capital may not fudlgcount for differences in human
capital between inventors. The panel data structhogld allow this to be controlled through
individual fixed effects (Hausman, Hall et al. 1984However, fixed effects panel estimators
for nonlinear models require observations to hamerazero value in at least one time period
(Cameron and Trivedi 2009). As | am as interested/hiether or not inventors patent as the

number of times they patent, such an approachtigiaal ™

Blundell et al (1995) develop a now widely-uSkditernative, exploiting historic
information to control for permanent unobservededénces between agents. They argue that
firms’ capacity to innovate is largely explained ttwe build-up of knowledge in the firm at
the point in which it enters the sample. With loagough time series data, pre-sample

activity approximates an individual fixed effect.

" This follows standard OECD definitions but adjusisthe UK context. The final list of 3-digit Si€ctors
includes medium and high-tech manufacturing (phaeutcals, aerospace, computers and office maghiner
electronic communications, software, other chemijaabn-electrical machinery, motors and transport
equipment).

18| also experiment with a more precise informatechnology dummy (OST30_4), with similar results.

!9 Random effects estimators are a potential altenatrategy, but Hausman tests (chi-squared =4.997 pr
= 0.000) suggest these are not justifiable.

20 A Google Scholar search turns up 351 citationghlyicited examples include Baptista and Swann §).99
Katila and Ahuja (2002), Beaudry and Breschi (20@8)shinitsky and Knox (2005), O’'Shea et al (20889
Aghion and Howitt (2006).
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For individual inventors, historic patenting acyvis likely to work in a similar way.
The patent data provides information on inventaivag from 1977, 16 years before the start
of the regressions panel in 1993: around 23% oénts in the sample period also invent
before 1993, covering 40% of cells. | replicatesthentry stock’ estimator, using the pre-

sample mean of inventors’ patent counts as an appate individual fixed effect.

| exclude inventors with no pre-sampling historthey may have been inactive or not
in the labour force — and run the model on a redseaenple of 89,309 observations. The new
sample removes younger inventors and recent migrakg such it may understate true
inventor diversity (or indirectly affect results ybunger people are more open to diverse
environments). Critically, however, the restricti@lows me to distinguish ethnicity,
diversity and human capital effects. | experimeithwhe full sample to check robustness,

finding key variables and overall model fit are p&b

6.2 Model specification

Count data is usually modelled using Poisson omtieg binomial estimators. My
panel exhibits excess zeroes (78%) and over-digpefthe variance of PCOUNT is over 2.5
times the mean). This means the basic assumptfdhge ®oisson model are not met, leading
to likely inefficient estimates (Greene 1994). Agls, a negative binomial or zero-inflated

model may be preferred.

Diagnostic tests suggest the negative binomiahés lietter fit, and has the added
benefit of running a Poisson model as a base%asgainst this, Angrist and Pischke (2009)
argue that once raw coefficients are converted méoginal effects, non-linear modelling
offers little over standard linear regression. érdiore fit the model with both negative

binomial and OLS estimators.

2 Fundamentally, | argue the reduced sample preetalyunning a bigger sample of inventors for whom
historic patenting information is ambiguous. Firewél studies, in contrast, typically have inforroatbn
exactly when agents enter/exit the market.

22 Log-likelihood tests and AIC scores. | also expenit with zero-inflated models (ZIP and ZINB). Both
perform well on diagnostic tests, although intetatien is extremely complex. Results from Poissegreéssions
are available on request.
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7. Regression analysis: results

Results from the main regressions are given indsa8l(negative binomial) and 10 (OLS). In
each table, column 1 shows a bivariate regressiorthie main variables of interest only,
column 2 adds controls and column 3 adds the feféect. For ease of interpretation and
comparison with OLS models, negative binomial ressate presented as marginal effects at
the mean. Negative binomial models show a sigmfidag alpha term, confirming over-

dispersion. Controls are generally of the expesteel and sign.

7.1 All inventors

Ethnic status and inventor group composition havsignificant effect on individual
inventor productivity (column 1). The coefficientIdlV is close to zero and DIV is negative
insignificant. When controls are added (column &)th INV and DIV become positive.

Coefficients get bigger, and in the OLS results dWow significant at 5%.

As explained above, the aim of the individual-lefiged effects is to control for
individual inventors’ human capital endowments,owihg identification of the various
ethnicity channels. As expected, once the fixedat$fare included (column 3) overall model
fit improves and the results change substantilly. remains insignificant but its coefficient
more than doubles, for both sets of models. Foating binomial models, the marginal effect
of DIV is now 0.087, significant at 5%.

Specifically, a 10-point increase in the inventoadtionalisation Index — increasing
active inventor diversity in Bristol to that in Qxfl, for example — is linked to an average
marginal effect of 10*(0.087) = 0.87 extra patepés inventor. For OLS models, diversity
effects are slightly larger. DIV is 0.099, signditt at 10%: a 10-point rise in inventor group
diversity is associated with a 0.99 unit increasexpected patenting, or an extra patent per
inventor. Interestingly, coefficients @irea populationdiversity are negative (significant at

10% for negative binomials, not for OLS).

To put this into perspective, effects of diversity patent counts are smaller and/or

weaker than human capital, whether the latter iasmeed at the area level or at individual
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level. This fits with the existing empirical evidanthat diversity effects on innovation are
generally fairly small, where they exist (see SmttB). For negative binomial models, for
example, the marginal effect of STEM degrees i94.3ignificant at 5%. This suggests that
a 10-point increase in the area’s share of scignaduates is linked to 3 extra patents per
inventor. This is as expected given that patenigsngoncentrated in science and technology
sectors. The marginal effect of the individual tixeffect 0.101, significant at 1%: past

patenting activity is strongly linked to currentgating rates.

Results for ONS ethnic groups function as a basisszcheck (Table 11). These
broadly confirm the main findings. For negativedrmal models, INV remains close to zero
throughout; with controls and fixed effects the gmaal effect of ethnic DIV is 0.125,
significant at 5%. For OLS models, coefficient siznd magnitudes are similar but none of

the results is significant.

Table 12 shows results from three initial robussnelsecks. First, | fit the TTWA
share of degree holders with PhDs in any subjecnaalternative area-level human capital
control (column 2). PhDs are a prerequisite in ynasearch positions, and as specialists,
PhD-holders may be more likely to patent. | findittlan area’s share of PHDs strongly
positively associated with inventor productivitynda dominates DIV in both model
specifications. One interpretation of this resslthat places that are attractive to PHDs also
attract a diverse group of inventors, due to sotherdactor — such as a ‘tolerant’ milieu as
suggested by Florida (2002).

An alternative explanation is that high-patentingiCl® are themselves ethnic
inventors, as suggested by US studies on startstge(Stephan and Levin 2001; Chellaraj,
Maskus et al. 2005). In this case, diversity & fimdamental driver and the PhD variable is
a so-called ‘bad control’ (Angrist and Pischke 2008s discussed in section 3, one then
needs to disentangle the ethnic and human camtaponents of stars’ performance. | am
unable to observe whether or not inventors have 18D am unable to make these checks.
Further research is needed here, perhaps with sesobinventors in academic institutions
where PHDs are more or less essential. | continuedus on diversity because this is my
main interest. But the results when including t¢DPvariable urge caution in interpreting
these results as purely causal (of course, thisotsthe only identification challenge, as

discussed further below).
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Second, | fit the model with a lagged dependeniabée to control for effects of past
patenting within the sample (column 3). Diversiffeets persist: coefficients are now rather
smaller but also more precise, with DIV significantl% (negative binomial) and 5% (OLS).
Third, 1 fit the model without London — a city withigh levels of cultural diversity and
relatively low levels of patenting per head of plagpion (Wilson 20072 Results, in column
4, show that diversity effects persist in the negabinomial specification (significant at

5%), but are insignificant in OLS.

Overall, the main results suggest no significariéatfof ethnic inventor status on
inventor productivity relative to other inventorce individuals’ human capital and area
conditions are accounted for. However, the commmwsibf the inventor group matters: more
diverse inventor communities have a small posiffect on individual inventor productivity.
The rest of this section examines other channalsarulocation and co-ethnicity — in more

detail.
7.2 Urban areas and urban inventors

The evidence review (Section 3) suggests that udoaas may ‘amplify’ ethnicity-
innovation processes via population compositionects, agglomeration effects or a
combination of the two. However, the main resultahjes 9 and 10) find a weakly negative
relationship between urban TTWAs and inventor pobidity. In the negative binomial, for
example, the marginal effect the urban TTWA dummy(.021, significant at 10%; in the
OLS results the coefficient is not significant aimsl close to zero. By contrast the
agglomeration control, log population density, asitive at 0.0005 in the negative binomial
specification, 0.008 in OLS, although neither gngicant.

In order to identify the separate effects of urb@sation and urban density, | fit the
two separately and then interact them. The pairw@eelation between the urban TTWA
dummy and log population density is 0.565, sugggstsome differences in urban
characteristics. Results are given in Table 13uf@al 2 includes urban TTWA dummies
only, column 3 log population density only, coludran interaction effect. We can see that
fitted separately, each is negative on inventodpetivity (although marginally significant at

% Although London has relativelyigh patenting per inventor — see Table 7.
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best). Fitted together, each is positive — withegative interaction effect, suggesting some

diseconomies of agglomeration on inventor proditgtin the largest conurbations.

Columns 5-7 explore specific effects of diversbam areas. Column 5 interacts the
Fractionalisation Index with the urban TTWA dumriye coefficient of DIV is now higher
(0.136, significant at 5%) but the interaction taamegative insignificant at -0.066. Column
6 repeats the exercise with population density.V B now much larger (0.284), but is
insignificant with large standard errors: the iat#ron term is also negative insignificant.
Finally, column 7 includes both urban variables amdracts the Fractionalisation Index with
population density. DIV is now very large and sfgraint, but noisy: the interaction term is

negative and marginally significant.

Taken together, these results suggest that aggivioeris helpful for inventor
productivity, although has some diseconomies img&igirban areas. Diverse urban areas do
not seem to amplify inventor productivity, howev@verall, | find a weak effect of urban
areas on inventor productivity, which is perhapgpssing given the emphasis on
geographical proximity in the innovation literatur€éhe UK context helps explain the
discrepancy. Raw patent counts are highest inivelgtsmall cities, notably Oxford and
Cambridge. Conurbations, particularly London, acenthated by service sector activities
where patenting is less likely to occur. The nehapter explores the London experience in

more detail, using survey data which captures adeprange of innovative activity.

7.3 Co-ethnicity / diaspora effects

The data also allows me to explore co-ethnic /pids group effects. Specifically,
rather than estimating INV as a single ‘ethnic me&’ dummy, | now include a series of
dummies taking the value one if the inventor isemher of each geographical origin zone. |
run the model for all minority co-ethnic groupskitey UK-origin as the reference category.
Results for negative binomial models are given abl& 14: for simplicity | restrict my
analysis to the five biggest geographical origines(South Asia, Central Europe, East Asia,
Southern Europe and Eastern Europe). Results spiated as the marginal effect of being
in one of these co-ethnic groups, relative to mastbp of the majority group.
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| find significant positive effects of South Asiamnd Southern European-—origin
inventors on expected patenting rates, and negatgréficant effects of East Asian-origin
inventors, relative to UK-origin inventors. Specdily, marginal effects are 0.025 for South
Asian inventors, significant at 10%, -0.037 (1%l East Asian inventors; and 0.053(10%)
for Southern European inventors. The South Asesult is intuitively plausible given the
strong historic connections between the UK and Iséian countries (India, Pakistan, and
Bangladesh) and the presence of large migrant stadbleshed minority communities here. It
also accords with US research showing significalatsgbra effects of Indo-American
communities. The Southern European result is likelyeflect the relatively large shares of

inventors in the UK with Spanish, Italian or Porege backgrounds (Table 1).

The East Asian result is in stark contrast to USeaech showing strong diaspora
effects for Chinese and Taiwanese communities (8are2006; Dahlman 2010). This may
reflect the lack of strong diasporas in the UK a@ésHong Kong-origin Chinese, and the
different circumstances behind recent communitynfttion in the US (economic migration
of skilled workers) and the UK (handover of Hongn§gao China between 1984 and 1997).

Results may also be driven by the large geograpbrggn zones | am using to proxy
diasporic communities. | experiment with ONS ethigieneasures of Indian and Chinese
inventors to conduct a partial cross-check usingenightly-defined groups, confirming my
main resulg* Overall, then, these results suggest that co-etimaiup membership, as well as
the diversity of the local inventor community, bdthve small positive effects on individual

patenting rates.

8. Further robustness checks

| conduct checks on a series of potential endogemeoblems. These fall into two broad
categories: robustly identifying diaspora and dugr channels, and dealing with path-

dependence. Results are shown in Tables 15 and 16.

2 Indian inventors make up just over three quaéSouth Asian inventors (see Table 9), so | alsak down
the South Asian result in more detail. | find aipes non-significant link between Pakistani inverg and
inventor productivity, but a very strong negativiekl with Bangladeshi inventors. Given their small
representation in the sample, this may be largghjained by measurement error.
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8.1 ldentifying human capital, diversity and diaspoa effects

| face two immediate identification challenges.sEithe combination of area-level
controls and individual fixed effects may not bdyficapturing inventors’ human capital.
Assuming that human capital has a positive effegbatenting, the resulting omitted variable

bias will overstate effects of DIV, pushing coeiéiats of DIV upwards.

To explore, | include an alternative fixed effactthe main model, again exploiting
pre-sample information. Alongside overall outputtellectual range is another plausible
indicator of overall human capital. My original & effect measures knowledge
accumulation by summing pre-sample patents. In tiaddli | identify ‘generalists’ as
inventors patenting across at least two technofadgs (for example, filing patents in both
electronics and biotechnology). The fixed effecaislummy with value one if an inventor

patents across technology fields in the pre-sampefiod®

Results are given in Table 15. Columns 1-3 complageoriginal fixed effect, the
‘generalist’ fixed effect and both together. INViirains insignificant throughout; marginal
effects of DIV fall from 0.087 to 0.05, 10% sigmdince with the generalist fixed effect
(column 2). Fitting both fixed effects together I(gan 3) slightly increases the size and
strength of the DIV marginal effect (to 0.055, 5%gn#ficance) and improves model fit.
Columns 4-5 rerun this model for co-ethnic grouph both fixed effects in play, the main

co-ethnic group effects remain significant albeiiadler.

Second, inventor diversity effects might collapse simple size effects.
Fractionalisation Indices tend to be highly conetlwith group population shares (in this
case, the pairwise correlation between DIV andstere of non-UK origin inventors in the
TTWA is 0.8039). To test this, | replace the Frawélisation Index of inventors with the
share of ethnic inventors in the local inventor ylapon. Results, in Table 16, show that the
coefficient on ethnic inventor share is similargwup diversity, but is not significant on
individuals’ expected patent rates either whereditindividually (column 2) or with DIV
(column 3). Interacting the two raises the margeféct of DIV, which stays significant at
5%, but with a large negative value for the intéoacterm (column 4). This suggests that the

% The dummy will also be capturing the minority nfé&ntors who patent more than once.
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overall diversity of inventors, rather than an aggtion of ethnic inventors, drives the main

results. Column 5 repeats the analysis for diasgpoups, with similar outcomes.

8.2 Historic patent stocks / path-dependence

As explained in section 6, innovative activity igatially concentrated, and these
concentrations tend to persist over time as inwenend firms select into innovative
locations, as areas progressively build innovdtapacity’. If the historic patent stocks term
in the main model is mis-specified, agglomeratiamd goath-dependence will not be
adequately controlled for. To test for this | plagange of pre-sample historic patent counts

into the main model.

Negative binomial results are given in Table 17ind as that as the historic lag
decreases, the coefficient and significance obhisipatenting activity rises (from -0.000 for
1981-84 to 0.001 for 1993-96, significant at 5%heTmarginal effect of inventor diversity
get smaller and weaker as the historic lag shoreinem 0.087, significant at 5%, for 1981-
84 stocks to 0.067 (10%) for 1989-92 stocks. Thiggests that historic area-level

characteristics help explain some of the diversifgct — but do not eliminate it.

8.3 Sample construction

| construct my sample by zeroing all inventor-yeaugp cells when an inventor is not
patenting. As discussed in Section 5, this is met most conservative way of treating
inventors when they are not active, and therensesosk it may introduce measurement error
into the results. To check for this | compare ressfdlom two samples — one with zeroed

observations and one with non-active periods setiasing observations.

My identification strategy depends on using invesithiistoric patenting activity, so
blanking out non-activity has the effect of redtrig the sample to inventors who patent more
than once. | thus compare estimates for the sehufiple inventors across two different
samples, one with zeroed and one with missing ghtiens for non-activity. Results are
given in Table 18. We can see that estimates twio sub-samples are identical, suggesting

that sample construction has no effect on my nmesnlts.
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Overall, the results from these cross-checks suglgasmy main results are robust to
the main endogeneity challenges: omitted variablpath-dependence and sample
construction issues. However, further researckgsired to identify the relative contribution
of majority and ethnic PHDs to patenting.

9. Impacts on majority groups

The analysis has established some positive commschetween inventor group composition,
the presence of diasporic groups and individuakmer productivity. However, this has
ignored distributional effects — that is, specifiopacts of ethnic inventors on majority
inventors. Given that immigration is a major drivadr cultural diversity, it is important to

look at these distributional impacts.

A number of studies in the immigration literatuo®k at ‘native outflows’, in which
UK-born physically leave an area after migrantsvar(Borjas 1994). ‘Geographical crowd-
out’ of this kind is hard to assess here — as @xg@dhin section 5, although the number of
mobile inventors seems low, movers cannot be defely identified. | conduct exploratory
logit regressions to identify individual and aread| factors which might influence mover
status. Results suggest individual human capitataguared by the fixed effect) has a
substantial, significant positive link to movertsta By contrast, coefficients for areas’ share

of migrant inventors are much smaller and staa#iiiansignificant.

‘Resource crowd-out’ is a potentially more seri@stie. There are two ways in which
this might happen. First, the presence of ethnienitors might affect majority patenting rates
at the individual level. A given majority inventaray benefit from ethnic inventors via the
production complementarities outlined in sectiooBmay ‘lose’ from disbenefits such as
lower trust or communications difficulties. Theldrace of these two effects on the average

majority inventor needs to be identified.
Second, even if there are human capital exteresliiit the group level, majority

individuals may lose out from the presence of miganventors (Borjas 2011). In this case,

ethnic inventors might crowd out majority inventdnesm relevant jobs and resources, such as
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space in R&D labs; or diaspora benefits might dmyaccessible to group members. This
will affect the composition of overall patenting atea level. At the extreme, increases in
area-level patent counts might be partly or wheliplained by a rising share of ‘ethnic’

patents — majority patenting shares could be stateven falling. Conversely, there might be

multiplier effects from ethnic to majority groupvientors, raising everyone’s patent counts.

| test for both forms of resource crowd-out. At tinelividual level, | first re-run
model (1) for majority inventors only. Results @igen in the first panel of Table 18. The
marginal effect of DIV on majority inventor produaty is 0.072, significant at 10%. This
implies a positive multiplier effect of inventorvéirsity on majority groups — but it is smaller

and weaker than on all inventors.

Next, | run model (1) for the whole sample butlilv as a majority inventor dummy.
Results are given in the second panel of Tabl%8vith minority status, majority status has
no significant effect on inventor productivity whether factors are controlled for (columns 1
and 2). However, interacting majority status wittvantor diversity produces a positive
significant effect of majority status, a larger astbnger effect of diversity — but a significant
negative effect on majority inventors in diverseaa (column 3). Unlike the previous test,
this suggests that while inventor diversity bringsnefits, majority inventors in diverse

inventor communities lose out.

To explore area-level effects, | draw on recentkamy Card (2005), Kerr and Lincoln
(2010) and Faggio and Overman (2011). | assempkmal of TTWA-level weighted patent
counts for 1993-2004. | define ‘ethnic’ patentgagents with at least one ethnic inventor; all
other patents are ‘majority’ patents. Following §agand Overman (2011), | then regress the
percentage change in total weighted patents duhegperiod on the percentage change in
ethnic patents. For TTWAI estimate:

ATPATENTS =a + bAEPATENTS + CONTROLSCGjipaset 8 3)

Where:

ATPATENTS = TPATENTSp004 — TPATENTS1993/ TPATENTS1993 4)
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And AEPATENTSis assembled similarflCONTROLS is a vector of area-level controls for
the base period 1998.The coefficient of interest ib. As explained by Card (2005), if
estimates ob are less than one, increases in ethnic patentand) i@ a smaller increase in
overall patenting, implying some crowd-out of m#jorpatenting by ethnic inventors.
Estimates ofb larger than one imply multiplier effects; lif is equal to one, there are no

distributional impacts either way.

OLS results are given in Table 19. The simplestifipations of (4) suggest some
crowd-out, withb estimated at 0.199 and 0.259, significant at 1%wéler,b becomes
insignificant once controls and standard errorsteled on TTWAs are introduced (column
4). An alternative specification using shifts inWAs’ technology field shares delivers very
similar results (column 5). This suggests theldtle evidence of crowd-out.

Model (4) does not fully control for simultaneity ceverse causality. | experiment
with lags of ethnic patents as an instrument, klarenpass the required first-stage tests.
Results should therefore be interpreted with cautio

10. Conclusions

In recent years there has been growing academicpatidy interest in links between
immigration, ethnic diversity and innovation. Tlpaper looks at the role of ethnic inventors
on innovative activity in the UK, using a new 12ayg@anel of patents microdata. | have been
able to explore a number of potential ‘ethnicitpawvation’ channels — individual positive
selection, externalities from diasporic groups draim the cultural diversity of inventor
communities, as well as ‘amplifying’ effects of arbenvironments. The research is one of

very few studies to explore these links, and asi$dram aware is the first outside the US.

The results suggest that individual minority stdtas no significant effect on inventor
patenting rates once other factors are controbbedGonversely some diasporic groups, and

group cultural composition, have small positiveeet§ on inventor productivity. Effects on

% Log of population density, % STEM degree, % employed in knowledge-intensive manufacturing, % migrant
working-age population, % entry-level occupations, % long term unemployed, urban dummy. Alternative
specifications control for TTWA change in OST7 technology field shares 1993-2004.
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‘majority’ inventors are unclear: there are sondigations of individual-level crowd-out, but
not at area level. Although patenting activity ey spatially clustered in the UK, in contrast
to the wider literature, | find little evidence tharban environments improve individuals’

patenting activity once other individual and arewel controls are taken into account.

Overall, ethnic inventors are a net positive fotepéing in the UK, although the
British experience is significantly different fromme US. This partly reflects distinctive
patterns of US migrant settlement: most notablg, thcent emergence of ethnic inventor
communities from Cold War science research, whiakehattracted very large numbers of
skilled workers into a small number of locations8nian 2006). By contrast, recent ‘calls’
for migrant workers in the UK since the mid®2@entury have been largely focused on less
skilled occupations, although policy is now becognmore skill-biased. Results may also
reflect culturally distinctive US attitudes to egpireneurship, as evidenced by sociological
studies of Jewish and Afro-Caribbean migrant comiiesin New York and London
(Gordon, Whitehead et al. 2007), and by the compiagrplay between class, skKills,
resources and attitudes that influence real-wartdepreneurial behaviour (Basu 2002).

There are three important caveats to these resiitts, diversity and diaspora effects
are relatively small — human capital and patentfieindustry effects are more important
determinants of inventors’ productivity. This iduitive, and echoes much of the existing
literature (see above). Second, working with ingerdata presents a number of potential
measurement error challenges. Most seriously, ngy dialy allows a fuzzy identification of
ethnic inventors and diasporic groups. Using ggagcal origin as a proxy for co-ethnicity
also presents conceptual challenges, although -ctessks support my results. Third,
although the results survive a number of robustobesks, alternative measures of area-level
human capital weaken effects of DIV. Further wazkheeded on the relative contribution of
majority and ethnic PHDs to patenting. Conversdbta restrictions mean that my sample
understates the true numbers of ethnic inventdns. réal benefits of ethnic inventors may

thus be larger.

The results may have implications for the currengl@@ion government’s migration
policies. Net immigration is one of the main fastdrehind the growth of ethnic inventor
communities in the UK: a phenomenon which appearsise rates of innovation through a

combination of diversity and diaspora effects, witlo hard evidence of negative
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distributional effects on native inventors. A migoa cap that places restrictions on skilled
immigration from outside Europe is likely to putns® constraints on innovative activity,
leading to welfare losses both to the UK and to hifn workers. Similar welfare losses may
arise from proposed restrictions on post-studya®tw work for non-EU students.

The paper leaves a number of questions for futesearch. Further work could
explore social networks, co-ethnicity and geogreahiocation in more detail — via analysis
of patent citations and international co-inventiao-patenting. Within the UK, data offering
better identification of ethnic and migrant inverstoin particular recent immigrants, would
provide a clearer picture of current developmeAtternatively, qualitative methods could
shine further light on migrant and diaspora dynami€urther work could also examine
sectoral and area differences, as well as distabatimpacts in more detail.
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Table 1. UK-resident inventors: 30 biggest CEL subgups, 1993-2004.

CEL subgroup Freq. % Cumulative %
ENGLISH 86,118 69.17 69.17
CELTIC 10,653 8.56 77.73
SCOTTISH 6,557 5.27 82.99
IRISH 3,583 2.88 85.87
WELSH 2,523 2.03 87.9
INDIAN HINDI 1,255 1.01 88.91
GERMAN 1,205 0.97 89.87
ITALIAN 975 0.78 90.66
FRENCH 958 0.77 91.43
CHINESE 920 0.74 92.16
POLISH 886 0.71 92.88
OTHER MUSLIM 793 0.64 93.51
OTHER EUROPEAN 665 0.53 94.05
HONG KONGESE 588 0.47 94.52
GREEK 574 0.46 94.98
PAKISTANI 551 0.44 95.42
SIKH 500 0.4 95.82
SPANISH 438 0.35 96.18
VIETNAMESE 427 0.34 96.52
JEWISH 351 0.28 96.8
PORTUGUESE 326 0.26 97.06
JAPANESE 293 0.24 97.3
EAST ASIAN & PACIFIC 263 0.21 97.51
DANISH 216 0.17 97.68
OTHER SOUTH ASIAN 209 0.17 97.85
SRI LANKAN 209 0.17 98.02
DUTCH 207 0.17 98.19
TURKISH 198 0.16 98.34
SWEDISH 191 0.15 98.5
RUSSIAN 138 0.11 98.61

Source: ONOMAP/KITES-PATSTAT.
Notes:

1) ‘OTHER MUSLIM’ subgroup includes CEL name typB&ALKAN MUSLIM’, ‘MALAYSIAN
MUSLIM’, ‘MUSLIM INDIAN’, ‘SUDANESE’, ‘WEST AFRICAN MUSLIM’, ‘OTHER
MUSLIM’ (SMALLER MIDDLE EASTERN COUNTRIES, N/AFRICAN COUNTRIES,
CENTRAL ASIAN REPS)

2) 'JEWISH' includes CEL name types ‘JEWISH / ASH¥&Z ', ‘'SEPHARDIC JEWISH’

3) ‘EAST ASIAN AND PACIFIC’ includes CEL name typéBURMESE’, ‘CAMBODIAN’,
‘FIJIAN’, ‘HAWAIIAN’, ‘LAOTIAN',‘MAORI’, ‘MAURITIAN ', ‘POLYNESIAN’, ‘SAMOAN’,
‘SINGAPOREAN’, ‘SOLOMON ISLANDER’, ‘SOUTH EAST ASIA’ , “THAI’, ‘TIBETIAN’,
‘TONGAN’, “TUVALUAN’, ‘EAST ASIAN & PACIFIC OTHER’

4) ‘OTHER SOUTH ASIAN’ includes CEL name types ‘A48\ CARIBBEAN’, ‘BENGALYI’,
‘BHUTANESE’, ‘GUYANESE ASIAN’, ‘KENYAN ASIAN’, ‘NEP ALESE’, ‘PARSI’,
‘SEYCHELLOIS’, ‘'SOUTH ASIAN’, ‘TAMIL’
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Table 2. UK-resident inventors: geographical origingroups, 1993-2004.

Probable geog area of origin, CEL Freq. % Cumulatie %
BRITISH ISLES 109,429 87.89 87.89
SOUTH ASIA 3,074 2.47 90.36
CENTRAL EUROPE 3,035 2.44 92.8
EAST ASIA 2,557 2.05 94.85
SOUTHERN EUROPE 2,394 1.92 96.78
EASTERN EUROPE 1,395 1.12 97.9
MIDDLE EAST 1,060 0.85 98.75
NORTHERN EUROPE 606 0.49 99.24
REST OF WORLD 568 0.46 99.70
AFRICA 324 0.26 99.96
CENTRAL ASIA 31 0.02 99.98
AMERICAS 29 0.02 100.00

Source; ONOMAP/KITES-PATSTAT.

Table 3. UK-resident inventors: biggest ONS ethnigroups, 1993-2004.

Probable ethnic group in 1991 Census categories, CE

%

Cumulative %

WHITE

ANY OTHER ETHNIC GROUP
INDIAN

CHINESE

PAKISTANI

BLACK - AFRICAN
BANGLADESHI

BLACK - CARIBBEAN

94.28
1.76
1.69
141
0.54
0.24
0.08
0

94.28
96.04
97.73
99.14
99.68
99.92
100
100

Source;: ONOMAP/KITES-PATSTAT.

Notes: Ethnic groups typology taken from 1991 Cernsiallow comparability pre and post-2001.

Frequencies have been supressed to avoid disclosure
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Table 4. Shares of migrants and ethnic inventors if TWA working-age populations,

1993-2004. Top 40 areas.

% ethnic % migrants

inventors /population TTWA name TTWA type
0.287 0.158 Crawley Primary Urban
0.241 0.148 Southampton Primary Urban
0.206 0.359 London Primary Urban
0.171 0.173 Oxford Primary Urban
0.169 0.169 Cambridge Primary Urban
0.166 0.113 Dundee Primary Urban
0.158 0.101 Oban N Scotland rural
0.153 0.174 Guildford & Aldershot Primary Urban
0.152 0.147 Swindon Primary Urban
0.147 0.113 St Andrews & Cupar N Scotland rural
0.147 0.143 Edinburgh Primary Urban
0.143 0.141 Colchester Primary Urban
0.143 0.092 Pembroke & Tenby Welsh rural
0.141 0.104 Carlisle N England rural
0.138 0.114 Bude & Holsworthy SW England rural
0.136 0.127 Aberdeen Primary Urban
0.133 0.106 Holyhead Welsh rural
0.129 0.174 Brighton Primary Urban
0.126 0.122 Lancaster & Morecambe N England rural
0.124 0.170 Bedford Primary Urban
0.122 0.107 Livingston & Bathgate N Scotland rural
0.121 0.136 Cardiff Primary Urban
0.120 0.128 Glasgow Primary Urban
0.120 0.098 Inverness & Dingwall N Scotland rural
0.119 0.101 Lanarkshire Primary Urban
0.119 0.114 Newcastle & Durham Primary Urban
0.116 0.210 Birmingham Primary Urban
0.115 0.092 Haverfordwest & Fishguard Welsh rural
0.114 0.119 York Primary Urban
0.114 0.200 Leicester Primary Urban
0.114 0.184 Reading & Bracknell Primary Urban
0.113 0.215 Wycombe & Slough Primary Urban
0.111 0.109 Wirral & Ellesmere Port Primary Urban
0.109 0.157 Leeds Primary Urban
0.109 0.143 Newbury SW England rural
0.108 0.111 Louth & Horncastle Rest England rura
0.107 0.108 Liverpool Primary Urban
0.106 0.139 Canterbury Rest England rural
0.106 0.129 Margate, Ramsgate & Sandwich Rest Edglaral
0.106 0.144 Harlow & Bishop's Stortford Rest Endlawral

Source; ONOMAP/KITES-PATSTAT/ONS.

Note: TTWAs use 2001 boundaries. ‘Primary urbanWWAs contain an urban core with at least
125,000 people. TTWAs with fewer than 10 inventsuppressed.
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Table 5. Ethnic inventor Location Quotients, 1993-Q04. Top 40 areas.

LQ TTWA name TTWA type
2.372 Crawley Primary Urban
1.989 Southampton Primary Urban
1.703 London Primary Urban
1.414 Oxford Primary Urban
1.394 Cambridge Primary Urban
1.375 Dundee Primary Urban
1.304 Oban N Scotland rural
1.266 Guildford & Aldershot Primary Urban
1.252 Swindon Primary Urban
1.216 St Andrews & Cupar N Scotland rural
1.213 Edinburgh Primary Urban
1.180 Pembroke & Tenby Welsh rural
1.180 Colchester Primary Urban
1.162 Carlisle N England rural
1.139 Bude & Holsworthy SW England rural
1.122 Aberdeen Primary Urban
1.101 Holyhead Welsh rural
1.062 Brighton Primary Urban
1.044 Lancaster & Morecambe N England rural
1.024 Bedford Primary Urban
1.005 Livingston & Bathgate N Scotland rural
1.000 Cardiff Primary Urban
0.995 Glasgow Primary Urban
0.988 Inverness & Dingwall N Scotland rural
0.981 Lanarkshire Primary Urban
0.980 Newcastle & Durham Primary Urban
0.955 Birmingham Primary Urban
0.953 Haverfordwest & Fishguard Welsh rural
0.941 York Primary Urban
0.940 Leicester Primary Urban
0.938 Reading & Bracknell Primary Urban
0.932 Wycombe & Slough Primary Urban
0.917 Wirral & Ellesmere Port Primary Urban
0.898 Leeds Primary Urban
0.897 Newbury SW England rural
0.893 Louth & Horncastle Rest England rural
0.886 Liverpool Primary Urban
0.876 Canterbury Rest England rural
0.875 Margate, Ramsgate & Sandwich Rest Englarad rur
0.872 Harlow & Bishop's Stortford Rest England frura

Source: ONOMAP/KITES-PATSTAT/ONS.
Note: TTWAs use 2001 boundaries. ‘Primary urbaniAs contain an urban core with at least
125,000 people. TTWAs with fewer than 10 inventsuppressed.
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Table 6. Fractionalisation Index scores for invents and TTWA working-age
populations, 1993-2004. Top 40 areas.

Inventor | Population
FRAC FRAC TTWA name TTWA type
0.384 0.498 London Primary Urban
0.354 0.188 Southampton Primary Urban
0.310 0.206 Crawley Primary Urban
0.308 0.225 Oxford Primary Urban
0.305 0.133 Dundee Primary Urban
0.293 0.139 Honiton & Axminster SW England rural
0.288 0.122 Lancaster & Morecambe N England rural
0.283 0.226 Cambridge Primary Urban
0.282 0.184 Swindon Primary Urban
0.279 0.099 Bangor, Caernarfon & Llangefni Welstaku
0.273 0.168 Colchester Primary Urban
0.256 0.106 Carlisle N England rural
0.255 0.126 St Andrews & Cupar N Scotland rural
0.255 0.122 Bude & Holsworthy SW England rural
0.250 0.234 Guildford & Aldershot Primary Urban
0.244 0.179 Edinburgh Primary Urban
0.241 0.275 Bradford Primary Urban
0.239 0.143 Glasgow Primary Urban
0.237 0.263 Birmingham Primary Urban
0.234 0.148 Aberdeen Primary Urban
0.226 0.104 Wirral & Ellesmere Port Primary Urban
0.225 0.164 Cardiff Primary Urban
0.224 0.104 Livingston & Bathgate N Scotland rural
0.222 0.206 Bedford Primary Urban
0.218 0.135 Lincoln Rest England rural
0.217 0.121 Liverpool Primary Urban
0.215 0.225 Brighton Primary Urban
0.213 0.289 Wycombe & Slough Primary Urban
0.210 0.126 Newcastle & Durham Primary Urban
0.208 0.172 Bristol Primary Urban
0.208 0.269 Leicester Primary Urban
0.207 0.184 Eastbourne Rest England rural
0.203 0.134 Monmouth & Cinderford Rest Englandlrura
0.202 0.190 Leeds Primary Urban
0.201 0.244 Luton & Watford Primary Urban
0.199 0.142 Norwich Primary Urban
0.194 0.158 Rugby Rest England rural
0.194 0.239 Reading & Bracknell Primary Urban
0.193 0.169 Harlow & Bishop's Stortford Rest Endlanral
0.192 0.114 Stafford Rest England rural

Source; ONOMAP/KITES-PATSTAT/ONS.

Note: TTWAs use 2001 boundaries. ‘Primary urbanWWAs contain an urban core with at least
125,000 people. TTWAs with fewer than 10 inventsuppressed.
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Table 7. TTWASs’ weighted patent stocks, 1993-200F0p 40 areas.

Weighted patent
count TTWA name TTWA type
1697.14 London Primary Urban
1155.59 Cambridge Primary Urban
719.36 Oxford Primary Urban
705.62 Harlow & Bishop's Stortford Rest Englandatur
531.69 Manchester Primary Urban
489.87 Guildford & Aldershot Primary Urban
483.41 Southampton Primary Urban
440.96 Bristol Primary Urban
428.15 Reading & Bracknell Primary Urban
416.01 Crawley Primary Urban
379.21 Ipswich Primary Urban
365.63 Swindon Primary Urban
342.90 Wycombe & Slough Primary Urban
341.67 Stevenage Primary Urban
312.93 Newcastle & Durham Primary Urban
309.40 Wirral & Ellesmere Port Primary Urban
301.75 Leicester Primary Urban
289.82 Birmingham Primary Urban
260.66 Nottingham Primary Urban
223.87 Leeds Primary Urban
218.49 Edinburgh Primary Urban
213.60 Worcester & Malvern Primary Urban
183.83 Margate, Ramsgate & Sandwich Rest Englaradl ru
181.10 Coventry Primary Urban
169.36 Bedford Primary Urban
167.98 Luton & Watford Primary Urban
165.09 Cardiff Primary Urban
163.87 Glasgow Primary Urban
161.37 Warwick & Stratford-upon-Avon Rest Englandat
161.20 Warrington & Wigan Primary Urban
152.70 Hull Primary Urban
148.04 Derby Primary Urban
147.14 Aberdeen Primary Urban
138.16 Portsmouth Primary Urban
136.70 Milton Keynes & Aylesbury Primary Urban
130.99 Middlesbrough & Stockton Primary Urban
121.67 Chelmsford & Braintree Primary Urban
121.35 Chester & Flint Welsh rural
118.13 Northampton & Wellingborough Primary Urban
113.95 Maidstone & North Kent Primary Urban

Source: KITES-PATSTAT/ONS.
Note: TTWAs use 2001 boundaries. ‘Primary urbaniAs contain an urban core with at least
125,000 people. Patents are weighted by numbewehtors, not area population.
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Table 8. Summary statistics

Variable N Mean SD Min Max
Inventor patent count / 4-year period 89312 0.114 0.694 0 25
Inventors' ave patent count, pre-1993 89312 0.405 .3510 0.286 11.143
Inventor likely techfield mover 89312 0.256 0.43y 0 1
Inventor likely TTWA mover 89312 0.143 0.35 0 1
Inventor is UK geog. origin 89312 0.937 0.243 0 1
Inventor is foreign geog. origin 89314 0.063 0243 O 1
Inventor African origin 89312 0.002 0.041 0 1
Inventor Americas origin 89312 0.00¢ 0.013 0 1
Inventor Central Asia origin 89312 0.00(¢ 0.018 0 1
Inventor Central Europe origin 89312 0.012 0.1Q97 0 1
Inventor rest of world origin 89312 0.003 0.058 0 1
Inventor East Asian origin 89312 0.007 0.084 0 1
Inventor East Europe origin 89312 0.00y 0.086 0 1
Inventor Middle East origin 89312 0.006 0.075 0 1
Inventor Northern Europe origin 89312 0.008 0.052 0 1
Inventor South Asian origin 89312 0.01% 0.128 0 1
Inventor South European origin 89312 0.007 0.086 q 1
Frac. Index, geog. origin groups 8931p 0.209 0.118 O 0.612
Inventor is white ethnicity 89312 0.97 0.172 0 1
Inventor is minority ethnic 89312 0.03 0.172 0 1
Inventor Black Caribbean 89317 0 0.01 0 1
Inventor Black African 89312 0.002 0.04 0 1
Inventor Indian 89312 0.012 0.107 0 1
Inventor Pakistani 89312 0.003 0.052 0 1
Inventor Chinese 89312 0.004 0.064 0 1
Inventor other ethnic group 89312 0.01 0.099 0 1
Frac. Index, ethnic groups 89312 0.108 0.066 0 49.4
TTWA Frac Index, geog. groups 89309 0.225 0.142 g .528
TTWA Frac Index, ethnic groups 89309 0.169 0.141 0 0.459
% graduates 89309 0.23§ 0.051 0.106 0.362
% graduates with STEM degrees 89309 0.121 0.032 410.0 0.196
% graduates with PhDs 89309 0.00y 0.005 0 0.0R29
% employed hi-tech manufacturing 89309 0.037 0.014 O 0.194
% employed medium-tech m’facturing 8930P9 0.046 8.02 0 0.135
% in entry level occupations 89309 0.338 0.049 50.2 0.667
% unemployed >=12 months 89309 0.016 0.012 0 0.08
log(population density) 89309 6.605 1.058 2.06 8.35
Electronics patent 89312 0.009 0.098 0 1
TTWA weighted patent count 89312  493.0p4 578.301 g 1888.03
TTWA weighted patents, 1981-84 88726  144.814 2M®.78 0.25 613.859

Source: KITES-PATSTAT/ONS/LFS

Note: Area-level controls not available for all T4/
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Table 9. Patent counts, geographical origin zonesegative binomial results.

Individual patent counts (1) (2) (3)
Ethnic inventor, geog. -0.000 0.004 0.009
(0.011) (0.008) (0.007)
Frac Index of inventors, geog. -0.061 0.079 0.087**
origin groups (0.101) (0.050) (0.042)
Frac Index, TTWA country of birth -0.203* -0.140*
(0.110) (0.085)
% STEM degrees, TTWA 0.372** 0.304**
(0.176) (0.147)
Log of TTWA population density 0.005 0.005
(0.008) (0.007)
Area weighted patents, 1981-84 -0.000 -0.000
(0.000) (0.000)
% hi-tech mf empl, OECD defn. -0.159 -0.111
(0.281) (0.226)
% medium-tech mf, OECD defn. 0.048 0.051
(0.172) (0.134)
% entry-level occupations 0.042 0.113
(0.123) (0.106)
% unemployed >=12 months -0.313 -0.000
(0.441) (0.354)
Electronics / OST7 type 1 patents 2.074*** 1.697**
(0.132) (0.176)
Urban TTWA -0.018* -0.021*
(0.015) (0.015)
Fixed effect 0.101***
(0.007)
In(alpha)
Constant 2.9971%** 2.683*** 2.4971%**
(0.052) (0.063) (0.069)
Observations 89312 88726 88726
Log-likelihood -25328.463 -24379.554 -23859.107
Chi*fit statistic (Wald) 376.947 3520.345 2693.200

Source: KITES-PATSTAT/ONS/LFS

Notes: Notes: All models use time dummies. Heterdakticity and autocorrelation-robust standard
errors clustered on TTWA. Except for In(alpha) teamefficients are marginal effects at the mean. *
= significant at 10%, ** 5%, *** 1%
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Table 10. Patent counts, geographical origin zone®LS results.

Individual patent counts

(1)

(2)

3)

Ethnic inventor, geog. -0.002 0.004 0.011
(0.011) (0.011) (0.010)
Frac Index of inventors, geog. -0.055 0.119** 0099
origin groups (0.088) (0.058) (0.055)
Frac Index, TTWA country of birth -0.137 -0.079
(0.127) (0.115)
% STEM degrees, TTWA 0.302 0.334
(0.292) (0.278)
Log of TTWA population density 0.006 0.008
(0.010) (0.009)
Area weighted patents, 1981-84 -0.000 -0.000
(0.000) (0.000)
% hi-tech mf empl, OECD defn. -0.166 -0.245
(0.385) (0.367)
% medium-tech mf, OECD defn. 0.120 0.093
(0.240) (0.216)
% entry-level occupations 0.084 0.149
(0.166) (0.154)
% unemployed >=12 months -1.211 -0.934
(0.747) (0.719)
Electronics / OST7 type 1 patents 2.356*** 2.305***
(0.139) (0.135)
Urban TTWA -0.024 -0.028
(0.019) (0.017)
Fixed effect 0.266***
(0.036)
Constant 0.196*** 0.122 -0.034
(0.010) (0.107) (0.105)
Observations 89312 88726 88726
F-statistic 76.283 52.523 50.226
R? 0.007 0.107 0.125

Source: KITES-PATSTAT/ONS/LFS

Notes: All models use time dummies. Heteroskedasand autocorrelation-robust standard errors
clustered on TTWA. * = significant at 10%, ** 5%**1%.
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Table 11. Patent counts, all inventors, ONS ethnigroups.

Negative binomial

Individual patent counts Q) 2 3
Ethnic inventor, ONS minority ethnic group -0.006 0.000 0.000
(0.016) (0.014) (0.012)
Frac Index of inventors, ONS ethnic groups -0.165 .100 0.125**
(0.145) (0.067) (0.056)
Controls N Y Y
Fixed effects N N Y
Observations 89312 88726 88726
Log-likelihood -25319.277| -24386.644 -23864.136
Chi?goodness of fit statistic (Wald) 414,921 2706.003 426458
OLS
Individual patent counts (D (2) (3)
Ethnic inventor, ONS minority ethnic group -0.010 0.002 0.003
(0.015) (0.014) (0.013)
Frac Index of inventors, ONS ethnic groups -0.15% 128 0.097
(0.131) (0.082) (0.077)
Controls N Y Y
Fixed effects N N Y
Observations 89312 88726 88726
F-statistic 75.337 54.477 58.197
R 0.007 0.107 0.125

Source: KITES-PATSTAT/ONS/LFS.

Notes: All models use time dummies. Controls fitted of population density, % STEM degrees, %
employed in knowledge-intensive manufacturing, ticaalisation index of area birth country groups,
% entry-level occupations, % long term unemploysdan TTWA dummy. Heteroskedasticity and
autocorrelation-robust standard errors clusteredTONA. Negative binomial models show marginal
effects at the mean. * = significant at 10%, ** 59, 1%.

46



Table 12. Robustness checks. Negative binomial a@dlS results.

Negqative Binomial

Individual patent counts (D) (2) (3) (4)
Ethnic inventor, geographic origin 0.009 0.007 0.0 -0.002

(0.007) (0.007) (0.001) (0.001)
Frac Index of inventors, geog. origin 0.087* 060 0.016*** 0.016***
groups (0.042) (0.039) (0.006) (0.006)
% with PhDs in TTWA 2.649%**

(0.504)

#times inventor patents in previous YG 0.053*%* 0.057***
within sample (0.002) (0.002)
Controls Y Y Y Y
Fixed effects Y Y Y Y
Include London? Y Y Y N
Observations 88726 88726 88726 75571
Log-likelihood -23859.107] -23821.523 -16507.2/3 524.746
Chi*fit statistic (Wald) 2693.200 2181.073 4008.364 2a93

Source: KITES-PATSTAT/ONS/LFS

Notes: All models use time dummies. Controls fitted of population density, % STEM degrees, %
employed in knowledge-intensive manufacturing, tica@lisation index of area birth country groups,
% entry-level occupations, % long term unemploygtan TTWA dummy. Heteroskedasticity and
autocorrelation-robust standard errors clusteredTONA. Negative binomial models show marginal
effects at the mean. * = significant at 10%, ** 5%, 1%.
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Table 13. Urban areas. Negative binomial results.

Individual patent counts Q) (2) 3 (4) 5) (6) 1
Ethnic inventor, geographic origi 0.009 0.009 0.008 0.008 0.009 0.008 0.009

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 0qQT)
Frac Index of inventors, geog. 0.087** 0.085** 0.066 0.080* 0.136** 0.284 0.494**
origin groups (0.042) (0.043) (0.041) (0.041) (0.067) (0.201) 281)
urban TTWA -0.021 -0.016 0.054 -0.007 -0.028*

(0.015) (0.010) (0.043) (0.010) (0.015)
log of TTWA population density 0.005 -0.002 0.016 0.004 0.016**

(0.007) (0.005) (0.012) (0.005) (0.008)
urban TTWA * In(pop density) -0.016

(0.014)
Frac Index * urban TTWA -0.066
(0.076)
Frac Index * In(pop density) -0.037 -0.067*
(0.033) (0.037)

Controls Y Y Y Y Y Y Y
Observations 88726 88726 88726 88726 88726 88726 72638
Log-likelihood -23859.107 -23861.196 -23871.085 823923 -23859.802 -23868.311 -23850.578
Chi’ fit statistic (Wald) 2693.200 2594.921 3234.725 58837 2720.994 4245.201 3717.697

Source: KITES-PATSTAT/ONS/LFS

Notes: all models use time dummies and individixald effects. Robust standard errors clusteredTOWA. Controls fitted: log of population density, %
STEM degrees, % employed in knowledge-intensiveufsnturing, frac. index of birth country groups,etiry-level occupations, % long term unemployed.
Coefficients are marginal effects at the mean.

* = gignificant at 10%, ** 5%, *** 1%.
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Table 14. Inventor groups, negative binomial resud.

Inventor patent count

Marginal effect

Africa origin -0.037*
(0.022)
Americas origin 0.176
(0.166)
Central Asia origin 0.045
(0.055)
Central Europe origin -0.003
(0.014)
Diasporic origin -0.019
(0.014)
East Asia origin -0.037***
(0.007)
Eastern Europe origin 0.032
(0.034)
Middle East origin -0.008
(0.025)
Northern Europe origin 0.001
(0.045)
South Asia origin 0.025*
(0.015)
Southern Europe origin 0.053*
(0.040)
Frac Index of inventors, geog. origin groups 0.087*
(0.042)
Controls Y
Observations 88726
Log-likelihood -23843.642
Chi-squared 4438.933

Source: KITES-PATSTAT/ONS/LFS

Notes: all models use time dummies. Robust starelaods clustered on TTWA. Controls fitted: log

of population density, % STEM degrees, % employekhiowledge-intensive manufacturing,

fractionalisation index of ONS ethnic groups, %rgitével occupations, % long term unemployed,
urban TTWA dummy. Coefficients are marginal effeatt$he mean. * = significant at 10%, ** 5%,

*k%k 1%
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Table 15. Alternative fixed effects, negative binomal results.

Individual patent counts (1) (2) (3) (4) (5)
Ethnic inventor, geog. origin 0.009 0.003 0.005
(0.007) (0.004) (0.004)
Central Europe origin -0.003 -0.001
(0.014) (0.009)
East Asia origin -0.037*** | -0.016***
(0.007) (0.006)
Eastern Europe origin 0.032 0.013
(0.034) (0.022)
South Asia origin 0.025* 0.012*
(0.015) (0.009)
Southern Europe origin 0.053* 0.024
(0.040) (0.017)
Frac Index of inventors, 0.087** 0.050* 0.055** s N 0.055**
geog. origin groups (0.042) (0.028) (0.027 (0.042) (0.026)
Fixed effect, average patent 0.101**F 0.028**F  100*** 0.028***
pre-sample (0.007) (0.004) (0.007) (0.004
Fixed effect, patents in >1 0.217**¥ 0.184*** 1B3***
IPC7 field (0.010) (0.009) (0.009)
Controls Y Y Y Y Y
Observations 88726 88726 88726 88726 88726
Log-likelihood -23859.107] -22138.191 -21926.052 84£3642| -21917.627
Chi-squared 2693.200 3670.001 5323.670 4438.933 1.%83

Source: KITES-PATSTAT/ONS/LFS
Notes: all models use time dummies. Robust starelaods clustered on TTWA. In models (4) and
(5) I fit dummies for all minority co-ethnic groupsth UK-origin the reference category. To save
space results for the five largest minority groaply are shown here. Controls fitted: log of
population density, % STEM degrees, % employechmvwkedge-intensive manufacturing,
fractionalisation index of birth country / ONS eihgroups, % entry-level occupations, % long term
unemployed, urban dummy. Coefficients are marggffalcts at the mean. * = significant at 10%, **

5%, *** 1%.
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Table 16. Diversity effects versus size effects,gadive binomial results

Individual patent counts (1) (2) (3) (4) (5)
Ethnic inventor, geog. origin 0.009 0.009 0.009 08.0
(0.007) (0.007) (0.007) (0.007)
Central Europe origin -0.003
(0.014)
East Asia origin -0.037***
(0.008)
Eastern Europe origin 0.032
(0.034)
South Asia origin 0.024*
(0.015)
Southern Europe origin 0.054*
(0.041)
Frac Index of inventors, geog. 0.087* 0.108*%  101** 0.189**
origin groups (0.042) (0.041) (0.080) (0.079
% ethnic inventors, geog. origi 0.068 -0.058 0.06 0.057
as share of all inventors (0.145 (0.139) (0.121) (0.121)
Frac index * % ethnic inventor -0.676% -0.662%*
(0.345) (0.336)
Controls Y Y Y Y Y
Observations 88726 88726 88726 88726 88726
Log-likelihood 23859.107| 23868.208| 23858.221| 23851.433| 23836.126
Chi-squared 2693.20( 3064.329 2830.487 3853.584 8.678

Source: KITES-PATSTAT/ONS/LFS
Notes: all models use time dummies. Robust stanetaods clustered on TTWA. In model (5) | fit
dummies for all minority co-ethnic groups with UKigin the reference category. To save space
results for the five largest minority groups onig ahown here. Controls fitted: log of population
density, % STEM degrees, % employed in knowledgensive manufacturing, fractionalisation
index of birth country / ONS ethnic groups, % eflayel occupations, % long term unemployed,
urban dummy. Coefficients are marginal effecthatrhean. * = significant at 10%, ** 5%, *** 1%.
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Table 17. Alternative historic patent stocks: infllence on inventor productivity.

Individual patent counts Q) 2 3

Ethnic inventor, geog. 0.009 0.008 0.008
(0.007) (0.007) (0.007)

Frac Index of inventors, geog 0.087** 0.083** 006

origin groups (0.042) (0.041) (0.040)

Area historic weighted stock -0.000

of patents, 1981-1984 (0.000)

Area historic weighted stock -0.000

of patents, 1985-1988 (0.000)

Area historic weighted stock 0.000

of patents, 1989-1992 (0.000)

Controls Y Y Y

Fixed effects Y Y Y

Observations 88726 89196 89268

Log-likelihood -23859.107 -23994.163 -24030.991

Chi fit statistic (Wald) 2693.200 2720.995 2865.519

Source: KITES-PATSTAT/ONS/LFS

Notes: All models use time dummies. Controls fitled of population density, % STEM degrees, %
employed in knowledge-intensive manufacturing, ticaralisation index of area birth country groups,
% entry-level occupations, % long term unemploygtian TTWA dummy. Heteroskedasticity and
autocorrelation-robust standard errors clusteredTONA. Coefficients are marginal effects at the
mean. * = significant at 10%, ** 5%, *** 1%.
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Table 18. Sample construction test for multiple inentor sub-sample.

Individual patent counts All, zeroed Multiple, zeroed Multiple, blanked
1) 2 3 4) 5
Ethnic inventor, geographic origin 0.009 -0.095 O9RB -0.095 -0.093
(0.007) (0.110) (0.110) (0.110) (0.110)
Frac Index of inventors, geog. origin groups 0.087* 0.856 4.103* 0.856 4.103*
(0.042) (0.575) (2.057) (0.575) (2.057)
Urban TTWA -0.021 -0.170 -0.170
(0.015) (0.134) (0.134)
Log of TTWA population density 0.005 0.025 0.056 0Zb 0.056
(0.007) (0.058) (0.072) (0.058) (0.072)
Frac Index * log population density -0.579 -®@57
(0.370) (0.370)
Controls Y Y Y Y Y
Observations 88726 4842 4842 4842 4842
Log-likelihood -23859.107 -8526.503 -8527.051 -8503 -8527.051
Chi-squared 2693.200 173.503 185.897 173.503 185.89

Source: KITES-PATSTAT/ONS/LFS

Notes: All models use time dummies. Controls fitled of population density, % STEM degrees, % ay@tl in knowledge-intensive manufacturing,
fractionalisation index of area birth country greuf entry-level occupations, % long term unempdoyeban TTWA dummy. Heteroskedasticity and
autocorrelation-robust standard errors clusteredTONA. Coefficients are marginal effects at the meta= significant at 10%, ** 5%, *** 1%.
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Table 19. Distributional effects: individual level

Native patent counts (1) (2) 3
Frac Index of inventors, geog. -0.069 -0.057 0.072*
origin groups (0.097) (0.077) (0.041)
Controls N N Y
Individual fixed effects N Y Y
Observations 83672 83672 83098
Log-likelihood -23726.567 -23236.532 -22334.827
Chi’ fit statistic (Wald) 343.508 628.231 2536.289
Individual patent counts (1) (2) (3)
UK inventor -0.010 -0.009 0.027***
(0.008) (0.007) (0.008)
Frac Index of inventors, geog. 0.087** 0.253***
origin groups (0.042) (0.077)
UK * Frac Index -0.172%**
(0.056)
Controls Y Y Y
Observations 88726 88726 88726
Log-likelihood -23870.231 -23859.107 -23852.425
Ch# fit statistic (Wald) 3421.238 2693.200 2866.909

Source: KITES-PATSTAT/ONS/LFS

Notes: All models use time dummies. Controls fitted of population density, % STEM degrees, %
employed in knowledge-intensive manufacturing, tica@lisation index of area birth country groups,
% entry-level occupations, % long term unemploygtian TTWA dummy. Heteroskedasticity and
autocorrelation-robust standard errors clusteredTONA. Coefficients are marginal effects at the
mean. * = significant at 10%, ** 5%, *** 1%.
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Table 20. Distributional effects: area level

% change in total weighted

patents, 1993-2004 (1) (2) (3) (4) ()

% change in weighted ethnic 0.199* 0.259*  0.248 0.248 0.259
patents, 1993-2004 (0.065 (0.066) (0.068) (0.1717)(0.178)
Controls N Y Y Y Y
OST7 technology field dummies N N Y Y N
HAC standard errors N N N Y Y
Observations 220 220 210 210 206
F-statistic 9.299 1.467 3.646 1.144 0.966
R? 0.041 0.041 0.141 0.141 0.151

Source: KITES-PATSTAT/ONS/LFS

Notes: All models use time dummies. Controls fitted of population density, % STEM degrees, %

employed in knowledge-intensive manufacturing, ¥gremt working-age population, % entry-level
occupations, % long term unemployed, urban dumraghmology field dummies cover OST7 fields
1 -6: electrical engineering and electronics; unstents; chemicals and materials; pharmaceuticals

and biotechnology; industrial processes; mechaeicgineering, machines and transport. Consumer
goods and civil engineering patents are used a®tbence category. * = significant at 10%, ** 5%,

*k%k 1%

55



REFERENCES

Agrawal, A., . Cockburn, et al. (2006). "Gone bt forgotten: knowledge flows, labor
mobility, and enduring social relationships.” Jalrof Economic Geograplf(5):
571-591.

Agrawal, A., D. Kapur, et al. (2008). "How do spétnd social proximity influence
knowledge flows? Evidence from patent data." Jduwhb&lrban Economic§4(2):
258-269.

Agrawal, A., D. Kapur, et al. (2011). "Brain Draon Brain Bank? The impact of skilled
emigration on poor country innovation.” Journallsban Economic69(1): 43-55.

Alesina, A. and E. La Ferrara (2004). Ethnic Divtgrand Economic Performance. NBER
Working Paper 10313. Cambridge, MA, NBER.

Anderson, S. and M. Platzer (2007). American Mdde= Impact of Immigrant
Entrepreneurs and Professionals Arlington, Natisfeadture Capital Association.

Angrist, J. and J.-S. Pischke (2009). Mostly HasslEconometrics. Princeton, Princeton
University Press.

Archibugi, D. and S. lammarino (2002). "The globation of technological innovation:
definition and evidence." Review of Internationalifcal Economy9(1): 98-122.

Aspinall, P. (2009). "The Future of Ethnicity Cldgsitions." Journal of Ethnic and
Migration Studies35(9): 1417-1435.

Audretsch, D. and M. Feldman (1996). " R&D Spillovand the Geography of Innovation
and Production.” American Economic Revi8& 630-640.

Basu, A. (2002). "The Interaction between Culturd Entrepreneurship in London's
Immigrant Businesses." International Small Businkssnal20(4): 371-393

Basu, A. (2004). "Entrepreneurial aspirations ami@mgly business owners: An analysis of
ethnic business owners in the UK." Internationalrdal of Entrepreneurial Behaviour
& Research0(1/2): 12-33.

Berliant, M. and M. Fujita (2009). The Dynamicskafowledge Diversity and Economic
Growth. 56th Annual North American Meeting, RegibBaience Association
International. San Francisco.

Blundell, R., R. Griffith, et al. (1995). "Dynami@ount Data Models of Technological
Innovation.” The Economic JournbD5429): 333-344.

Bonacich, E. (1973). "A Theory of Middleman Minaeg." American Sociological Review
38(5): 583-594.

Borjas, G. (1987). "Self-Selection and the Earnioiggnmigrants.” American Economic
Review77: 531-553.

56



Borjas, G. (1994). "The Economics of Immigratiodournal of Economic Literatu@2(4):
1667-1717.

Borjas, G. (2011). The Benefits and Costs of Higll 8nmigration. Migration: Economic
Change, Social Challenge London UCL.

Bresnahan, T. and A. Gambardella (2004). Old-Ecgonlmputs for new-Economy
Outcomes: What have we learned? Building High-T@klsters. T. Bresnahan and A.
Gambardella. Cambridge CUP 331-358.

Brinkley, I. (2008). The Knowledge Economy: How kvledge is reshaping the economic
life of nations. London, The Work Foundation.

Cameron, A. C. and P. Trivedi (2009). Microeconamstusing Stata. College Station, Stata
Press.

Cantwell, J. (2005). MNCs, local clustering andescie-technology relationships.
Technological Change and Economic Catch-Up: The Rb5cience and
Multinationals. G. Santangelo. Cheltenham, EdwdghiE

Card, D. (2005). "Is the New Immigration Really Bad?" The Economic Journal
115November): 300-323.

Chellaraj, G., K. Maskus, et al. (2005). The Cdnition of Skilled Immigration and
International Graduate Students to U.S. Innovaiitorld Bank Policy Research
Working Paper 3588. Washington DC, World Bank.

Dahlman, C. (2010). Innovation Strategies of Thokthe BRICS: Brazil, India and China-
What Can We Learn From Three Different Approaché® Rise of Technological
Power in the South. X. Fu and L. Soete. BasingtBlégrave MacMillan.

Department of Innovation Universities and Skill®@8). Innovation Nation. London,
Department of Innovation, Universities and Skills.

Docquier, F. and H. Rapoport (2011). Globalisat®rain Drain and Development. IZA DP
5590. Bonn, IZA.

Fagerberg, J. (2005). Innovation: A guide to tkerditure. The Oxford Handbook of
Innovation. J. Fagerberg, D. Mowery and R. Nel€axford, OUP.

Faggio, G. and H. Overman (2011). The effect oflipigzctor employment on local labour
markets. Spatial Economics Research Centre Annuaflie@ence. London.

Fairlie, R., H. Krashinsky, et al. (2009). IndiantEepreneurial Success in the United States,
Canada and the United Kingdom. RAND Corporation kifay Paper 727. Santa
Monica, CA, RAND Corporation.

Florida, R. (2002). The Rise of the Creative Cla&sw York, Basic Books.

Freeman, C. (1987). Technology Policy and Econd?uiecy: Lessons from Japan London,
Pinter.

57



Fujita, M. and S. Weber (2003). Strategic ImmigmatPolicies and Welfare in Heterogenous
Countries. Institute of Economic Research Workiagdts. Kyoto, Kyoto University.

Gibbons, S., H. Overman, et al. (2011). Real Egsisparities in Britain. SERC
Discussion Paper SERCDP0065. London, LSE.

Gordon, I. (2001). Unemployment and spatial laboarkets: strong adjustment and
persistent concentration. Geographies of LaboukBtdnequality. R. Martin and P.
Morrison. London, Routledge.

Gordon, I., C. Whitehead, et al. (2007). The ImpddRecent Immigration on the London
Economy. London, City of London Corporation.

Greene, W. H. (1994). Accounting for Excess Zeras @ample Selection in Poisson and
Negative Binomial Regression Models. NYU WorkingpBaNo. EC-94-10. New
York NYU.

Hall, B., A. Jaffe, et al. (2001). The NBER Pat€itations Data File: Lessons, Insights and
Methodological Tools. Cambridge, Mass., NBER.

Hall, P. (1998). Cities in Civilisation: Cultureyovation and Urban Order. London,
Weidenfeld and Nicholson.

Hausman, J. A., B. H. Hall, et al. (1984). Econamé¥lodels for Count Data with an
Application to the Patents-R&D Relationship. NBEBchnical Working Paper No.
17. Cambridge, MA, NBER.

Hong, L. and S. Page (2001). "Problem Solving biergeneous Agents." Journal of
Economic Theorp7(1): 123-163.

Hong, L. and S. Page (2004). "Groups of divers®lpra solvers can outperform groups of
high-ability problem solvers." Proceedings of thatiNnal Academy of Sciences of
the United States of Amerid®1(46): 16385-16389.

Hunt, J. and M. Gauthier-Loiselle (2008). How mibes Immigration Boost Innovation?
NBER Working Paper 14312. Cambridge, Mass., NBER.

Jacobs, J. (1969). The Economy of Cities. Londantage.

Jaffe, A. and M. Trajtenberg (1999). "Internatiokalowledge Flows: Evidence from patent
citations." International Journal of Knowledge Orgation8: 105-136.

Jaffe, A. B., M. Trajtenberg, et al. (1993). "Geagjnic Localization of Knowledge Spillovers
as Evidenced by Patent Citations." The Quartenyrda of Economic408§3): 577-
598.

Kaiser, U., H. C. Kongsted, et al. (2011). Laborbyity, Social Network Effects, and
Innovative Activity. I. D. N. 5654. Bonn, IZA.

58



Kapur, D. and J. McHale (2005). Sojourns and Sattwknternationally mobile human
capital and high tech industry development in Intliland and Israel. From
Underdogs to Tigers: The Rise and Growth of thévoe Industry in Brazil, China,
India, Ireland and Israel. A. Arora and A. Gamb#ded@®xford, OUP.

Kerr, W. (2008). The Agglomeration of US Ethnic é&mtors. HBS Working Paper 09-003.
Boston, MA, Harvard Business School.

Kerr, W. (2008). "Ethnic Scientific Communities aimdernational Technology Diffusion."
Review of Economics and Statisti@®(3): 518-537.

Kerr, W. (2009). Breakthrough Innovations and Migrg Clusters of Innovation. NBER
Working Paper 15443. Cambridge, MA, NBER.

Kerr, W. and W. Lincoln (2010). The Supply Siddmfiovation: H-1b Visa Reforms and US
Ethnic Invention NBER Working Paper 15768. Cambeidglass., NBER

Landry, C. and P. Wood (2008). The InterculturayCGplanning for Diversity Advantage.
London, Earthscan.

Li, X. and Y. Pai (2010). The Changing Geographynoiovation Activities: What do Patent
Indicators Imply? The Rise of Technological Powethe South. X. Fu and L. Soete.
Basingstoke, Palgrave MacMillan.

Lissoni, F., G. Tarasconi, et al. (2006). The KEIN&abase on Academic Inventors:
Methodology and Contents. CESPRI Working Paper LBthn, Universita' Bocconi.

Maré, D. C., R. Fabling, et al. (2011). Immigrat@md Innovation. 1ZA Discussion Paper
5686. Bonn, I1ZA.

Mateos, P., R. Webber, et al. (2007). The Cultitinic and Linguistic Classification of
Populations and Neighbourhoods using Personal NaG#ASA Working Paper.
London, UCL.

Menon, C. (2009). Stars and Comets: An Exploradibiine Patent Universe. SERC DP0037.
London, LSE.

Mowery, D. C. (2001). "Technological InnovationarMultipolar System: Analysis and
Implications for U.S. Policy."” Technological Foretiag and Social Chan@g&(2-3):
143-157.

Nakhaie, R., X. Lin, et al. (2009). "Social Capiaald the Myth of Minority Self-
Employment: Evidence from Canada." Journal of Etlamd Migration Studie35(4):
625-644.

Nathan, M. and N. Lee (2011). Does Cultural Divigreielp Innovation in Cities? Evidence
from London Firms. Spatial Economics Research @dbiscussion Paper
SERCDPO0069. London, LSE.

Niebuhr, A. (2006). Migration and Innovation: Ddesltural Diversity Matter for Regional
R&D Activity? IAB Discussion Paper 14/2006. Nuerndpelnstitut fuer
Arbeitsmarkt- und Berufsforschung.

59



OECD (2009). OECD Patent Statistics Manual. P&IsCD.

Ottaviano, G., E. Bellini, et al. (2007). Diversdnd the Creative Capacity of Cities and
Regions. SUSDIV Paper 2.2007. Bologna, FEEM.

Ozgen, C., P. Nijkamp, et al. (2010). Immigratior dnnovation in European Regions.
Department of Spatial Economics working paper. Aargsm, VU University.

Ozgen, C., P. Nijkamp, et al. (2011). The Impadtafeign Workers on Innovation and
Knowledge Spillovers: Analysis of Survey Data frtime Netherlands. Migration:
Economic Change, Social Challenge. London, UCL.

Parrotta, P., D. Pozzoli, et al. (2011). The NeRatveen Labor Diversity and Firm's
Innovation [sic]. NORFACE Discussion Paper 2011-5.

Peri, G. (2007). Higher Education, Innovation and&h. Education and Training in
Europe. G. Brunello, P. Garibaldi and E. Wasmerfo@k Oxford University Press.

Rath, J. and R. Kloosterman (2000). "Outsidersimgass: A Critical Review of Research on
Immigrant Entrepreneurship.” International Migratieeview34(3): 657-681.

Rodriguez-Pose, A. and M. Storper (2006). "Bett@eR or Stronger Communities? On the
social foundations of institutional change andeitenomic effects.” Economic

Geographys2(1): 1-25.

Romer, P. (1990). "Endogenous Technological Chadgewrnal of Political Econom§8(5):
71-102.

Saxenian, A.-L. (2006). The New Argonauts: Regidk@antage in a Global Economy.
Cambridge, MA, Harvard University Press.

Saxenian, A.-L. and C. Sabel (2008). "Venture Gdjnit the ‘Periphery’: The New
Argonauts, Global Search and Local Institution-Bung." Economic Geography
84(4): 379-394.

Schumpeter, J. (1962). The Theory of Economic Omrekent. Berlin, Springer.

Simmie, J., J. Carpenter, et al. (2008). Historytbta: Path dependence and innovation in
British city-regions. London, NESTA.

Stephan, P. and S. Levin (2001). "Exceptional Gloations to US Science by the foreign-
born and foreign-educated.” Population ResearctPatidy Review20: 59-79.

Wadhwa, V., A.-L. Saxenian, et al. (2007). AmericBhlew Immigrant Entrepreneurs.
Durham, NC, Duke University / iSchool, UC Berkeley.

Wadsworth, J. (2010). Immigration and the UK Labblarket: The Evidence from
Economic Research. CEP Election Analysis. Lond&E.L

Wilson, R. (2007). Innovation in London. Workingdea 19. London, GLA Economics.

60



Yeung, H. (2009). "Regional Development and the @etmive Dynamics of Global
Production Networks: An East Asian Perspective diBeal Studieg3(3): 325-351.

Zenou, Y. (2011). Spatial versus Social Mismatde Btrength of Weak Ties. IZA
Discussion Papers 5507. Bonn, Institute for thelptf Labor (1ZA).

61



Department for Business o®%e . - ONOMIC b
B I S Innovation & Skills :. Communities o) j I\

and Local Government 52 3 Llywodraeth Cynulliad Cymru
. . - - Welsh Assembly Government

Spatial Economics Research Centre (SERC)
London School of Economics

Houghton Street

London WC2A 2AE

Tel: 020 7852 3565
Fax: 020 7955 6848
Web: www.spatialeconomics.ac.uk

SERC is an independent research centre funded by the
Economic and Social Research Council (ESRC), Department
for Business Innovation and Skills (BIS), the Department for
Communities and Local Government (CLG) and the Welsh
Assembly Government.





