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1. Introduction

Economic agents are typically interdependent, due for example to externalities, spill-
overs or the presence of common shocks. Such dependence is often overlooked in
cross-sectional or panel data analysis, in part due to a lack of relevant econometric
literature. The implications of dependence for econometric analysis have long been
studied in the context of time series data, where dependence is naturally modeled in
terms of temporal distance between observations, but the nature of cross-sectional de-
pendence hinders a simple multi-dimensional extension of time series methods to spa-
tial econometric data, due to the typical lack of a natural ordering in cross-sectional
data. In order to account for possible cross-sectional dependence, one needs first
to establish a framework under which its structure can be suitably formalised, and
which permits an asymptotic statistical theory that is useful in statistical inference,
in particular a central limit theorem for estimates of functions or parameters that de-
scribe dependence and other features. Several approaches to modeling cross-sectional
dependence prominent in recent literature can accomplish this.

One class of models postulates unobserved common factors that affect some/all of
individual units, see Andrews (2005), Pesaran (2006) and Bai (2009), and can give
rise to persistent cross-sectional dependence. Two other classes involve a concept of
"economic location" or "economic distance". In economic data, cross-sectional units
correspond to economic agents such as individuals or firms, envisaged as positioned
in some socio-economic (even geographical) space, whereby their relative locations
underpin the strength of dependence between them. For a detailed discussion and ex-
amples of such proximity, see e.g. Conley (1999) and Pinkse, Slade and Brett (2002).
Another class of models stems from the spatial autoregressive (SAR) model of Cliff
and Ord (1968, 1981), see e.g. Lee (2002, 2004), Kelejian and Prucha (1998, 1999),
and employs spatial weight matrices whose elements consist of inverse pairwise eco-
nomic distances between agents, whence the dependent variable or disturbance of a
given unit is assumed to be affected by a weighted average of the dependent variable
or disturbance of the other sampled units. The weights are presumed known and
reflect the proximity between agents, leaving a small number of parameters to be
estimated. The SAR model has gained popularity in empirical works, see e.g. Arbia
(2006). Alternatively, mixing conditions, familiar from the time series literature,
have been employed. Conley (1999), Jenish and Prucha (2012), for example, develop
spatial mixing and functions-of-mixing conditions in terms of economic distance be-
tween agents, under a suitable stationarity assumption, while an alternative type of
condition was proposed by Pinkse, Shen and Slade (2007). Another approach, of
Robinson (2011), employs a possibly non-stationary, linear process for disturbances,
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with dependence in regressors expressed in terms of the departure of joint densities
from the product of marginals. A degree of heterogeneity across units is permitted,
as well as strong dependence analogous to long memory in time series, which is ruled
out by mixing conditions and can also accommodate economic distances, as well as
lattice or irregularly-spaced data. This approach’s ability to cover both weak and
strong dependence in the disturbances and regressors allows the development of a
fairly general of theory.

On the other hand, nonparametric and semiparametric estimation has become
well established in econometric analysis, enabling assumptions of a known paramet-
ric functional form, that are frequently not warranted by economic theory, to be
dropped or relaxed. There are many theoretical results on nonparametric kernel
estimation under temporal dependence, see e.g. Robinson (1983). Jenish (2012),
Robinson (2011) and Robinson and Thawornkaiwong (2012) have considered kernel
estimation in nonparametric regression and partly linear regression, under forms of
cross-sectional dependence. The asymptotic behaviour of series estimation under in-
dependence has been studied in Andrews (1991) and Newey (1997), while for weakly
dependent time series data, Chen and Shen (1998) and Chen, Liao and Sun (2011)
offer a rather complete treatment of asymptotic theory and robust inference of general
sieve M-estimation.

The present paper presents an asymptotic theory for nonparametric and semi-
parametric series estimation that covers quite general cross-sectional heterogeneity
and dependence, including weak and strong dependence. The conditions of the pa-
per, while designed for spatial settings, lend themselves also to time series, spatio-
temporal data, and panel data, and follow the framework of Robinson (2011), with
modifications necessitated by the nature of series estimates relative to kernel ones.
Our asymptotic results can easily be modified to cover linear and nonlinear paramet-
ric regression. Our other main contribution is establishing a theoretical background
for the use of a studentization method that offers an alternative to the existing vari-
ance estimation literature in spatial settings. In the spatial context, an extension of
HAC (heteroscedasticity and autocorrelation consistent) estimation familiar from the
time series literature, see e.g. Hannan (1957), is possible if additional information
is available, such as the economic distances between units. Conley (1999) consid-
ered HAC estimation under a stationary random field with measurement error in
distances, Kelejian and Prucha (2007) for SAR-type models, and Robinson and Tha-
wornkaiwong (2010) in a semiparametric regression set-up. However, in time series
settings small sample performance of HAC estimation can be poor and an alternative
studentization that can produce more accurately sized tests was suggested by Kiefer,
Vogelsang and Bunzel (2000). The present paper provides theoretical justification for
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employing such a studentization in spatial or spatio-temporal data.

The paper is structured as follows. In Section 2, the model setting is outlined. In
Section 3, series estimation is introduced and a uniform rate of convergence for the
nonparametric component is established. Section 4 contains asymptotic normality
results. Section 5 presents suffi cient conditions for

√
n convergence of certain semi-

parametric estimators, with data-driven studentization. Using the semiparametric
partly linear regression model, Section 6 presents a Monte Carlo study of finite sam-
ple performance and two empirical examples. Section 7 concludes. The Appendix
contains the proofs.

2. Model setting

This paper commences from the nonparametric regression model

Yi = m(Xi) + Ui, i = 1, 2, · · · , n, (1)

relating observable random variables (Xi, Yi) ∈ X×R, for some set X ⊂ Rq, where
m : X → R and Ui ∈ R satisfies

Ui = σ(Xi)ei, ei =
∞∑
j=1

bijεj,
∞∑
j=1

b2
ij <∞ i = 1, 2, · · · , n, (2)

where σ : X → R, the bij are real constants, and {εj, j ≥ 1} is a sequence of indepen-
dent random variables with zero mean and unit variance, independent of {Xj, j ≥ 1}.
We regard m and σ as nonparametric functions, and the bij as unknown. The depen-
dence on both i and j of bij, rather than just their difference i− j, distinguishes (2)

from representations for stationary time series, and we also allow bij = bijn to depend
on n. Both these aspects are important in enabling coverage of a wide range of models
for spatial dependence, including SAR models with normalized weight matrices, and
stationary models for panel data or multi-dimensional lattice or irregularly-spaced
data where the single index i in (1) and (2) requires a re-labelling of multiple indices
which is liable to change as n increases, as discussed by Robinson (2011), who consid-
ered kernel estimation of m. The ei, and thence Ui and Yi, can thus form triangular
arrays (and our proofs allow this of Xi and εj also), but we suppress the additional n
subscript for ease of notation. In SAR models, where the bij tend to reflect economic
distances between agents, we have, for all i, bij = 0 for j > n, but in models featured
in the spatial statistics literature for stationary observations on ZD or RD, with D
denoting the spatial dimension, it is frequently natural to allow bij to be non-zero for
all j, analogously to autoregressive time series models; indeed the square-summability
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condition in (2) only ensures ei has finite variance, so long range dependence in ei is
potentially permitted. The factor σ(Xi) in ei allows for a degree of conditional or
unconditional heteroscedasticity in Ui. In Section 3 we qualify (1) and (2) by detailed
regularity conditions, including restrictions on the dependence and heterogeneity of
Xi.

Under (1) and (2) , m(x) = E(Yi|Xi = x) for x ∈ X .We will thence estimate m by
a series nonparametric regression estimate m̂, constructed as a linear combination of
pre-specified approximating functions. More generally, we are interested in estimat-
ing a d× 1 vector functional a(m) of m, as in Andrews (1991), Newey (1997), where
a(m) can be estimated by a(m̂). There are many applications in which a known
functional a(m) is of interest. Simple examples include the value of m at multiple
fixed points (x1, · · · , xd) ∈ X d, a(m) = (m(x1), · · · ,m(xd))

′, and the value of the
partial derivative at fixed points,

a (m) =
(∂m(x)

∂x`

∣∣
x1
, · · · , ∂m(x)

∂x`

∣∣
xd

)′
,

where x` the `th element of x. As an example of a nonlinear functional a, Newey
(1997) took Yi to be log consumption and Xi = (log pi, log Ii)

′, a 2 × 1 vector of
log price and log income, with the demand function at a fixed point Xi = x given
by exp(m(x)), whereas approximate consumer surplus is the integral of the demand
function over a range of prices,

a(m) =

∫ p̄

p

exp
(
m(log t, log Ī)

)
dt,

for a fixed income Ī . For approximate consumer surplus at multiple fixed values of
income, a(m) would take a vector form. Another example of a(·), in the partly linear
regression model, will be discussed in detail in Section 5.

Andrews (1991) established asymptotic normality for series estimates of a vector-
valued linear a(m̂), with Xi and Ui independent and non-identically distributed, and
indicated that his proof can be extended to cover strong mixing regressors without too
much diffi culty. Newey (1997) established a uniform rate of consistency for m̂(x)−
m(x) and asymptotic normality of a(m̂)−a(m) when Xi and Ui are independent and
identically distributed (iid) and a(g) is a possibly nonlinear scalar functional, also
describing conditions under which a(m̂) converges to a(m) at parametric rate. Chen
and Shen (1998), Chen, Liao and Sun (2011) considered these issues for sieve extreme
estimates with weakly dependent time series, with rules of inference that are robust
to weak dependence. They also indicated that for certain cases of slower-than-

√
n

rate of convergence such as when a(m) = m, the asymptotic variance of coincides
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with that obtained under independence, as found for kernel estimation by Robinson
(1983), for example.

3. Estimation of m and uniform consistency rate

The estimation ofm is based on approximating functions ps(·) : X → R, s = 1, 2, · · · .
A deterministic sequence of positive integers K = Kn, nondecreasing in n, denotes
the number of ps(·) used. Its choice gives rise to a bias/variance trade-off, for a
given choice of the ps(·), increasing K reduces bias while increasing variance. of the
estimate m̂. Denoting pK(·) = (p1(·), · · · , pK(·))′, p = pn = [pK(X1), · · · , pK(Xn)]′,

let
β̂ = (p′p)−p′Y

where Y = (Y1, · · · , Yn)′ and A− denotes the Moore-Penrose pseudo-inverse of a
matrix A.

Denote a series estimate of m(x)by

m̂(x) = pK(x)
′
β̂. (3)

In order to establish a uniform consistency rate of m̂(x). we introduce the following
conditions.

Assumption A1. For n = 1, 2, · · · , the Xi i = 1, ..., n, are iid with probability
density function f(x), x ∈ X, and for i 6= j, Xi and Xj have joint probability density
function fij(x, y), x, y ∈ X, and {Xi}ni=1, is independent of {εj}∞j=1 .

Assumption A2. Ui satisfies (2) for bounded positive σ(x), and independent εj
satisfying E(ε2

j) = 1 and max
j≥1

E|εj|2+ν <∞, for some ν > 0.

For k ≥ 1, define the k × k matrix

Bk = E(pk(Xi)p
k(Xi)

′
), k = 1, 2, · · · . (4)

Let λ(A) and λ̄(A) denote the minimal and maximal eigenvalues of a non-negative
definite real matrix A, and for any real matrix A define the spectral norm‖A‖ =

λ̄
1/2

(A′A). For a function g : x ∈ X , define the uniform norm |g|∞ = sup
x∈X
|g(x)|. As

in Andrews (1991) and Newey (1997), define

ξ(k) = sup
x∈X
‖pk(x)‖, k = 1, 2, · · · .
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If m is known to be bounded, one may choose bounded and non-vanishing ps(·),

whence ξ(k) increases at rate
√
k: supx∈X ‖pk(x)‖ = sup

x∈X

( k∑
i=1

p2
i (x)

)1/2 ≤ C
√
k. It

is sometimes possible to obtain the rate of ξ(k) explicitly in terms of k. Newey
(1997) provides examples where under suitable conditions, ξ(k) = k when the ps(·)
are orthogonal polynomials, and ξ(k) = k1/2 when they are B-splines.

Assumption A3. (i) There exists c > 0 such that λ(Bk) ≥ c, ∀k ≥ 1.

(ii) K and pK(·) are such that K2ξ4(K) = o(n).

Assumption A3(i) requires Bk to be nonsingular for all k and was also assumed by
Andrews (1991) and Newey (1997); it requires any redundant ps(·) to be eliminated.
Assumption 3(ii) imposes an upper bound on the rate of increase of ξ(K) as K →∞.
Using the explicit bounds ξ(K) mentioned before the assumption, A3 (ii) reduces
to K = o(n1/4) for B-splines and K = o(n1/6) for orthonormal polynomials, under
suitable conditions.

Assumption A4. There exist a sequence of vectors βK and a number α > 0

satisfying
|m− pK′βK |∞ = O(K−α), as K →∞,

Assumption A4, which is standard in the series estimation literature, see e.g. An-
drews (1991) and Newey (1997), can be seen as a smoothness condition on m(·), if
the ps(·) are ordered so that higher values of s correspond to less smooth functions,
whence, the smoother m(·), the faster the decay of the coeffi cients of the vector βK .
Some further insights into Assumption A4 for certain choices of the ps(·), includ-
ing polynomials, trigonometric polynomials, splines and orthogonal wavelets, can be
found in Chen (2007, pp. 5573). Assumption A4 controls the bias of m̂, and α is also
related to the number of the regressors. Newey (1997) pointed out that for splines
and power series, Assumption A4 is satisfied with α = s/q where s is the number
of continuous derivatives of m.. Conditions imposing an upper bound on the rate of
increase in K, such as A3 (ii), may necessitate stronger smoothness of m.

Next we will introduce an assumption that is required to control the strength of
dependence in the Xi across i. Define

4n =
n∑

i,j=1,i 6=j

∫
X 2
|fij(x, y)− f(x)f(y)|dxdy. (5)

The rate of growth of 4n is a measure of bivariate dependence across the Xi, and
has upper bound 2n2, whereas 4n = 0 in case of independence across i. We may
view the condition 4n = O(n) as an analogue to the concept of weak dependence
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in the time series literature. Quantities of a similar nature were used by Robinson
(2011) and Robinson and Thawornkaiwong (2012). For GaussianXi,4n has a simple
upper bound. Denoting σ(X)

ij = Cov(Xi, Xj), and assuming for simplicity that σ
(X)
ii =

σ
(X)
i = 1, if , for some c0 < 1, |σ(X)

ik | ≤ c0, i, k = 1, · · · , n; i 6= k, n ≥ 1, then

4n ≤ C

n∑
i,k=1,i 6=k

|σ(X)
ik |, n ≥ 1, (6)

see Proposition 1 in Appendix B. Clearly, if max
1≤k≤n

n∑
i=1

|σ(X)
ik | ≤ Cn, then 4n = O(n).

Assumption A5. As n→∞, n−2K2ξ4(K)4n = o(1).

Assumption A5 indicates that the stronger the dependence in Xi the smaller is the
required K. In light of Assumption A4, this necessitates a stronger assumption on
the smoothness of m. When 4n = O(n), A5 reduces to K2ξ4(K) = o(n), which is
stated in A3(ii). Otherwise, A5 is a stronger condition on the upper bound of the
growth in K and ξ(K) than A3(ii).

To state our first theorem, further notation is needed. Define normalised functions
P k(x) = B

−1/2
k pk(x) with Bk as in (4) such that E(P k(Xi)P

k(Xi)
′
) = Ik. We write

P (x) = PK(x) , suppressing the superscript K in the sequel for ease of notation.
Note that P (·) = [P1K(·), · · · , PKK(·)]′, with the double subscripts in PsK(·) arising
from the definition P (·) = B

−1/2
K pK(·). Such normalised functions were also used in

Newey (1997). Let P = Pn = (P (X1), · · · , P (Xn))′ ∈ Rn×K . For a given sequence
K = Kn, define the following K × K variance-covariance matrix Σn of the K × 1

vector sum
n∑
i=1

P (Xi)Ui/
√
n:

Σn = E(P ′UU ′P/n) = V ar

(
1√
n

n∑
i=1

P (Xi)Ui

)

=
1

n

n∑
i,k=1

E
(
P (Xi)UiUkP

′(Xk)
)

=
1

n

n∑
i,k=1

γikE(σ(Xi)σ(Xk)P (Xi)P
′(Xk)), (7)

where

γik := Cov(
∞∑
j=1

bijεj,
∞∑
j=1

bkjεj) =
∞∑
j=1

bijbkj.

The following theorem obtains a uniform rate of convergence.
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Theorem 1 Under Assumptions A1-A5,

sup
x∈X
|m̂(x)−m(x)| = Op

(
ξ(K)

[√
tr(Σn)

n
+K−α

])
, as n→∞.

The rate obtained coincides with that of Newey (1997) for iid Xi and Ui, in which
case Σn = σ2E(P (Xi)P (Xi)

′) = σ2IK , leading to tr(Σn) = O(K). The first term in
square brackets reflects the contribution of the variance of m̂, while the second term
reflects the bias.

The rates obtained in Theorem 1 need to be verified to be op(1) to establish uniform
consistency of m̂. The requirement ξ(K)K−α = o(1) of negligible bias suggests that
it may be desirable to choose bounded ps(·). To evaluate the variance contribution,
suppose for the time being that the original ps(·) and thus the normalized functions

P1K , · · · , PKK , are uniformly bounded. Then, tr(Σn) = K ·
n∑

i,k=1

γik/n, making the

variance contribution ξ(K)
√
K
( n∑
i,k=1

γik/n
2
)1/2

. Under weak dependence of the ei,

n∑
i,k=1

γik = O(n), meaning the rate becomes ξ(K)
√
K/n = K/

√
n which is o(1) by

Assumption A3 (ii). Under strong dependence of the ei, the rate is slower and further
conditions restricting the increase of K and ξ(K) may be needed to show uniform
consistency. In the iid setting, the uniform rate obtained by Newey (1997) was
improved by de Jong (2002), under the additional assumption of compact X .

4. Asymptotic normality

Our ultimate interest lies in inference on the functional a(m), for which a central limit
theorem is the first step. Denoting θ0 = a(m) and θ̂ = a(m̂), we obtain in this section
the asymptotic distribution of θ̂−θ0, which requires further assumptions. Recall that
a(·) is a vector-valued functional operator.

Assumption B1. One of the following two assumptions holds.

(i) a(g) is a linear operator in g.

(ii) For some ε > 0, there exists a linear operator D(g) and a constant C = Cε <∞
such that ‖a(g)− a(m)−D(g −m)‖ ≤ C(|g −m|∞)2, if |g −m|∞ ≤ ε.

Assumption B2. For some C < ∞, D(·) of Assumption B1 satisfies ‖D(g)‖ ≤
C|g|∞.
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Assumptions B1 and B2 are taken from Newey (1997). Assumption B2 requires
D(·) to be continuous, which follows from the fact that D(·) is the Frechet-differential
of a(·) at m : a functional a(·) is Frechet-differentiable at m if there exists a bounded
linear operator D(·) such that, for any δ > 0, there exists ε > 0 such that ‖a(g) −
a(m)−D(g−m)‖ ≤ δ|g−m|∞ if |g−m|∞ ≤ ε. Assumption B1(ii) imposes a stronger
smoothness condition on a(·) at m than Frechet differentiability. It is not restrictive,
see e.g. its verification for some a(·) in Newey (1997, pp. 153). When a(·) is a linear
operator, its Frechet-derivative is itself, D(g) = a(g).

With D(·) as in Assumption B1, and the K×1 vector of normalised functions P (·)
as defined above, define the K × d matrix

A = (D(P1K), · · · , D(PKK))′ ∈ RK×d.

Consider a linear operator a(g) = (g(x1), · · · , g(xd))
′, for some (x1, · · · , xd) ∈

X d. The linearity of a(g) yields a(PsK) = D(PsK) =
(
PsK(x1), · · · , PsK(xd)

)′
, s =

1, · · · , K.

Denote by V̄n the d×d conditional variance matrix of the sum
n∑
i=1

A′P (Xi)Ui/
√
n,

V̄n = V ar

(
n∑
i=1

A′P (Xi)Ui/
√
n|X1, · · · , Xn

)
=

1

n

n∑
i,k=1

γikσ(Xi)σ(Xk)A
′P (Xi)P

′(Xk)A.

To gain insight into V̄n and its role in our statement of the asymptotic distribution,
note that one may alternatively write

V̄n = A∗′B−1
K

[
1

n

n∑
i,k=1

γikσ(Xi)σ(Xk)p
K(Xi)p

K′(Xk)

]
B−1
K A∗,

where A∗ = (D(p1), · · · , D(pK))′ = B
1/2
K A ∈ RK×d, the matrix of Frechet-derivatives

of the original series functions. One sees that the matrix V̄n takes the form of the
conditional variance matrix of a nonlinear function of least squares estimates, where
their conditional variance matrix (for a possibly misspecified model) is sandwiched
between A∗

′
and A∗. Assumption B3 below specifies conditions under which V̄n is

the correct normalising matrix to be used in Theorem 2 below. Two alternative
representations of V̄n in terms of P (·) or pK(·) have been given; in statements of
assumptions and theorems, quantities will be written in terms of P (·) to facilitate
discussion of V̄n.
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Assumption B3. As n→∞,

(i) ξ2(K)tr(Σn) = o(n1/2).

(ii) K3ξ6(K)tr(Σn)

(
1

n
+
4n

n2

)
= o(1).

(iii) nξ2(K)K−2α+1 = o(1).

Assumption B3 combines various conditions on the rate of increase of K, ξ(K),
tr(Σn) and 4n as n→∞. The rate of increase of tr(Σn) depends on that of K and
the strength of dependence in Ui and Xi. Theorem 1 required a smoothness condition
ξ(K)K−α = o(1) on m, while Theorem 2 will need the stronger smoothness condition
B3 (iii). Revisiting the case of bounded functions PsK(·) and weakly dependent ei
leading to tr(Σn) = O(K), note that B3 (i) is implied by A3 (ii), while B3 (ii) becomes
K4ξ6(K) = o(n), which implies A3 (ii).

Assumption B4. The bandwidth K and series functions pK(·) are such that, as
n→∞,

ξ2(K)√
n

max
1≤j≤n

{
n∑
i=1

|bij|
}

= o(1).

Assumption B4 requires the influence of εj for any j on Ui, i = 1, 2, · · · to die off
more quickly if ξ(K) grows faster.

Assumption B5. As n→∞, ‖V̄ −1
n ‖ = Op(1).

Assumption B5 trivially holds when the random matrix V̄n converges in probability
to a finite nonsingular matrix, as considered in the following section’s discussion of√
n -convergence, whose validation requires stronger restrictions both on a(·) and the

strength of dependence in the Xi and Ui. Theorem 3 allows V̄n to diverge with n as
long as ‖V̂n−Vn‖ = o(1) for some sequence of deterministic nonsingular matrices Vn,
which still requires, albeit weaker, dependence restrictions. We present Theorem 2
separately from Theorem 3, to separate assumptions yielding asymptotic normality
from those required for ‖V̂n − Vn‖ = op(1). Assumption B5 assumes the derivative
matrix A to have rank d for all K ≥ d. Throughout we denote by B1/2 the unique
positive definite square root of a positive definite matrix B.

Theorem 2 Under assumptions A1-A5 and B1-B5,

√
nV̄ −1/2

n (θ̂ − θ0)→d N(0, Id), as n→∞. (8)

The proof of Theorem 2 is given in Appendix A.
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Defining

Vn = E(V̄n) = V ar

(
n∑
i=1

A′P (Xi)Ui/
√
n

)
=

1

n

n∑
i,k=1

γikE
[
σ(Xi)σ(Xk)A

′P (Xi)P
′(Xk)A

]
,

we study conditions under which ‖V̄n−Vn‖ converges in probability to zero, allowing
V̄n to be replaced by Vn in (8). In Theorem 3 below, the ith element of θ̂ is shown
to be

√
n(V

−1/2
n )ii-consistent, where (V

−1/2
n )ii denotes the ith diagonal element of

V
−1/2
n . To gain some intuition of implications of this rate, we focus in this paragraph
on scalar a(·). We rule out the possibility of shrinking Vn, which corresponds to
presence of negative dependence in Xi or Ui, which is relatively unlikely for real data.
The above expression for Vn suggests that Vn = O(1) corresponds to short range
dependence in A′P (Xi)Ui if K were fixed. This may still allow for the possibility
of long range dependence in A′P (Xi) or Ui to a certain degree. With increasing K,
Vn may be increasing even under short range dependence of A′P (Xi)Ui. The main
contribution of this paper is developing inference procedures when Vn is unknown and
deriving asymptotic distribution results under additional generality in the strength
of dependence in both Xi and Ui.

The following two conditions restrict the strength of dependence in the Xi and Ui
across i. Again, an upper bound is imposed on 4n.

Assumption B6. As n→∞,

ξ8(K)(n+4n)

n2

(
max
1≤j≤n

n∑
i=1

∣∣γij∣∣)2
= o(1).

Assumption B6 indicates how the dependence in the data restricts the choice of K
and the ps (.). The stronger the dependence, the slower the rate of increase in K and
ξ(K), leading to further repercussions on the smoothness condition in Assumption
B3 (iii), where a larger value of α would be needed to compensate for slower rate of
growth in K.

Next we state an assumption on the strength of dependence in Xi across i in terms
of 4th joint cumulants. Recalling that A = (A1, · · · , AK)′ ∈ RK×d, introduce the
following notations:

h
(`)
i = σ(Xi)A

′
`P (Xi), (9)

h̄
(`)
i = σ(Xi)A

′
`P (Xi)− E (σ(Xi)A

′
`P (Xi)) , 1 ≤ i ≤ n, 1 ≤ ` ≤ d,

so h̄(`)
i is a de-meaned version of h(`)

i .
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Assumption B7. E
[
(h̄

(`)
i )4

]
<∞ and κ(h̄

(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

) are such that

max
1≤`,p≤d

1

n2

∣∣∣∣∣
n∑

i1,i2,i3,i4=1

γi1i2γi3i4κ(h̄
(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

)

∣∣∣∣∣ = o(1), (10a)

where κ(., ., ., .) denotes the fourth joint cumulant of its arguments.

This assumption is not restrictive and may allow strong dependence in bothXi and
Ui. One can have arbitrarily strong dependence in Ui if the h̄

(`)
i are weakly dependent

in fourth cumulants, upper bounding the left side of (10a) by

C max
1≤`,p≤d

1

n2

n∑
i1,i2,i3,i4=1

|κ(h̄
(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

)|,

since |γik| ≤ C <∞.

Assumption B8. As n→∞, ‖V −1
n ‖ = O(1).

The following theorem may be compared with Theorem 2.

Theorem 3 Under Assumptions B7-B8,

‖V̄ −1
n ‖ = Op(1), (11)

‖V̄n − Vn‖ = op(1). (12)

Consequently, under Assumptions A1-A5 and B1-B7,
√
nV −1/2

n (θ̂ − θ0)→d N(0, Id). (13)

The following section develops statistical inference on the basis of Theorem 3.

5.
√
n− inference

We establish suffi cient conditions for Vn to converge to a finite limit V , as n → ∞,
whence Theorem 3 implies

√
n−convergence of θ̂ to θ0. Attainment of this parametric

rate by semiparametric estimates has received wide interest in the econometric litera-
ture, following Robinson (1988) and Powell, Stock and Stoker (1989), who used kernel
estimation. Newey (1997) developed

√
n-convergence of a general semiparametric es-

timate, using series estimation, while Chen and Shen (1998) considering extensions
for weakly dependent time series. It is of interest to develop results in a general cross-
sectional dependence setting, since semiparametric estimates, such as for the partly
linear regression model, are widely used in empirical work. For statistical inference
this requires a studentization that is robust against general spatial dependence and
heterogeneity. The present section discusses

√
n-convergence and studentization.
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5. 1
√
n - convergence

The following assumption, fromNewey (1997), states the key condition for
√
n−convergence.

Assumption C1. There exists a d×1 vector-valued function w(x) = (w1(x), · · · , wd(x))′

with the following properties.

(i) E[w(Xi)w
′(Xi)] is finite and nonsingular,

(ii) D(m) = E[w(Xi)m(Xi)], D(PsK) = E[w(Xi)PsK(Xi)], 1 ≤ s ≤ K for all K,

(iii) E[‖w(Xi)− δKP (Xi)‖2]→ 0 for some sequence of fixed d×K matrices δK .

Suffi cient conditions for Assumption C1 can be found in Newey (1997, pp. 155).
The vector-valued function w(·) is the element of the domain of D(·) used in the
Riesz representation of D(·). Assumption C1 (iii) requires such w(·) to lie in the
linear span of the series functions. Newey (1997) verified that Assumption C1 holds
for the semiparametric estimands in the partly linear and single index models and also
for the case of average consumer surplus estimation, where the quantity of interest is
the approximate consumer surplus integrated over a range of income (as discussed in
Section 2).

By Assumption C1, D(PsK) = E[w(Xi)PsK(Xi)], 1 ≤ s ≤ K, so one can write
A = E[P (Xi)w

′(Xi)]. Since the K × 1 vector of normalized functions P (·) satisfies
E[P (Xi)P

′(Xi)] = IK , A′P (x) can be written as the mean square projection of w(x)

on the K × 1 vector P (·) of approximating functions:

A′P (x) = A′I−1
K P (x) = E[w(Xi)P

′(Xi)]E[P (Xi)P
′(Xi)]

−1P (x).

Denote d× 1 vector A′P (x) =: vK(x) = (v1K(x), · · · , vdK(x))′, with the subscript K
indicating that vK is a mean-square projection of w onto the linear space spanned by
K series functions. Then Vn can be written as

Vn =
1

n

n∑
i,k=1

γikE[σ(Xi)σ(Xk)vK(Xi)v
′
K(Xk)].

Next, replace vK(·) by the function w(·) to give the matrix

Wn =
1

n

n∑
i,k=1

γikE[σ(Xi)σ(Xk)w(Xi)w
′(Xk)].

The following assumption provides suffi cient conditions for
√
n -convergence of a(m̂)

to a(m).

Assumption C2. (i) V = lim
n→∞

Wn exists; (ii)
n∑

i,k=1

|γik| = O(n).
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Existence of the limit V is a condition imposed on the collective strength of depen-
dence in Ui and Xi, comparable to Assumption A4 of Robinson and Thawornkaiwong
(2012). Assumption C2 (ii) is a weak dependence restriction on ei.

Theorem 4. Under Assumptions C1 and C2,

Vn → V <∞, as n→∞.

Consequently, under Assumptions A1-A5, B1-B7, and C1-C2,
√
n(θ̂ − θ0)→d N(0, V ), as n→∞.

Theorem 4 obtains
√
n - convergence for certain semiparametric estimates under

weak dependence. The following sub-section discusses estimation of V, needed for
interval estimation or hypothesis testing.

5.2 Studentization

The Introduction discussed diffi culties with HAC estimation in dealing with cross-
sectional dependence. It is possible, however to studentize a(m̂) − a(m) without
employing any particular dependence structure, following the approach of Kiefer,
Vogelsgag and Bunzel (2000)

Recalling the definitions BK = E(pK(Xi)p
K(Xi)

′), P (x) = B
−1/2
K pK(x), A =

(D(P1K), · · · , D(PKK))′ ∈ RK×d, A∗ = (D(p1), · · · , D(pK))′ = B
1/2
K A ∈ RK×d with

D(·) given in Assumption B1(i), introduce the estimates of A∗ and BK:.

Â∗ =
∂a(pK′β)

∂β

∣∣
β=β̂

, B̂K = p′p/n =

n∑
i=1

pK(Xi)p
K(Xi)

′/n. (14)

We thence construct the sample analogue Â∗′B̂−1
K p′Û/

√
n of A′P ′U/

√
n, where, for

M̂ =
(
m̂(X1), · · · , m̂(Xn)

)
, Û = Y − M̂ . Next set

Ŝ∗n,m =

m∑
i=1

Â∗′B̂−1
K pK(Xi)Ûi/

√
n, 1 ≤ m ≤ n,

and define

Ĉn =
1

n

n∑
m=1

Ŝ∗n,mŜ
∗′
n,m, Ψd =

∫ 1

0

[Wd(r)− rWd(1)][Wd(r)− rWd(1)]′dr,

where Wd(·) denotes a d-dimensional vector of independent Brownian motions, so
Ψd is the integral of the outer product of the d-dimensional multivariate Brownian
bridge. Recall that EWd(r)Wd(u)′ = rI, 0 ≤ r ≤ u ≤ 1.
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Assumption C3. (i)
[rn]∑
i=1

n∑
k=[rn]+1

|γik| = o(n) uniformly in r ∈ [0, 1];

(ii) max
1≤i≤n

n∑
k=1

|γik| = O(1).

Assumption C2 (ii) used in Theorem 4 required ei to be weakly dependent. As-
sumption C3 (ii) further rules out the presence of any "dominant" unit whose error
covariances with new units added to the sample are persistently significant. As-
sumption C3 (i) requires some falling-off of dependence as |i − k| increases, which
inevitably necessitates the ordering of the data to carry at least some information of
the structure of dependence, albeit with a significant relaxation from the time series
setting where dependence is a function of |i − k|. Both C3 (i) and (ii) are natural
implications of weak dependence in the time series context where dependence is a
fast-decreasing function of time lag. Our setting differs in allowing γik = γikn to ad-
mit a triangular array structure, and in relaxing the link between γik and |i− k|. For
example, Assumption C3(i) is satisfied if there exists a positive function η(·) such that

|γik| ≤ η(i − k), i, k = 1, 2, · · · , and
∞∑

j=−∞
η(j) < ∞ (see Proposition 2 in Appendix

B). If γik has triangular array structure, as in the pure SAR model for example, then
Assumption C3 (i) is potentially more restrictive. In this setting, Assumption C3
(ii) allows a unit i to interact with infinitely many others as the sample increases, so
long as the bilateral interaction γikn, k = 1, 2, · · · , decays suitably fast as n increases,
whereas C3 (i) requires a faster uniform-in-n rate of reduction in γikn as |i − k| in-
creases. Therefore, our assumptions require that the ordering of data carries some
meaning. This rules out random data collection, without any record of how units
are related. Another issue is that in spatial settings units cannot be unambiguously
ordered, for example if they are observed on a plane. Nonetheless, there are many
economic applications where data can be ordered to satisfy Assumption C3. For
example, with firm data, one may expect that firms using similar inputs or produc-
ing similar outputs would exhibit high correlation in disturbances, the knowledge of
which can help order the data. These considerations are pursued in the Monte Carlo
study in the following section.

Assumption C4. (i) 4n = O(n); (ii) tr(Σn) = O(K); (iii) λ̄(BK) = O(1); (iv)√
nξ3(K)K−α = o(1).

Assumption C4 (i) can be seen as weak dependence condition on the Xi, whereas
Assumption C4 (iii) restricts the choice of the ps (.) , requiring second moments to be
bounded. Assumption C4 (ii) is a condition on the strength of dependence across i
in the combined quantity P (Xi)Ui. Assumption C4 (iv) strengthens the smoothness
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condition of Assumption B3 (iii).

Assumption C5. E(ε4
j) = κ <∞, j = 1, 2, · · · .

Recall that the functional derivative D(·) from Assumptions B1 and B2 is the
Frechet differential of the functional a(·), evaluated at m. Now, let D(·; g) denote the
functional derivative of a(·) evaluated at g. Let D(·; g) =

(
D1(·; g), · · · , Dd(·; g)

)′
.

Assumption C6. For some 0 < C, ε < ∞ and all g̃, ḡ such that |g̃ −m|∞ ≤ ε and
|ḡ −m|∞ ≤ ε, ‖Di(g; g̃)−Di(g; ḡ)‖ ≤ C|g|∞|g̃ − ḡ|∞, i = 1, · · · , d.

Assumption C6 is from Newey (1997) and requires theDi(·; g) to exhibit continuity
over g, where the derivative is taken.

The following theorem finds that the asymptotic distribution of θ̂ − θ0, when stu-
dentized by Ĉn, is free from the unknown variance matrix V and only depends on
d.

Theorem 5. Under the assumptions of Theorem 4, and Assumptions C1-C6,

Ĉ−1/2
n

√
n(θ̂n − θ0)→d Ψ

−1/2
d Wd(1).

Now, suppose we are interested in testing the hypothesis H0 : a(m) = r against
the alternative H1 : a(m) 6= r for a d × 1 fixed vector r. Then we can construct the
statistic t∗n = n(θ̂− r)′Ĉ−1

n (θ̂− r). Since t∗n = ‖
√
n(θ̂− r)′Ĉ−1/2

n ‖2, Theorem 5 implies
the following result.

Theorem 6. Under the assumptions of Theorem 5,

t∗n ⇒ Wd(1)′Ψ−1
d Wd(1), under H0,

t∗n ⇒∞, under H1.

The critical values cα satisfying Pr(tn ≤ cα)→ 1−α, required to carry out hypothesis
tests can be obtained from Table 2 of Kiefer, Vogelsgag and Bunzel (2000) for d =

1, · · · , 30.

6. Numerical results for the partly linear model

The present section contains Monte Carlo investigation of finite-sample performance
of our estimates and proposed rules of statistical inference in simulated cross-sectional
settings, and applies them to two empirical data sets, in both cases for the partly linear
regression, which is discussed in the following sube-section.
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6.1. Partly linear regression model

Partly linear regression restricts m(·) in (1) by requiring m(·) that a d-dimensional
proper subvector, denoted Zi, of Xi enters linearly. Denoting by Wi the vector
consisting of the remaining elements of Xi, the model can written as

Yi = Z ′iδ0 + h0(Wi) + Ui, (15)

where h0(·) is a nonparametric function and δ0 is an unknown parameter vector.
The model is particularly suitable when Zi contains categorical variables, and is of-
ten used when the overall number of regressors is large, when a fully nonparametric
specification suffers the curse of dimensionality. This model has received much atten-
tion in kernel estimation, see e.g. Robinson (1988) and Fan and Li (1999), where δ0

can be estimated at
√
n rate despite first stage nonparametric estimation having a

slower-than-
√
n rate.

Series estimation of (15) had been considered in Chamberlain (1986), where the
choice of series functions takes into account the partly linear form. The first d are
functions of Zi only, while the remaining K − d are functions of Wi only. The series
estimate of δ0 is then the first d elements of β̂, and ĥ(x) = m̂(z, w) − z′δ̂. At first
glance, the series estimation of δ0 may seem very different in form from the kernel
estimate, where first-stage non-parametric regression estimates of Yis and Zi in terms
of Wi are required, but they are in fact very similar, as explained below.

As in Robinson (1988), subtracting E(Yi|Wi) = E(Zi|Wi)
′δ0 + h0(Wi) from (15)

yields
Yi − E(Yi|Wi) = [Zi − E(Zi|Wi)]

′δ0 + Ui.

Robinson (1988) thence replaced the nonparametric conditional expectations by ker-
nel estimates, and obtained the least squares estimate

δ̃ = [(Z − Ẽ(Z|W ))′(Z − Ẽ(Z|W ))]−1(Z − Ẽ(Z|W ))′(y − Ẽ(y|Z)),

with Z = (Z1, · · · , Zn)′, W = (W1, · · · ,Wn)′, and Ẽ(Z|W ) and Ẽ(y|W ) denoting
kernel estimates of the n × d matrix of conditional expectations E(Z|W ) and the
n × 1 vector E(y|W ). In series estimation, the same operation is implemented,
albeit implicitly. Recall that δ̂ is the first d elements of β̂ such that β̂ = (δ̂

′
, λ̂
′
)′ =

(p′p)−p′Y ∈ RK , with pK(Zi,Wi) = (Z ′i, q(Wi)
′)′, where q(·) is the vector of K − d

series functions in terms of Wi. Define the n×n "hat" matrix M := I −P(P ′P)−P ′,
for the n× (K − d) matrix P = (q(W1), · · · , q(Wn))′. Then by partitioned regression

δ̂ = (Z ′MZ)−Z ′My.
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The projections P(P ′P)−1P ′Z and P(P ′P)−1P ′y are series estimates of E(Z|X) and
E(y|X). Therefore, the series estimate δ̂ of δ0 effectively takes the same form as the
kernel estimate δ̃ of Robinson (1988), with series estimates of E(Z|W ) and E(y|W )

replacing corresponding kernel estimates.

Next, we clarify the functional a(·) used to represent δ0. There is more than
one a(·) that yields a(m) = δ0. Andrews (1991) notes that one could write a(m) =

∂m(w, z)/∂z = δ0 for any w, z. Here we use the functional of Newey (1997), since this
leads to

√
n-consistency. Denote Z∗ = Z−E(Z|W), where Z and W are random variables

independent of the data used to construct δ̂. Suppose E(Z∗Z∗′) is non-singular, which
is an identification condition for δ0, and consider

a(m) = E
{

[E(Z∗Z∗′)]−1Z∗m(W, Z)
}
.

Now

E(Z∗Z∗′) = E(ZZ′)− E[E(Z|X)Z′]− E[ZE(Z′|W)] + E[E(Z|W)E(Z′|W)]
= E(ZZ′)− E[E(Z|W)Z′] = E(Z∗Z′),

since E[ZE(Z′|W)] = E[E(Z|W)E(Z′|W)] by the law of iterative expectations, and

E[Z∗h0(W)] = E[Zh0(W)]− E[E(Z|W)h0(W)] = 0.

Thus
a(m) = [E(Z∗Z∗′)]−1 {E(Z∗Z′)δ0 + E[Z∗h0(W)]} = δ0.

Likewise, since β̂ = (δ̂
′
, λ̂
′
)′, m̂(w, z) = z′δ̂ + q(w)′λ̂,

a(m̂) = E
{

[E(Z∗Z∗′)]−1Z∗m̂(X, W)
}

= [E(Z∗Z∗′)]−1
[
E(Z∗Z′)δ̂ + E[Z∗q(W)′]λ̂

]
= δ̂.

6.2 Monte Carlo study of finite sample performance

Our simulations take both Wi and Zi in (15) to be one-dimensional, and throughout
set δ0 = 0.3 and h(w) = log(1 +w2). Two issues we address relate to the diffi culty
of ordering the data in line with the requirements of Assumption C3. First, there may
be noise in our information about the ordering, for example even if one knows which
characteristic of individual units underpins the structure of spatial dependence, it
may be observed with error. Second, it may not be straightforward to order the data
when the underlying dependence structure is complex, for example when units reside
on a plane. Our experiments entail two designs that cover the two issues separately.
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In the first set of simulations, we generate random locations for individual units
along a line, which determines the underlying dependence structure. We then com-
pare the performance of our studentization under the correct ordering of data with
that under a perturbed ordering, where locations are observed subject to error,
but used to order the data. To be specific, the locations of the observations, de-
noted s = (s1, · · · , sn)′, were generated by a random draw from the uniform dis-
tribution over [0, n]. Keeping them fixed across replications, Ui and Zi were gen-
erated independently as scalar normal variables with mean zero and covariances
Cov(Ui, Uj) = Cov(Zi, Zj) = ρ|si−sj |, using various ρ ∈ (0, 1). To construct Wi, we
generate another scalar normal random variable Vi in the same way as Ui and Zi and
letWi = 1 +Vi+ 0.5Zi. The dependent variable is then Yi = log(1 +X2

i ) + 0.3Zi+Ui.

For the studentization, we add noise to the locations, to generate four sets of
"perturbed" locations: defining

ε′ = (ε′1, · · · , ε′n)′ ∼ N(0, 4In), ε′′ = (ε′′1, · · · , ε′′n)′ ∼ N(0, 25In),

ε′′′ = (ε′′′1 , · · · , ε′′′n )′ ∼ N(0, 100In), ε′′′′ = (ε′′′′1 , · · · , ε′′′′n )′ ∼ N(0, 400In),

we take

s′i = si + ε′i, s′′i = si + ε′′i , s′′′i = si + ε′′′i , s′′′′i = si + ε′′′′i , i = 1, ..., n,

We base the studentization on 5 different orderings of the data, according to the five
sets of locations s, s′, s′′, s′′′, s′′′′.

We consider two sample sizes, n = 100, 400 and 4 levels of dependence, ρ =

0, 0.2, 0.4, 0.6. For each of the 8 combinations, three bandwidth values, K = 4, 6, 9

were tried, and for the series functions of Wi, the first K − 1 orthonormal Legendre
polynomials were used. The results are based on 1000 replications.

We first analyse performance of the estimates of both the nonparametric function
m and semiparametric quantity a(m).. We report in Table 1 the Monte Carlo MSE,
bias and variance of m̂ at a fixed point (w, z) = (0.5, 0.5), the Monte Carlo integrated
MSE (MISE) of m̂ to convey global performance, and the MSE of δ̂. The bias and
variance of m̂(0.5, 0.5) are in line with the prediction that larger K reduce bias while
increasing variance, while under all values of ρ, K = 4 or K = 6 led to the smallest
MSE for n = 100, while K = 6 did so for n = 400. For the MISE, K = 4 was
best when n = 100, and K = 6 was best for n = 400. The Monte Carlo MSE of
estimate δ̂ was relatively insensitive to K across all 8 settings, which is important as
the optimal choice of K for semiparametric estimation is often more diffi cult than for
nonparametric estimation.

Our next objective is to investigate performance of the studentization in Section

20



5.3. Theorem 5 implies in this setting,

n(δ̂ − δ0)′Ĉ−1
n (δ̂ − δ0)→d W

2
1 (1)

√
Ψ1,

√
n/Ĉn(δ̂ − δ0)→d W1(1)/

√
Ψ1.

Kiefer, Vogelsang and Bunzel,2000, Table 2) gave simulated values of the percentiles of
W 2

1 (1)/Ψ1, from which we derive the 99.5th, 97.5th and 95th percentiles ofW1(1)/
√

Ψ1

as
√

101.2,
√

46.39 and
√

28.88, respectively. We thence construct the asymptotic

95% confidence interval for δ0,

[
δ̂ −

√
46.39Ĉn/n, δ̂ +

√
46.39Ĉn/n

]
. Table 2 reports

the Monte Carlo average length of this interval based on correctly ordering the
data according to s. The length decreases with n and increases with ρ and is fairly
insensitive to K. Similar patterns are observed under perturbed ordering.

Table 3 reports empirical coverage probabilities for the 99%, 95% and 90% confi-
dence intervals under the five different orderings of data, based on locations s, s′, s′′, s′′′,
and s′′′′. When ρ = 0, studentizations with all orderings produce a rather precise cov-
erage probabilities for both samples sizes. For ρ = 0.2, 0.4, 0.6 and correct ordering
based on s, the coverage probabilities suffer slightly in the smallest sample n = 100,
while being fairly good for n = 400, at least for ρ = 0.2 and 0.4. The more we perturb
the ordering, a gradual deterioration is reported. Nevertheless, even with the greatest
perturbations, caused by substantial noises V ar (ε′′′i ) = 100 and V ar (ε′′′′i ) = 400, the
results are encouraging.

Table 4 reports empirical power of testing H0 : δ0 = δ against H1 : δ0 6= δ, for
δ = 0.3, 0.4, 0.5, 0.7. Of course columns corresponding to δ = 0.3 report empirical
size. Not surprisingly, for ρ = 0, powers across different orderings are similar, while
for ρ = 0.2, 0.4 and 0.6, power tends improve with increasing perturbations.

The second set of simulations aims to investigate the implications of ordering spa-
tial data with a single index when the underlying structure is more complex. We
generate random locations on a plane, then order based on an ascending distance
from the origin (0,0). To generate the data, we follow the random location setting
of Robinson and Thawornkaiwong (2012), where the vector of locations of the ob-
servations, denoted s1, · · · , sn, were generated by a random draw from the uniform
distribution over [0, 2n1/2] × [0, 2n1/2]. Keeping these locations fixed across replica-
tions, Ui and Zi were generated independently as scalar normal random variables with
mean zero and covariances Cov(Ui, Uj) = Cov(Zi, Zj) = ρ‖si−sj‖. We generated Wi

and Yi, and used the same K , series functions and number of replications, as before,
but took ρ = 0, 0.2, 0.4, 0.52 for n = 100 and ρ = 0, 0.2, 0.35, 0.5 for n = 400. The
random location setting implies the degree of dependence is determined not only by
ρ, but also by the distances between locations. The fact that we are considering loca-
tions on a plane rather than along a line implies that ρ produces differing strengths
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of dependence compared to the familiar time series AR(1) model, making it diffi cult
to get a sense of the degree of dependence in the data generated. One measure of

dependence that might be used in comparisons is
n∑

i,j=1

|Cov(Ui, Uj)|. Our choices of

ρ led this quantity to be of of similar magnitude to that in the AR(1) model with
lag-1 autocorrelation ρ = 0, 0.2, 0.4, 0.6 : for n = 100, in our spatial setting it took
values 100, 152, 255, 384 for ρ = 0, 0.2, 0.4, 0.52, respectively, which are comparable
to 100, 150, 232, 396 in the AR(1) with ρ = 0, 0.2, 0.4, 0.6; for n = 400, it took val-
ues 400, 611, 949, 1602 for ρ = 0, 0.2, 0.4, 0.52, respectively, which are comparable to
400, 599, 930, 1590 in the AR(1) with ρ = 0, 0.2, 0.4, 0.6.

We report in Table 5 the Monte Carlo MSE, bias and variance of m̂(0.5, 0.5), MISE
of m̂, and MSE of δ̂0. Again, patterns of bias and variance of m̂ with changing K is
in line with predictions, and K = 4, 6 generated the lowest MSE for all combinations
for n = 100 , 400 respectively.

As mentioned before, we ordered the data in ascending Euclidean distance from the
origin for the purpose of studentization. Table 6 reports Monte Carlo average length
of 95% confidence intervals. As before, it decreases with n, increases with ρ and shows
little variation across K. Table 7 reports the empirical coverage probabilities for the
99%, 95% and 90% confidence intervals, which seem despite the issues of ordering
and dependence. Table 8 reports empirical power of testing H0 : δ0 = δ against
H1 : δ0 6= δ, for δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1 with 5% significance level. The
asymptotic distribution of the test statistic is symmetric, and as expected, powers
reported for δ = 0.1 and 0.2 are similar to those reported for δ = 0.5 and 0.4,
respectively.
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Table 1: Monte Carlo MSE, Variance and Bias
ρ n K MSE(m̂x) V ar(m̂x) Bias(m̂x) MISE(m̂) MSE(δ̂)

0 100 4 0.0353 0.0283 0.0842 0.0595 0.0126
6 0.035 0.0347 0.017 0.0701 0.0125
9 0.0463 0.0463 0.0039 0.0989 0.0132

400 4 0.0162 0.0071 0.0956 0.0265 0.0033
6 0.0082 0.0079 0.0174 0.0199 0.0033
9 0.0098 0.0098 -0.0024 0.025 0.0034

0.2 100 4 0.0526 0.0453 0.0855 0.0863 0.0216
6 0.055 0.0546 0.0201 0.0992 0.022
9 0.0671 0.067 0.0066 0.1261 0.0229

400 4 0.0219 0.0121 0.099 0.033 0.005
6 0.0141 0.0135 0.0254 0.0278 0.0051
9 0.0151 0.0151 0.0041 0.0334 0.0051

0.4 100 4 0.0693 0.0647 0.0674 0.106 0.0268
6 0.0757 0.0756 0.005 0.1207 0.0273
9 0.0915 0.0915 -0.002 0.1493 0.0278

400 4 0.025 0.0148 0.1014 0.0394 0.0065
6 0.0175 0.0168 0.0265 0.0347 0.0065
9 0.0193 0.0192 0.0058 0.0404 0.0065

0.6 100 4 0.0863 0.0809 0.0738 0.1326 0.0341
6 0.0861 0.0859 0.0112 0.1465 0.0348
9 0.1028 0.1028 -0.0013 0.1739 0.0358

400 4 0.034 0.0253 0.0931 0.0517 0.0107
6 0.0272 0.0267 0.0222 0.0481 0.0107
9 0.0301 0.0301 -0.0006 0.0542 0.0107

Table 2: Monte Carlo average 95 % CI length
n K ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6

100 4 0.5605 0.6746 0.7447 0.8328
6 0.5608 0.6701 0.7401 0.8276
9 0.5608 0.6736 0.7353 0.8224

400 4 0.2955 0.3519 0.4043 0.4889
6 0.2933 0.3501 0.4039 0.4874
9 0.2922 0.3489 0.402 0.4869
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Table 5: Monte Carlo MSE, Variance and Bias
ρ n K MSE(m̂x) V ar(m̂x) Bias(m̂x) MISE(m̂) MSE(δ̂)

0 100 4 0.1884 0.024 0.4054 0.1965 0.0149
6 0.0315 0.0258 0.0752 0.0587 0.0131
9 0.0384 0.0384 -0.0029 0.0808 0.0136

400 4 0.1717 0.006 0.407 0.1785 0.0037
6 0.016 0.0064 0.098 0.0264 0.0031
9 0.0081 0.0077 0.0211 0.0213 0.0031

0.2 100 4 0.1891 0.0316 0.3969 0.2009 0.0191
6 0.0394 0.0334 0.0775 0.0676 0.017
9 0.0433 0.0432 0.0097 0.0873 0.017

400 4 0.1707 0.0083 0.403 0.1811 0.004
6 0.0168 0.0083 0.0924 0.028 0.0035
9 0.01 0.0099 0.0138 0.0233 0.0034

0.4 100 4 0.198 0.0473 0.3881 0.2107 0.0184
6 0.0529 0.0475 0.0734 0.0815 0.0179
9 0.0578 0.0578 0.0028 0.1009 0.018

0.35 400 4 0.177 0.0118 0.4064 0.1827 0.0046
6 0.0214 0.0115 0.0996 0.0321 0.0042
9 0.013 0.0126 0.0205 0.0272 0.0042

0.52 100 4 0.2089 0.0558 0.3913 0.2186 0.0225
6 0.0614 0.0542 0.085 0.0942 0.021
9 0.0654 0.065 0.0195 0.1146 0.0212

0.5 400 4 0.1778 0.0164 0.4018 0.1878 0.0062
6 0.0264 0.017 0.0968 0.0387 0.0058
9 0.0183 0.018 0.0171 0.0343 0.0058

Table 6: Monte Carlo average 95 % CI length
n K ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.52

100 4 0.6241 0.6653 0.6816 0.717
6 0.5823 0.628 0.6471 0.6776
9 0.5812 0.624 0.6484 0.6747

n K ρ = 0 ρ = 0.2 ρ = 0.35 ρ = 0.5

400 4 0.3099 0.3234 0.3483 0.3793
6 0.2869 0.3026 0.3288 0.361
9 0.2862 0.3016 0.3271 0.3584
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6.3 Empirical examples

We apply our methodology in two illustrative empirical examples, using (15) with
data from Yatchew (2003). Series estimation yields similar estimates of δ0 to the
kernel ones in Yatchew (2003). To test the hypothesis H0 : δ0` = 0 against H1 :

δ0` 6= 0, ` = 1, · · · , d, the test using the usual t-statistic derived under independence
contrasted with that based on the test statistic t∗n = n(θ̂− r)′Ĉ−1

n (θ̂− r), r = 0 of our
Theorem 6, which allows for spatial dependence.

The first example involves hedonic pricing of housing attributes. The data consist
of 92 detached homes in Ottawa that were sold during 1987. The dependent variable
is the sale price of a given house (price), while the parametrically involved regressors
consist of attributes of the house, including lot size (lotarea), square footage of hous-
ing (usespc), number of bedrooms (nrbed), average neighbourhood income (acginc),
distance to highway (dhwy), presence of garage (grge), fireplace (frplc), and luxury
bathroom (lux). The nonparametric function h(.) has two arguments, being location
coordinates s =south and w = west):

price = h(s, w) + δ1frplc+ δ2grge+ δ3lux+ δ4acginc+ δ5dhwy

+δ6lotarea+ δ7nrbed+ δ8usespc+ u.

The first set of columns of Table 9 recalls the kernel estimates reported in Yatchew
(2003) based on methods and theory of Robinson (1988), and the second set reports
the corresponding series estimation results, based on series functions (1, s, w, sw).
The estimates of coeffi cients, their standard errors and the t-statistics are broadly
similar, revealing significance of many of the regressors at the 5% level.

In applying the studentization of the previous section, we ordered the data in
ascending distance from the geographical coordinate (s, w) = (0, 0), expecting spatial
dependence in the error terms of neighbouring houses. In Table 9, SE refers to
standard error computed under the assumption of independence, and TS∗ is the
test statistic t∗n of Section 4.5 with critical values 46.39, 28.88 at sizes 5% and 10%,
respectively. Test statistics labelled * are significant at 5% level and those with 4 at
10% level. Our tests, which attempt to account for dependence, find that the presence
of fireplace and luxury bathroom are 5% significant, while square footage, presence
of fireplace, luxury bathroom, and garage are 10% significant; the latter findings may
be more informative, bearing in mind the small sample size of 92. The contrasting
conclusions on the significance of δ estimates between the t-test under independent
errors and test t∗n allowing for dependence may be due to cross-sectional dependence
in the data, as seems natural, given that prices of houses of the same type, sold in
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the same year and city, would have been subject to an overlapping set of demand and
supply side factors, driven by the same macroeconomic fundamentals.

Table 9: Hedonic House Pricing
kernel series

Variable Coef SE t-stat Coef SE t-stat TS∗

frplc 12.6 5.8 2.17* 12.7 5.62 2.26* 126.23*
grge 12.9 4.9 2.63* 12.8 4.31 2.97* 29.984

lux 57.6 10.6 5.43* 58.2 11.3 5.15* 177.10*
acginc 0.6 0.23 2.61* 0.61 0.2 3.08* 22.06
dhwy 1.5 21.4 0.07 -9.2 5.86 -1.57 10.38
lotarea 3.1 2.2 1.41 3.8 1.85 2.03* 22.12
nrbed 6.4 4.8 1.33 7.8 4.2 1.854 14.57
usespc 24.7 10.6 2.33* 23.6 11.6 2.04* 37.674

The second empirical example concerns the following cost function of distributing
electricity, also from Yatchew (2003):

tc = δ1wage+ δ2pcap+
δ3

2
wage2 +

δ4

2
pcap2 + δ5wage · pcap

+δ6PUC + δ7kwh+ δ8life+ δ9lf + δ10kmwire+ h(cust) + u.

The dependent variable, tc, is the log total cost per customer. The parametrically
involved regressors are wage (log wage rate), pcap (log price of capital), PUC (a
dummy for public utility commissions that deliver additional services, and therefore
may benefit from economies of scale), life (log of the remaining life of distribution
assets), lf (log of the load factor, measuring capacity utilization relative to peak
usage), and kmwire (log of kilometers of distribution wire per customer). The non-
parametrically involved regressor is cust (log of the number of customers). Yatchew
(2003) was interested in estimating the conditional expectation of tc given cust, hold-
ing the other regressors fixed, as the shape of this curve reveals whether there are
increasing/decreasing returns to scale in electricity distribution., For the purpose of
the present paper, we are interested in estimating the δi and testing their significance,
H0 : δl = 0, versus H1 : δl 6= 0 for l = 1, · · · , d, when allowing for dependence in the
disturbance u. The data consists of 81 municipal distributors in Ontario, Canada in
1993.

The first set of columns of Table 10 repeat the kernel estimates of the δi and
their standard errors assuming uncorrelatedness of error terms, taken from Yatchew
(2003). The second set of columns report the δ̂i, using the first three Legendre
polynomials in the series estimaton. Again, test statistics labelled ∗ are 5% significant,
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while those labelled 4 are 10% significant. In order to apply the studentization of
Section 5.2, two different orderings were tried. First, the data were ordered in the
ascending wage rate faced by the firm, with the rationale that firms may be subject
to input shocks, and those with similar wage rate may use similar inputs, leading to
dependence in disturbances. Test statistics based on this studentization are denoted
TS∗w. Second, the data were ordered according to the number of employees of the
firm, which is a measure of size, noting that firms of similar size may be subject to
similar shocks, or alternatively, may be dependent due to competition. Test statistics
based on this studentization are denoted TS∗e . Inference based on the assumption of
uncorrelated disturbances found PUC, life, lf and kmwire to be 5% significant using
kernel estimation, while PUC, life and kmwire are 5% rsignificant using with series
estimation. When allowing for dependence in disturbances, and with both orderings,
life and kmwire were still found to be 5% significant, while lf , pcap and wage ·pcap
were 10% significant and PUC, which was 5% significant under uncorrelatedness, was
10% significant based on ordering according to number of employees.

Table 10: Cost function in Electricity Distribution
kernel series
Coef SE t-stat Coef SE t-stat TS∗w TS∗e

wage -6.298 12.453 -0.506 -6.002 15.736 -0.381 0.426 0.261
pcap -1.393 1.6 -0.872 -2.531 1.846 -1.371 44.084 35.4334

1
2
wage2 0.72 2.13 0.3388 1.731 12.837 0.135 0.061 0.036
1
2
pcap2 0.032 0.066 0.485 0.148 0.318 0.466 1.593 1.491

wage · pcap 0.534 0.599 0.891 2.044 1.553 1.317 43.1554 40.274

PUC -0.086 0.039 −2.205∗ -0.043 0.017 −2.6∗ 11.042 28.8934

kwh 0.033 0.086 0.384 0.0828 0.102 0.8085 8.208 9.486
life -0.634 0.115 −5.513∗ -0.613 0.124 −4.935∗ 104.6∗ 92.7∗

lf 1.249 0.436 2.865∗ 0.746 0.486 1.535 39.6694 36.5874

kmwire 0.399 0.087 4.586∗ 0.442 0.088 5.012∗ 202.65∗ 151.02∗

7. Conclusion

The paper has established a theoretical background for series estimation of a vector-
valued functional of the nonparametric regression function under cross-sectional de-
pendence and heterogeneity, including a uniform rate of consistency, asymptotic nor-
mality and suffi cient conditions for

√
n - convergence, for which case a robust data-

driven studentization method that offers an alternative to existing methods of infer-
ence was introduced. The framework of cross-sectional dependence and heterogeneity
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of this paper and its technical arguments, may be used to establish asymptotic theory
for other estimation methods.

Appendix A. Proofs of Theorems 1-5.

In addition to the spectral norm introduced in Section 2, three other matrix norms
appear in the proofs. Let ‖ · ‖E denote Euclidean norm, ‖ · ‖C maximum column
absolute sum norm, and ‖ · ‖R maximum row absolute sum norm, so when A = (aij)

is a q × q matrix

‖A‖2
E =

( q∑
i,j=1

a2
ij

)
, ‖A‖C = max

1≤j≤q

( q∑
i=1

|aij|
)
, ‖A‖R = max

1≤i≤q

( q∑
j=1

|aij|
)
.

The following inequalities will be useful:

‖A‖2 ≤ ‖A‖R‖A‖C , |tr(AB)| ≤ ‖A‖E‖B‖E, ‖AB‖E ≤ ‖A‖E‖B‖, (16)

see e.g. Searle (1982), Horn and Johnson (1990).

In Section 3, we introduced the K × 1 vector of normalised functions P (x) =

PK(x) = B
−1/2
K pK(x) satisfying E(P (Xi)P (Xi)

′) = IK . Given that the series estimate
m̂(·) projects onto the linear space spanned by p1(·), · · · , pK(·), m̂(·) is invariant to
any nonsingular linear transformation of the ps (.). Hence,

m̂(x) = pK(x)′β̂ = P (x)′γ̂, (17)

where β̂ = (p′p)−p′Y ∈ RK with

p = pn = [pK(X1), · · · , pK(Xn)]′ ∈ Rn×K , Y = Yn = (Y1, · · · , Yn)′ ∈ Rn

and γ̂ = (P ′P )−P ′Y ∈ RK , where P = Pn = [P (X1), · · · , P (Xn)]′ ∈ Rn×K . To show
such invariance, one can use the equality P = pB

−1/2
K to establish that

γ̂ = (P ′P )−P ′Y = B
1/2
K (p′p)−B

1/2
K B

−1/2
K p′Y = B

1/2
K β̂.

because (p′p)− being a Moore-Penrose inverse implies (P ′P )− = (B
−1/2
K p′pB

−1/2
K )− =

B
1/2
K (p′p)−B

1/2
K .

The proofs of Theorems 1-5 benefit from the algebraic convenience of the represen-
tation m̂(x) = P (x)′γ̂ . Assumptions imposed on quantities involving pK(·) such as
ξ(K) will continue to hold for their counterparts defined in terms of PK(·). To show
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this fact for Assumption A4, note that pK(x)′βK = P (x)′γK , where γK = B
1/2
K βK ,

so Assumption A4 implies

|m− P ′γK |∞ = O(K−α), as K →∞.

To verify that assumptions involving the upper bound ξ(K) continue to hold for the
corresponding quantity based on P (·), define:

ζ(K) = sup
x∈X
‖P k(x)‖.

Then, for some C <∞, ζ(k) ≤ Cξ(k) for all k ≥ 1, because

ζ(k) = sup
x∈X
‖B−1/2

k pk(x)‖ ≤ ‖B−1/2
k ‖ sup

x∈X
‖pk(x)‖ ≤ Cξ(k),

noting that by Assumption A3(i) and symmetry and positive semi-definiteness of BK ,

‖B−1/2
K ‖ = ‖B−1

K ‖1/2 = (λ̄(B−1
K ))1/2 = (λ(BK))−1/2 ≤ C.

The bound indicates that assumptions involving the upper bound ξ(K) continue to
hold also for ζ(K). The proofs will use m̂(x) = P (x)′γ̂, but wherever needed, the
translation between the two alternative representations of m̂ given in (17) is clarified.

Proof of Theorem 1. Let M = Mn = (m(X1), · · · ,m(Xn))′ ∈ Rn and Q̂ = Q̂n =

P ′P/n ∈ RK×K . We decompose m̂(x) − m(x) into bias and stochastic terms. Let
γK = B

1/2
K βK for βK of Assumption A4. Write:

m̂(x)−m(x) = [P (x)′(γ̂ − γK)] + [P (x)′γK −m(x)] ,

where γ̂ = (P ′P )−P ′Y = (Q̂)−P ′Y/n. Recall Σn = E (P ′UU ′P/n) , the K × K

variance matrix of
n∑
i=1

P (Xi)Ui/
√
n. We shall show below that

‖γ̂ − γK‖ = Op

(
tr(Σn)1/2

n1/2
+K−α

)
. (18)

Then, by the definition of ζ(K) and Assumption A4,

|m̂−m|∞ ≤ |P ′(γ̂K − γK)|∞ + |P ′γK −m|∞
≤ ζ(K)‖γ̂K − γK‖+O(K−α)

= Op

(
ζ(K)

[
tr(Σn)1/2

n1/2
+K−α

])
,

as claimed.
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Proof of (18). The matrix Q̂ in γ̂ = (Q̂)−P ′Y/n depends on (X1, · · · , Xn),
so invertibility of Q̂ for any given sample cannot be taken for granted. Let 1n =

I(λ(Q̂) ≥ a), where I(.) is the indicator function and a ∈ (0, 1). Then the inverse of
Q̂ exists when 1n = 1. It will be shown that

P (1n = 1)→ 1 as n→∞, (19)

so that Q̂−1 exists with probability approaching 1. First write

1n(γ̂ − γK) = 1n

[
Q̂−1P ′(Y −M)/n+ Q̂−1P ′(M − PγK)/n

]
. (20)

By elementary inequalities

‖1n(γ̂ − γK)‖ ≤ ‖1nQ̂−1P ′U/n‖+ ‖1nQ̂−1P ′(M − PγK)/n‖
≤ ‖1nQ̂−1‖‖P ′U/n‖+ ‖1nQ̂−1P ′/

√
n‖‖(M − PγK)/

√
n‖. (21)

We prove below that

‖1nQ̂−1P ′/
√
n‖ = Op(1), (22)

‖P ′U/n‖ = Op

(
tr(Σn)1/2

√
n

)
, (23)

‖(M − PγK)/
√
n‖ = Op(K

−α). (24)

which lead to

‖1n(γ̂ − γK)‖ = Op

(
tr(Σn)1/2

n1/2
+K−α

)
,

and in turn to ‖γ̂K−γK‖ = Op

(
tr(Σn)1/2/n1/2 +K−α

)
. To see this, use 1−1n = op(1)

and the triangle inequality to obtain

‖γ̂ − γK‖ ≤ ‖1n(γ̂ − γK)‖+ ‖(1− 1n)(γ̂ − γK)‖
≤ ‖1n(γ̂ − γK)‖+ op(1)‖γ̂ − γK‖. (25)

Thus

‖γ̂ − γK‖(1 + op(1)) ≤ ‖1n(γ̂ − γK)‖,
‖γ̂ − γK‖ ≤ ‖1n(γ̂ − γK)‖/(1 + op(1)) = Op

(
tr(Σn)1/2/n1/2 +K−α

)
. (26)

Proof of (19). It suffi ces to show that λ(Q̂) →p 1, as n → ∞ . Recalling that
P (x) = B

−1/2
K pK(x) = [P1K(x), · · · , PKK(x)],

E
[
tr
{

(Q̂− I)2
}]

=

K∑
p,`=1

E[{n−1

n∑
i=1

PpK(Xi)P`K(Xi)− 1(` = p)}2]

= n−2

K∑
p,`=1

V ar

(
n∑
i=1

PpK(Xi)P`K(Xi)

)
,
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noting that E(Q̂) = n−1

n∑
i=1

E(P (Xi)P
′(Xi)) = I. For any pair p, ` = 1, · · · , k,

V ar

(
n∑
i=1

PpK(Xi)P`K(Xi)

)
=

n∑
i=1

n∑
j=1

Cov {PpK(Xi)P`K(Xi), PpK(Xj)P`K(Xj)}

=
n∑
i=1

V ar (PpK(Xi)P`K(Xi)) +

n∑
i,j=1,j 6=i

Cov {PpK(Xi)P`K(Xi), PpK(Xj)P`K(Xj)}

=: V
(p,`)
n,1 + V

(p,`)
n,2 .

so E[‖Q̂− I‖2] ≤ n−2

K∑
p,`=1

(V
(p,`)
n,1 + V

(p,`)
n,2 ). One has

1

n2
V

(p,`)
n,1 =

1

n2

n∑
i=1

V ar
(
PpK(Xi)P`K(Xi)

)
≤ ζ4(K)

n
.

To bound V (p,`)
n,2 we use Assumption A5:

1

n2
|V (p,`)
n,2 | =

∣∣ ∫ PpK(x)P`K(x)PpK(y)P`K(y)
( 1

n2

n∑
i,j=1,j 6=i

{fij(x, y)− f(x)f(y)}
)
dxdy

∣∣
≤ ζ4(K)

( 1

n2

∑
i,j=1,i 6=j

∫
|fij(x, y)− f(x)f(y)|dxdy

)
= ζ4(K)n−24n.

Therefore,

E
[
tr
{

(Q̂− I)2
}]

=
K∑

p,`=1

(V
(p,`)
n,1 + V

(p,`)
n,2 )

≤ K2ζ4(K)

n
+
K2ζ4(K)4n

n2

= K2ζ4(K)

(
1

n
+
4n

n2

)
= o(1), (27)

by Assumptions A3(ii), and A5. Hence it remains to verify that |λ(Q̂) − λ(I)| ≤[
tr
{

(Q̂− I)2
}]1/2

. The symmetric matrix Q̂−I can be written as C(Λ̂−I)C ′, where

C = (cij) ∈ RK×K is an orthonormal eigenvector matrix such that C ′C = I and Λ̂ is a
diagonal matrix consisting of eigenvalues of Q̂. Consequently, (Q̂−I)2 = C(Λ̂−I)2C ′.

Now tr{(Q̂− I)2} = tr
(
C(Λ̂− I)2C ′

)
=

K∑
`=1

(λ`(Q̂)− 1)2, because

tr
(
C(Λ̂− I)2C ′

)
=

K∑
i=1

K∑
j=1

c2
ij(λ̂j − 1)2 =

K∑
j=1

(λ̂j − 1)2

(
K∑
i=1

c2
ij

)
=

K∑
j=1

(λ̂j − 1)2,
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because the columns of C are orthonormal. Therefore,

(λ(Q̂)− 1)2 ≤ tr{(Q̂− I)2}, |λ(Q̂)− 1| ≤ [tr{(Q̂− I)2}]1/2 = op(1),

as was concluded in (27). This completes the proof of (19).

Proof of (22). Since Q̂ is symmetric and non-negative definite,

‖1nQ̂−1‖ = 1nλ̄(Q̂−1) = 1n(λ(Q̂))−1.

The facts 1n →p 1 and λ(Q̂)→p 1 established above imply 1n(λ(Q̂))−1 →p 1. Hence,
by Slutsky’s theorem, ‖1nQ̂−1‖ = Op(1), and thence

‖1nQ̂−1P ′/
√
n‖2 = ‖1nQ̂−1P ′PQ̂−1/n‖ = ‖1nQ̂−1‖ = Op(1).

Proof of (23). We have

‖P ′U/n‖ =
1√
n
‖P ′U/

√
n‖ =

1√
n

[
λ̄

(
P ′UU ′P

n

)]1/2

= Op

(
tr (Σn)1/2

n1/2

)
.

Proof of (24). We have

‖(M − PγK)/
√
n‖2 = (M − PγK)′(M − PγK)/n

=
1

n

n∑
i=1

(g(Xi)− P (Xi)γK)2 = Op(K
−2α),

by Assumption 4.

This completes the proof of (18) and thus of the theorem. �

Proof of Theorem 2. Let Tn = A′P ′U/n, where P = pKB
−1/2
K ∈ Rn, A =(

D(P1K), D(P2K), · · · , D(PKK)
)′ ∈ RK×d and U = (U1, · · · , Un)′ ∈ Rn. Write

θ̂n − θ0 = Tn + rn, rn := θ̂n − θ0 − Tn.

We shall show that

√
nV̄ −1/2

n rn = op(1), (28)
√
nV̄ −1/2

n Tn →d N(0, Id), (29)

which implies (8).

Proof of (28). By the same argument as in the proof of Theorem 1, (28) follows if
we show that

1n
√
nV̄ −1/2

n rn = op(1).
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We shall use the bound ‖1n
√
nV̄
−1/2
n rn‖ ≤

√
n‖V̄ −1/2

n ‖‖1nrn‖. To evaluate ‖1nrn‖,
recall m̄ = P ′γK and write

rn = θ̂n − θ0 − Tn = {a(m̂)− a(m)−D(m̂) +D(m)}
+{D(m̂)−D(m̄)− Tn}+ {D(m̄)−D(m)}.

Then

‖rn‖ ≤ ‖a(m̂)− a(m)−D(m̂) +D(m)‖
+ ‖D(m̂)−D(m̄)− Tn‖+ ‖D(m̄)−D(m)‖

=: ‖rn,1‖+ ‖rn,2‖+ ‖rn,3‖.

To show (28), note that by the assumptions of the theorem ‖V̄ −1/2
n ‖ = ‖V̄ −1

n ‖1/2 =

Op(1). Thus, it suffi ces to prove that

1n
√
n‖rn,i‖ = op(1), i = 1, 2, 3.

For i = 1, by Assumption B1, ‖rn,1‖ = Op(|m̂ − m|2∞). Thus by Theorem 1 and
Assumption B3(i), (iii)

√
n‖rn,1‖ = Op

(√
nζ(K)2

(tr(Σn)

n
+K−2α

))
= op(1).

For i = 2, to bound ‖rn,2‖ recall the notation γ̂ = (P ′P )−P ′Y = Q̂−P ′Y/n, Y =

M + U and A = (D(P1K), · · · , D(PKK))′. Then

D(m̂) = D(P ′γ̂) = A′γ̂ = A′Q̂−P ′(M + U)/n, (30)

D(m̄) = D(P ′γK) = A′γK . (31)

As in the proof of Theorem 1, one can replace 1nQ̂
− with 1nQ̂

−1. Hence

‖1nrn,2‖ = ‖1n(A′Q̂−1P ′Y/n− A′γK − A′P ′U/n)‖
= ‖1nA′Q̂−1P ′(M + U)/n− A′γK − A′P ′U/n‖
= ‖1nA′(Q̂−1 − I)P ′U/n+ A′Q̂−1P ′(M − PγK)/n‖
≤ ‖1nA′(Q̂−1 − I)P ′U/n‖+ ‖A′Q̂−1P ′(M − PγK)/n‖
≤ ‖A′‖‖1n(Q̂−1 − I)‖‖P ′U/n‖+ ‖A′‖‖1nQ̂−1P ′/

√
n‖‖(M − PγK)/

√
n‖.

Note that ‖A‖2 ≤ ζ2(K), ‖1nQ̂−1‖ = Op(1), and by (22)- (24),

‖1nQ̂−1P ′/
√
n‖ = Op(1), ‖(M−PγK)/

√
n‖ = Op(K

−α), ‖P ′U/n‖ = Op

(
(tr(Σn)/n)1/2

)
.

Next, ‖1n(Q̂−1 − I)‖ = ‖1nQ̂−1(I − Q̂)‖ ≤ ‖1nQ̂−1‖‖I − Q̂‖ = Op(‖I − Q̂‖), so

‖rn,2‖ = Op(1)
√
Kζ(K)

(
‖I − Q̂‖(tr(Σn)/n)1/2 +K−α

)
.
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To bound ‖I − Q̂‖ note that E[‖Q̂− I‖2] ≤ E
[
tr
{

(Q̂− I)2
}]
. From (27),

√
n‖rn,2‖ ≤

(
nKζ2(K)

)1/2

{[
K2ζ4(K)

(
1

n
+
4n

n2

)
tr(Σn)

n

]1/2

+K−α

}
= op(1)

by Assumptions B3(ii) and (iii).

For i = 3, by linearity ofD(·) and Assumption B2 and A4, ‖rn,3‖ = O(|m̄−m|∞) =

O(K−α),
√
n‖rn,3‖ = Op(

√
nK−α) = op(1),by Assumptions B3(iii), which implies

nK−2α = o(1).

Proof of (29). To show asymptotic normality of the main term
√
nV̄
−1/2
n Tn,

introduce the representation

√
nV̄ −1/2

n Tn =
1√
n

n∑
i=1

V̄ −1/2
n A′P (Xi)Ui =

1√
n

n∑
i=1

V̄ −1/2
n A′P (Xi)σ(Xi)

∞∑
j=1

bijεj

=
∞∑
j=1

(
1√
n

n∑
i=1

V̄ −1/2
n A′P (Xi)σ(Xi)bij

)
εj =

∞∑
j=1

wjnεj,

letting

wjn =
n∑
i=1

V̄ −1/2
n A′P (Xi)σ(Xi)bij/

√
n. (32)

Noting that wjn is a function of {Xi}ni=1, we show asymptotic normality conditional
on ‖V̄ −1

n ‖ ≤ C and {Xi}ni=1, treating wjn as non-random. The key point here is to
obtain the conditional asymptotic distribution to be N(0, Id), which is independent
of {Xi}ni=1, whence . the required unconditional result follows.

By the Cramer-Wold device, to derive asymptotic normality of the vector
√
nV̄
−1/2
n Tn,

we consider the scalar
∞∑
j=1

c′wjnεj , for any fixed vector c ∈ Rd such that c′c = 1. Write

√
nc′V̄ −1/2

n Tn =

N(n)∑
j=1

c′wjnεj +
∞∑

j=N(n)+1

c′wjnεj, (33)

where the integer N(n) is chosen to be the smallest satisfying
∑∞

j=N(n)+1(c′wjn)2 ≤
1/ log n. Then

E
( ∞∑
j=N(n)+1

c′wjnεj
)2

= O
( ∞∑
j=N(n)+1

(c′wjn)2
)

= o(1),

so the second sum on the right side of (33) is op(1). Since the c′wjεj are martingale
differences under assumption A2, asymptotic normality of the first sum on the right
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side of (33) is established by verifying the following two suffi cient conditions of Scott
(1973), adapted for our setting.

N(n)∑
j=1

E
(
(c′wjεj)

2
)
→p 1, (34)

N(n)∑
j=1

E
(
(c′wjnεj)

21(|c′wjnεj| > δ)
)
→p 0, ∀δ > 0. (35)

By Assumption A2, we have

N(n)∑
j=1

E
(
(c′wjεj)

2
)

=

N(n)∑
j=1

(c′wjn)2.

By the choice of N(n),

N(n)∑
j=1

(c′wjn)2 =
∞∑
j=1

(c′wjn)2 −
∞∑

j=N(n)+1

(c′wjn)2 = 1 + o(1).

Next let ν be as in Assumption A2. Then,

N(n)∑
j=1

E[(c′wjnεj)
21(|c′wjnεj| > δ)] =

N(n)∑
j=1

(c′wjn)2E[ε2
j1(|c′wjnεj| > δ)]

≤
N(n)∑
j=1

(c′wjn)2

(
|c′wjn|
δ

)ν
E|εj|2+ν = δ−ν

N(n)∑
j=1

|c′wjn|2+νE|εj|2+ν

≤ Cδ−ν
N(n)∑
j=1

|c′wjn|2+ν ≤ Cδ−ν max
1≤j≤n

|c′wjn|ν
N(n)∑
j=1

(c′wjn)2.

The first inequality follows from 1(|c′wjnεj| > δ) ≤ (|c′wjnεj|/δ)ν . With
N(n)∑
j=1

(c′wjn)2 →

1, (35) is verified once we show that max
j≥1
|c′wjn|ν → 0. Conditionally on X1, · · · , Xn,

the following holds for any j ≥ 1:

|c′wjn| =

∣∣∣∣∣ c′√nV̄ −1/2
n

n∑
i=1

A′P (Xi)σ(Xi)bij

∣∣∣∣∣
≤ ‖c‖‖V̄ −1/2

n ‖ 1√
n

max
1≤j≤n

n∑
i=1

|bij|‖A′P (Xi)σ(Xi)‖

= O

(
ζ(K)2

√
n

max
1≤j≤n

n∑
i=1

|bij|
)

= o(1), (36)
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by Assumption B4 and the bound ‖A′P (Xi)σ(Xi)‖ ≤ C‖A‖‖P (Xi)‖ ≤ Cζ2(K). �

Proof of Theorem 3. We will prove later that

‖V̄n − Vn‖ = op(1), (37)

implying that V −1
n V̄n →p I since ‖V −1

n V̄n − I‖ ≤ ‖V −1
n ‖‖V̄n − Vn‖ = op(1). It follows

that ‖V̄ −1
n ‖ ≤ ‖V −1

n ‖‖VnV̄ −1
n ‖ = Op(1).To show the final statement, (13), of Theorem

3, write:

√
nV −1/2

n (θ̂ − θ0) =
√
nV̄ −1/2

n (θ̂ − θ0) +
√
n
(
V −1/2
n − V̄ −1/2

n

)
(θ̂ − θ0).

The first term was shown to converge in distribution to N(0, Ip) in Theorem 2, while
the second term is negligible:

‖
√
n
(
V −1/2
n − V̄ −1/2

n

)
(θ̂ − θ0)‖ ≤ ‖

(
V −1/2
n V̄ 1/2

n − I
)
‖‖
√
nV̄ −1/2

n (θ̂ − θ0)‖ = op(1),

since V −1/2
n V̄

1/2
n →p I from V −1

n V̄n →p I, and thus ‖V −1/2
n V̄

1/2
n − I‖ = op(1).

Proof of (37 ). The result follows if |(V̄n − Vn)`p| = op(1), for all `, p = 1, · · · , d,
where (B)`p denotes the (`, p)th element of a matrix B. Using the notation in (9),

(V̄n − Vn)`p =
1

n

n∑
i,j=1

γij {σ(Xi)A
′
`P (Xi)σ(Xj)P

′(Xj)Ap − E(σ(Xi)A
′
`P (Xi)σ(Xj)P

′(Xj)Ap)}

=
1

n

n∑
i,j=1

γij

{
h

(`)
i h

(p)
j − E(h

(`)
i h

(p)
j )
}
.

Since

h
(`)
i h

(p)
j − E(h

(`)
i h

(p)
j ) =

{
h̄

(`)
i h̄

(p)
j − E(h̄

(`)
i h̄

(p)
j )
}

+ h̄
(p)
j E(h

(`)
i ) + h̄

(`)
i E(h

(p)
j ),

we obtain that

(V̄n − Vn)`p =
1

n

n∑
i,j=1

γij

{
h̄

(`)
i h̄

(p)
j − E(h̄

(`)
i h̄

(p)
j )
}

+
1

n

n∑
i,j=1

γijh̄
(p)
j E(h

(`)
i ) +

1

n

n∑
i,j=1

γijh̄
(`)
i E(h

(p)
j )

=: S1,n + S2,n + S3,n.

We shall show that
V ar(Sk,n) = o(1), k = 1, 2, 3, (38)

which proves (37).
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Proof of (38) for k=1. We have

V ar(S1,n) =
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4Cov
(
h̄

(`)
i1
h̄

(p)
i2
, h̄

(`)
i3
h̄

(p)
i4

)
.

Denote φ(`,p)
ij = Cov(h̄

(`)
i , h̄

(p)
j ) and by Φ(`,p) the n× n matrix whose (i, j)th element is

φ
(`,p)
ij . One has

V ar(S1,n) =
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4κ(h̄
(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

) (39)

+
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,`)
i1i3

φ
(p,p)
i2i4

(40)

+
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,p)
i1i4

φ
(p,`)
i2i3

. (41)

Denote by Γ = Γn the n× n matrix whose (i, j)th element is γij. By Assumption B7,
the right hand side of (39) is o(1). To bound (40) and (41), write

1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,`)
i1i3

φ
(p,p)
i2i4

=
1

n2
tr
(
ΓΦ(p,p)ΓΦ(`,`)

)
,

1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,p)
i1i4

φ
(p,`)
i2i3

=
1

n2
tr
(
ΓΦ(p,`)ΓΦ(p,`)

)
.

By properties of matrix norms, we see that∣∣tr (ΓΦ(p,p)ΓΦ(`,`)
)∣∣ ≤ ‖ΓΦ(p,p)‖E‖ΓΦ(`,`)‖E ≤ ‖Γ‖2‖Φ(p,p)‖E‖Φ(`,`)‖E. (42)

Now write ‖Φ(p,p)‖2
E =

n∑
i,j=1

(φ
(p,p)
ij )2 =

n∑
i=1,i=j

(φ
(p,p)
ii )2 +

n∑
i,j=1,i 6=j

(φ
(p,p)
ij )2. For i =

j, |φ(p,p)
ii | = V ar(h̄

(p)
i ) ≤ ζ4(K). For i 6= j, |φ(p,p)

ij | ≤ Cζ4(K)

∫
X 2
|fij(x, y) −

f(x)f(y)|dxdy, since |σ(Xi)A
′
pP (Xi)| ≤ Cζ2(K). Therefore,

‖Φ(p,p)‖2
E ≤ Cnζ8(K) + Cζ8(K)

n∑
i,j=1,i 6=j

(∫
|fij(x, y)− f(x)f(y)|dxdy

)2

.

Clearly
∫
|fij(x, y)− f(x)f(y)|dxdy ≤ 2 for all i and j. Hence

n∑
i,j=1,i 6=j

(∫
|fij(x, y)− f(x)f(y)|dxdy

)2

≤ 2

n∑
i,j=1,i 6=j

∫
|fij(x, y)−f(x)f(y)|dxdy = 24n.
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Thus, for any p = 1, · · · , d,

‖Φ(p,p)‖2
E =

n∑
i,j=1

(φ
(p,p)
ij )2 ≤ Cζ8(K)(n+4n). (43)

Hence, by (42) and Assumption B6,

1

n2
‖Γ‖2‖Φ(p,p)‖E‖Φ(`,`)‖E ≤

1

n2

(
max
j≥1

n∑
i=1

∣∣γij∣∣
)2

ζ8(K)(n+4n) = o(1),

by (16) , and by symmetry of Γ

‖Γ‖2 ≤ ‖Γ‖2
C =

(
max
j≥1

n∑
i=1

∣∣γij∣∣
)2

.

Similarly, it follows that n−2tr
(
ΓΦ(p,`)ΓΦ(p,`)

)
= o(1), which completes the proof of

(38) when k = 1.

Proof of (38) for k=2,3. We have

V ar(S2,n) =
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4E(h
(`)
i1

)E(h
(`)
i3

)E(h̄
(p)
i2
h̄

(p)
i4

)

=
1

n2

n∑
i2,i4=1

(
n∑

i1=1

γi1i2E(h
(`)
i1

)

)(
n∑

i3=1

γi3i4E(h
(`)
i3

)

)
φ

(p,p)
i2i4

≤ 1

n2

(
ζ2(K)

∣∣∣∣∣max
1≤j≤n

n∑
i=1

γij

∣∣∣∣∣
)2 n∑

i,j=1

|φ(p,p)
ij |

≤ 1

n2

(
ζ2(K) max

1≤j≤n

n∑
i=1

∣∣γij∣∣
)2 n∑

i,j=1

|φ(p,p)
ij |

using the bound E|h(`)
i | ≤ Cζ2(K). By the same steps in the two lines prior to (43),

n∑
i,j=1

|φ(p,p)
ij | ≤ Cζ4(K)(n+4n).

This, together with Assumption B6 yields

V ar(Sn,2) ≤ Cζ8(K)(n+4n)

n2

(
max
j≥1

n∑
i=1

∣∣γij∣∣
)2

= o(1).

�
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Proof of Theorem 4. By the triangle inequality, ‖Vn − V ‖ ≤ ‖Vn −Wn‖+ ‖Wn −
V ‖,where ‖Wn − V ‖ = o(1) holds by Assumption C2 (i). To bound ‖Vn −Wn‖ note
that

Vn −Wn =
1

n

n∑
i=1

n∑
k=1

γikE[σ(Xi)σ(Xk){vK(Xi)v
′
K(Xk)− w(Xi)w

′(Xk)}].

We shall establish ‖Vn − Wn‖ = o(1) by showing that all elements (Vn − Wn)`,p,
1 ≤ `, p ≤ d, of Vn −Wn converge to zero. We have

|(Vn −Wn)`p| =

∣∣∣∣∣ 1n
n∑
i=1

n∑
k=1

γikE[σ(Xi)σ(Xk)(v`K(Xi)vpK(Xk)− w`(Xi)wp(Xk))]

∣∣∣∣∣
≤ 1

n

n∑
i=1

n∑
k=1

|γik|E[|σ(Xi)σ(Xk){v`K(Xi)vpK(Xk)− w`(Xi)wp(Xk)}|].

Notice that

E[|σ(Xi)σ(Xk){v`K(Xi)vpK(Xk)− w`(Xi)wp(Xk)}|]
≤ CE[|v`K(Xi){vpK(Xk)− wp(Xk)}|] + CE[|{v`K(Xi)− w`(Xi)}wp(Xk)|]
≤ C

(
E[v2

`K(Xi)]
)1/2 (

E[{vpK(Xk)− wp(Xk)}2]
)1/2

+C
(
E[{v`K(Xi)− w`(Xi)}2]

)1/2 (
E[w2

p(Xk)]
)1/2

= o(1),

because for any p = 1, · · · , d, E[w2
p(Xi)] < ∞ by Assumption C1 (i), E[{vpK(Xi) −

wp(Xi)}2] = o(1) by Assumption C1 (iii) and E[v2
pK(Xi)] < ∞. The latter follows

from
E[v2

pK(Xi)] ≤ 2E[{vpK(Xi)− wp(Xi)}2] + 2E[w2
p(Xi)] <∞.

Hence,

|(Vn −Wn)`p| ≤
[

1

n

n∑
i=1

n∑
k=1

|γik|
]
· o(1) = o(1),

by Assumption C2 (ii). �

Proof of Theorem 5. This is based on Lemmas 1, 2 and 3, stated and proved in
Appendix B. Define the d× 1 vector summation

Ŝ∗n(r) =

[rn]∑
i=1

Â∗′B̂−1
K pK(Xi)Ûi/

√
n, 0 ≤ r ≤ 1,

where [rn] denotes integer part. Based on Lemma 2 and 3, one has weak conver-
gence

(
Ŝ∗n(r)

)
r∈[0,1]

⇒
(
V 1/2{Wd(r) − rWd(1)}

)
r∈[0,1]

in the space D[0, 1]d. Observe

that Ĉn = 1
n

n∑
m=1

S∗n(m/n)S∗n(m/n)′ ∼
∫ 1

0

S∗n(r)S∗n(r)′dr. Therefore, the continuous

mapping theorem gives
V −1/2ĈnV

−1/2 ⇒ Ψd.
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Write
Ĉ−1/2
n

√
n(θ̂n − θ0) = (Ĉ−1/2

n V 1/2)
(√

nV −1/2(θ̂n − θ0)
)
.

By Lemmas 1-3, Ĉ−1/2
n V 1/2 ⇒ Ψ

−1/2
d , and by Theorem 4,

√
nV −1/2(θ̂n − θ0) →d

N(0, Id), where the two terms converge jointly. �

Appendix B. Lemmas and propositions

Let X(·), Y (·) ∈ D[0, 1], the space of all real valued functions on [0, 1] that are right-
continuous with finite left limits. The Skorohod metric d(·, ·) in D[0, 1] is given by:

d(X, Y ) = inf
ε>0
{ε : ‖λ‖ ≤ ε, sup

r∈[0,1]

|X(r)− Y (λ(r))| ≤ ε}

where λ is any continuous mapping of [0, 1] onto itself with λ(0) = 0, λ(1) = 1 and

‖λ‖ = sup
r,u∈[0,1]:r 6=u

∣∣ log
λ(u)− λ(r)

u− r
∣∣, 0 ≤ r < u ≤ 1.

Introduce

Sn(r) =

[rn]∑
i=1

A′P (Xi)Ui/
√
n, Ŝn(r) =

[rn]∑
i=1

A′P (Xi)Ûi/
√
n, r ∈ [0, 1] (44)

Note that Sn(·) ∈ D[0, 1]d = D[0, 1] × · · · ×D[0, 1], where D[0, 1]d is the product
space. Endowing each component space D[0, 1] with the well-known Skorohod metric
d(·, ·), stated above, we assign the following metric to the product spaceD[0, 1]p as was
done in Phillips and Durlauf (1986), for example. For X(·) = (X1(·), · · · , Xd(·))′ ∈
D[0, 1]d and Y (·) = (Y1(·), · · · , Yd(·))′ ∈ D[0, 1]d, define the metric:

d′(X, Y ) = max
1≤`≤d

{d(X`, Y`) : X`, Y` ∈ D[0, 1]}.

Lemma 1 below states a functional central limit theorem (FCLT) for Sn(r) in D[0, 1]d

equipped with the metric d′(·, ·), for which we use ⇒D[0,1]dto signify weak conver-
gence of the associated probability measures in D[0, 1]d. Note that unlike in
much of the FCLT literature, Sn(r) is not a partial sum because its summands
form a triangular array. structure. Since K is a function of n and recalling A =(
D(P1K), D(P2K), · · · , D(PKK)

)′ ∈ RK×d, the summand A′P (Xi)Ui/
√
n of Sn(r) can

be written

A′P (Xi)Ui/
√
n =

K(n)∑
l=1

D(PlK)PlK(Xi)
∞∑
j=1

bijεj/
√
n.
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Now consider the following representation of Sn(r), as a weighted summation of the
εj over j = 1, ..., with triangular array weights:

Sn(r) =

[rn]∑
i=1

[K(n)∑
l=1

D(PlK)PlK(Xi)

∞∑
j=1

bijεj/
√
n
]

=

∞∑
j=1

[ [rn]∑
i=1

K(n)∑
l=1

D(PlK)PlK(Xi)bij/
√
n
]
· εj =

∞∑
j=1

cj(n; r)εj, (45)

where we denote

cj(n; r) :=
[ [rn]∑
i=1

K(n)∑
l=1

D(PlK)PlK(Xi)bij/
√
n
]
, r ∈ [0, 1], n ≥ 1.

The specification Sn(r) =
∞∑
j=1

cj(n; r)εj was previously considered in Kasahara and

Maejima (1986) in a general FCLT for infinite weighted sums. It goes without saying
that the alternative representations of Sn(r) given by (44) and (45) are of course
equivalent. For the rest of the proof, we find it more convenient to use the form in
(44) instead of (45).

We need further notations. For j ≥ 1, introduce a j × K random matrix Pj =

(P (X1), · · · , P (Xj))
′ and j×1 random vectors,Mj = (m(X1), · · · ,m(Xj))

′ and M̂j =

(m̂(X1), · · · , m̂(Xj))
′.

Lemma 1. Under the assumptions of Theorem 5,(
Sn(r)

)
0≤r≤1

⇒D[0,1]d
(
V 1/2Wd(r)

)
0≤r≤1

. (46)

Proof of Lemma 1. Lemma 1 states weak convergence in the d-dimensional product
space D[0, 1]d. Phillips and Durlauf (1986, pp. 487-489) established two suffi cient
conditions for weak convergence of probability measures in this multi-dimensional
product space. These two conditions, adapted here for (46), are; convergence of
finite dimensional distributions of Sn(·) to those of V 1/2Wd(·); and tightness of each
component of the vector Sn(·). These properties will be established using the the
following results: for any 0 ≤ r ≤ u ≤ 1,

ESn(r)Sn(u)′ → r · V, (47)

E|Sn`(u)− Sn`(r)|2 ≤ C
∣∣ [un]− [rn]

n

∣∣, ` = 1, · · · , d, (48)

where Sn(r) =
(
Sn1(r), · · · , Snd(r)

)′
. Write

ESn(r)Sn(u)′ = ESn(r)Sn(r)′ + E
(
Sn(r)(Sn(u)′ − Sn(r)′)

)
.
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By Theorem 4, E(SnS
′
n) = Vn → V, and therefore

ESn(r)Sn(r)′ =
[rn]

n

1

[rn]
E(A′P ′[rn]U[rn]U

′
[rn]P[rn]A)→ rV.

Hence (47) follows if we show that E
(
Sn(r)(Sn(u)′ − Sn(r)′)

)
→ 0. This is achieved

by showing that the limit of each element of the vector is zero. For `, p = 1, · · · , d,

|E
[
Sn(r)(Sn(u)′ − Sn(r)′)

]
`p
| ≤ C

n

[rn]∑
i=1

[un]∑
k=[rn]+1

|γik|E|v`K(Xi)vpK(Xk)|

≤ C

n

[rn]∑
i=1

[un]∑
k=[rn]+1

|γik| = o(1),

by Assumption C3 (i), and because

E|v`K(Xi)vpK(Xk)| ≤
(
Ev2

`K(Xi)Ev
2
pK(Xk)

)1/2
<∞,

as shown in the proof of Theorem 4. This completes the proof of (47).

To prove (48), observe that

E|Sn`(u)− Sn`(r)|2 = E
∣∣ 1√
n

[un]∑
i=[rn]+1

A′`P (Xi)Ui
∣∣2

≤ 1

n

[un]∑
i,k=[rn]+1

|γik|E|σ(Xi)σ(Xk)v`K(Xi)v
′
`K(Xk)|

≤ C

n

[un]∑
i,k=[rn]+1

|γik| ≤
C

n

[un]∑
i=[rn]+1

[
max
1≤i≤n

n∑
k=1

|γik|
]

≤ C
∣∣ [un]− [rn]

n

∣∣,
by Assumption C3 (ii), which proves (48).

Next we show that finite dimensional distributions of Sn(·) converge to those of
V 1/2Wd(·), that is, for an arbitrary integer k, and any distinct points r1, · · · , rk in
[0, 1], (

Sn(r1), · · · , Sn(rk)
)
→d

(
V 1/2Wd(r1), · · · , V 1/2Wd(rk)

)
.

By the Cramer-Wold device, it suffi ces to show that for any d× 1 vectors c′1, · · · , c′k,
Qn →d Q, where

Qn =
k∑
l=1

c′lSn(rl), Q =
k∑
l=1

c′lV
1/2Wd(rl).
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Write Sn(r) =

∞∑
j=1

wj,[rn]εj with wj,[rn] as in (32), with V̄n replaced by V . Then

Qn =
∞∑
j=1

w∗jnεj with w
∗
jn =

k∑
l=1

c′lwj,[rln]. By (47),

V ar(Qn) =

∞∑
j=1

(w∗jn)2 → V ar(Q) =

k∑
l,t=1

c′lV ct ·min{rl, rt} <∞.

By (36), which holds for all c′lwj,[rln], l = 1, · · · , k, we have max
j≥1
|w∗jn| = o(1), and

Qn →d Q follows by the same argument as in the proof of asymptotic normality (29).

Finally, we establish tightness for individual component of the vector Sn(r), which
completes the proof of the lemma. Noting that Sn`(·) ∈ D[0, 1], ` = 1, · · · , d, we verify
the following suffi cient condition for tightness given in Billingsley (1968, Theorem
15.6, pp.128): for any 0 ≤ r ≤ s ≤ t ≤ 1, and some β ≥ 0, α > 1

2
and C > 0,

E[|Sn`(s)− Sn`(r)|2β|Sn`(t)− Sn`(s)|2β] ≤ C
∣∣t− r∣∣2α, ` = 1, · · · , d. (49)

This is in turn derived by showing that for any 0 ≤ r ≤ u ≤ 1,

E|Sn`(u)− Sn`(r)|4 ≤ C
∣∣ [un]− [rn]

n

∣∣2. (50)

To see that (50) implies (49), note that for β = 1, the left sideof 49) is

E[|Sn`(s)− Sn`(r)|2|Sn`(t)− Sn`(s)|2] ≤
{
E[|Sn`(s)− Sn`(r)|4]E[|Sn`(t)− Sn`(s)|4]

}1/2

≤ C
(∣∣ [sn]− [rn]

n

∣∣2∣∣ [tn]− [sn]

n

∣∣2)1/2

= C
∣∣ [sn]− [rn]

n

∣∣∣∣ [tn]− [sn]

n

∣∣
≤ C

∣∣ [tn]− [rn]

n

∣∣2, (51)

where the first step uses the Schwarz inequality, the second inequality follows from
(50), and the last inequality from 0 ≤ r ≤ s ≤ t ≤ 1. As explained on pp.138 of
Billingsley (1968), if t− r ≥ 1/n, then (51) implies (49) with α = 1: since [nt2] ≤ nt2
and [nt1] ≥ nt1 − 1,

[nt2]− [nt1]

n
≤ nt2 − nt1 + 1

n
= t2 − t1 +

1

n
≤ 2(t2 − t1).

On the other hand, if t−r < 1/n, then at least one of [sn]− [rn] = 0 or [tn]− [sn] = 0

holds. Then the left sidess of (49) and (51) vanish, and thus (49) holds.
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To verify (50), denote by e`, a d-dimensional vector, whose `th element is 1 and
other elements 0. Then one can write

Sn`(u)− Sn`(r) =
∞∑
j=1

e′`(wj,[un] − wj,[rn])εj =:

∞∑
j=1

λjnεj.

Rewriting the left side of (50) with the new notation and noting Assumption C5, we
obtain

E(

∞∑
j=1

λjnεj)
4 =

∞∑
j1,··· ,j4=1

λj1nλj2nλj3nλj4nE(εj1εj2εj3εj4)

= 3[
∞∑

j,j′=1:j 6=j′
λ2
jnλ

2
j′n] + κ

∞∑
j=1

λ4
jn ≤ C[

∞∑
j=1

λ2
jn]2

= C
(
E|Sn`(u)− Sn`(r)|2

)2 ≤ C
∣∣ [un]− [rn]

n

∣∣2,
where the last step follows from (48). �

Lemma 2. Under the assumptions of Theorem 5,(
Ŝn(r)

)
0≤r≤1

⇒D[0,1]d
(
V 1/2{Wd(r)− rWd(1)}

)
0≤r≤1

. (52)

Proof of Lemma 2. Since Ûi − Ui = m(Xi)− m̂(Xi),

Ln(r) := Ŝn(r)− Sn(r) =

[rn]∑
i=1

A′P (Xi){m(Xi)− m̂(Xi)}/
√
n.

We can write, using m̂(Xi) = P ′(Xi)γ̂,

Ln(r) =

[rn]∑
i=1

A′P (Xi){m(Xi)− P ′(Xi)γK}/
√
n+

[rn]∑
i=1

A′P (Xi)P
′(Xi)(γK − γ̂)/

√
n

= A′P ′[rn](M[rn] − P[rn]γK)/
√
n+ A′P ′[rn]P[rn](γK − γ̂)/

√
n,

leading to

Ŝn(r) = Sn(r) +
A′P ′[rn](M[rn] − P[rn]γK)

√
n

−
A′P ′[rn]P[rn](γ̂ − γK)

√
n

=: Sn(r) + an(r)− `n(r).

We shall show that

sup
r∈[0,1]

‖an(r)‖ = op(1), (53)

`n(r)⇒D[0,1]d rV
1/2Wd(1), (54)
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which, together with Lemma 1, prove (52).

Proof of (53). One has

sup
r∈[0,1]

‖an(r)‖ ≤ ‖A′‖ sup
r∈[0,1]

‖P ′[rn]‖ sup
r∈[0,1]

‖(M[rn] − P[rn]γK)/
√
n‖ (55)

= Op(
√
nξ2(K)K−α) (56)

because ‖A′‖ ≤ ζ(K) ≤ ξ(K), whereas

sup
r∈[0,1]

‖P ′[rn]‖ = Op(
√
nξ(K)), sup

r∈[0,1]

‖(M[rn] − P[rn]γK)/
√
n‖ = O(K−α),

by Assumption A4. Then (53) follows by Assumption C4.

Proof of (54). Recalling that γ̂ = (P ′P )−1P ′Y = (P ′P )−1P ′(M−PγK)+(P ′P )−1P ′(PγK+

U), √
n(γ̂ − γK) = Q̂−1P ′(M − PγK)/

√
n+ Q̂−1P ′U/

√
n.

Hence, with Q̃r = P ′[rn]P[rn]/n,

`n(r) = A′Q̃rQ̂
−1P ′(M − PγK)/

√
n+ A′′Q̃rQ̂

−1P
′U√
n

=: `1,n(r) + `2,n(r). (57)

We shall show the following two results which constitute the proof of (54):

sup
r∈[0,1]

‖`1,n(r)‖ = op(1), `2,n(r)⇒D[0,1]d rWd(1).

Noting that Q̂−1 = Op(1) and sup
r∈[0,1]

∥∥∥Q̃r

∥∥∥ = Op(ξ
2(K)), since

‖
[rn]∑
i=1

P (Xi)P
′(Xi)/n‖ ≤ ξ2(K),

we obtain

‖`1,n(r)‖ ≤ ‖A′‖ sup
r∈[0,1]

∥∥∥Q̃r

∥∥∥∥∥∥Q̂−1
∥∥∥∥∥P ′(M − PγK)/

√
n
∥∥

≤ ‖A′‖Op

(
ξ2(K)

)
‖P ′‖

∥∥(M − PγK)/
√
n
∥∥ = Op(

√
nξ3(K)K−α) = op(1),

by Assumption C4(iv). Next, write

`2,n(r) = rA′P ′U/
√
n+ A′

(
Q̃rQ̂

−1 − rI
)
P ′U/

√
n.

Since the convergence r(A′P ′U/
√
n) →d rV 1/2Wd(1) was shown in the proofs of

Theorems 2 and 4, it remains to verify that

sup
r∈[0,1]

‖A′
(
Q̃rQ̂

−1 − rI
)
P ′U/

√
n‖ = op(1).
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One has ‖A‖ = O(ξ(K)) and
∥∥P ′U/√n∥∥ = O(

√
K) by Assumption C4 (ii). Next,

with Qr = P ′[rn]P[rn]/[rn] we have

sup
r∈[0,1]

∥∥∥∥ [rn]

n
QrQ̂

−1 − rI
∥∥∥∥ ≤ sup

r∈[0,1]

∥∥Qr − I
∥∥∥∥∥Q̂−1 − I

∥∥∥
+ sup

r∈[0,1]

∥∥Qr − I
∥∥+

∥∥∥Q̂−1 − I
∥∥∥+ o(1/n).

From the proof of Theorem 1, (27), we have

‖Q̂− I‖2 = Op

(
K2ξ4(K)

( 1

n
+
4n

n2

))
.

This, by Horn and Johnson (1990, pp. 335-336), implies∥∥∥Q̂−1 − I
∥∥∥2

= Op

(
K2ξ4(K)

( 1

n
+
4n

n2

))
= Op

(
K2ξ4(K)/n

)
,

with the last step following from Assumption C4(i). Similarly, one has that

sup
r∈[0,1]

( [rn]

n

)2 ∥∥Qr − I
∥∥2

= sup
r∈[0,1]

( [rn]

n

)2
Op

(
K2ξ4(K)

( 1

[rn]
+
4[rn]

[rn]2
))

= sup
r∈[0,1]

Op

(
K2ξ4(K)

( 1

n
+
4[rn]

n[rn]

))
= Op

(
K2ξ4(K)/n

)
, (58)

by Assumption A4 (i). Therefore,

sup
r∈[0,1]

‖A′
(
Q̃rQ̂

−1 − rI
)
P ′U/

√
n‖ = Op(K

√
Kξ3(K)/

√
n) = op(1), (59)

with the last step following from Assumption A3 (ii). �

Lemma 3. Under the assumptions of Theorem 5, as n→∞, sup
r∈[0,1]

‖Ŝ∗n(r)− Ŝn(r)‖ =

op(1).

Proof of Lemma 3. Recall that A′ = A∗′B
−1/2
K , p′[rn] = B

1/2
K P ′[rn]. Thus,

‖Ŝ∗n(r)− Ŝn(r)‖ = ‖(Â∗′B̂−1
K p′[rn]Û[rn] − A′P ′[rn]Û[rn])/

√
n‖

= ‖(Â∗′B̂−1
K B

1/2
K − A∗′B−1/2

K )P ′[rn]Û[rn]/
√
n‖.

Therefore,

sup
r∈[0,1]

‖Ŝ∗n(r)− Ŝn(r)‖ ≤ ‖Â∗′B̂−1
K B

1/2
K − A∗′B−1/2

K ‖

· sup
r∈[0,1]

‖P ′[rn]Û[rn]/
√
n‖ =: dn,1dn,2. (60)
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We will show that

dn,1 = Op(Kξ
2(K)/

√
n) +Op

(
ξ2(K)

(√tr(Σ)

n
+K−α

))
, (61)

dn,2 = Op(K
1/2 +K−α

√
n). (62)

Then, since tr(Σ) = Op(K) by Assumption C4 (ii),

dn,1dn,2 = Op(Kξ
2(K)/

√
n+ ξ2(K)K−α)Op(K

1/2 +K−α
√
n)

= Op(K
3/2ξ2(K)/

√
n+ ξ2(K)K−α+1/2 + ξ2(K)K−α

√
n) = op(1),

by Assumption B3 (iii), C4 (iv) and B3 (ii), and

dn,1 = ‖Â∗′B̂−1
K B

1/2
K − A∗′B−1/2

K ‖ ≤ ‖Â∗′ − A∗′‖‖B̂−1
K B

1/2
K −B−1/2

K ‖
+‖A∗′‖‖B̂−1

K B
1/2
K −B−1/2

K ‖+ ‖Â∗′ − A∗′‖‖B−1/2
K ‖.

Note that ‖A∗‖ ≤ ξ(K), and by Assumption A3 (i), ‖B−1/2
K ‖ = Op(1). Now

‖B̂−1
K B

1/2
K −B−1/2

K ‖ ≤ ‖B̂−1
K −B−1

K ‖‖B
1/2
K ‖ = Op

(
Kξ2(K)

1√
n

)
,

since by Assumption C4 (iii) ‖BK‖ = O(1), whereas ‖B̂K−BK‖2 = Op

(
K2ξ4(K)/n

)
,

as can be shown using the argument used for the bound (27) for ‖Q̂−I‖ and applying
Assumption C4 (i). Then ‖B̂−1

K − B−1
K ‖2 = Op

(
K2ξ4(K)/n

)
follows from Horn and

Johnson (1990, pp 335-336), under Assumptions C4 (iii) and A3 (i), which imply
‖BK‖ = O(1) and ‖B−1

K ‖ = O(1), as n→∞.

To obtain (61), it remains to evaluate the term ‖Â∗ − A∗‖. Newey (1997) showed
that Â∗ = (Â∗1, · · · , Â∗d) equals

(
D(p1; m̂), · · · , D(pK ; m̂)

)′
with probability approach-

ing one. Recalling D(·; m̂) =
(
D1(·; m̂), · · · , Dd(·; m̂)

)
, the ith column of Â∗−A∗ can

be written

Â∗i − A∗i =
(
Di(p1; m̂)−Di(p1;m), · · · , Di(pK ; m̂)−Di(pK ;m)

)′
, i = 1, · · · , d.

Using linearity of Di(g; m̂) in g, write

‖Â∗i − A∗i ‖2 = (Â∗i − A∗i )′(Â∗i − A∗i ) = |Di

(
(Â∗i − A∗i )′pK ; m̂

)
−Di

(
(Â∗i − A∗i )′pK ;m

)
|

≤ C|(Â∗i − A∗i )′pK |∞|m̂−m|∞ ≤ C‖Â∗i − A∗i ‖ξ(K)|m̂−m|∞,

with the first inequality following from Assumption C6. Therefore ‖Â∗i − A∗i ‖ =

Op(ξ(K)|m̂−m|∞), for i = 1, · · · , p. This allows the bound

‖Â∗ − A∗‖2 ≤ tr
(
(Â∗ − A∗)′(Â∗ − A∗)

)
=

p∑
i=1

(Â∗i − A∗i )′(Â∗i − A∗i )

=
( p∑
i=1

‖Â∗i − A∗i ‖2
)
≤ Cξ2(K)|m̂−m|2∞.
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Therefore, applying to |m̂−m|∞ the bound of Theorem 1, we obtain

‖Â∗ − A∗‖ = Op

(
ξ2(K)

[√
tr(Σn)

n
+K−α

])
) = op(1),

by Assumption B3 (ii)-(iii), completing the proof of (61).

Next note that

dn,2 ≤ sup
r∈[0,1]

‖P ′[rn](Û[rn] − U[rn])/
√
n‖+ sup

r∈[0,1]

‖P ′[rn]U[rn]/
√
n‖

= dn,21 + dn,22.

As in the proof of Lemma 2,

dn,21 ≤ sup
r∈[0,1]

‖P ′[rn](M[rn] − P[rn]γK)/
√
n‖+ sup

r∈[0,1]

‖Q̃r‖‖
√
n(γ̂ − γK)‖.

From (56) it is seen that the first term on the right is Op(
√
nξ(K)K−α) = op(1),

by Assumption C4 (iv). By (26), ‖(γ̂ − γK)
√
n‖ = Op(tr(Σn)1/2 + K−α

√
n) =

Op(K
1/2 +K−α

√
n) from Assumption C4 (ii), whereas by (58), sup

r∈[0,1]

‖Qr‖ = Op(1) +

Op(Kζ
2(K)/

√
n) = Op(1) by Assumption A3 (ii). Thus, dn,21 = Op(K

1/2 +K−α
√
n).

Finally,

dn,22 = sup
r∈[0,1]

( [rn]

n

)1/2‖P ′[rn]U[rn]/
√

[rn]‖ = Op( sup
r∈[0,1]

tr1/2(Σ[rn])) = Op(
√
K),

by Assumption C4(ii). Hence, dn,2 = Op(K
1/2), which proves (62). �

Te following proposition provides the upper bound for 4n in (5) in case of scalar
Gaussian Xi.

Proposition 1. Let Xi ∼ N(0, 1), i = 1, 2, · · · , and denote σ(X)
ij = Cov(Xi, Xj). If

for some c0 < 1, one has |σ(X)
ik | ≤ c0, i, k = 1, 2, · · · ; i 6= k, then (6)

Proof of Proposition 1. Recall the standard bivariate normal density with corre-
lation ρ is

fρ(x, y) =
1

2π
√

1− ρ2
exp

(
−mρ(x, y)

)
,

where

mρ(x, y) :=
x2 + y2 − 2ρxy

2(1− ρ2)
, x, y ∈ R.

Then f0(x, y) = f(x)f(y), where f(x) = (2π)−1/2 exp(−x2/2). We show that when
|ρ| ≤ c0 < 1,

|fρ(x, y)− f0(x, y)| ≤ Cρ exp
(−(x2 + y2)

8

)
, x, y ∈ R, (63)
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where C does not depend on ρ. Since fik(x, y) = fσik(x, y) is the bivariate density of
Xi, Xk, it follows by (63) that

4n =
n∑

i,k=1,i 6=k

∫
|fij(x, y)− f(x)f(y)|dxdy

≤ C
n∑

i,k=1,i 6=k

|σ(X)
ik |

∫
exp

(
− (x2 + y2)/8

)
dxdy

≤ C
n∑

i,k=1,i 6=k

|σ(X)
ik |.

Proof of (63) By the mean value theorem, applied for |ρ| ≤ c0,

|fρ(x, y)− f0(x, y)| ≤ |ρ| sup
|ρ|≤c0

|f ′ρ(x, y)|. (64)

Note that

f ′ρ(x, y) = fρ(x, y)

(
ρ

1− ρ2
− ∂mρ(x, y)

∂ρ

)
. (65)

where ∣∣∣∣ ρ

1− ρ2

∣∣∣∣ ≤ c0

1− c2
0

.

We show that

fρ(x, y) ≤ c exp
(
− (x2 + y2)/4

)
(66)∣∣∂mρ(x, y)

∂ρ

∣∣ ≤ c(x2 + y2), x, y ∈ R, (67)

where c does not depend on ρ and x, y, which together with (64) and (65) implies
(63).

Note that

mρ(x, y) ≥ x2 + y2 − 2|ρxy|
2(1− |ρ|2)

=
|ρ|(x2 + y2 − 2|xy|) + (1− |ρ|)(x2 + y2)

2(1− |ρ|2)

≥ (1− |ρ|)(x2 + y2)

2(1− |ρ|2)
≥ x2 + y2

2(1 + |ρ|) ≥
x2 + y2

4
,

the second inequality following from 2|xy| ≤ x2 + y2. This implies (66):

fρ(x, y) ≤ 1

2π
√

1− ρ2
exp

(
− (x2 + y2)/4

)
≤ 1

2π
√

1− c2
0

exp
(
− (x2 + y2)/4

)
.

Next,∣∣∣∣∂mρ(x, y)

∂ρ

∣∣∣∣ =

∣∣∣∣−4(1− ρ2)xy + 4ρ(x2 + y2 − 2ρxy)

[2(1− ρ2)]2

∣∣∣∣
≤ |xy|

(1− ρ2)
+
|x2 + y2 − 2ρxy|

[(1− ρ2)]2
≤ |xy|

(1− c2
0)

+
x2 + y2 + 2|ρxy|

(1− c2
0)2

≤ c(x2 + y2),
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which proves (67). �

Proposition 2 Assume there exists η(j) ≥ 0, j ∈ Z such that
∞∑

j=−∞
η(j) < ∞ and

|γikn| ≤ η(i− k), i, k = 1, 2, · · · . Then for any r ∈ [0, 1],

[rn]∑
i=1

n∑
k=[rn]+1

|γikn| = o(n).

Proof of Proposition 2. Note that τn =
∑
|j|≥logn

η(j) → 0 as n → ∞, and

max
j
η(j) ≤ C <∞. We have

[rn]∑
i=1

n∑
k=[rn]+1

|γikn| ≤
[rn]∑
i=1

n∑
k=[rn]+1

η(i− k) ≤
[rn]∑
i=1

n∑
k=[rn]+logn

η(i− k)

+
n∑

k=[rn]+1

[rn]−logn∑
i=1

η(i− k) + C

[rn]∑
i=[rn]−logn

[rn]+logn∑
k=[rn]+1

1

≤ τn

[rn]∑
i=1

1 + τn

n∑
k=[rn]+1

1 + 2C log n ≤ 2τnn+ 2C log n = o(n).�
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