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Abstract

“Reason-based rationalizations” explain an agent’s choices by specifying which prop-

erties of the options or choice context he/she cares about (the “motivationally salient

properties”) and how he/she cares about these properties (the “fundamental prefer-

ence relation”). We characterize the choice-behavioural implications of reason-based

rationalizability and identify two kinds of context-dependent motivation in a reason-

based agent: he/she may (i) care about di↵erent properties in di↵erent contexts and

(ii) care not only about properties of the options, but also about properties relat-

ing to the context. Reason-based rationalizations can explain non-classical choice

behaviour, including boundedly rational and sophisticated rational behaviour, and

predict choices in unobserved contexts, an issue neglected in standard choice theory.

1 Introduction

The classical theory of individual choice faces many notorious problems. It is challenged

by empirically well-established violations of rationality due to framing e↵ects, menu-

dependent choice, susceptibility to nudges, the use of heuristics, unawareness, and other

related phenomena. For example, a redescription of the options can alter an agent’s

choice behaviour. Call this the problem of bounded rationality. The classical theory

is also challenged by its inability to explain some intuitively rational but sophisticated

forms of choice, such as choices based on norm-following or non-consequentialism. It

does not distinguish these from ordinary rationality violations. For example, someone

who never chooses the largest piece of cake o↵ered to him (or her) for politeness and

instead chooses the second largest violates the weak axiom of revealed preference and

⇤F. Dietrich, Paris School of Economics, CNRS, and University of East Anglia; C. List,
London School of Economics. This work has been presented on numerous occasions, beginning
with the LSE Choice Group workshop on “Rationalizability and Choice”, July 2011. We thank
the audiences at these occasions for helpful comments and suggestions.
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thus counts as “irrational”. Call this the problem of sophisticated rationality. We suggest

that the theory’s di�culty in addressing both problems stems from the lack of a model

of how agents conceptualize options in any given choice context. When we provide such

a model, a unified explanation of many of the challenging phenomena can be given.

Our basic idea (which can be viewed as developing a classical idea in consumer

theory, e.g., Lancaster 1966) is the following. When an agent chooses between several

options in some context, e.g., yoghurts in a supermarket, he (or she) conceptualizes

each option not as a primitive object, but as a bundle of properties. Although each

option can have many properties, the agent considers not all of them, but only a subset:

the motivationally salient properties. In the supermarket, these may include whether

the yoghurt is fruit-flavoured, low-fat, and free from artificial sweeteners, but exclude

whether the yoghurt has an odd (as opposed to even) number of letters on its label (an

irrelevant property) and whether it has been sustainably produced (a property ignored

by many consumers). The agent then makes his choice on the basis of a fundamental

preference relation over property bundles. He chooses one option over another, e.g., a

low-fat cherry yoghurt over a full-fat, sugar-free vanilla one, if and only if his fundamental

preference relation ranks the set of motivationally salient properties of the first option,

say {low-fat, fruit-flavoured}, above the set of the second, say {full-fat, vanilla-flavoured,
artificially sweetened}.

We call an agent’s choice behaviour reason-based rationalizable if it can be explained

in this way. More precisely, a reason-based rationalization explains the agent’s choices

by specifying (i) which properties he cares about in each choice context and (ii) how he

cares about these properties. We formalize part (i) by a motivational salience function,

which assigns to each context a set of motivationally salient properties, and part (ii) by

a fundamental preference relation over property bundles.

Crucially, the motivationally salient properties may include not only (i) option prop-

erties, which options have independently of the choice context (and which are thus

“intrinsic” to the options), but also (ii) relational properties, which options have relative

to the context, and (iii) context properties, which are properties of the context alone.

“Fruit-flavoured” and “low-fat” (in yoghurts) are option properties; they depend solely

on the yoghurt. Whether a yoghurt is the only cherry yoghurt or the cheapest on display

are relational properties; they depend also on the other available yoghurts. Examples

of context properties are whether the available yoghurts include premium brands (this

depends solely on the menu of options) and whether there is cheerful background music

(this depends on features of the context over and above the menu).

Reason-based rationalizations can capture two kinds of context-dependence in an
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agent’s motivation. First, the context may a↵ect which properties are motivationally

salient, so that the agent cares about di↵erent properties in di↵erent contexts. We

call this context-variant motivation. For example, some contexts make the agent diet-

conscious, others not. Second, the motivationally salient properties may go beyond

option properties and include relational or context properties, so that the agent cares

about the context or about how the options relate to it. We call this context-regarding

motivation. For example, the agent cares about whether the choice of an option is polite

in the given context or whether there are luxury options available.

Many boundedly rational and sophisticated rational forms of choice can be sub-

sumed under these two kinds of context-dependence. Arguably, bounded rationality,

such as susceptibility to framing, nudging, or dynamic inconsistency, often involves

context-variant motivation. Sophisticated rationality, such as norm-following or non-

consequentialism, often involves context-regarding motivation. (Of course, we do not

claim that context-variance is always boundedly rational or that context-regardingness

is always sophisticated.)

Note that while we take agents to conceptualize options as bundles of motivationally

salient properties, we could not simply define each option as a bundle of motivationally

salient properties. Since an agent may conceptualize the same option in terms of di↵er-

ent properties in di↵erent contexts, we cannot know the agent’s motivationally salient

properties ex ante; they can be inferred, at most, after observing the agent’s choices

(Bhattacharyya, Pattanaik, and Xu 2011 make a similar observation). Moreover, the

same option can have di↵erent properties in di↵erent contexts when the properties are

relational. The same piece of cake can be the second-largest in one context and the

largest in another, and thus “politely choosable” in the former context, but not in the

latter.

In Section 2, we introduce our framework and discuss some examples. In Section 3, we

examine the choice-behavioural implications of the two kinds of context-dependence. In

Section 4, we show how choice behaviour can reveal the motivational salience function

and the fundamental preference relation. In Section 5, we discuss the prediction of

choices in unobserved contexts, a topic neglected in standard choice theory. One of the

messages of this paper is that psychological adequacy in the rationalization of choice

matters greatly for the prediction of an agent’s future choices.

To the best of our knowledge, our framework is novel. There is, of course, a grow-

ing body of works in decision theory o↵ering non-standard approaches to rationaliza-

tion (e.g., Suzumura and Xu 2001; Kalai, Rubinstein, and Spiegler 2002; Manzini and

Mariotti 2007, 2012; Salant and Rubinstein 2008; Bernheim and Rangel 2009; Man-
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dler, Manzini, and Mariotti 2012; Masatlioglu, Nakajima, and Ozbay 2012; Cherepanov,

Feddersen, and Sandroni 2013), but none of them take the present approach. In the

Appendix, we briefly discuss two conceptually related papers by Bossert and Suzumura

(2009) and Bhattacharyya, Pattanaik, and Xu (2011) about the phenomenon of context-

dependence. Among our contributions is a response to problems identified by them. Our

paper also formalizes a distinction drawn by Rubinstein (2006) between “internal” and

“external” reasons for choice, which parallels our distinction between context-regarding

and context-unregarding motivation. More extensive reviews of the literature can be

found in our philosophical papers on preference formation and preference change (Diet-

rich and List 2013a,b) and in the monograph by Bossert and Suzumura (2010).1

2 A general framework

2.1 Observable primitives

The observable primitives of our framework are the following:

• A non-empty set X of options. Typical elements are x, y, z, ...

• A non-empty set K of contexts. On the classical (“extensional”) definition, each

context K 2 K is a non-empty set K ✓ X of feasible options, which the agent

may choose from. On a more general (“non-extensional”) definition, each context

K 2 K induces a non-empty feasible set [K] ✓ X, but may carry additional

information about the choice environment. Formally, K could be a pair (Y,�)

of a feasible set Y (=[K]) and an environmental parameter �, representing a cue,

default, room temperature, background music, or even a state of the agent such

as “sober” or “drunk”. (This resembles a “frame” in Salant and Rubinstein 2008

or “set of ancillary conditions” in Bernheim and Rangel 2009.) We simply write

K for [K], as it is always unambiguous whether K refers to the context broadly

defined or to the feasible set [K] (e.g., in “x 2 K”, K refers to [K]).

• A choice function C : K ! 2X , which assigns to each context K 2 K a non-empty

set of chosen options in K (i.e., C(K) ✓ K).

1Our results here do not overlap with those in Dietrich and List (2013a,b), which did not address the
rationalization of choice. The present paper is the first to discuss reason-based rationalizations of choice
functions, to distinguish two forms of context-dependent choice, to treat motivationally salient properties
not as primitives but as derivable from choice behaviour, and to o↵er a reason-based analysis of choice
prediction. On the logic of preferences, property-based preferences, and preference or attitude change,
see also Liu (2010), Osherson and Weinstein (2012), and Dietrich (2012). For further philosophical
discussions supporting a “reason-based” perspective, see Pettit (1991) and Dietrich and List (2012).
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2.2 Properties

A choice in context K can be viewed as a choice among pairs of the form (x,K), where

x 2 K. We call the elements of X ⇥ K option-context pairs.2 We define properties

as features of option-context pairs. Formally, a property is an abstract object, P , that

picks out a subset [P ] ✓ X⇥K called its extension, consisting of all option-context pairs

that “have” or “satisfy” the property (thus properties are binary). We assume that the

extension of any property is distinct from ? and from X ⇥K. This rules out properties

that are never satisfied or always satisfied.

Our definition allows distinct properties to have the same extension. This is use-

ful for capturing framing e↵ects in which the description of a property matters. For

example, the properties “80% fat-free” and “20% fat” (in foods) have the same exten-

sion but di↵erent descriptions and may sometimes prompt di↵erent responses. In many

applications, however, it su�ces to identify properties with their extensions.

We distinguish between three kinds of properties:

Option properties: These are properties whose possession by an option-context pair

depends only on the option, not on the context. Examples are “fat-free” or “vanilla-

flavoured” (in yoghurts). Formally, P is an option property if

(x,K) 2 [P ] , (x,K 0) 2 [P ] for all x 2 X and K,K

0 2 K.

Context properties: These are properties whose possession by an option-context pair

depends only on the context, not on the option. Examples are “o↵ering more than one

feasible option”, “o↵ering a Rolls Royce among the feasible options”, and – if contexts

specify the choice environment over and above the feasible set – the time (“it’s evening”),

the temperature (“it’s a hot day”), a default (“such-and-such is the status quo”), or some

other frame. Formally, P is a context property if

(x,K) 2 [P ] , (x0,K) 2 [P ] for all x, x0 2 X and K 2 K.

Relational properties: These are properties whose possesion by an option-context

pair depends on both the option and the context, capturing their relationship. Examples

are “not being the largest piece of cake o↵ered” and “being the most expensive car on

the market”. Formally, P is a relational property if it is neither an option property nor

a context property.

2Note that some pairs (x,K) in X ⇥K are “infeasible” in the sense that x /2 K.
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We call properties that are not option properties context-regarding and properties

that are not context properties option-regarding. Relational properties are context-

regarding and option-regarding.

2.3 An example

To illustrate how properties may determine an agent’s choice, we give an example to

which we will refer repeatedly. It concerns the choice of fruit at a dinner party, as in

Sen’s well-known example of a polite dinner-party guest. Let X contain di↵erent fruits:

apples, bananas, chocolate-covered pears, and possibly others. Each kind of fruit comes

in up to three sizes: big, medium, and small. A choice context is a non-empty feasible

set K ✓ X, consisting of fruits currently in the basket. The set of possible contexts is

K = 2X\{?}. We consider the following properties:

• “big”, “medium”, and “small”: the option properties of being a big, medium, and

small fruit, respectively;

• “chocolate-o↵ering”: the context property of o↵ering at least one chocolate-covered

fruit among the feasible options;

• “polite”: the relational property of not being the last available fruit of its kind,

i.e., not being the last apple in the basket, the last banana, and so on.

We describe four agents whose choice behaviour we will subsequently explain:

Bon-vivant Bonnie always chooses a largest available fruit. For any K, she chooses

C(K) = {x 2 K : x is largest in K},

where “medium” is larger than “small”, and “big” is larger than both other sizes.

Polite Pauline politely avoids choosing the last available fruit of its kind and only

secondarily cares about a fruit’s size. For any K, she chooses

C(K) = {x 2 K : x is largest in K

⇤ if K⇤ 6= ? and largest in K if K⇤ = ?},

where K

⇤ is the set of all fruits in K that are not the last available ones of their kind.
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Chocoholic Coco picks any fruit indi↵erently when no chocolate-covered fruit is avail-

able, but otherwise chooses a largest available fruit, because the smell of chocolate makes

him hungry. For any K, he chooses

C(K) =

(
K if Kcontains no chocolate-covered fruit,

{x 2 K : x is largest in K} otherwise.

Weak-willed William makes the same polite choices as Pauline when no chocolate-

covered fruit is available, and the same “greedy” choices as Bonnie otherwise, as the

smell of chocolate makes him lose his inhibitions. For any K, he chooses

C(K) =

8
><

>:
{x 2 K : x is largest in K

⇤} if

"
Kcontains no chocolate-covered fruit

and K

⇤ 6= ?

#
,

{x 2 K : x is largest in K} otherwise,

where K⇤ is again the set of fruits in K that are not the last available ones of their kind.

2.4 Reason-based models

To explain an agent’s choices, we consider a set P of potentially relevant properties,

called a property system. It contains the properties we have at our disposal for any

rationalization. In our example, P = {big, medium, small, chocolate-o↵ering, polite}.
The specification of P may depend on our explanatory goals. The slimmer P is, the

fewer patterns of choice can be explained. The set P can be partitioned into the sets

P
option

, P
context

, and P
relational

of option properties, context properties, and relational

properties, respectively. For any option x and any context K, we write

• P(x,K) for the set {P 2 P : (x,K) 2 [P ]} of all properties of the pair (x,K),

• P(x) = P(x,K) \ P
option

for the set of option properties of x, and

• P(K) = P(x,K) \ P
context

for the set of context properties of K.

Each of these three sets is assumed to be finite (while X, K, and P need not be finite).

A subset of P is called a property bundle.

We define a reason-based model of an agent, M, as a pair (M,�) consisting of:

• Amotivational salience function M (formally a function from K into 2P), which as-

signs to each contextK 2 K a setM(K) ofmotivationally salient properties in con-

text K. We require that any contexts with the same context properties induce the
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same motivationally salient properties, i.e., if P(K)=P(K 0) then M(K)=M(K 0).

(So di↵erences in motivation must stem from di↵erences in context properties.)

• A fundamental preference relation � over property bundles (formally a binary

relation on 2P , on which we initially impose no restrictions). We write > and ⌘
for the strict and indi↵erence relations induced by �.

Informally, M specifies which properties the agent cares about in each context, and

� specifies how he cares about these properties, by ranking di↵erent property bundles

relative to one another.

The modelM represents (i) how the agent conceptualizes options in each context, (ii)

what his resulting preferences over the options are, and (iii) what choices he is disposed

to make. Formally:

• Any option x is conceptualized in context K as the set of motivationally salient

properties of (x,K), denoted xK = P(x,K) \M(K).

• The agent’s preference relation in contextK is the binary relation %K onX defined

as follows:

x %K y , xK � yK for all x, y 2 X.

We write �K and ⇠K for the strict and indi↵erence relations induced by %K .

• The agent’s choice dispositions are given by the function C

M : K ! 2X which

assigns to each context the set of most preferred feasible options in that context:

C

M(K) = {x 2 K : x %K y for all y 2 K}.

This defines an improper choice function (“improper” because C

M(K) may be

empty for some K if � is not well-behaved).

A choice function C : K ! 2X is reason-based rationalizable (relative to P) if there

exists a reason-based model M (relative to P) such that C = C

M. We then call M a

rationalization of C.

The fact that reason-based rationalizations depend on the property system P does

not render them ad hoc. To the contrary, by introducing properties we can express

hypotheses about how an agent conceptualizes and individuates the options. Classical

choice theory treats options as exogenously given. In e↵ect, the classical specification of

the options also encodes a hypothesis about how options are individuated, though less

transparently so. Thus our framework allows us to make explicit an issue that is largely

neglected in classical choice theory.
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2.5 Revisiting the example

The four choice functions in our example are all reason-based rationalizable:

Bon-vivant Bonnie’s choice function can be rationalized by defining the set of

motivationally salient properties in any context K as

M(K) = {big, medium, small} (so M is a constant function),

and defining the fundamental preference relation� such that the three singleton property

bundles {big}, {medium}, and {small} stand in the linear order satisfying

{big} > {medium} > {small}.3

For instance, in a context K that o↵ers only a small apple a and a big banana b, Bonnie

chooses the banana b. She conceptualizes the two fruits as

aK = P(a,K) \M(K) = {small},

bK = P(b,K) \M(K) = {big},

and bK %K aK since {big} > {small}.

Polite Pauline’s choice function can be rationalized by defining the set of motiva-

tionally salient properties in any context K as

M(K) = {big, medium, small, polite} (so, again, M is a constant function),

and defining the fundamental preference relation � such that the property bundles

{big, polite}, {medium, polite}, {small, polite}, {big}, {medium} and {small} stand in

the linear order satisfying

{big, polite} > {medium, polite} > {small, polite} > {big} > {medium} > {small}.
3Formally, � = {({big},{big}), ({big},{medium}), ({big},{small}), ({medium},{medium}),

({medium},{small}), ({small},{small})}.
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For instance, if only two small apples a and a

0 and one big banana b are available in

context K, Pauline chooses an apple. She conceptualizes the three fruits as

aK = P(a,K) \M(K) = {small, polite},

a

0
K = P(a0,K) \M(K) = {small, polite},

bK = P(b,K) \M(K) = {big},

where aK ⇠K a

0
K %K bK since {small, polite} ⌘ {small, polite} > {big}.

Chocoholic Coco’s choice function can be rationalized by defining the set of mo-

tivationally salient properties in any context K as

M(K) =

8
>>>><

>>>>:

? if no chocolate-covered fruit is available in K,

i.e., chocolate-o↵ering /2 P(K),

{big, medium, if a chocolate-covered fruit is available in K,

small} i.e., chocolate-o↵ering 2 P(K),

and defining the fundamental preference relation � as in Bonnie’s case, with the only

additional stipulation that ? ⌘ ?. For instance, in a context without a tempting

chocolate-covered fruit, he picks any fruit indi↵erently, because he conceptualizes every

fruit as the same empty property bundle ?, where ? ⌘ ?.

Weak-willed William’s choice function can be rationalized by defining the set of

motivationally salient properties in any context K as

M(K) =

8
>>>><

>>>>:

{big, medium, if no chocolate-covered fruit is available in K,

small, polite} i.e., chocolate-o↵ering /2 P(K),

{big, medium, if a chocolate-covered fruit is available in K,

small} i.e., chocolate-o↵ering 2 P(K),

and defining the fundamental preference relation � as in Pauline’s case. So, if context

K o↵ers only two small apples a and a

0 and one big banana b, then, undisturbed by any

smell of chocolate, he conceptualizes these fruits as Pauline does and politely chooses a

small apple. If a small chocolate-covered pear is added to the basket, he forgets about

politeness and conceptualizes the fruits as Bonnie does, choosing the big banana.
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2.6 Two kinds of context-dependent motivation

In our example, Polite Pauline and Chocoholic Coco are a↵ected by the context in

opposite ways. Pauline cares about the context, since the relational property “polite” is

motivationally salient for her. Coco’s set of motivationally salient properties varies with

the context: di↵erent contexts make him care about di↵erent properties. We say that

an agent’s motivation, according to model M = (M,�), is

• context-regarding if the range of the motivational salience function M includes not

only sets of option properties (i.e., M(K) contains at least one context-regarding

property for some K 2 K), and context-unregarding otherwise;

• context-variant if M is a non-constant function (i.e., M(K) is not the same for all

K 2 K), and context-invariant otherwise.

How do the two kinds of context-dependence a↵ect the agent’s conceptualization of the

options in each context? Table 1 shows how the agent conceptualizes any option x in

context K, depending on which of the two kinds of context-dependence are present.

Context-variant motivation?
Yes No

Context-regarding
motivation?

Yes
xK = P(x,K) \M(K)
(e.g., William)

xK = P(x,K) \M

(e.g., Pauline)

No
xK = P(x) \M(K)
(e.g., Coco)

xK = P(x) \M

(e.g., Bonnie)

Table 1: The agent’s conceptualization of option x in context K

Note that, with both kinds of context-dependence permitted, option x is concep-

tualized in context K as xK = P(x,K) \ M(K), which may depend on the context

in two places: (i) in the set of properties of the option-context pair (x,K) and (ii) in

the set of motivationally salient properties in context K. If the agent’s motivation is

context-unregarding, P(x,K) can be replaced by P(x). Here, M(K) contains only op-

tion properties, so that P(x,K) \M(K) = P(x) \M(K). If the agent’s motivation is

context-invariant, M(K) can be replaced by a single setM of motivationally salient prop-

erties. Here, M is a constant function, so that the first component of the reason-based

model (M,�) can be redefined as a fixed set M . In the case of no context-dependence,

the agent’s conceptualization of option x in any context K simplifies to xK = P(x)\M .

From a classical perspective, agents with context-invariant motivation seem more

rational than agents whose motivation varies as a result of subtle environmental fea-

tures like the smell of chocolate. Bonnie exemplifies the case of classical rationality:
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context-invariant motivation and context-unregarding conceptualization of the options.

Pauline displays sophisticated rational behaviour: she considers not only properties of

the options, but also properties concerning the relationship between options and con-

text, such as politeness. William tries to display the same sophisticated behaviour, but

is susceptible to variations in motivation across di↵erent contexts. Coco, finally, focuses

only on option properties, but, like William, lacks a stable motivation.

2.7 Some illustrative non-classical choice behaviours

To illustrate the generality of this framework, we briefly show how it can represent

framing e↵ects, choices by heuristics or checklists, and non-consequentialist choices.

Framing e↵ects: Framing e↵ects can be understood as special kinds of choice rever-

sals. A choice reversal occurs when there are contexts K and K

0 and options x and

y such that x is chosen over y in K and y is chosen over x in K

0, where at least one

choice is strict. (Option x is chosen weakly over option y in context K if x, y 2 K and

x 2 C(K); and strictly if, in addition, y /2 C(K).) Choice reversals can have two sources,

according to a reason-based rationalization of C. The source is context-variance if K

and K

0 induce di↵erent sets of motivationally salient properties M(K) 6= M(K 0) both of

which contain only option properties. The source is context-regardingness if K and K

0

induce the same set M(K) = M(K 0), but this set contains some relational or context

properties that distinguish the choice between x and y in the two contexts. (There are

also mixed cases.) In either case, the agent prefers x to y as conceptualized in context K,

and y to x as conceptualized in context K

0, as illustrated in Figure 1. We may define a

Figure 1: A choice reversal

framing e↵ect as a choice reversal whose source is context-variance, and define the frame

in each context K as the set of context properties P(K) “responsible” for M(K). (In
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Section 5, we introduce a notion of causally relevant context properties that could be

used to refine this definition.) Whether a choice reversal counts as a framing e↵ect then

depends on the reason-based model by which we rationalize C. Note that, if K and K

0

o↵er the same feasible options, framing e↵ects can occur only if contexts are defined non-

extensionally, as consisting of both a feasible set and an environmental parameter (as in

Salant and Rubinstein 2008); otherwise M(K) and M(K 0) would have to coincide. If K

and K

0 o↵er di↵erent feasible options, framing e↵ects can occur even when contexts are

defined extensionally, provided they are distinguished by some context properties (such

as “o↵ering luxury goods”) that lead to the di↵erence between M(K) and M(K 0).

Checklists or “take-the-best” heuristics: Here, the agent considers a list of criteria

by which the options can be distinguished and places the criteria in some order of

importance. For any set of feasible options, the agent first compares the options in terms

of the first criterion; if there are ties, he moves on to the second criterion; if there are still

ties, he moves on to the third; and so on. Gigerenzer et al. (e.g., 2000) describe empirical

examples of such choice procedures, and Mandler, Manzini, and Mariotti (e.g., 2012) o↵er

a formal analysis (see also Liu 2010). In our framework, we can rationalize such choice

behaviour by a reason-based model (M,�) with a lexicographic fundamental preference

relation �, where property bundles are ranked on the basis of some order of importance

over properties. To illustrate, let P

1

, P

2

, P

3

, ... denote the first, second, third, ...,

properties in this order (assuming a finite P). We can then define the fundamental

preference relation � as follows: for any property bundles S

1

and S

2

, let S

1

� S

2

if

and only if either S

1

= S

2

or there is some n such that (i) Pn 2 S

1

, (ii) Pn /2 S

2

, and

(iii) S

1

\ {P
1

, ..., Pn�1

} = S

2

\ {P
1

, ..., Pn�1

}. A lexicographic fundamental preference

relation can be combined with either context-variant or context-invariant motivation,

and with either context-regarding or context-unregarding motivation. This opens up

greater generality than usually acknowledged.

Non-consequentialism: A non-consequentialist agent, in the most general sense,

makes a choice in a given context not just on the basis of the chosen option itself (the

“outcome”), but also on the basis of what the choice context is or how each option relates

to that context (the “act of choosing the option”). Any context-regarding motivation

can thus be viewed as a form of non-consequentialism. More narrowly, we may consider

an agent who cares about whether each option is “permissible” or “norm-conforming” in

a given context. The relevant criterion may be, for example, politeness, legality, or moral

permissibility in the context. Let us introduce a relational property P such that any

13



option-context pair (x,K) satisfies P if and only if the choice of x is deemed permissible

or norm-conforming in context K. If P is in everyM(K) and the fundamental preference

relation ranks property bundles that include P above bundles that do not, the agent will

always choose a permissible or norm-conforming option, unless no such option is feasible.

Note that this could not generally be modelled without context-regarding motivation.

For earlier discussions of non-consequentialist and “norm-conditional” choices, see, e.g.,

Suzumura and Xu (2001) and Bossert and Suzumura (2009).

3 Choice-behavioural implications

When does a choice function C : K ! 2X have a reason-based rationalization? We first

give necessary and su�cient conditions for reason-based rationalizability without any

restriction, permitting both context-variant and context-regarding motivation. We then

characterize the opposite case, without any context-dependence. Finally, we address the

two intermediate cases, where rationalizability is restricted to either context-invariant

or context-unregarding motivation but not both. The reader may skip this section if he

or she is interested primarily in constructing reason-based models from observed choices

(Section 4) or in predicting choices in novel contexts (Section 5).

3.1 Reason-based rationalizability without any restriction

We begin by stating two axioms which, together, imply that choice is based on properties.

The first is an “intra-context” axiom. It states that the agent’s choice in any context

does not distinguish between options that have the same properties in that context:

Axiom 1 For all contexts K 2 K and all options x, y 2 K, if P(x,K) = P(y,K), then

x 2 C(K) , y 2 C(K).

The second axiom is an “inter-context” axiom. It states that if two contexts o↵er

the same feasible property bundles, the agent chooses options instantiating the same

property bundles in those contexts:

Axiom 2 For all contexts K,K

0 2 K, if {P(x,K) : x 2 K} = {P(x,K 0) : x 2 K

0}, then
{P(x,K) : x 2 C(K)} = {P(x,K 0) : x 2 C(K 0)}.

This is weaker than requiring that the same options be chosen in those contexts.

The axiom further requires no relationship between the choices in contexts K and K

0

14



with di↵erent context properties (i.e., P(K) 6= P(K 0)), since these automatically o↵er

di↵erent feasible property bundles.

Axioms 1 and 2 do not by themselves imply any maximizing behaviour.4 This gap

is filled by our third axiom, a variant of Richter’s (1971) axiom of “revelation coher-

ence” (which, in turn, is a weakening of the weak axiom of revealed preference; see,

e.g., Samuelson 1948). Unlike Richter, we formulate our axiom at the level of property

bundles, not options. We adapt some revealed-preference terminology. For any property

bundles S and S

0:

• S is feasible in context K if S = P(x,K) for some feasible option x 2 K;

• S is chosen in context K if S = P(x,K) for some option x 2 C(K);

• S is revealed weakly preferred to S

0 (formally S %C
S

0) if, in some context, S is

chosen while S0 is feasible; S is revealed strictly preferred to S

0 if, in some context,

S is chosen while S

0 is feasible and not chosen.5

Axiom 3 If a property bundle S ✓ P is feasible in some context K 2 K and is revealed

weakly preferred to every feasible property bundle in context K, then S is chosen in

context K.

Like Axiom 2, Axiom 3 is less restrictive than one might think. For the choices in

context K to constrain those in context K 0, the two contexts must have the same context

properties, i.e., P(K) = P(K 0). Otherwise there will be no property bundles that are

feasible in both K and K

0. In fact:

Lemma 1 Axiom 3 strengthens Axiom 2.

Theorem 1 A choice function C is reason-based rationalizable if and only if it satisfies

Axioms 1 and 3 (and by implication 2).

6

4They are jointly equivalent to choice being rationalizable by a generalized reason-based model, defined
by (i) a motivational salience function and (ii) a choice function defined on property bundles, not on
options (which is more general than a fundamental preference relation � over property bundles).

5One must not interpret the revealed-preference relation %C as representing the agent’s fundamental
preferences. When the agent revealed-prefers bundle S to bundle S

0 by choosing S over S

0 in some
context, only some subsets of S and S

0 are usually motivationally salient, and the fundamental preference
is held between these, not between S and S

0. In Section 4, we introduce a notion of revealed fundamental

preference. The revealed-preference relation %C between property bundles induces a context-variant
revealed-preference relation %C

K between options: option x is revealed weakly preferred to option y in
context K (x %C

K y) if and only if P(x,K) %C P(y,K). In classical choice theory, without the resources
of properties, it is hard to define an interesting notion of context-variant revealed preference. Classical
revealed preferences are context-invariant and fail to rationalize many observable choice behaviours.

6Axioms 1 and 3 are jointly equivalent to the requirement that, for every K 2 K and every x 2 K, if
P(x,K) is revealed weakly preferred to P(y,K) for every y 2 K, then x 2 C(K).
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This result, like all subsequent results, holds for each property system P. We can

thus test for rationalizability in di↵erent property systems, e.g., by asking: Is the agent’s

choice between cars rationalizable in a system of colour-related properties? In a system

of prestige-related properties? In a system of prestige- and price-related properties?7

Reason-based rationalizations need not be unique. For a given choice function C,

there may exist more than one reason-based model M such that C = C

M
. Di↵erent

rationalizations are far from equivalent, as discussed in detail later. They may lead to

di↵erent predictions for novel choice contexts outside the set K of “observed” contexts, as

shown in Section 5. We now reduce and later (in Section 4) eliminate the non-uniqueness

of M, by imposing additional restrictions on the admissible reason-based models.

3.2 Reason-based rationalizability without any context-dependence

While we have so far allowed rationalizations to display both kinds of context-dependence,

we now consider the opposite, limiting case with no context-dependence at all. Con-

sider the following variants of Axioms 1 and 2, obtained by referring only to context-

unregarding properties:

Axiom 1* For all contexts K 2 K and all options x, y 2 K, if P(x) = P(y), then

x 2 C(K) , y 2 C(K).

Axiom 2* For all contexts K,K

0 2 K, if {P(x) : x 2 K} = {P(x) : x 2 K

0}, then
{P(x) : x 2 C(K)} = {P(x) : x 2 C(K 0)}.

In our example, Bon-vivant Bonnie satisfies both axioms; Chocoholic Coco satisfies

Axiom 1* but violates Axiom 2* (to see this, suppose K contains a chocolate-covered

pear whileK 0 does not); and Polite Pauline and Weak-willed William violate even Axiom

1* (they care about a relational property).

We also introduce an analogue of Axiom 3, namely Richter’s (1971) original ax-

iom of revelation coherence, extended to our framework where contexts (if defined non-

extensionally) can be more general than feasible sets.

Axiom 3* For all contexts K 2 K and any feasible option x 2 K, if, for every option

y 2 K, there is a context K 0 2 K in which x is chosen weakly over y, then x 2 C(K).

7To make this explicit, we could restate Theorem 1 (and similarly other results) as follows: For every

property system P, a choice function C is reason-based rationalizable in P if and only if it satisfies

Axioms 1 and 3 (and thereby 2).
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To state our characterization of reason-based rationalizability without any context-

dependence, call the set of contexts K closed under cloning if K is closed under trans-

forming any context by adding “clones” of feasible options; formally, whenever a context

K 2 K contains an option x such that P(x) = P(x0) for another option x

0 2 X (a clone

of x), there is a context K 0 2 K such that K 0 = K [ {x0}. This is a weak condition.8

Theorem 2 Given a set of contexts K that is closed under cloning, a choice function C

is reason-based rationalizable with context-invariant and context-unregarding motivation

if and only if it satisfies Axioms 1*, 2*, and 3*.

In fact, Axiom 3* alone is equivalent to rationalizability of choice by a binary rela-

tion over options, as is well-known in the classical case where contexts are feasible sets

(Richter 1971 and Bossert and Suzumura 2010).

Remark 1 A choice function C satisfies Axiom 3* if and only if it is rationalizable by

a preference relation, i.e., there is a binary relation % on X such that for all contexts

K 2 K,

C(K) = {x 2 K : x % y for all y 2 K}.

This, however, is not a reason-based rationalization, and to obtain such a rational-

ization, our additional axioms, 1* and 2*, are needed, as Theorem 2 shows.

3.3 Reason-based rationalizability with either context-unregarding or

context-invariant motivation

We finally turn to reason-based rationalizability with one but not both kinds of context-

dependence. We begin with the case in which the agent’s motivation can be context-

variant, but not context-regarding. The axioms characterizing this case lie logically

between (i) Axioms 1*, 2*, and 3*, which characterize reason-based rationalizability

without any context-dependence (Theorem 2), and (ii) Axioms 1, 2, and 3, which char-

acterize reason-based rationalizability simpliciter (Theorem 1). Specifically, they are

Axioms 1* and 3 and a new axiom that weakens Axiom 2* in the presence of 1*. We

omit the details here, since the new axiom has a complex form.

8It holds vacuously if no two distinct options in X have the same properties, i.e., for any x, x

0 2 X,
x 6= x

0 implies P(x) 6= P(x0). The condition is also natural because if an option x

0 is property-wise
indistinguishable from a currently feasible option x, one would expect that x

0 can become feasible too.
Presumably, if x, but not x

0, can be feasible (together with some other options), this di↵erence stems
from x and x

0 having di↵erent properties. We could further weaken or modify the condition, e.g., by
replacing “K0 = K [ {x0}” with “K0 = (K\{x : P(x) = P(x0)}) [ {x0}”, so that x

0 is not added but
substituted for the existing feasible options that are property-wise indistinguishable from it.
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Now consider the case of context-invariant but possibly context-regarding motiva-

tion, which subsumes sophisticated rational behaviour, as illustrated by Polite Pauline.

Surprisingly, the conditions characterizing this case are the same as those characterizing

reason-based rationalizability without any restrictions. Thus, any choice behaviour that

is reason-based rationalizable also has a rationalization with context-invariant motiva-

tion. Although this suggests that the restriction to context-invariance has no choice-

behaviourial implications, we show in Section 5 that this impression is misleading. The

restriction to context-invariance can a↵ect the prediction of choices in novel contexts.

Before stating the present result formally, let us give an illustration. As we have

seen, Chocoholic Coco can be rationalized by a reason-based model with context-variant

motivation. This captures our informal description of Coco’s behaviour. However, a

less intuitive rationalization is also possible. It ascribes context-invariant motivation

to Coco, at the expense of making this motivation context-regarding. This alternative

model (M,�) is the following:

• M assigns to each context the same set of motivationally salient properties M =

{big, medium, small, chocolate-o↵ering}, instead of letting motivationally salient

properties vary with the presence or absence of chocolate;

• � places any property bundles that do not contain the property “chocolate-o↵ering”

in the same indi↵erence class (e.g., {big} ⌘ {small}), and ranks property bun-

dles by size when they contain one of the size properties together with the prop-

erty “chocolate-o↵ering” (e.g., {big, chocolate-o↵ering} > {medium, chocolate-

o↵ering} > {small, chocolate-o↵ering}).

Generally, two reason-based models M and M0 are behaviourally equivalent if they

induce the same (possibly improper) choice function, i.e., if CM = C

M0
.

Proposition 1 Every reason-based model is behaviourally equivalent to one with context-

invariant motivation.

Corollary 1 A choice function C has a reason-based rationalization with context-

invariant motivation if and only if it has a reason-based rationalization simpliciter.

The possibility of re-modelling any reason-based rationalization in a context-invariant

way disappears once we impose further requirements on M, such as the requirement that

motivation be context-unregarding or that it be “revealed”, as discussed in Section 4.9

As a consequence of Proposition 1, Theorem 1 can be re-stated as a characterization of

context-invariant reason-based choice:
9Even when this re-modelling is possible, it may sacrifice parsimony and psychological adequacy, as
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Theorem 3 A choice function C is reason-based rationalizable with context-invariant

motivation if and only if it satisfies Axioms 1 and 3 (and by implication 2).

3.4 Criteria for selecting a rationalization in cases of non-uniqueness

How can we select a reason-based model (M,�) in cases of non-uniqueness?10 This

question matters because di↵erent models attribute to the agent di↵erent cognitive pro-

cesses, which may di↵er in psychological adequacy and lead to di↵erent predictions for

the agent’s future choices, as discussed in Section 5. There are at least three kinds of

criteria for selecting a model.

Revelation criteria: These require that, as far as possible:

(i) the motivational salience function M deem only those properties motivationally

salient that make an observable di↵erence to the agent’s choice behaviour, and

(ii) the fundamental preference relation � over property bundles be systematically de-

rived from the agent’s choice behaviour.

The goal is to minimize behaviourally ungrounded ascriptions of motivation and funda-

mental preference. This is the topic of Section 4.

Non-choice data: Verbal reports or neurophysiological data, such as responses to

property-related stimuli, may help us test hypotheses about

(i) which properties are motivationally salient for the agent in context K and thus

belong to M(K),

(ii) which context properties causally a↵ect motivational salience, so that M(K) may

vary as contexts K vary in those properties, and

(iii) which property bundles the agent fundamentally prefers to which others.

evident from the proof of Proposition 1. Here, every property that was motivationally salient in some

context in the original, context-variant model (M,�) and every context property (at least every context
property on which M(K) may depend) becomes motivationally salient in the new, context-invariant
model (M⇤

,�⇤), with M

⇤ constant. Formally, ([K2KM(K)) [ P
context

✓ M

⇤.
10Non-uniqueness in the rationalization of choice behaviour is familiar from classical choice theory,

where the same choice function can often be rationalized by more than one binary relation over the
options. The relation becomes unique if the domain of the choice function (i.e., the set of contexts in
which choice is observed) is “rich”, i.e., contains all sets of one or two options.
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One might hypothesize that people have better conscious access to how they conceptu-

alize the options in a given context K and therefore to the properties in M(K) than

to the context properties that a↵ect what M(K) is (i.e., those properties which, in an

empirical study, might be significant explanatory variables for M). Some changes in

M(K) might be due to subconscious influences, as in framing or nudging e↵ects. If so,

verbal reports may be more relevant to questions (i) and (iii) than to question (ii).

Parsimony criteria: We may try to select a parsimonious model (M,�), where

(i) the sets M(K) of motivationally salient properties generated by M are (a) as small

as possible and (b) as unchanging as possible across di↵erent K, and

(ii) the relation � is as sparse as possible (e.g., defined over the fewest possible property

bundles).

There may be a trade-o↵ between di↵erent dimensions of parsimony. If the sets M(K)

contain only few properties, they may not be stable across di↵erentK, and vice versa. As

the proof of Proposition 1 shows, we can always achieve context-invariance by definingM

constantly as the entire set P and the fundamental preference relation � as the revealed

preference relation %C over property bundles. This makes the sets M(K) unchanging

but very large, and hence perhaps psychologically implausible. Conversely, making each

M(K) small might require variation across contexts.

4 The revealed reason-based model

A familiar concept from classical choice theory is the revealed preference relation over

options, which can be inferred from the agent’s choice behaviour. Analogously, we now

introduce the revealed reason-based model, which can be inferred from the observed

choice function. It is constructed by

• counting a property as motivationally salient in a given context if and only if it

makes a behavioural di↵erence (in a sense defined below), and

• counting a property bundle S as fundamentally preferred to another bundle T if

and only if the agent chooses an option x over another option y, where x and y

are revealed to be conceptualized as S and T (in a sense defined below).

We first define the revealed reason-based model and then characterize the class of choice

functions that are rationalizable by such a model.
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4.1 Revealed motivationally salient properties

Our strategy for determining whether a property P is motivationally salient for an agent

in context K is to ask whether its presence or absence in an option makes a di↵erence

to his choice in contexts “like” K, i.e., contexts K

0 with the same context properties

as K (where P(K 0)=P(K)). Choices in contexts with di↵erent context properties are

irrelevant, since they could stem from di↵erent motivationally salient properties. The

choice of moisturizer over sunscreen in a cloudy context is no evidence for whether

“protecting against UV radiation” is motivationally salient in a context with sunshine.

To formalize these ideas, we begin with some preliminary terminology. Two property

bundles agree on a property P 2 P if both or neither contain P ; otherwise, they di↵er

in P . A property bundle S is weakly between two property bundles T and T

0 if S agrees

with each of T and T

0 on every property on which they agree. If, in addition, S is

distinct from each of T and T

0, then S is strictly between T and T

0. For instance, {P,Q}
is strictly between {P} and {Q}, as is ?. Two property bundles are revealed comparable

if one of them is chosen in some context K while the other is feasible. Two such bundles

di↵er minimally if there is no property bundle that is strictly between them and revealed

comparable to at least one of them.

One might think that a property P is motivationally salient in context K if and only

if there is a context K 0 with the same context properties as K in which the agent reveals

a strict preference between two property bundles that di↵er in P . But this criterion is

inadequate, because the two bundles may also di↵er in other properties. The agent may

choose the larger of two T-shirts, not because it is larger, but because it is blue. So,

before we can infer that P is motivationally salient, we must verify that the two property

bundles di↵er minimally. This suggests the following criterion.

Criterion 1 Property P is revealed motivationally salient in context K if there exist

property bundles S and S

0
such that

(rev1) S and S

0
di↵er in P ,

(rev2) S is revealed strictly preferred to S

0
or vice versa, where the contexts in which

S and S

0
are feasible have the same context properties as K (i.e., S \ P

context

=

S

0 \ P
context

= P(K)), and

(rev3) S and S

0
di↵er minimally.

However, this criterion excludes some natural cases. Suppose, again, the options are

T-shirts, and P is the property of largeness. If every context o↵ers either only large T-

shirts or only small ones, P cannot satisfy Criterion 1, since no revealed comparable sets
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S and S

0 ever satisfy (rev2). But suppose that whenever only large T-shirts are available

the agent chooses the darkest, and whenever only small T-shirts are available he chooses

the lightest. If there are no context properties in P by which we could distinguish those

contexts further and to which we could attribute the behavioural di↵erence, it is natural

to conclude that property P is motivationally salient. This is because the agent’s choice

between two property bundles containing the property “large” (a large dark T-shirt and

a large light one) is reversed when we remove that property from them (so that we are

now comparing a small dark T-shirt and a small light one). These considerations suggest

the following more general criterion, by which we define revealed motivational salience.

Criterion 2 Property P is revealed motivationally salient in context K if there exist

two pairs of property bundles (S, T ) and (S0
, T

0) such that

(REV1) the two pairs di↵er in P , i.e., S and S

0
di↵er in P , or T and T

0
di↵er in P ,

(REV2) S is revealed preferred to T while T

0
is revealed preferred to S

0
or vice versa

(with at least one preference strict), where the contexts in which S and T , or S

0

and T

0
, are feasible have the same context properties as K (i.e., S \ P

context

=

S

0 \ P
context

= T \ P
context

= T

0 \ P
context

= P(K)), and

(REV3) the pair (S, T ) di↵ers minimally from the pair (S0
, T

0), i.e., there is no other

pair (S00
, T

00) (with S

00
revealed comparable to T

00
) such that S

00
is weakly between

S and S

0
and T

00
is weakly between T and T

0
.

In our example, S and T could be the property bundles instantiated by the large dark

T-shirt and the large light T-shirt, and S

0 and T

0 the bundles instantiated by the small

dark T-shirt and the small light T-shirt, respectively.

Proposition 2 Criterion 2 generalizes Criterion 1, i.e., for any context K 2 K, any

property P 2 P that satisfies (rev1)-(rev3) (for some S, S

0 ✓ P) also satisfies (REV1)-

(REV3) (for some S, S

0
, T, T

0 ✓ P).

Our definition of revealed motivational salience has the following natural implication:

Lemma 2 (informal statement) The revealed preference between any two revealed com-

parable property bundles S and T (i.e., whether S %C
T ) depends only on

• the context properties within S and T (these determine the contexts K in which S

and T are feasible), and

• the properties within S and T that are revealed motivationally salient in such con-

texts K.
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4.2 The revealed reason-based model

We can now complete our definition of the revealed reason-based model. The revealed

motivational salience function is the function M

C (from K into 2P) satisfying:

for each context K, MC(K) = {P 2 P : P is revealed motivationally salient in K}.

To illustrate, the revealed motivational salience functions of the four agents in our exam-

ple above – Bonnie, Pauline, Coco, and William – are precisely the motivational salience

functions that we used to rationalize their choices.11

Given the function M

C , any option x is revealed conceptualized in context K as

x

C
K = P(x,K) \M

C(K).

We define a property bundle S to be revealed weakly fundamentally preferred to another

property bundle T , denoted S �C
T , if, in some context K 2 K, there are feasible

options x and y, revealed conceptualized as xCK = S and y

C
K = T , such that x 2 C(K).

The model (MC
,�C) is called the revealed reason-based model. It can be checked

that the reason-based models that we used to rationalize the four agents in our example

are indeed the revealed models. By considering the revealed model for an agent, we

can behaviourally determine which, if any, of the two kinds of context-dependence are

present in the agent’s motivation. In our example, Coco and William have revealed

context-variant motivation, while Bonnie and Pauline do not; and Pauline and William

have revealed context-regarding motivation, while Bonnie and Coco do not.

4.3 Rationalizability by the revealed model

Is every reason-based rationalizable choice function also rationalizable by the revealed

model? Recall that reason-based rationalizability simpliciter requires Axioms 1 and 3

(which, in turn, imply Axiom 2). For rationalizability by the revealed model, we must

strengthen these axioms by adding the following variant of Axiom 2.

11For instance, for Bonnie, to show that big2MC(K) for any K without chocolate-covered pears,
check (rev1)-(rev3) for S={big} and S

0={medium}; to show that big2MC(K) for any K with chocolate-
covered pears, check (rev1)-(rev3) for S={big,chocolate-o↵ering} and S

0={medium,chocolate-o↵ering}.
For Pauline, to show that polite2MC(K) for any K without chocolate-covered pears, check (rev1)-(rev3)
for S={big,polite} and S

0={big}; to show this for any K with chocolate-covered pears, check (rev1)-
(rev3) for S={big,polite,chocolate-o↵ering} and S

0={big,chocolate-o↵ering}. Strictly speaking, the sets
M

C(K) take this form if X is su�ciently rich, i.e., contains fruits instantiating relevant property bundles.
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Axiom 2** For all contexts K,K

0 2 K, if {xCK : x 2 K} = {xCK0 : x 2 K

0}, then
{xCK : x 2 C(K)} = {xCK0 : x 2 C(K 0)}.

Our theorem requires a technical condition. Call the set K of contexts rich if, when-

ever two property bundles S and T are simultaneously feasible in some context in K,

then K contains a context in which only S and T are feasible.

Theorem 4 Given a rich set of contexts K, a choice function C is rationalizable by the

revealed reason-based model (MC
,�C) if and only if it satisfies Axioms 1, 2**, and 3.

12

Surprisingly, Theorem 4 does not explicitly require the following variant of Axiom 1.

Axiom 1** For all contexts K 2 K and all options x, y 2 K, if x

C
K = y

C
K , then

x 2 C(K) , y 2 C(K).

Lemma 3 Axioms 1 and 1** are equivalent.

To see that rationalizability by the revealed model is more demanding than reason-

based rationalizability simpliciter, we give an example.13 Suppose the options are elec-

toral candidates, and the contexts are elections. Let K = {K
1

,K

2

}, and consider an

agent who in context K

1

votes for any candidate with the (option) property “expe-

rienced” (say, over 20 years of political experience) and in context K

2

votes for any

candidate with the (option) property “young” (say, aged below 50), where candidates of

both kinds are available in both contexts. This choice behaviour can be rationalized by

a reason-based model (M,�) in which M(K
1

) = {experienced} and M(K
2

) = {young},
and � satisfies

{experienced} > ? and {young} > ?.

What is the revealed model? Suppose there is a perfect anti-correlation between the

properties “experienced” and “young”: a candidate in X is experienced if and only if he

or she is not young. We then have no choice-behavioural basis for determining whether

12We may further ask whether a given choice function C is rationalizable by a model (MC
,�) in

which M

C is the revealed motivational salience function but � is unrestricted. In the Appendix, we
prove that, given a rich K, a choice function C is rationalizable by some such model if and only if it
satisfies Axioms 1, 2**, and 3. Further, this model (MC

,�) will be essentially identical to the revealed
model (MC

,�C). Two models (M,�) and (M 0
,�0) are essentially identical if (i) M = M

0, and (ii)
the fundamental preference relations � and �0 coincide wherever they are choice-behaviourally relevant
(i.e., S � T , S �0

T for all property bundles S and T such that there are options x and y in some
context K that are conceptualized as P(x,K) \M(K) = S and P(y,K) \M(K) = T , respectively).

13The point that choice may be rationalizable, but not by the revealed model, arises also in classical
choice theory: if we seek to rationalize choice by a complete and transitive preference relation, there may
exist such a rationalization although the revealed preference relation is neither complete nor transitive.
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“experienced” or “young” or both are motivationally salient for our voter in any context:

he might have voted for an experienced candidate in context K

1

, not because he cares

about (and likes) experience in politicians, but because he cares about (and dislikes)

youth. Formally, both properties are revealed motivationally salient in contexts K
1

and

K

2

. We have M

C(K
1

) = M

C(K
2

) = {experienced, young}.14

It is impossible to rationalize the present choice behaviour by the revealed reason-

based model (MC
,�C) or any other model of the form (MC

,�). According to M

C ,

our voter always conceptualizes every candidate either as {experienced} or as {young},
where his choice in context K

1

can only be rationalized if {experienced} > {young},
while his choice in context K

2

can only be rationalized if {young} > {experienced}. It

is easy to check that the voter’s choice behaviour violates Axiom 2**.15

5 Predicting choices in novel contexts

Standard choice theory is largely silent on how to predict choices in novel, previously

unobserved contexts. In almost every empirical science, we make predictions about fu-

ture (or otherwise unobserved) events, based on past observations. Astronomers predict

future solar eclipses or movements of comets based on past trajectories of the relevant

celestial bodies; epidemiologists predict future epidemics based on past epidemiological

data; and econometricians use past data of the economy to predict its future. Choice

theory is an exception in that predictions and observations are usually taken to be the

same thing: the choice function is the observed and predicted object at once.

Genuine predictions would have to be about choice contexts outside the observed

domain K, perhaps with feasible options outside the set X. If we rationalize choices

simply by a preference relation on X, we have no systematic way of extending this

relation to new options. So, we can make only two rather trivial kinds of predictions:

• Any choice function on a set K of contexts can predict choices when contexts in

K recur in the future. But here the preference relation does no work, since even a

not-yet-rationalized choice function allows us to make the same predictions.

• A preference relation on X might be used to predict choices in contexts outside

K that involve only “old” options from X. In such “slightly novel” contexts, we

14We assume that P contains only the option properties “experienced” and “young” and some context
properties to which the change in motivation from K

1

to K

2

can be attributed.
15Although {xC

K1
:x2K

1

}={xC
K2

:x2K
2

}={{experienced},{young}}, we have {xC
K1

:x2C(K
1

)} 6=
{xC

K2
:x2C(K

2

)}, since {xC
K1

:x2C(K
1

)}={{experienced}} and {xC
K2

:x2C(K
2

)}={{young}}.
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would predict that the agent will maximize the same preference relation over the

feasible options.

To introduce a reason-based approach to predictions in genuinely new contexts, we

present a formal framework and explore predictions of more and less conservative kinds.

5.1 A framework for predictions

We take the options in X, the contexts in K, and the choice function C to refer to

previously observed choices, and introduce some further primitives:

• An extended set X+ ◆ X of options, containing additional options the agent might

encounter.

• An extended set K+ ◆ K of contexts, containing additional choice contexts the

agent might encounter. Every “new” context K (in K+\K), like every “old” one

(in K), induces a non-empty set [K] of feasible options. Again, we write K for [K]

when there is no ambiguity. While in “old” contexts only “old” options (in X) are

feasible, in “new” contexts “new” options (in X

+\X) can be feasible.

• The agent’s extended choice function C

+ on K+. This is an extension of the

observed choice function C (i.e., the restriction of C+ to K coincides with C) and

is interpreted as the “true” choice function, capturing the choices the agent would

make when confronted with the contexts in K+.

Having observed the agent’s choices in the domain K, we wish to predict his choices in

K+. The goal is to predict as much of the “true” choice function C

+ as possible. A choice

predictor is a choice function ⇡ on some domain D ✓ K+, where typically K ✓ D ✓ K+.

For each K in D, ⇡(K) is the predicted choice in context K. The predictor is accurate

if it predicts the agent’s choice correctly in all contexts in D, i.e., if ⇡(K) = C

+(K) for

all K in D. As noted above, a preference relation on X would only allow us to define

predictors for “old” contexts K 2 K or for “new” contexts K 62 K containing only “old”

options from X. Reason-based rationalizations allow us to go further.

We now assume that the properties in P are defined over the extended set of option-

context pairs X+ ⇥K+ (not just over the pairs in X ⇥K). For any domain of contexts

D ✓ K+, a reason-based model for domain D is defined as before and again denoted

(M,�), but ranges over D instead of K. In particular, M is a function from D into 2P .

Our strategy for defining a choice predictor is the following:

• Take a reason-based model M = (M,�) for the original domain K as given.
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• Extend this to a model M0 = (M 0
,�) for some domain D with K ✓ D ✓ K+.

• Define a choice predictor on D as the choice function ⇡ := C

M0
induced by the

extended model.

By an extension of the model M = (M,�) to the domain D ◆ K we mean a reason-

based model M0 = (M 0
,�) for domain D whose restriction to K is M, i.e., (i) the

restriction of the function M

0 to the subdomain K is M , and (ii) M and M0 use the

same fundamental preference relation �.

5.2 Cautious, semi-courageous, and courageous prediction

We now define three reason-based choice predictors. Each is based on a reason-based

model M = (M,�) by which we have rationalized the agent’s observed choice. (This

could be, for example, the revealed model (MC
,�C) discussed in Section 4.)

Cautious prediction: The cautious predictor (based on M) is the choice function

⇡ := C

M0
induced by the extended model M0 = (M 0

,�) whose domain D consists of

every context K 2 K+ such that K o↵ers the same feasible property bundles as some

observed context L 2 K:

{P(x,K) : x 2 K} = {P(x, L) : x 2 L}. (1)

Note that (1) implies P(K) = P(L), so that M(K) must equal M(L). By implication,

the extension M0 of M is uniquely defined.

The cautious predictor makes predictions only for choice contexts that o↵er the same

feasible property bundles as some observed context. This ignores the fact that reason-

based choices depend only on motivationally salient properties. The cautious predictor

cannot predict, for example, Bonnie’s choices from a “new” fruit basket (in K+\K) that

is identical to some “old” basket (in K) in terms of the sizes of available fruit but not

in terms of other, non-salient properties. We now introduce a predictor based not on

entire property bundles but only on bundles of motivationally salient properties.

Semi-courageous prediction: The semi-courageous predictor (based on M) is the

choice function ⇡ := C

M0
induced by the extended model M0 = (M 0

,�) whose domain

D consists of every context K 2 K+ such that

(i) K has the same context properties as some observed context, i.e., P(K) = P(L) for

some L in K (so that M(K) = M(L)), and
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(ii) the set of options as conceptualized in K (feasible bundles of motivationally salient

properties) is the same as that in some observed context, i.e., {xK : x 2 K} = {xL :

x 2 L

0} for some L

0 in K.

Note that L and L

0 in clauses (i) and (ii) can be distinct. Although the semi-courageous

predictor can predict choices in contexts o↵ering new feasible property bundles, it is still

somewhat restrictive. Clause (i) is often unnecessarily demanding. Its role is to tell us

how we must define M(K), namely as M(L). Sometimes, however, we can infer how to

define M(K) without clause (i). Consider, for example, an agent with context-invariant

motivation (according to M). If we are willing to assume that his motivation remains

context-invariant in new contexts, we can define M(K) as unchanged outside K. This

suggests the following, more general predictor.

Courageous prediction: We begin with a preliminary definition. In a reason-based

model M0 = (M 0
,�) for some domain D, we call a context property P causally rele-

vant if its presence or absence in a context can make a di↵erence to the agent’s set of

motivationally salient properties in it, i.e., if there are contexts K,K

0 2 D such that

(cau1) K has property P while K

0 does not (or vice versa),

(cau2) K and K

0 induce di↵erent sets of motivationally salient properties, i.e., M 0(K) 6=
M

0(K 0),

(cau3) K and K

0 di↵er minimally, i.e., there is no context K 00 2 D whose set of context

properties P(K 00) is strictly between the sets P(K) and P(K 0).16

Let CAU

M0
denote the set of causally relevant context properties in model M0.17 Two

things are worth noting. First, in the important special case of context-invariant moti-

vation, no context property is causally relevant. Second, the causally relevant context

properties fully determine the agent’s set of motivationally salient properties. Formally:

Proposition 3 Let M0 = (M 0
,�) be any reason-based model (for some domain D of

contexts). Then:

(a) M0
has context-invariant motivation if and only if CAU

M0
= ?.

(b) For all K, K

0
in K, if P(K)\CAU

M0
= P(K 0)\CAU

M0
then M

0(K) = M

0(K 0).

16This clause excludes the possibility that K and K

0 di↵er in context properties unrelated to P to
which the di↵erence in motivation between K and K

0 could be causally attributed.
17If M0 is a model with revealed motivation (i.e., M0 = (MC

,�)), causal relevance is fully determined
by the observed choice function C, so that we may speak of revealed causal relevance and write CAU

C .
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The courageous predictor (based on M) is the choice function ⇡ := C

M0
induced by

the extended model M0 = (M 0
,�) whose domain D consists of every context K 2 K+

such that

(i*) K has the same causally relevant properties as some observed context, i.e., P(K)\
CAU

M = P(L) \ CAU

M for some L in K; we then define M(K) as M(L);18 and

(ii) the set of options as conceptualized in K is the same as that in some observed

context, i.e., {xK : x 2 K} = {xL : x 2 L

0} for some L

0 in K.

Our three predictors are increasingly general:

Remark 2 Given a reason-based rationalization M of the observed choice function C,

(a) the cautious predictor extends the observed choice function C;

(b) the semi-courageous predictor extends the cautious predictor; and

(c) the courageous predictor extends the semi-courageous predictor.

19

5.3 When is each choice predictor accurate?

When does each predictor coincide with the true choice function C

+ on its domain?

It turns out that the accuracy of each predictor depends on whether certain observed

patterns in the agent’s choices are robust, i.e., continue to hold in contexts outside K.

Theorem 5 Given a reason-based rationalizationM of the observed choice functionC,

(a) the cautious predictor is accurate if the extended choice function C

+

is rationalizable

by some reason-based model;

(b) the semi-courageous predictor is accurate if the extended choice function C

+

is ra-

tionalizable by some extension of M; and

(c) the courageous predictor is accurate if the extended choice function C

+

is rational-

izable by some extension of M with the same causally relevant context properties.

18By Proposition 3, the definition of M(K) does not depend on the choice of L.
19The three predictors could be extended further in analogy to the second route we mentioned for

predictions based on preference relations alone: we could drop the requirement that any context K in D
must o↵er the same feasible property bundles (in the cautious case) or options-as-conceptualized (in the
other cases) as some context in K. The maximal generalization would replace clause (ii) in the definition
of the courageous predictor with the requirement that {xK : x 2 K} has a �-greatest element.
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Informally, part (a) shows that cautious predictions are accurate if the agent’s choices

are robustly reason-based, i.e., reason-based not just in the observed domain K but also

in the extended domain K+. This seems plausible for agents with some stability in their

choice dispositions. Part (b) shows that semi-courageous predictions are accurate if the

existing model M rationalizes choice robustly: it not only explains the agent’s observed

choices, but can be extended to explain all new choices too. This requires that our

reason-based model for the observed domain K is a portion of a reason-based model for

the extended domain K+. Part (c) shows that courageous predictions are accurate if the

model M rationalizes choice robustly in a stronger sense: its extension to new contexts

requires no additional causally relevant context properties. So, our reason-based model

for Kmust be a portion of a reason-based model for the extended domain K+ that already

identifies all causally relevant context properties. Whether these robustness assumptions

are justified depends, in part, on how rich the domain K of observed contexts is relative

to the target domain K+. Let us explain this in relation to our three-part theorem:

(a) If the observed domain K is small, then reason-based rationalizability in K is only

limited evidence for reason-based rationalizability in the larger domain K+. In the

limit, if K contains only contexts with singleton feasible sets, the agent’s choices

are trivially reason-based rationalizable in K, and we have no evidence for reason-

based rationalizability in K+. By contrast, if K contains a large and representative

mix of contexts – e.g., a sizeable “random sample” of contexts from K+ – then

reason-basedness in K may be good evidence for reason-basedness in K+.

(b) Even if the agent’s choices are robustly reason-based, our reason-based model for K
need not be a portion of a model for K+. The set M(K) specified for some observed

context K may leave out some property that is needed to explain the agent’s choice

in some new context K

0 with P(K 0) = P(K). If so, a reason-based model for K+

could not be an extension of our model for K, since it would have to specify the

same M(K 0) = M(K) for all contexts K

0 with P(K 0) = P(K). The larger and

more representative K is, the less likely this problem is to occur.

(c) Similar remarks apply to the question of whether our model for K, even if it is

extendible to a model for K+, is likely to identify all context properties that are

causally relevant in K+. For example, if K contains no choice contexts o↵ering

luxury goods, then our model for K cannot identify the di↵erence that “o↵ering

luxury goods” might make to the agent’s motivation in contexts with that property.

A large and representative domain K reduces the risk of not identifying some context

properties that are causally relevant in the target domain K+.
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6 Concluding remarks

We have argued that reason-based rationalizations can explain a variety of non-classical

choice behaviours in a unified manner and clarify the di↵erence between “bounded”

and “sophisticated” deviations from classical rationality. Furthermore, unlike classical

choice-theoretic rationalizations in terms of preference relations over options, they allow

us to predict an agent’s choices in genuinely novel contexts, where no observations have

been made. Crucially, di↵erent rationalizations of the same choice behaviour are not

generally equivalent, since some are typically more likely than others to extend robustly

to new choice contexts and thus to lead to accurate predictions of future choices.

Such robustness is related to psychological adequacy. A psychologically ungrounded

explanation of an agent’s observed choices is more likely to “fail” in novel contexts,

because it matches the observations by coincidence rather than for systematic reasons

that continue to apply in novel contexts. Psychological adequacy thus matters for the

sake of predictive accuracy, regardless of whether it matters for its own sake.
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A Appendix

Before giving the proofs, we brieáy discuss related works by Bossert and Suzumura (2009)

(for short, B&S) and Bhattacharyya, Pattanaik, and Xu (2011) (for short, B&P&X).

B&S assume that, in any given choice context, a feasible option may or may not be com-

patible with some exogenously given ënormsí. In our example, picking the only available

apple would violate a politeness norm. B&S axiomatically characterize those choice func-

tions which are norm-conditionally rationalizable: there exists a preference relation over

options such that, in any context, the agent chooses the most preferred norm-compatible

feasible option. One may think of such a rationalization as being ëpartially reason-basedí.

Each norm gives rise to a (context-regarding) property: the property of obeying that

norm. Every such property is taken to be desirable and motivationally salient in each

context. The agentís choice of a norm-compatible option is then explained by the fact

that the option has all those properties (of obeying the norms in question). By contrast,

the question of which of the norm-compatible options is chosen is not explained in terms

of reasons (properties), but in terms of a standard preference relation over primitive

options. B&P&X take a di§erent approach. Like us, they model the agentís concep-

tualization of options, yet not by invoking properties or reasons, but by reÖning the

notion of an option through adding certain ërelevantí information about the context. To

describe Polite Pauline in our example, the options (fruits) would have to be reÖned by

including the information of whether or not the context o§ers another fruit of the same

kind. The reÖnement is carried out by a technical construction.2 B&P&X show that

an agent whose choices among reÖned options are fully rational may nonetheless ëlookí

irrational if his choice function is deÖned over non-reÖned options. Overall, B&Sís and

B&P&Xís analyses convey several important insights relevant to our paper.

Notation. For property bundles S; T  P we write S %-C T to indicate that S and

T are revealed comparable, i.e., that S %C T or T %C S. Furthermore, when we need
to refer explicitly to the underlying model M, we write xMK rather than xK for option

x as conceptualized in context K, and %MK rather than %K for the induced preference

relation in context K. Finally, for brevity, we write MK rather than M(K) to refer

2For B&P&X, a reÖned option is not simply an option-context pair (x;K) (with x 2 K), since such
an object contains the full context information, including any irrelevant information. Rather, B&P&X
deÖne reÖned options as certain equivalence classes of such pairs. In the limiting ëclassicalí case, the
context is totally irrelevant, so that any pairs (x;K) and (x;K0) count as equivalent; hence, reÖned
options reduce to options in the original sense.
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to the set of motivationally salient properties in context K according to motivational

salience function M .

Proof of Lemma 1. Assume Axiom 3. As in Axiom 2, consider contexts K;K 0 2 K such
that (*) fP(y;K) : y 2 Kg = fP(y0;K 0) : y0 2 K 0g. We only show that fP(x;K) :
x 2 C(K)g  fP(x0;K 0) : x0 2 C(K 0)g, since the converse inclusion (ëí) is analogous.
Suppose x 2 C(K). The property bundle P(x;K) is feasible in context K, hence by
(*) also in context K 0. It is revealed weakly preferred to all feasible property bundles

in context K, hence by (*) also to all feasible property bundles in context K 0. So, by

Axiom 3, it is chosen in context K 0, i.e., belongs to fP(x0;K 0) : x0 2 C(K 0)g. 

We give no separate proof of Theorem 1, since this result follows from Proposition 1 and

Theorem 3, both of which we prove below.

Proof of Theorem 2. Let K be closed under cloning (an assumption only needed in part
2).

Step 1. Assume C is rationalized by a reason-based model with context-invariant

and context-unregarding motivation, M = (M;), where M  Poption. We leave the
proof of Axioms 1* and 2* to the reader and here prove Axiom 3*. It su¢ces to show

that C is rationalizable in the classical sense by a binary relation on X (see Remark 1).

SinceM rationalizes C, the choice set C(K) for a context K consists of the %K-highest
option(s) in K, where %MK is the preference relation on X induced by the modelM for

context K; this relation is deÖned for all options x; y 2 X by

x %MK y , xMK  yMK ,

where xMK and yMK are options x and y as conceptualized in context K. Given the

modelís context-independence (in both senses), xMK and yMK do not depend on K (see

Section 2.5). Thus, %MK does not depend on K; we can write it as %M. Therefore the
choice function C is rationalizable in the classical sense by a binary relation (i.e., %M).

Step 2. Now assume Axioms 1*, 2* and 3*. Let% be the classical revealed preference
relation on X: i.e., for all options x; y 2 X, let ëx % yí mean that x is chosen weakly
over y in some context. We prove that C is reason-based rationalizable (for instance)

by the model with context-invariant and context-unregarding motivation M = (M;)
deÖned as follows:

 M is the set Poption of all option properties.
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 For all property bundles S; T  P, ëS  T í means that x % y for some options
x; y 2 X such that P(x) = S and P(y) = T .

Under this model, the options are conceptualized as follows:

xMK = P(x;K) \M = P(x) for all x 2 X and K 2 K. (2)

Clearly, these options-as-conceptualized do not depend on the context K; hence, the

induced preference relation %M (= %MK ) does not depend on the context either.
Let % be the binary relation deÖned as

x % y , [x % y or P(x) = P(y)] for all x; y 2 X.

We have to prove that C = CM. This follows from three facts:

(i) CM is (classically) rationalized by %M;
(ii) C is (classically) rationalized by % and by % (and thus, by any relation % such

that %  %  %);
(iii) %  %M  %.
Fact (i): This holds by deÖnition of CM.

Fact (ii): By Remark 1 (Richterís result), Axiom 3* implies that C is (classically) ra-

tionalizable by a binary relation. One of these rationalizations (in fact, the minimal one)

is the classical revealed preference relation %, as is easily checked and well-known (see
also Richter 1971). Also, % rationalizes C, which can be shown as follows. Consider a
context K. We have to show that

C(K) = fx 2 K : x % y for all y 2 Kg:

Since % extends %, C(K)  fx 2 K : x % y for all y 2 Kg. Conversely, suppose
x 2 K such that x % y for all y 2 K. We show that x 2 C(K). If P(z) = P(x) for
all z 2 K, then C(K) = K by Axiom 1* and the fact that C(K) 6= ?. Thus x 2 C(K),
as required. Now let z 2 K such that P(z) 6= P(x). Consider any y 2 K. We have to
show that x % y. If P(y) 6= P(x), this holds by the deÖnition of % and the fact that
x % y. Now suppose P(y) = P(x). Note that x % z (since x % z and P(z) 6= P(x)).
So, there is a context eK 2 K such that x 2 C( eK). Since P(y) = P(x) and since K is

closed under cloning, there is a context K 0 2 K such that K 0 = eK [ fyg. By Axiom 2*

and the fact that fP(v) : v 2 eKg = fP(v) : v 2 K 0g and x 2 C( eK), we have v 2 C(K 0)

for some v 2 K 0 such that P(v) = P(x). So, by Axiom 1*, x 2 C(K 0). As x 2 C(K 0)

and y 2 K 0, we have x % y, as required.
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Fact (iii): Consider any x; y 2 X. We have to show that

[x % y ) x %M y] and [x %M y ) x % y].

Given that the options-as-conceptualized take the form (2), we have x %M y , P(x) 
P(y). Therefore, we have to prove that

[x % y ) P(x)  P(y)] and [P(x)  P(y)) x % y].

The Örst of these two implications holds immediately by the deÖnition of . As for the
second implication, we suppose P(x)  P(y) and claim that x % y. If P(x) = P(y),
the claim holds by the deÖnition of %. From now on, suppose P(x) 6= P(y). Since
P(x)  P(y), there exist x0; y0 2 X such that P(x0) = P(x), P(y0) = P(y) and x0 % y0.
Since x0 % y0, there is a context K 2 K such that x0 2 C(K) and y0 2 K. Relying twice
on the fact that K is closed under cloning, we can choose a context K 0 2 K such that

K 0 = K [ fx; yg. By Axiom 2* and the fact that fP(z) : z 2 Kg = fP(z) : z 2 K 0g
and x0 2 C(K), we have v 2 C(K 0) for some v 2 K 0 such that P(v) = P(x0). So, by
Axiom 1*, x 2 C(K 0). Since x 2 C(K 0) and y 2 K 0, we have x % y. Hence, x % y, as
required. 

Proof of Proposition 1. Consider any reason-based modelM = (M;). DeÖne a reason-
based model with context-invariant motivationM0 = (M 0;0) as follows:
 M 0 is any property set such that M 0  [K2K(MK [ P(K)) (= ([K2KMK) [
Pcontext), for instance M 0 = P;

 for any property bundles S; T , ëS 0 T í is deÖned to mean that there exists a
contextK 2 K such that P(K) = S\Pcontext = T \Pcontext and S\MK  T \MK .

We prove that CM = CM
0
. Consider an arbitrary context K 2 K; we have to

show that CM(K) = CM
0
(K). We do so by proving thatM and M0 induce the same

preference relation on X in context K. Fix options x; y 2 X. We have to show that

x %MK y , x %M0

K y, i.e., writing S = P(x;K) and T = P(y;X), that

S \MK  T \MK , S \M 0 0 T \M 0.

We will draw on the fact that (*) P(K) = S \ Pcontext = T \ Pcontext.
ë)í: If S \MK  T \MK , then S 0 T by (*) and the deÖnition of 0, and hence,

S \M 0 0 T \M 0.

ë(í: Now suppose S \M 0 0 T \M 0. By deÖnition of 0, there is a context K 0 2 K
such that P(K 0) = S\Pcontext = T \Pcontext and (S\M 0)\MK0  (T \M 0)\MK0 . We
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deduce two facts: Örst, P(K 0) = P(K) (where we use (*)); second, S \MK0  T \MK0

(where we use thatMK0 M 0). The Örst fact implies thatMK0 =MK (by the deÖnition

of a reason-based model). This, together with the second fact, implies that S \MK 
T \MK , as required. 

Before proving Theorem 3, we Örst show that Axioms 1 and 3 can be jointly summarized

in the following axiom:

Axiom 3+. For every option x in a context K 2 K, if the property bundle P(x;K) is
revealed weakly preferred to the property bundle P(y;K) for every option y in K, then
x 2 C(K).

Lemma 4 Axioms 1 and 3 are jointly equivalent to Axiom 3+.

Proof. ë(í: First assume Axioms 1 and 3. As in Axiom 3+, consider K 2 K and x 2 K
such that P(x;K) %C P(y;K) for all y 2 K. By Axiom 3, P(x;K) is chosen in context
K. So, C(K) contains some x0 such that P(x0;K) = P(x;K). Hence, by Axiom 1,

x 2 C(K).
ë)í: Now assume Axiom 3+. Axiom 3 holds obviously. As for Axiom 1, consider

K 2 K and x; y 2 K such that P(x;K) = P(y;K). We only show that x 2 C(K) )
y 2 C(K); the converse implication is analogous. Let x 2 C(K). Clearly, the property
bundle P(x;K) is revealed weakly preferred to each feasible property bundle in this
context K. The same is therefore true of the property bundle P(y;K) (= P(x;K)). So,
by Axiom 3+, y 2 C(K). 

Proof of Theorem 3. Step 1. Suppose a reason-based model with context-invariant

motivation, (M;), rationalizes C. Axiom 1 holds obviously. To prove Axiom 3, consider
a context K 2 K and a bundle S  P feasible in K such that S %C P(y;K) for each y
in K. Choose an x in K such that S = P(x;K). It su¢ces to show that x 2 C(K), i.e.,
since (M;) rationalizes C, that

P(x;K) \M  P(y;K) \M (3)

for all y 2 K. Consider any y 2 K. Since P(x;K) %C P(y;K), there exist K 0 2 K and
x0; y0 2 K 0 (which may depend on y) such that (i) P(x0;K 0) = P(x;K) and P(y0;K 0) =

P(y;K), and (ii) C(K 0) = x0. By (ii) and the fact that (M;) rationalizes C,

P(x0;K 0) \M  P(y0;K 0) \M:

37



By (i), this implies (3), as required.

Step 2. Now assume Axioms 1 and 3. We show that C is rationalizable for instance

by the (rather special) reason-based model with context-invariant motivation (M;) =
(P;%C), where M (which is constant) contains all properties, and  is simply the

relation of revealed weak preference. To show this, consider any context K 2 K and

option x 2 K. We have to show that

x 2 C(K), [P(x;K) \M  P(y;K) \M for all y 2 K,

or equivalently, given our special deÖnitions of M and , that

x 2 C(K), [P(x;K) %C P(y;K) for all y 2 K.

The right-hand side of this equivalence implies that x 2 C(K) by Axiom 3+, where this

axiom holds by Lemma 4. Conversely, if x 2 C(K), then the right-hand side holds by
the deÖnition of the revealed preference relation %C . 

Proof of Proposition 2. Let K 2 K. Suppose P 2 P satisÖes (rev1)-(rev3) for S; S0  P.
We may assume without loss of generality that S is revealed strictly preferred to S0

(rather than vice versa), since (rev1)-(rev3) remain valid if S and S0 are interchanged.

DeÖne both T and T 0 as S. Then (rev1) implies (REV1); (rev2) implies (REV2) (noting

that S is revealed weakly preferred to itself); and (rev3) implies (REV3) because, as

T = T 0 = S, (REV3) requires that the pair (S; S) di§ers minimally from the pair

(S0; S), which in turn reduces to (rev3). 

We now formally re-state and prove Lemma 2.

Lemma 2 For all revealed comparable bundles S; T  P and revealed comparable bundles
S0; T 0  P, if
 V \Pcontext is the same for all V 2 fS; T; S0; T 0g (i.e., S; T; S0 and T 0 are feasible
in the same type of context),

 S \MC
K = S0 \MC

K and T \MC
K = T 0 \MC

K for the contexts K 2 K such that

P(K) = V \ Pcontext for all V 2 fS; T; S0; T 0g,
then S %C T , S0 %C T 0.

Proof. As one may verify, it is su¢cient to show the following condition for all contexts

K 2 K and all Önite property bundles S; S0; T; T 0  P.
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Condition (X S0;T 0

S;T ): If

(aS
0;T 0

S;T ) S %-C T and S0 %-C T 0,
(bS

0;T 0

S;T ) V \ Pcontext = P(K) for all V 2 fS; T; S0; T 0g,

(cS
0;T 0

S;T ) S \MC
K = S

0 \MC
K and T \MC

K = T
0 \MC

K ,

then S %C T , S0 %C T 0.

Here it was possible to restrict ourselves to Önite property bundles since whenever one

of the property bundles S; S0; T; T 0 is inÖnite, condition (aS
0;T 0

S;T ) cannot be met (because

feasible property bundles are by assumption Önite).

Fix a context K 2 K. Note that the set of properties in which two property bundles
S; S0  P di§er is the symmetric di§erence S 4 S0. We prove that (XS

0;T 0

S;T ) holds for

all Önite S; T; S0; T 0  P, by induction on jS 4 S0j + jT 4 T 0j, the total number of
disagreements between S and S0 and between T and T 0.

Initial step. First, consider any Önite S; S0; T; T 0  P such that jS 4 S0j+ jT 4 T 0j =
0. Then S = S0 and T = T 0, so that (XS

0;T 0

S;T ) holds trivially because we have S %C T ,
S0 %C T 0 (even without assuming (aS

0;T 0

S;T )-(cS
0;T 0

S;T )).

Induction step. Consider any m > 0 and suppose that (XS
0;T 0

S;T ) holds for any Önite

S; S0; T; T 0  P such that jS 4 S0j+ jT 4 T 0j < m. Consider Önite sets S; S0; T; T 0  P
such that jS 4 S0j + jT 4 T 0j = m and assume (aS

0;T 0

S;T )-(cS
0;T 0

S;T ) hold. To show that

S %C T , S0 %C T 0, we consider two cases.
Case 1. The pair (S; T ) di§ers minimally from (S0; T 0), i.e., there is no revealed

comparable pair of property bundles (S00; T 00) (6= (S; T ); (S0; T 0)) such that S00 is weakly
between S and S0 and T 00 is weakly between T and T 0. Suppose, for a contradiction,

that S %C T 6, S0 %C T 0. Since jS 4 S0j + jT 4 T 0j = m > 0, we can choose a

P 2 (S 4 S0) [ (T 4 T 0). We prove that P is revealed motivationally salient in K,

i.e., that P 2 MC
K ; this contradicts (c

S0;T 0

S;T ), completing Case 1. By deÖnition of MC
K ,

this claim follows from three facts: (REV1) holds because S %C T 6, S0 %C T 0 (where
S %-C T and S0 %-C T 0 by (aS

0;T 0

S;T )); (REV2) holds because S and S0 di§er in P or T

and T 0 di§er in P (since P 2 (S4S0)[ (T 4T 0)) and because of (bS
0;T 0

S;T ); (REV3) holds

because the pair (S; T ) di§ers minimally from (S0; T 0) by assumption of Case 1.

Case 2. The pair (S; T ) does not di§er minimally from (S0; T 0). Then we may choose

a revealed comparable pair of property bundles (S00; T 00) (6= (S; T ); (S0; T 0)) such that

S00 is weakly between S and S0 and T 00 is weakly between T and T 0. Observe that

jS 4 S00j < jS 4 S0j or jT 4 T 00j < jT 4 T 0j (possibly both). So, jS 4 S00j+ jT 4 T 00j <
jS 4 S0j+ jT 4 T 0j, and hence, jS 4 S00j+ jT 4 T 00j < m. Also, noting that S00 and T 00
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are Önite (since they are feasible in some context as S00 %-C T 00), it follows by induction
hypothesis that the implication (XS

00;T 00

S;T ) holds. Now the three antecedent conditions of

this implication hold. Condition (bS
00;T 00

S;T ) holds because, Örst, S\Pcontext = T\Pcontext =

P(K) by (bS
0;T 0

S;T ), second, S00 \ Pcontext = S \ Pcontext = S0 \ Pcontext by (b
S0;T 0

S;T ) and

the fact that S00 is weakly between S and S0, and, third, T 00 \ Pcontext = T \ Pcontext =
T 0 \Pcontext for analogous reasons. Condition (a

S00;T 00

S;T ) follows from (aS
0;T 0

S;T ) and the fact

that S00 %-C T 00. Condition (cS
00;T 00

S;T ) may be deduced from (cS
0;T 0

S;T ) and the fact that S00

is weakly between S and S0 and T 00 is weakly between T and T 0. From (XS
00;T 00

S;T ) and

(aS
00;T 00

S;T )-(cS
00;T 00

S;T ) it follows that S %C T , S00 %C T 00.
By an analogous reasoning applied to the sets S0; S00; T 0; T 00 (rather than S; S00; T; T 00),

we have S0 %C T 0 , S00 %C T 00. This equivalence and the previous one jointly imply
the equivalence S %C T , S0 %C T 0, as required. 

Proof of Lemma 3. Axiom 1** obviously implies Axiom 1. Now assume Axiom 1.

Fix a context K 2 K and options x; y 2 K such that xCK = yCK . We only show that

x 2 C(K) ) y 2 C(K); the converse implication (ë(í) holds analogously. Suppose
x 2 C(K). The proof is in three claims (only the last of which draws on Axiom 1).

Claim 1. There exists a Önite sequence (S1; :::; Sm) of property bundles such that

(i) S1 = P(x;K) and Sm = P(y;K), (ii) S1 %-C Sj for each j 2 f1; :::;mg, (iii) for
all j; j0; j00 2 f1; :::;mg, if j  j0  j00 then Sj0 is weakly between Sj and Sj00 , (iv) for

all j 2 f1; :::;m  1g, Sj 6= Sj+1, and (v) for all j 2 f1; :::;m  1g, no property bundle
S  P is strictly between Sj and Sj+1 and satisÖes S %-C S1.

Let S be the set of all Önite sequences (S1; :::; Sm) of property bundles satisfying

the Örst four conditions (i)-(iv). Since x 2 C(K), we have P(x;K) %C P(x;K) and
P(x;K) %C P(y;K). In particular, P(x;K) %-C P(x;K) and P(x;K) %-C P(y;K).
So, S contains the sequence (P(x;K);P(y;K)) if P(x;K) 6= P(y;K) and contains the
single-component sequence (P(x;K)) if P(x;K) = P(y;K). Hence, S 6= ?.

Next, note that since the property bundles P(x;K) and P(y;K) are Önite, the set
P(x;K)4P(y;K) of properties in which they di§er is also Önite. For all (S1; :::; Sm) 2 S
we have m  1  jP(x;K)4P(y;K)j (= jS1 4 Smj). To prove this, consider any

(S1; :::; Sm) 2 S and let us show by induction that jS1 4 Sj j  j1 for all j 2 f1; :::;mg.
For j = 1 this is obviously true. Now consider any j 2 f1; :::;m1g such that jS1 4 Sj j 
j 1. We have jS1 4 Sj+1j  jS1 4 Sj j+1  j, where the Örst inequality holds because
Sj is strictly between S1 and Sj+1 by (iii) and (iv), and the second inequality holds

because jS1 4 Sj j  j  1. This completes the inductive argument.
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As shown so far, S is non-empty and the length of sequences in S has a Önite upper

bound (given by jP(x;K)4P(y;K)j+1). So there exists a longest sequence in S. Call
it (S1; :::; Sm). We complete the proof of the claim by showing that this sequence also

satisÖes condition (v).

Suppose, for a contradiction, that j 2 f1; :::;m1g and there is a property bundle S 
P which is strictly between Sj and Sj+1 and satisÖes S1 %-C S. Form the augmented

sequence (S1; :::; Sj ; S; Sj+1; :::; Sm). We show that this sequence satisÖes (i)-(iv), i.e.,

belongs to S, a contradiction, since the sequence is longer than (S1; :::; Sm).

First, the augmented sequence obviously still satisÖes (i), (ii) and (iv). It remains to

show that it also satisÖes (iii). To do so, we consider indices i; i0 2 f1; :::;mg and have
to show three things:

(*) if i  i0  j, then Si0 is (weakly) between Si and S;
(**) if j + 1  i  i0, then Si is between S and Si0 ;
(***) if i  j and j + 1  i0, then S is between Si and Si0 .

Regarding (*), assume i  i0  j, and consider a P 2 P on which Si and S agree.

We have to show that Si0 agrees on P with Si (and S). Since S is strictly between Sj
and Sj+1, S agrees on P with at least one of Sj and Sj+1. Let j0 2 fj; j + 1g be such
that S and Sj0 agree on P . So, Si and Sj0 also agree on P . Hence, since Si0 is between

Si and Sj0 (as the original sequence (S1; :::; Sm) satisÖes (iii)), Si0 agrees on P with Si,

as required to prove (*).

The proof of (**) is analogous to that of (*).

Regarding (***), assume i  j and j + 1  i0. Consider any P 2 P on which Si and
Si0 agree. We have to show that S agrees with Si (and Si0) on P . Since the original

sequence (S1; :::; Sm) satisÖes (iii), Sj is between Si and Si0 (if i = j trivially), and so Sj
and Si agree on P . By an analogous argument, Sj+1 and Si agree on P . Hence, Sj and

Sj+1 agree on P . So, as S is (strictly) between Sj and Sj+1, S agrees on P with Sj , and

hence also with Si. This shows (***), completing the proof of Claim 1.

Claim 2: If (S1; :::; Sm) is any sequence of property bundles satisfying the conditions

(i)-(v) in Claim 1, then for all j 2 f1; :::;mg neither of the bundles Sj and S1 (= P(x;K))
is revealed strictly preferred to the other.

The proof is by induction on j. If j = 1, the claim holds trivially. Now consider

j 2 f1; :::;m 1g and assume neither of the sets Sj and S1 is revealed strictly preferred
to the other. Suppose, for a contradiction, that one of the sets Sj+1 and S1 is revealed

strictly preferred to the other one. We assume without loss of generality that S1 is

revealed strictly preferred to Sj+1 (the proof proceeds analogously in the other case).
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Since Sj 6= Sj+1 by (iv), we may select a property P 2 Sj 4 Sj+1. Now P is revealed

motivationally salient in K, i.e., P 2 MC
K . We show this by verifying the criteria

(REV1)-(REV3) for the pairs of bundles (Sj ; ; S1) and (Sj+1; S1). First, Sj is revealed

weakly preferred to S1 (because S1 is not revealed strictly preferred to Sj by induction

hypothesis and because S1 %-C Sj by (ii)), while S1 is revealed strictly preferred to
Sj+1, where these two choices occur in contexts with the same properties as K (because

S1 = P(x;K) by (i)). Second, Sj and Sj+1 di§er in P (since P 2 Sj 4 Sj+1). Third, by
(v) the pair (S1; Sj) di§ers minimally from (S1; Sj+1) in the sense deÖned in (REV3).

Now, since P 2MC
K and since Sj and Sj+1 di§er in P , we have (Sj4Sj+1)\M

C
K 6= ?.

Further, Sj 4 Sj+1  S1 4 Sm. Indeed, if a property P does not belong to S1 4 Sm,

then S1 and Sm agree on P , so that all of Sj , Sj+1, S1 and Sm agree on P (since Sj
and Sj+1 are each weakly between S1 and Sm by (iii)), which implies that P is not

contained in Sj 4 Sj+1. Since (Sj 4 Sj+1) \MC
K 6= ? and Sj 4 Sj+1  S1 4 Sm, we

have (S1 4 Sm) \MC
K 6= ?. So, S1 \M

C
K 6= Sm \M

C
K . Hence, by (i), P(x;K) \M

C
K 6=

P(y;K) \MC
K , i.e., x

C
K 6= y

C
K , contradicting the initial assumption that x

C
K = y

C
K . This

proves Claim 2.

Claim 3. y 2 C(K) (which completes the proof of Axiom 1**).

By Claims 1 and 2, P(x;K) is not revealed strictly preferred to P(y;K). So, since
P(x;K) is chosen in K (as x 2 C(K)), so is P(y;K). Using Axiom 1 it follows that

y 2 C(K). 

Proof of Theorem 4 (in its strengthened form given in its footnote). Assume the domain

of contexts K is rich. We prove the necessity of the axioms (step 1), the su¢ciency of

the axioms (step 2), and the essential uniqueness claim (step 3).

Step 1. Suppose C has a reason-based rationalization with revealed motivation

(MC ;). Axioms 1 and 3 hold by Theorem 1. To prove that Axiom 2** holds, consider

contexts K;K 0 2 K such that (*) fxCK : x 2 Kg = fx
0C
K0 : x0 2 K 0g. We only show that

fyCK : y 2 C(K)g  fy
0C
K0 : y0 2 C(K 0)g, since the converse inclusion holds analogously.

Consider any y 2 C(K). We have to show that yCK 2 fy0CK0(y0) : y0 2 C(K 0)g. By (*)
there is a y0 2 K 0 such that (**) yCK = y

0C
K0 . It remains to show that y0 2 C(K 0). Since

y 2 C(K) and C is rationalized by (MC ;), we have

yCK  x
C
K for all x 2 K.

By (*) and (**), this implies that

y0CK0  x0CK0 for all x0 2 K 0.
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It follows that y0 2 C(K 0), again because C is rationalized by (MC ;). This proves
Axiom 2**.

Step 2. Conversely, assume Axioms 1, 2** and 3. We show in two claims that the

revealed model (MC ;C) rationalizes C.
Claim 1. For all contexts K;K 0 2 K and all options x; y 2 K and x0; y0 2 K 0, if

xCK = x
0C
K0 and yCK = y

0C
K0 then P(x;K) %C P(y;K), P(x0;K 0) %C P(y0;K 0).

Consider K;K 0 2 K, x; y 2 K and x0; y0 2 K 0 such that xCK = x0CK0 and yCK = y0CK0 .

We assume that P(x0;K 0) %C P(y0;K 0) and show that P(x;K) %C P(y;K); the converse
implication is analogous.

Since K is rich and the bundles P(x;K) and P(y;K) are feasible in K, there is a
context L 2 K in which they are the only feasible bundles:

fP(z; L) : z 2 Lg = fP(x;K);P(y;K)g: (4)

Now P(K) = P(L), since each side of this equality can be written as S \ Pcontext for a
bundle S feasible in K and L. It follows that MC

K = MC
L . On each side of (4) we now

intersect each contained bundle with MC
K (=MC

L ). This yields a new identity:

fzCL : z 2 Lg = fx
C
K ; y

C
Kg: (5)

The steps taken for x; y;K are now repeated for x0; y0;K 0. By the richness of K and
the feasibility of the bundles P(x0;K 0) and P(y0;K 0) in K 0, there is a context L0 2 K
such that

fP(z; L0) : z 2 L0g = fP(x0;K 0);P(y0;K 0)g: (6)

By arguments made similarly above, it follows that MC
K0 =MC

L0 and

fzCL0 : z 2 L
0g = fx0CK0 ; y0CK0g: (7)

From (5), (7) and the assumption that xCK = x0CK0 and yCK = y0CK0 , we deduce that

fzCL : z 2 Lg = fz
C
L0 : z 2 L

0g. So, by Axiom 2**,

fzCL : z 2 C(L)g = fz
C
L0 : z 2 C(L

0)g: (8)

By Axiom 3, (6) and the assumption that the bundle P(x0;K 0) is revealed weakly pre-

ferred to P(y0;K 0) (and thus also to itself), the bundle P(x0;K 0) is chosen in L0:

P(x0;K 0) 2 fP(z; L0) : z 2 C(L0)g.
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Intersecting on both sides of this relation with MC
K0 (=MC

L0) yields

x0CK0 2 fzCL0 : z 2 C(L
0)g.

By (8) and the fact that xCK = x
0 C
K0 , we can rewrite the last relation as

xCK 2 fz
C
L : z 2 C(L)g.

Pick a z 2 C(L) such that xCK = zCL : By (4) we can also pick a w 2 L such that

P(w;L) = P(x;K). Intersecting each side of this equation with MC
L (= MC

K) yields

wCL = x
C
K . Hence, w

C
L = z

C
L . By Axiom 1** (which holds by Lemma 3), it follows that

w 2 C(L). So, the bundle P(w;L) = P(x;K) is revealed weakly preferred to any bundle
feasible in L, hence by (4) to P(y;K).

Claim 2. (MC ;C) rationalizes C (which completes the su¢ciency proof).
We consider any K 2 K and x 2 K and have to show that

x 2 C(K),

xCK 

C yCK for all y 2 K

.

First, if x 2 C(K), then for all y 2 K we indeed have xCK(x) 
C yCK , immediately by

deÖnition of C . Now assume that xCK 
C yCK for all y 2 K. Consider any y 2 K. Since

xCK C yCK , by deÖnition of 
C there exist K 0 2 K and x0; y0 2 K 0 (all of which may

depend on y) such that xCK = x0 CK , y
C
K = y0 CK and x0 2 C(K 0). Since x0 2 C(K 0) and

y0 2 K 0, we have P(x0;K 0) %C P(y0;K 0). So, by Claim 1, P(x;K) %C P(y;K). Since
this is true for all y 2 K, we have x 2 C(K), by Axiom 3+ (which holds by Lemma 4).

Step 3. We now consider an arbitrary rationalization of C with revealed motivation

(MC ;), and have to show that it is essentially identical to (MC ;C) (which rationalizes
C by part 2). As the two models ascribe the same motivation to the agent, it remains to

show that  and C coincide wherever they are choice-behaviourally relevant. Consider
a pair of bundles S; T  P at which  and C are choice-behaviourally relevant; we can
thus pick K 2 K and x; y 2 K such that

S = xCK and T = yCK : (9)

We have to show that S  T , S C T .
Claim 3. S  S and S C S.
Since the domain of contexts K is rich and the (identical) property bundles P(x;K)

and P(x;K) are feasible in context K, there is a context K 2 K in which only the

bundle P(x;K) is feasible. Choose any x 2 C(K). Clearly,

P(x;K) = P(x;K): (10)
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It follows that P(K) = P(K), and hence, that MC
K = MC

K
: This and (10) imply

that xCK = xC
K
. Now since x 2 C(K) and each of the models (MC ;) and (MC ;C)

rationalizes C, we have xC
K
 xC

K
and xC

K
C xC

K
. This proves the claim since S =

xCK = xC
K
.

Claim 4. S  T , S C T (which completes the proof).
Since P(x;K) and P(y;K) are both feasible in K, richness of K implies that there

is a context ~K 2 K in which only these two property bundles are feasible. Choose any

~x; ~y 2 ~K such that

P(~x; ~K) = P(x;K) and P(~y; ~K) = P(y;K): (11)

From any of these equations it follows that P( ~K) = P(K), whence MC
~K
= MC

K . This

and the equations (9) and (11) imply that S = ~xC~K and T = ~yC~K . So, fz
C
~K
: z 2 ~Kg =

fS; Tg. Hence, as the model (MC ;) rationalizes C and as S  S by Claim 3,

~x 2 C( ~K), S  T: (12)

Analogously, as (MC ;C) rationalizes C and as S C S,

~x 2 C( ~K), S C T: (13)

The equivalences (12) and (13) imply that S  T , S C T . 

Proof of Proposition 3. LetM0 = (M 0;) be a reason-based model for a domainD  K+.
Regarding part (a), if allM 0

K coincide, then obviously CAU
M0
= ?; and if CAUM0

= ?,
then part (b) will imply that all M 0

K coincide. It thus remains to prove part (b). We

proceed by contraposition. Let K;K 0 2 D satisfy M 0
K 6= M 0

K0 . Since P(x;K) and
P(x;K 0) are Önite for any x 2 X, P(K) and P(K 0) are Önite, and thus the ëdisagreement

setí P(K)4P(K 0) is Önite. So, as one easily checks, there is a Önite sequenceK1; :::;Kn 2
D withK1 = K,Kn = K 0 such that for eachm 2 f1; :::; n1g the contextsKm andKm+1
di§er minimally (in the sense of (cau3)). SinceM 0

K1
6=M 0

Kn
, there is anm 2 f1; :::; n1g

such that M 0
Km

6= M 0
Km+1

. By the deÖnition of reason-based models, it follows that

P(Km) 6= P(Km+1). Hence we may pick a context property P 2 P(Km)4P(Km+1). It
follows that P 2 P(K)4P(K 0). So, since also P 2 CAUM0

(as the criteria (cau1)-(cau3)

hold for the contextsKm andKm+1), we have P 2 (P(K)\CAUM
0
)4(P(K 0)\CAUM0

).

Hence, P(K) \ CAUM0 6= P(K 0) \ CAUM0
. 

Proof of Remark 2. Consider a rationalization M = (M;) of the choice function
C. Let M1 = (M1;), M2 = (M2;), and M3 = (M3;) be the models used
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to deÖne, respectively, the cautious, semi-courageous, and courageous predictors, with

corresponding domains D1, D2, and D3.
(a) CM

1
extends C because M1 extends M (as a consequence of the deÖnition of

M1) and CM = C (by assumption).

(b) We prove that CM
2
extends CM

1
by showing that M2 extends M1. Consider

any K 2 D1. We have to show that K 2 D2 and M1
K = M2

K . Since K 2 D1 there is
an L 2 K such that fP (x;K) : x 2 Kg = fP (x; L) : x 2 Lg. One easily veriÖes the
conditions (i) (by using the same context L) and (ii) (by using the context L0 := L ).

(c) It su¢ces to show thatM3 extendsM2. Let K 2 D2; so conditions (i) and (ii)
hold. We have to show that K 2 D3 and M2

K = M
3
K . Now (i) immediately implies (i*)

(use the same L 2 K), and so K 2 D3. Moreover, M2
K =M

3
K , because each side equals

ML for L as in (i). 

Proof of Theorem 5. Consider a rationalization M = (M;) of the choice function C.
We use the notation from our proof of Remark 2. Further, for any model M0, the set

of feasible options as conceptualized in a context K (from the domain ofM0) is denoted

KM0
:= fxM0

K : x 2 Kg.
(a) Suppose C+ is rationalizable by an arbitrary model M+ = (M+;+) on the

domain K+. Consider any K 2 D1 and x 2 K. We have to show that x 2 CM1
(K) ,

x 2 C+(K). As K 2 D1 we can pick an L 2 K such that

fP(y;K) : y 2 Kg = fP(y; L) : y 2 Lg: (14)

So KM1
= LM

1
and KM+

= LM
+
(though perhaps KM1 6= KM+

). Now pick a z 2 L
such that P(x;K) = P(z; L) (which is possible by (14)). It follows that xM1

K = zM
1

L and

xM
+

K = zM
+

L . We show the claimed equivalence by proving that each side holds if and

only if z 2 C(L):

x 2 CM1
(K) , xM

1

K  S for all S 2 KM1
by deÖnition of CM

1

, zM
1

L  S for all S 2 LM1
as xM

1

K = zM
1

L and KM1
= LM

1

, z 2 CM1
(L) by deÖnition of CM

1

, z 2 C(L) as CM
1
(L) = C(L) by Remark 2,

x 2 C+(K) , x 2 CM+
(K) as CM

+
= C+

, xM
+

K + S for all S 2 KM+
by deÖnition of CM

+

, zM
+

L + S for all S 2 LM+
as xM

+

K = zM
+

L and KM+
= LM

+

, z 2 CM+
(L) by deÖnition of CM

+

, z 2 C(L) as CM
+
(L) = C+(L) = C(L).
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(b) Now let C+ be rationalizable by an extensionM+ = (M+;) ofM. Let K 2 D2

and x 2 K. We show that x 2 CM2
(K), x 2 C+(K). AsK 2 D2 we can pick L;L0 2 K

such that P(L) = P(K) and (*) KM2
= (L0)M

2
. By (*) we can choose a z 2 L0 such

that (**) xM
2

K = zM
2

L0 . Since M
+
L0 =M

2
L0 (=ML0),

(L0)M
+
= (L0)M

2
and zM

+

L0 = zM
2

L0 : (15)

As M+
L =M

2
L (=ML) and P(L) = P(K), we have M+

K =M
2
K , and thus

KM+
= KM2

and xM
+

K = xM
2

K : (16)

By (*), (**), (15) and (16), we have (***) KM+
= (L0)M

+
and (****) xM

+

K = zM
+

L0 .

One can show the claimed equivalence by proving that each side holds if and only if

z 2 C(L). One should follow the steps taken similarly in the proof of part (a): it su¢ces
to replace L by L0 andM1 byM2, and to apply the identities (*)-(****).

(c) Finally, let C+ be rationalizable by an extension M+ = (M+;) of M with

CAUM
+
= CAUM. Let K 2 D3 and x 2 K. We prove x 2 CM3

(K) , x 2 C+(K).
Since K 2 D3, we can pick L;L0 2 K such that P(L) \ CAUM = P(K) \ CAUM,
M3
K = M3

L, and (
+) KM3

= (L0)M
3
. Since CAUM

+
= CAUM and P(L) \ CAUM =

P(K)\CAUM, we have P(L)\CAUM+
= P(K)\CAUM+

, and thus by Proposition

3 M+
L = M+

K . By (
+) there is a z 2 L0 such that (++) xM3

K = zM
3

L0 . Since M
+
L0 = M

3
L0

(=ML0), we have

(L0)M
+
= (L0)M

3
and zM

+

L0 = zM
3

L0 : (17)

Since M+
L =M

3
L (=ML), M

+
L =M

+
K and M3

L =M
3
K , we have M

+
K =M

3
K , and thus

KM+
= KM3

and xM
+

K = xM
3

K : (18)

By (+), (++), (17) and (18), we have (+++) KM+
= (L0)M

+
and (++++) xM

+

K = zM
+

L0 .

The claimed equivalence can once again be proved by establishing that each side holds

if and only if z 2 C(L); one should use the same argument as for part (a), replacing L
by L0 andM1 byM3, and drawing on the identities (+)-(++++). 
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