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Abstract

This paper studies robustness of bootstrap inference methods for instrumental variable (IV)
regression models. We consider test statistics for parameter hypotheses based on the IV estimator
and generalized method of trimmed moments (GMTM) estimator introduced by Čížek (2008, 2009),
and compare the pairs and implied probability bootstrap approximations for these statistics by
applying the finite sample breakdown point theory. In particular, we study limiting behaviors of
the bootstrap quantiles when the values of outliers diverge to infinity but the sample size is held
fixed. The outliers are defined as anomalous observations that can arbitrarily change the value of
the statistic of interest. We analyze both just- and over-identified cases and discuss implications
of the breakdown point analysis to the size and power properties of bootstrap tests. We conclude
that the implied probability bootstrap test using the statistic based on the GMTM estimator shows
desirable robustness properties. Simulation studies endorse this conclusion. An empirical example
based on Romer’s (1993) study on the effect of openness of countries to inflation rates is presented.
Several extensions including the analysis for the residual bootstrap are provided.

1 Introduction

Instrumental variable (IV) regression is one of the most widely used methods in empirical economic anal-

ysis. There are numerous empirical examples and theoretical studies on IV regression. To investigate

its theoretical properties, it is common to invoke the framework of the generalized method of moments

(GMM), which provides a unified approach for statistical inference in econometric models specified by

moment conditions. However, recent research indicates that there are considerable problems with the
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conventional IV regression technique particularly in its finite sample performance, and that approxima-

tions based on the asymptotic theory may yield poor results (see, e.g., special issues of the Journal of

Business & Economic Statistics, volumes 14 and 20).

A common way to refine the approximations for the distributions of the IV regression estimators

and related test statistics is to employ a bootstrap method. In the IV regression context, there are at

least two approaches to conduct bootstrap approximation: the pairs bootstrap and implied probability

bootstrap. The pairs bootstrap introduced by Freedman (1981) draws resamples from the original

sample with equal weights and uses quantiles of the resampled statistics to approximate the distribution

of the original statistic of interest. When the number of instruments exceeds the number of parameters

(called over-identification), it is reasonable to impose the over-identified moment conditions to bootstrap

resamples. Hall and Horowitz (1996) suggested to use the pairs bootstrap with recentered moment

conditions and established a higher-order refinement result of the bootstrap inference. On the other

hand, the implied probability bootstrap, proposed by Brown and Newey (2002), draws resamples with

unequal weights defined by the so-called implied probabilities from the moment conditions, and uses

quantiles of the resampled statistics based on the moment conditions without recentering (see also

Hall and Presnell, 1999). Brown and Newey (2002) argued that the implied probability bootstrap also

provides a higher-order refinement over the first-order asymptotic approximation.

Recently, Camponovo and Otsu (2012) introduced an alternative viewpoint to evaluate bootstrap

methods based on the (finite sample) breakdown point theory. The breakdown point is a measure of the

global reliability of a statistic that describes up to which fraction of outliers the statistic still provides

reliable information (see, e.g., Hampel, 1971, and Donoho and Huber, 1983). Camponovo and Otsu

(2012) extended the breakdown point theory for bootstrap quantiles (Singh, 1998) to the over-identified

GMM setting and investigated robustness properties of the pairs and implied probability bootstrap

methods.

The purpose of this paper is to refine the breakdown point analysis of Camponovo and Otsu (2012)

by focusing on the IV regression models. In contrast to Camponovo and Otsu (2012), who focused on

developing a basic framework for breakdown point analysis and considered somewhat artificial examples

such as the trimmed mean with prior information, this paper focuses on the IV regression which is one

of the most popular econometric models. We consider test statistics for parameter hypotheses based on

the IV estimator and generalized method of trimmed moments (GMTM) estimator introduced by Čížek

(2008, 2009), and compare the pairs and implied probability bootstrap approximations for these statistics

by applying the finite sample breakdown point theory. In particular, we study limiting behaviors of the

bootstrap quantiles when the values of outliers diverge to infinity but the sample size is held fixed. As

in Singh (1998), Camponovo, Scaillet and Trojani (2012a), and Camponovo and Otsu (2012), we define

the outliers as anomalous observations that can arbitrarily change the value of the statistic of interest.1

1We consider both representative and nonrepresentative outliers. Representative outliers are observations that have

been correctly recorded and that cannot be assumed to be unique. Nonrepresentative outliers are instead observations
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Although this may not be a popular way to define outliers in the literature,2 our definition is useful for

studying robustness of resampling methods. Our breakdown point analysis indicates that the implied

probability bootstrap quantiles stay finite in a wider range than the pairs bootstrap quantiles when

the values of outliers diverge. This does not necessarily have desirable implications on the size and

power properties of the implied probability bootstrap tests because the original statistic based on the

IV estimator may diverge as well. We also find that the implied probability bootstrap for the statistic

based on the GMTM estimator shows desirable robustness properties. This finding is illustrated by

striking simulation evidences. We also provide an empirical example based on Romer’s (1993) study on

the effect of openness of countries to inflation rates, where the data contain extremely high inflation

rates of some Latin American countries.

There is a vast literature on the breakdown point theory in robust statistics (see, e.g., Hampel et

al., 1986, Rousseeuw, 1997, Rousseeuw and Leroy, 2003, and Maronna, Martin and Yohai, 2006). The

next section presents a brief review on the literature of the breakdown point analysis in the context

of resampling procedures. On the other hand, the literature of robustness study in the IV regression

or GMM context is relatively thin and is currently under development. Ronchetti and Trojani (2001)

extended robust estimation methods for just-identified estimating equations to the over-identified GMM

setup. Gagliardini, Trojani and Urga (2005) proposed a robust GMM test for structural breaks. Čížek

(2008) introduced a general trimmed estimation approach for nonlinear and limited dependent variable

models, and Čížek (2008, 2009) extended this approach to the GMM context and proposed the GMTM

estimator. Hill and Renault (2010) proposed a GMM estimator with asymptotically vanishing tail

trimming for robust estimation of dynamic moment condition models. Kitamura, Otsu and Evdokimov

(2013) studied local robustness of point estimators for moment condition models against perturbations

controlled by the Hellinger distance. This paper studies global robustness of bootstrap methods in IV

regression models.

In particular, in our global robustness analysis we focus on the GMTM estimator mainly for two

reasons. First, the GMTM estimator is a global robust estimator characterized by a nontrivial break-

down point larger than 0. Second, the application of bootstrap approaches to the GMTM estimator

allows to easily derive and clarify the global robustness properties of different bootstrap procedures.

Unfortunately, a drawback of fixed-trimming estimators is that they may be biased both in finite sam-

ple and asymptotically. To overcome this problem (at least asymptotically), a possible solution consists

of considering negligible trimming procedures, as in Hill and Renault (2010), Hill and Aguilar (2012)

and Hill (2013). Note that the local robust approach introduced in Ronchetti and Trojani (2001) avoids

also finite sample bias. However, since we are analyzing the global robustness properties of bootstrap

procedures, it is more appropriate to focus on the global robust GMTM estimator.

The rest of the paper is organized as follows. In Section 2, we introduce basic concepts and the idea

whose data values are incorrect or unique in some sense, see Chambers (1986) for more details.
2Outliers are often defined as anomalous observations that are far away from the bulk of the data, or more generally,

from the pattern set by the majority of the data (see, e.g., Hampel et al., 1986).
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for our breakdown point analysis and provide a brief literature review. Section 3 studies a just-identified

case, which can be a benchmark for our breakdown point analysis. Section 4 generalizes the analysis in

Section 3 to an over-identified model. Section 5 discusses extensions of our breakdown point analysis to

different settings. Section 6 provides an empirical example. Section 7 concludes.

2 Breakdown point analysis for bootstrap: basic idea and literature

We first introduce basic concepts for our breakdown point analysis on bootstrap methods. Let Wn =

{Wi}ni=1 be an observed sample of size n and Sn = Sn (Wn) be a statistic of interest. Based on Donoho

and Huber (1983), we define the (finite-sample) breakdown point of Sn as

εn (Sn,Wn) = min
1≤k≤n

{
k

n
: sup ‖Sn (Wn,k)− Sn (Wn)‖ = +∞

}
, (1)

where the supremum is taken over all possible samples Wn,k of size n which are obtained by replacing k

observations inWn with arbitrary values, and ‖·‖ is the Euclidean norm. In words, the breakdown point

measures the smallest fraction of contamination that can arbitrarily change the value of the statistic.3

As emphasized in Donoho and Huber (1983), the breakdown point usually does not depend on the values

ofWn. For example, let us consider the observationsWn of size n = 20 with Wi ∈ R. The sample mean

W̄ = 1
20

∑20
i=1Wi has a breakdown point of 1

20 . Let W(1) ≤ . . . ≤ W(20) be the ordered observations.

The 10% trimmed mean W̃ = 1
18

∑19
i=2W(i) (i.e., trim the smallest and largest observations) has a

breakdown point of 1
10 . Note that the sample size n is held fixed.

The breakdown point analysis for the conventional bootstrap is introduced by Singh (1998). To

explain the basic idea, Singh (1998) considered the bootstrap approximation for the distribution of the

trimmed mean W̃ . Note that W̃ is always free from the largest observation W(20), which is treated

as an outlier. On the other hand, the bootstrap analog W̃# of W̃ using the bootstrap resample from

the empirical distribution of Wn is not necessarily free from X(20) because the bootstrap resample

may contain X(20) more than once. Letting B (n, q) be a binomial random variable with n trials and

probability q, the probability that W̃# is free from X(20) is written as

p# = P

(
B

(
20,

1

20

)
≤ 1

)
≈ 0.736.

Therefore, if X(20) → +∞, then 100 (1− p#) % of resamples of W̃# will diverge to +∞. In other words,

the bootstrap t-th quantile of W̃# will diverge to +∞ for all t > p#. Note that the sample size n = 20

is held fixed for this analysis. Instead we analyze the limiting behavior of the bootstrap quantiles when

the value of the outlier diverges, i.e., X(20) → +∞. In this sense, the breakdown point analysis for

3There are other definitions of the breakdown point (e.g., Hampel et al., 1986). Following Singh’s (1998) seminal

paper on breakdown point analysis for the bootstrap, we adopt Donoho and Huber’s (1983) definition of the finite sample

breakdown point in (1).
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the bootstrap is very different from the conventional asymptotic analysis which focuses on the case of

n→ +∞.

There is a rich literature on breakdown point analysis in robust statistics (see, e.g., Hampel et al.,

1986, Rousseeuw, 1997, Rousseeuw and Leroy, 2003, and Maronna, Martin and Yohai, 2006). This

paper is considered as an extension of previous research on breakdown point analysis for the bootstrap.

Since the seminal work in Singh (1998), many studies have analyzed breakdown point properties of

different resampling methods in different setups, such as Salibian-Barrera and Zamar (2002), Salibian-

Barrera, Van Aelst and Willems (2007), and Camponovo, Scaillet and Trojani (2012a). In a recent study,

Camponovo and Otsu (2012) extended the breakdown point analysis of the conventional bootstrap to

the implied probability bootstrap introduced by Brown and Newey (2002). In particular, Camponovo

and Otsu (2012) argued that the implied probability bootstrap is more robust than the conventional

bootstrap when the implied probabilities of outliers become smaller than the uniform weight. In this

case, as the values of outliers diverge to infinity, the implied probability bootstrap quantiles are well

defined for a wider range than the conventional bootstrap quantiles. This paper extends the results of

Camponovo and Otsu (2012) to IV regression models and derive more detailed results.

Also, our breakdown point analysis for bootstrap quantiles provides useful implications on the size

and power properties of the bootstrap tests and confidence intervals. In this sense, this paper contributes

to the literature of breakdown point analysis of statistical tests (see, e.g., Ylvisaker, 1977, He, Simpson

and Portnoy, 1990, and Markatou and He, 1994).

Finally, the breakdown point properties of bootstrap quantiles crucially depend on the breakdown

point in (1) of the statistic of interest. In IV regression models, conventional statistics, such as the t-

statistic based on the IV estimator, have a trivial breakdown point 1
n , i.e., a single outlier can arbitrarily

change the values of the statistic (see, e.g., Krasker and Welsch, 1985). To provide more robust test

statistics, recent research proposed various trimming procedures. The trimming approach has been

largely applied in linear regression models with exogenous regressors. Important examples of high

breakdown point robust estimators for linear regression include: the least trimmed squares estimator

(Rousseeuw, 1985), the least trimmed absolute deviations estimator (Basset, 1991), and the maximum

trimmed likelihood estimator (Neykov and Neitchev, 1990, and Hadi and Luceno, 1997). Čížek (2008)

proposed a general trimmed estimation approach for nonlinear and limited dependent variable models.

Also, Čížek (2008, 2009) extended the general trimming approach to the GMM context and proposed

the GMTM estimator. Furthermore, Hill and Renault (2010) and Hill and Aguilar (2012) introduced

tail trimming estimators in the GMM context, where the effect of trimming is asymptotically negligible

as n → +∞. In this paper, we study robustness of bootstrap quantiles of statistics based on both

the conventional IV and Čížek’s (2008, 2009) GMTM estimators. It will be shown that the different

bootstrap quantiles combined with the statistics based on these estimators show very different breakdown

point properties.
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3 Just-identified case

3.1 Setup

Let {Wi}ni=1 = {Yi, Xi, Zi}ni=1 be an iid random sample of size n from (Y,X,Z) ∈ R× Rp × Rk, where
k ≥ p, and each variable has finite variance. We consider the linear model

Yi = X ′iθ0 + Ui,

for i = 1, . . . , n, where θ0 ∈ Rp is a vector of unknown parameters and Ui is an error term. We suspect

that the regressors Xi have endogeneity (i.e., E [XiUi] 6= 0) and the OLS estimator cannot consistently

estimate the parameter of interest θ0. In such a situation, it is common to introduce instrumental

variables Zi, which are orthogonal to the error term Ui. Based on the orthogonality, our estimation

problem for θ0 reduces to the one from the moment condition model

E [g (Wi, θ0)] = E
[
Zi
(
Yi −X ′iθ0

)]
= 0. (2)

When the number of instruments equals the number of regressors (i.e., k = p), the model is called just-

identified. When the number of instruments exceeds the number of regressors (i.e., k > p), the model

is called over-identified. This section focuses on the case of k = p = 1, i.e., the model is just-identified

and there is only one regressor. In this case, the IV for θ0 is written as

θ̂ =

∑n
i=1 ZiYi∑n
i=1 ZiXi

.

Based on the definition in (1), the breakdown point of θ̂ is εn
(
θ̂,Wn

)
= 1

n , i.e. the replacement of a

single observation with an arbitrary value may imply the divergence of θ̂. As an example of a robust

estimator, we also consider the following version of the GMTM estimator introduced by Čížek (2008,

2009):

θ̂d = arg min
θ

[
1

n

n∑
i=1

Zi (Yi −Xiθ) I
{
r (Wi, θ) ≤ r

(
W[n−d], θ

)}]2

,

where I {·} is the indicator function, r (Wi, θ) = |Zi (Yi −Xiθ)|2 is a trimming function which is ordered

as r
(
W[1], θ

)
≤ · · · ≤ r

(
W[n], θ

)
, and d is an integer such that 0 ≤ d ≤ n

2 to determine the amount of

trimming.4 In this estimator, outliers are determined by the value of r (Wi, θ) and removed from the

estimating equation. If d = 0, there is no trimming, i.e., θ̂d = θ̂. Also we can see that the breakdown
4In Čížek (2008, 2009), the trimming term is written as I

{
r (Wi, θ) ≤ r

(
W[λn], θ

)}
for λ ∈

(
1
2
, 1
]
. This expression is

important to analyze the asymptotic property of the GMTM estimator as n → ∞, which is characterized by λ. In our

breakdown point analysis, the sample size n is held fixed. So we employ the expression I
{
r (Wi, θ) ≤ r

(
W[n−d], θ

)}
using

an integer d for convenience. Also note that we select 0 ≤ d ≤ n
2
because we cannot distinguish which part of the data

should be fit by the model and which part should be trimmed. In practice, the selection of d depends case by case. A

descriptive analysis based on scatter plot may help to identify anomalous observations and to select appropriate values of

d.
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point of θ̂d is εn
(
θ̂d,Wn

)
= d+1

n , i.e., d + 1 outliers are necessary in order to change arbitrarily the

value of θ̂d.

We consider parameter hypothesis testing for the null H0 : θ0 = c with some given c ∈ R against the

two-sided alternative H1 : θ0 6= c. Our breakdown point analysis can be easily extended to one-sided

testing by analyzing divergence properties of test statistics to positive and negative infinity separately.

Based on the point estimators introduced above, we focus on the test statistics Tn =
√
n
(
θ̂ − c

)
and

T dn =
√
n
(
θ̂d − c

)
. In Section 3.5.3, we consider a studentized statistic.5 To obtain critical values

of the tests, we need to find approximations to the distributions of the test statistics under the null

hypothesis H0. One way to approximate these distributions is to apply the pairs bootstrap method.

The pairs bootstrap draws resamples from the observations {Wi}ni=1 with the uniform weight 1/n, and

approximates the distributions of Tn and T dn by their resampled statistics. Another bootstrap method

is to impose the moment condition E [g (Wi, c)] = 0 under the null hypothesis H0, and draw bootstrap

resamples using the implied probabilities (Back and Brown, 1993),6

πi =
1

n
− 1

n

(g (Wi, c)− ḡ) ḡ
1
n

∑n
i=1 g (Wi, c)

2 , (3)

for i = 1, . . . , n, where ḡ = 1
n

∑n
i=1 g (Wi, c) (note: g is assumed to be scalar-valued in this section).7

The second term in (3) can be interpreted as a penalty term for the deviation from H0. If |g (Wi, c)|
becomes larger, then the second term tends to be negative (because (g (Wi, c)− ḡ) and ḡ tends to take

the same sign) and the weight πi tends to be smaller than the uniform weight 1
n . Intuitively, if an outlier

in the observations yields a large value of |g (Wi, c)|, then the implied probability bootstrap tends to

draw the outlier less frequently. Thus it is reasonable to expect that the pairs and implied probability

bootstrap methods have different robustness properties in the presence of outliers. The next subsection

formalizes this intuition by using the finite sample breakdown point theory for resample methods.
5Note that both in Sections 3 and 4 we assume that the statistics under investigation satisfy a central limit theorem.
6For the breakdown point analysis below, we focus on Back and Brown’s (1993) implied probability in (3) because of its

tractability. Back and Brown’s (1993) implied probability can be interpreted as an approximation to the Fisher information

projection from the empirical distribution to the space of distributions satisfying the moment conditions. It is important to

extend our analysis to other implied probabilities using different information projections based on the Boltzmann-Shannon

entropy yielding the exponential tilting weights (Kitamura and Stutzer, 1997, and Imbens, Spady and Johnson, 1998) and

Burg entropy yielding the empirical likelihood weights (Owen, 1988) for example. In particular, Camponovo and Otsu

(2012, Section 2.1) suggested a way to extend the breakdown point analysis for the implied probability bootstrap based

on generalized empirical likelihood (Newey and Smith, 2004) in a limited setup. Their approach can be applied to our

setup.
7Our breakdown point analysis assumes that all implied probabilities are non-negative. This assumption is typically

justified when the sample size is sufficiently large. However, in finite samples, it is possible to have negative implied

probabilities. In the simulation study below, we adopt a shrinkage-type modification suggested by Antoine, Bonnal and

Renault (2007) to avoid negative implied probabilities. More precisely, for i = 1, . . . , n we consider the non-negative

implied probabilities π̃i = 1
1+ε̃n

πi +
ε̃n

1+ε̃n

1
n
, where ε̃n = −nmin1≤i≤n(πi, 0).
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3.2 Breakdown point analysis

Based on the above setup, we now conduct the breakdown point analysis for the pairs and implied

probability bootstrap methods. We first define outliers. To fix the idea, let
∥∥W(1)

∥∥ ≤ · · · ≤ ∥∥W(n)

∥∥
be the observations ordered by the Euclidean norm, and let us treat W(n) as an outlier. Consider the

statistic Tn =
√
n
(
θ̂ − c

)
based on the IV estimator θ̂ to test H0 : θ0 = c against H1 : θ0 6= c. We

assume that W(n) is an outlier in the following sense.

Assumption 1. W(n) is an outlier for the statistic Tn in the sense that

|Tn| → +∞ as
∥∥W(n)

∥∥→ +∞.

Some specific examples satisfying this assumption are provided in the end of this subsection. The

choice of W(n) as an outlier is just for convenience. Any types of divergence or convergence in the

observations causing |Tn| → +∞ can be treated as outliers, and the same analysis applies.

We now consider the pairs bootstrap. The pairs bootstrap analog of Tn is written as T#
n =

√
n
(
θ̂# − θ̂

)
, where θ̂# is the IV estimator based on the pairs bootstrap resamples. Note that T#

n

depends on θ̂, the IV estimator of the original sample. Thus, by Assumption 1,
∣∣∣T#
n

∣∣∣ diverges to infinity

as
∥∥W(n)

∥∥ → +∞ even if the pairs bootstrap resample to compute θ̂# does not contain W(n). Also,

if the resample contains the outlier W(n) possibly multiple times, then
∣∣∣T#
n

∣∣∣ may diverge or become

indeterminate as
∥∥W(n)

∥∥ → +∞. Based on these results, we can at least say that
∣∣∣T#
n

∣∣∣ diverges to

infinity as
∥∥W(n)

∥∥→ +∞ when the resample to compute θ̂# does not contain W(n) (because θ̂ diverges

but θ̂# does not as
∥∥W(n)

∥∥→ +∞). The probability for this event in the pairs bootstrap resampling is

obtained as

p# = P

(
B

(
n,

1

n

)
= 0

)
,

where B (n, q) is a binomial random variable with n trials and probability q. Therefore, at least 100p#%

of resamples of
∣∣∣T#
n

∣∣∣ will diverge to +∞ as
∥∥W(n)

∥∥→ +∞. In other words, the t-th bootstrap quantile

Q#
t of

∣∣∣T#
n

∣∣∣ will diverge to +∞ for all t > 1− p#.

We next consider the implied probability bootstrap. We impose the following additional assumption.

Assumption 2. Assume that∣∣g (W(n), c
)∣∣ =

∣∣Z(n)

(
Y(n) −X(n)c

)∣∣→ +∞ as
∥∥W(n)

∥∥→ +∞,

This assumption is very mild. For example, if one of the elements in
(
Y(n), X(n), Z(n)

)
diverges, then

this assumption is satisfied (unless Y(n) −X(n)c = 0 or Z(n) = 0). Under this assumption, the implied

probability in (3) for the observation W(n) satisfies

π(n) =
1

n
− 1

n

(
1− 1

n −
ḡ−

g(W(n),c)

)(
ḡ−

g(W(n),c)
+ 1

n

)
v̄−

g(W(n),c)
2 + 1

n

→ 1

n2
, (4)
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as
∥∥W(n)

∥∥→ +∞, where ḡ− = 1
n

∑n−1
i=1 g

(
W(i), c

)
and v̄− = 1

n

∑n−1
i=1 g

(
W(i), c

)2. In contrast to the pairs

bootstrap which draws the outlier W(n) with probability 1
n , the implied probability bootstrap draws the

outlier with smaller probability 1
n2 as

∥∥W(n)

∥∥→ +∞. The implied probability bootstrap counterpart of

Tn is written as T ∗n =
√
n
(
θ̂∗ − c

)
. Note that T ∗n is centered around the hypothetical value c instead of

the estimator θ̂. This is due to the fact that the implied probability bootstrap resamples are drawn from

the multinomial distribution satisfying
∑n

i=1 πig (Wi, c) = 0. Thus, |T ∗n | will diverge as
∥∥W(n)

∥∥→ +∞
only when the resample to compute θ̂∗ contains the outlier W(n). From (4), the probability that the

implied probability bootstrap statistic T ∗n is free from the outlier W(n) converges to

p∗ = P

(
B

(
n,

1

n2

)
= 0

)
,

as
∥∥W(n)

∥∥ → +∞. Therefore, under Assumptions 1 and 2, 100 (1− p∗) % of resamples of |T ∗n | will
diverge to +∞ as

∥∥W(n)

∥∥ → +∞. In other words, the t-th bootstrap quantile Q∗t of |T ∗n | will diverge
to +∞ for all t > p∗. We summarize these findings on the pairs and implied bootstrap methods in the

following proposition.

Proposition 1. Consider the setup of this section.

(i) Under Assumption 1, the pairs bootstrap analog T#
n =

√
n
(
θ̂# − θ̂

)
always contains the outlier

W(n), and the pairs bootstrap quantile Q#
t from the resamples of

∣∣∣T#
n

∣∣∣ diverges to +∞ for all

t > 1− p# as
∥∥W(n)

∥∥→ +∞.

(ii) Under Assumptions 1 and 2, the implied probability bootstrap analog T ∗n =
√
n
(
θ̂∗ − c

)
contains

the outlier W(n) with probability 1− p∗, and the implied probability bootstrap quantile Q∗t from the

resamples of |T ∗n | diverges to +∞ for all t > p∗ as
∥∥W(n)

∥∥→ +∞.

For illustration, we present the values of p# and p∗ for different sample sizes.

Table A: Values of p# and p∗

n 10 20 50 100 500 1000

p# 0.349 0.358 0.364 0.366 0.368 0.368

p∗ 0.904 0.951 0.980 0.990 0.998 0.999

For example, when n = 50, divergence of a single outlier implies divergence of 100p# = 36.4% of the

pairs bootstrap resamples of T#
n . On the other hand, divergence of a single outlier implies divergence

of 100 (1− p∗) = 2% of the implied probability bootstrap resamples of T ∗n . As far as n > 3, it holds

p∗ > 1− p# and the implied probability bootstrap provides finite quantiles for a wider range than the

pairs bootstrap in the case of
∥∥W(n)

∥∥→ +∞. However, this does not necessarily mean that the implied
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probability bootstrap test has desirable size or power properties in the presence of outliers because the

original statistic Tn =
√
n
(
θ̂ − c

)
diverges to infinity as

∥∥W(n)

∥∥→ +∞. See Section 3.3 for a detailed

discussion.

We now consider the statistic T dn =
√
n
(
θ̂d − c

)
with d ≥ 1 based on the GMTM estimator θ̂d.

Note that under Assumption 2, r
(
W(n), c

)
=
∣∣Z(n)

(
Y(n) −X(n)c

)∣∣2 → +∞ as
∥∥W(n)

∥∥ → +∞. Thus,

the outlierW(n) will be trimmed, and θ̂d and T dn are bounded as
∥∥W(n)

∥∥→ +∞. On the other hand, the

bootstrap counterparts T d#
n =

√
n
(
θ̂d# − θ̂d

)
and T d∗n =

√
n
(
θ̂d∗ − c

)
diverge if the resamples contain

the outlier W(n) more than d times. The probability that the pairs bootstrap resample to compute θ̂d#

contains the outlier W(n) less than or equal to d times is

pd# = P

(
B

(
n,

1

n

)
≤ d
)
.

Also, from (4), the probability that the implied probability bootstrap resample to compute θ̂d∗ contains

the outlier W(n) less than or equal to d times converges to

pd∗ = P

(
B

(
n,

1

n2

)
≤ d
)
,

as
∥∥W(n)

∥∥ → +∞. Therefore, 100
(
1− pd#

)
% of resamples of

∣∣∣T d#
n

∣∣∣ will diverge to +∞ as
∥∥W(n)

∥∥ →
+∞. In other words, the t-th bootstrap quantile Qd#

t of
∣∣∣T d#
n

∣∣∣ will diverge to +∞ for all t > pd#.

Similarly, the t-th bootstrap quantile Qd∗t of
∣∣T d∗n ∣∣ will diverge to +∞ for all t > pd∗. These findings are

summarized as follows.

Proposition 2. Consider the setup of this section.

(i) Under Assumptions 1 and 2, the pairs bootstrap analog T d#
n =

√
n
(
θ̂d# − θ̂d

)
contains the outlier

W(n) with probability 1 − pd#, and the pairs bootstrap quantile Qd#
t from the resamples of

∣∣∣T d#
n

∣∣∣
diverges to +∞ for all t > pd# as

∥∥W(n)

∥∥→ +∞.

(ii) Under Assumptions 1 and 2, the implied probability bootstrap analog T d∗n =
√
n
(
θ̂d∗ − c

)
contains

the outlier W(n) with probability 1 − pd∗, and the implied probability bootstrap quantile Qd∗t from

the resamples of
∣∣T d∗n ∣∣ diverges to +∞ for all t > pd∗ as

∥∥W(n)

∥∥→ +∞.

For illustration, we present the values of pd# and pd∗ for n = 50 and 0 ≤ d ≤ 5.

Table B: Values of pd# and pd∗

n = 50 d = 0 d = 1 d = 2 d = 3 d = 4 d = 5

pd# 0.364 0.736 0.930 0.982 0.997 0.999

pd∗ 0.980 1.000 1.000 1.000 1.000 1.000

10



As expected, from Table B we can observe that both pd# and pd∗ increase as d increases. However, pd∗

is always larger than pd#. Therefore, the implied probability bootstrap is more robust than the pairs

bootstrap. It is also interesting to note that in presence of a single outlier the GMTM estimator θ̂d is

stable for d = 1, while on the other hand 1− 0.736 = 0.264 of the bootstrap samples will be extremely

large. This result confirms that to robustify the pairs bootstrap it is not enough to apply only robust

estimators (see also Singh (1998) for a similar example).

Note that as the number of trimmed observations d increases, both pd# and pd∗ increase. Thus, the

bootstrap quantiles of the statistic T dn based on the GMTM estimator stay finite for wider ranges than

the ones of Tn in the case of
∥∥W(n)

∥∥ → +∞. Also, since pd∗ > pd#, the implied probability bootstrap

quantile Qd∗t stays finite for a wider range than the pairs bootstrap quantile Qd#
t . In contrast to Tn, the

statistic T dn will be free from W(n) as
∥∥W(n)

∥∥ → +∞. Thus, the robustness of the implied probability

bootstrap quantile in the above sense has desirable implications on the size and power properties of

the implied probability bootstrap test. We discuss this point in Section 3.3 with a striking simulation

evidence in Section 3.4.

Finally, we discuss some examples that satisfy Assumption 1. The breakdown point results above

apply as far as this high-level assumption is satisfied. However, it is insightful to inspect some specific

types of outliers satisfying Assumption 1 in the IV regression context. In the case of k = p = 1, the

outlier W(n) contains three elements
(
Y(n), X(n), Z(n)

)
. For illustration, we consider the following cases.

Table C: Limits of Tn as
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded Limit of |Tn|

1 Z X, Y bounded

2 X Y, Z bounded

3 Y X, Z +∞

In Table C (and also Tables D, E, and F below), X, Y , and Z mean
∣∣X(n)

∣∣, ∣∣Y(n)

∣∣, and ∣∣Z(n)

∣∣, respectively.
For example, the second row for Case 1 means that as

∣∣Z(n)

∣∣→ +∞, but
∣∣X(n)

∣∣ and ∣∣Y(n)

∣∣ are bounded,
then |Tn| is bounded, while the fourth row for Case 3 means that as

∣∣Y(n)

∣∣ → +∞, but
∣∣X(n)

∣∣ and∣∣Z(n)

∣∣ are bounded, then |Tn| diverges to infinity. From this table, we can regard Case 3 as an example

of the outlier for Tn. Obviously, there are various other types of outliers. Let A =
∑n−1

i=1 Z(i)Y(i) and

B =
∑n

i=1 Z(i)X(i). An inspection of

θ̂ =

∑n
i=1 ZiYi∑n
i=1 ZiXi

=
A

B
+
Z(n)Y(n)

B
,

reveals that |Tn| =
√
n
∣∣∣θ̂ − c∣∣∣ diverges to infinity as

∥∥W(n)

∥∥ → +∞ when B → 0 or
∣∣∣Z(n)Y(n)

B

∣∣∣ → ∞.

The situation of B → 0 is somewhat unrealistic but may be caused by very weak instruments. The

situation of
∣∣∣Z(n)Y(n)

B

∣∣∣→∞ can occur when Y(n) or both Y(n) and Z(n) diverges.
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3.3 Implications on size and power properties

The breakdown point analysis in the previous subsection has important implications on the size and

power properties of the bootstrap tests. Suppose Assumptions 1 and 2 hold true. First, consider the

statistic Tn =
√
n
(
θ̂ − c

)
based on the IV estimator. A key observation is that

Tn =
√
n
(
θ̂ − c

)
always contains W(n),

T#
n =

√
n
(
θ̂# − θ̂

)
always contains W(n),

T ∗n =
√
n
(
θ̂∗ − c

)
contains W(n) with probability p∗ (as

∥∥W(n)

∥∥→ +∞).

As shown in Proposition 1 (i), the distribution of the pairs bootstrap statistic T#
n =

√
n
(
θ̂# − θ̂

)
is

heavily influenced by the presence of outliers. In particular, the pairs bootstrap quantiles of
∣∣∣T#
n

∣∣∣ tend
to be extremely large in the presence of outliers. This yields extremely large critical values for the

pairs bootstrap test (or equivalently, extremely wide confidence intervals). Thus, we tend to accept

the null hypothesis very frequently, and both the size and power of the pairs bootstrap test tend to be

close to 0. On the other hand, Proposition 1 (ii) says that the implied probability bootstrap quantiles

of T ∗n =
√
n
(
θ̂∗ − c

)
are more robust to the presence of outliers. This yields relatively small and

stable critical values for the implied probability bootstrap test. However, this stability of the bootstrap

quantiles is not necessarily desirable for the test. By Assumption 1, the value of the original statistic |Tn|
tends to be large as

∥∥W(n)

∥∥ increases. Thus, relatively small and stable critical values by the implied

probability bootstrap yield very frequent rejections of the null hypothesis, and both the size and power

of the implied probability bootstrap test tend to be close to 1.

Next, consider the statistic T dn =
√
n
(
θ̂d − c

)
with d ≥ 1 based on the GMTM estimator. Again a

key observation is that as
∥∥W(n)

∥∥→∞,

T dn =
√
n
(
θ̂d − c

)
never contains W(n),

T d#
n =

√
n
(
θ̂d# − θ̂d

)
contains W(n) with probability pd#,

T d∗n =
√
n
(
θ̂d∗ − c

)
contains W(n) with probability pd∗.

As shown in Proposition 2, the bootstrap quantiles of the pairs bootstrap statistic T d#
n =

√
n
(
θ̂d# − θ̂d

)
are more robust than those of the statistic T#

n . However, from pd# > pd∗, the bootstrap quantiles of

T d#
n tend to be larger than those of T d∗n , and the pairs bootstrap test tends to accept the null hypothesis

more often than the implied probability bootstrap test. In contrast to Tn, the statistic T dn never contains

W(n). Therefore we can expect that the implied probability bootstrap is more accurate than the pairs

bootstrap to approximate the distribution of T dn , and shows better size and power properties.

In summary, to test the null hypothesis H0 in the presence of outliers, we recommend the use of

the statistic T dn based on Čížek’s (2008, 2009) GMTM estimator combined with the implied probability

bootstrap. In the next subsection, we provide a striking simulation evidence to endorse our recommen-

dation.
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3.4 Simulation

In this subsection, we conduct a simulation study to evaluate the performance of the bootstrap meth-

ods in the presence of outliers. We consider iid samples {Wi}ni=1 = {Yi, Xi, Zi}ni=1 of sizes n = 50

and 100 generated from Yi = Xiθ0 + Ui and Xi = Ziπ0 + Vi, where Zi ∼ N (1, 1),

(
Ui

Vi

)
∼

N

((
0

0

)
,

(
1 0.2

0.2 1

))
, and π0 = 0.8.8 The true parameter value is set as θ0 = 2. We are

interested in testing the null hypothesis H0 : θ0 = 2 against the alternative H1 : θ0 6= 2. For each

scenario, the number of bootstrap replications is 399 for each Monte Carlo sample and the number of

Monte Carlo replications is 10, 000.

To study robustness of the bootstrap methods for approximating the distributions of the test

statistics Tn and T dn with d = 1, we consider two situations: (i) (W1, . . . ,Wn) are generated from

the above model (No outlier), and (ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i = 1, . . . , n − 1 and

W̃(n) =
(
Ỹ(n), X̃(n), Z̃(n)

)
=
(
CYmax, X(n), Z(n)

)
with C = 5, 10, 20 and Ymax = max {Y1, . . . , Yn}

(Outlier in Y ). This specification of the outlier corresponds to Case 3 in Table C. Proposition 1 says

that as
∥∥W(n)

∥∥ → ∞, the pairs bootstrap t-th quantile Q#
t from the resamples

∣∣∣T#
n

∣∣∣ of the statistic

Tn will diverge to +∞ for all t > 1 − P
(
B
(
n, 1

n

)
= 0
)
, and the implied probability bootstrap t-th

quantile Q∗t from the resamples |T ∗n | of Tn will diverge to +∞ for all t > P
(
B
(
n, 1

n2

)
= 0
)
. Also by

Proposition 2, the pairs bootstrap t-th quantile from the resamples
∣∣∣T d#
n

∣∣∣ of T dn will diverge to +∞ for

all t > P
(
B
(
n, 1

n

)
≤ 1
)
, and the implied probability bootstrap t-th quantile from the resamples

∣∣T d∗n ∣∣
of T dn will diverge to +∞ for all t > P

(
B
(
n, 1

n2

)
≤ 1
)
.

Table 1 reports the Monte Carlo medians of the pairs bootstrap quantiles Q#
t and Qd#

t and implied

probability bootstrap quantiles Q∗t and Qd∗t for |Tn| and
∣∣T dn ∣∣, respectively. We set t = 0.95, and we

report also empirical coverages of bootstrap confidence intervals. First we consider the statistic |Tn|. In
absence of the outlier, both bootstrap methods quantiles are accurate to approximate the true quantiles.

For instance, in the case of n = 50, the Monte Carlo medians of the pairs and implied probability

bootstrap quantiles are 1.7972 and 1.7882, respectively, while the true quantile is 1.8210. Furthermore,

also the empirical coverages are quite close to the nominal coverage probability 0.95. In contrast, in the

presence of the outlier, the pairs bootstrap quantiles are extremely large, while the implied probability

bootstrap quantiles tend to be close to the true quantiles without the outlier. For instance, in the case of

n = 100 and C = 20, the Monte Carlo medians of the pairs and implied probability bootstrap quantiles

are 23.3004 and 2.4642, respectively. It is important to note that in the presence of the outlier, the true

quantiles are extremely large. For instance, for n = 100 and C = 20, the true quantile is 29.7983. In

the presence of the outlier, both bootstrap methods do not provide accurate approximations to the true

quantiles. Finally, also the empirical coverages are highly distorted. As expected, the pairs bootstrap
8We also tried the case of n = 200, but the results are similar to those of the case of n = 100. Unreported Monte Carlo

results for n ≥ 1000 show that the impact of the single outlier is less pronounced.
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empirical coverages are close to 1, while implied probability bootstrap coverages are extremely small.

We next consider the statistic T dn based on the GMTM estimator. Again, in absence of the outlier,

both pairs bootstrap and implied probability bootstrap quantiles are accurate to approximate the true

quantiles. For instance, in the case of n = 100, the Monte Carlo medians of the pairs and implied

probability bootstrap quantiles are 1.7457 and 1.7212, respectively, while the true quantile is 1.7182.

Furthermore, also the empirical coverages remain very close to the nominal coverage probability. On

the other hand, in the presence of the outlier, the pairs bootstrap quantiles tend to be large. This is due

to the fact that the pairs bootstrap resamples often contain the outlier more than once. For instance, in

the case of n = 100 and C = 20, the Monte Carlo median of the pairs bootstrap quantile is 23.0146. In

contrast, even in the presence of the outlier, the implied probability bootstrap accurately approximate

the true quantiles. For instance, in the case of n = 100 and C = 20, the Monte Carlo median of the

implied probability bootstrap quantile is 1.7807, while the true quantile is 1.7827. As expected, the

pairs bootstrap empirical coverages are close to 1. On the other hand, the implied probability empirical

coverages remain very close to the nominal coverage probability. 9

Furthermore, we study the size and the power properties of the bootstrap tests. In particular, we

consider two situations: (i) (W1, . . . ,Wn) are generated from the above model (No outlier) with θ0 ∈
[2, 2.3], and (ii)

(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i = 1, . . . , 99 and W̃(100) =

(
Ỹ(100), X̃(100), Z̃(100)

)
=(

10Ymax, X(100), Z(100)

)
with Ymax = max {Y1, . . . , Y100} (Outlier in Y ). Using the bootstrap methods,

we test the null hypothesis H0 : θ0 = 2 under different parameter values of θ0 ∈ [2, 2.3].

Table 6 reports the rejection frequencies of the null hypothesis under different parameter values

θ0 ∈ [2, 2.3]. First we consider the statistic Tn. In absence of the outlier, for θ0 = 2, the rejection

frequencies of both bootstrap methods are quite close to the nominal level 0.05. The power of the

bootstrap tests increases as the value of θ0 increases to 2.3. For instance, at θ0 = 2.3, the rejection

frequencies are larger than 80% for both bootstrap tests. In the presence of the outlier, both size

and power of the tests are dramatically distorted. In particular, the rejection frequencies of the pairs

bootstrap are always smaller than 15% even when θ0 = 2.3 (very low power). In contrast, the rejection

frequencies of the implied probability bootstrap are always larger than 60% even when θ0 = 2 (severe

size distortion). These results endorse our findings in Section 3.3. In the presence of the outlier, the

pairs bootstrap critical values tend to be very large, and both size and power of the pairs bootstrap test

tend to collapse to 0. On the other hand, in the presence of the outlier, the implied probability bootstrap

critical values tend to be very low and, both size and power of the implied probability bootstrap test

tend to collapse to 1.

Finally, we consider the statistic T dn . In absence of the outlier, the rejection frequencies are very

similar to those obtained for the statistic Tn. In particular, when θ0 = 2, the rejection frequencies of
9In this context, to compare the robustness properties of the implied probability bootstrap with other robust resampling

methods, we consider also the winsorization approach described in Singh (1998). Unreported Monte Carlo results confirm

the accuracy of both methods and highlight some analogies of the two procedures.
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both bootstrap tests are very close to the nominal level 0.05. Furthermore, for θ0 6= 2, the power of the

bootstrap tests increases as the value of θ0 increases to 2.3. In the presence of the outlier, the power of

the pairs bootstrap test is dramatically distorted. In particular, the rejection frequencies of the pairs

bootstrap are always smaller than 10% even when θ0 = 2.3. In contrast, the presence of the outlier does

not deteriorate the accuracy of the implied probability bootstrap. For θ0 = 2, the rejection frequency

of the implied probability bootstrap remains very close to the nominal level 0.05. For θ0 = 2.3, the

rejection frequency is still close to 80%. Therefore, we conclude that the implied probability bootstrap

test using the statistic T dn has desirable size and power properties in the presence of the outlier.

3.5 Extensions

3.5.1 Multiple outliers

Proposition 1 on the breakdown point properties of the bootstrap quantiles can be extended to the case

where we have m ∈ {1, . . . , n− 1} outliers. To this end, we extend Assumption 1 on the outlier as

follows.

Assumption 3.
(
W(n−m+1), . . . ,W(n)

)
are outliers for the statistic Tn in the sense that for each j =

1, . . . ,m,

|Tn| → +∞ as
∥∥W(n−j+1)

∥∥→ +∞.

We first analyze the robustness properties of the pairs bootstrap. Note that the pairs bootstrap

analog T#
n =

√
n
(
θ̂# − θ̂

)
depends on θ̂, the IV estimator using the original sample. Thus, by As-

sumption 3,
∣∣∣T#
n

∣∣∣ diverges to infinity as
∥∥W(n−j+1)

∥∥ → +∞ even if the pairs bootstrap resample to

compute θ̂# does not contain the outliers
(
W(n−m+1), . . . ,W(n)

)
. Also, if the resample contains the

outliers
(
W(n−m+1), . . . ,W(n)

)
possibly multiple times, then

∣∣∣T#
n

∣∣∣ may diverge or become indeterminate

as
∥∥W(n−j+1)

∥∥→ +∞ for j = 1, . . . ,m. Thus, similar to the single outlier case, we can at least say that∣∣∣T#
n

∣∣∣ diverges to infinity as
∥∥W(n−j+1)

∥∥→ +∞ when the resample to compute θ̂# does not contain any

outlier in
(
W(n−m+1), . . . ,W(n)

)
. The probability for this event is obtained as

p#
m = P

(
B
(
n,
m

n

)
= 0
)
.

Therefore, at least 100p#
m% of resamples of

∣∣∣T#
n

∣∣∣ will diverge to +∞ as
∥∥W(n−j+1)

∥∥ → +∞ for j =

1, . . . ,m. In other words, the t-th bootstrap quantile Q#
t of

∣∣∣T#
n

∣∣∣ will diverge to +∞ for all t > 1− p#
m.

For the implied probability bootstrap, we impose the following analog of Assumption 2.

Assumption 4. For j = 1, . . . ,m,∣∣g (W(n), c
)∣∣ → +∞ as

∥∥W(n)

∥∥→ +∞,
g(W(n−j+1),c)
g(W(n),c)

→ 1 as
∥∥W(n)

∥∥→ +∞ and
∥∥W(n−j+1)

∥∥→ +∞.
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Under this assumption, the implied probability in (3) for the observation W(n) satisfies

π(n) =
1

n
− 1

n

{
1− 1

n

(
g(n−1)+···+g(n−m+1)

g(n)

)
− ḡm−

g(n)

}{
ḡm−
g(n)

+ 1
n

(
g(n)+···+g(n−m+1)

g(n)

)}
v̄m−
g2
(n)

+ 1
n

(
g2
(n)

+···+g2
(n−m+1)

g2
(n)

) → m

n2
,

as
∥∥W(n−j+1)

∥∥ → +∞ for all j = 1, . . . ,m, where g(i) = g
(
W(i), c

)
, ḡm− = 1

n

∑n−m
i=1 g

(
W(i), c

)
,

and v̄m− = 1
n

∑n−m
i=1 g

(
W(i), c

)2. By applying the same argument, we obtain π(n−j+1) → m
n2 for

all j = 1, . . . ,m. Note that the implied probability bootstrap analog T ∗n diverges to infinity as∥∥W(n−j+1)

∥∥ → +∞ for j = 1, . . . ,m when the bootstrap resample contains at least one outlier in(
W(n−m+1), . . . ,W(n)

)
. The probability that the implied probability bootstrap resample T ∗n is free from

m outliers
(
W(n−m+1), . . . ,W(n)

)
converges to

p∗m = P

(
B

(
n,
(m
n

)2
)

= 0

)
.

Therefore, under Assumptions 3 and 4, 100 (1− p∗m) % of resamples of |T ∗n | will diverge to +∞ as∥∥W(n−j+1)

∥∥→ +∞ for j = 1, . . . ,m. In other words, the t-th bootstrap quantile Q∗t of |T ∗n | will diverge
to +∞ for all t > p∗m. We summarize these findings in the following proposition.

Proposition 3. Consider the setup of this section.

(i) Under Assumption 3, the pairs bootstrap analog T#
n =

√
n
(
θ̂# − θ̂

)
always contains the outliers(

W(n−m+1), . . . ,W(n)

)
, and the pairs bootstrap quantile Q#

t from the resamples of
∣∣∣T#
n

∣∣∣ diverges
to +∞ for all t > 1− p#

m as
∥∥W(n−j+1)

∥∥→ +∞ for j = 1, . . . ,m.

(ii) Under Assumptions 3 and 4, the implied probability bootstrap analog T ∗n =
√
n
(
θ̂∗ − c

)
contains at

least one outlier
(
W(n−m+1), . . . ,W(n)

)
with probability 1−p∗m, and the implied probability bootstrap

quantile Q∗t from the resamples of |T ∗n | diverges to +∞ for all t > p∗m as
∥∥W(n−j+1)

∥∥ → +∞ for

j = 1, . . . ,m.

Similar comments to Proposition 1 apply. The implied probability bootstrap provides finite quantiles

for a wider range than the pairs bootstrap as
∥∥W(n−j+1)

∥∥ → +∞ for j = 1, . . . ,m. As the number of

outliers m increases, the probability p∗m decreases and the range where the implied probability bootstrap

quantiles stay finite becomes narrower.

3.5.2 Residual bootstrap

Besides the pairs and the implied probability bootstrap methods, there is another bootstrap approach

to conduct inference in the IV regression, the residual bootstrap. Let us consider the just-identified

model introduced in Section 3 with the reduced form equation for the endogenous regressor Xi,

Yi = Xiθ0 + Ui,

Xi = Ziπ0 + Vi,
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where E [ZiUi] = 0. Based on Davidson and MacKinnon (2010), we discuss two kinds of residual

bootstrap methods. The first method, called the unrestricted residual bootstrap, draws resamples{
Y UR
i , XUR

i

}n
i=1

from

Y UR
i = XUR

i θ̂ + ÛURi ,

XUR
i = Ziπ̂ + V̂ UR

i ,

where θ̂ =
∑n
i=1 ZiYi∑n
i=1 ZiXi

is the IV estimator, π̂ =
∑n
i=1 ZiXi∑n
i=1 Z

2
i

is the OLS estimator (without intercept),

and
(
ÛURi , V̂ UR

i

)
is drawn from the empirical distribution of

{
Ûi, V̂i

}n
i=1

with Ûi = Yi − Xiθ̂ and

V̂i = Xi − Ziπ̂. To test H0 : θ0 = c against H1 : θ0 6= c, the unrestricted residual bootstrap analog of

Tn =
√
n
(
θ̂ − c

)
is obtained as

TURn =
√
n
(
θ̂UR − θ̂

)
=
√
n

∑n
i=1 ZiÛ

UR
i∑n

i=1 ZiX
UR
i

,

where θ̂UR =
∑n
i=1 ZiY

UR
i∑n

i=1 ZiX
UR
i

.

Suppose that Assumption 1 holds. Since all elements of the residual vector
(
Û1, . . . , Ûn

)
depend on

W(n) through θ̂, all elements of the resampled residuals
(
ÛUR1 , . . . , ÛURn

)
also depend on W(n). There-

fore, the unrestricted residual bootstrap statistic TURn heavily depends on the outlier W(n). However,

since the limiting behavior of TURn is case by case, it is not easy to derive a breakdown point property

of its bootstrap quantiles.

The second method, called the restricted residual bootstrap, draws resamples
{
Y RR
i , XRR

i

}n
i=1

from

Y RR
i = XRR

i c+ ÛRRi ,

XRR
i = Ziπ̂ + V̂ RR

i ,

where
(
ÛRRi , V̂ RR

i

)
is drawn from the empirical distribution of

{
Ũi, V̂i

}n
i=1

with Ũi = Yi − Xic and

V̂i = Xi − Ziπ̂. The restricted residual bootstrap analog of Tn is obtained as

TRRn =
√
n
(
θ̂RR − c

)
=
√
n

∑n
i=1 ZiÛ

RR
i∑n

i=1 ZiX
RR
i

,

where θ̂RR =
∑n
i=1 ZiY

RR
i∑n

i=1 ZiX
RR
i

.

Unlike the unrestricted residual bootstrap statistic TURn , the restricted residual bootstrap statistic

TRRn is centered around the hypothetical value c. Also, in the residual vector
(
Ũ(1), . . . , Ũ(n)

)
, only

Ũ(n) = Y(n) − X(n)c may be affected from the outlier W(n). On the other hand, all elements of the

residual vector
(
V̂1, . . . , V̂n

)
may be influenced by the outlier W(n) through π̂. It is not easy to derive a

general breakdown point result when all elements of
(
V̂1, . . . , V̂n

)
diverge. To proceed, we consider the

following special case, which corresponds to Case 3 in Table C.

Assumption 5. The divergence
∥∥W(n)

∥∥ → +∞ means that
∣∣Y(n)

∣∣ → +∞ but
∣∣X(n)

∣∣ and ∣∣Z(n)

∣∣ are
bounded.
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This assumption ensures that the residual vector
(
V̂1, . . . , V̂n

)
is not influenced by the outlier W(n)

but the residual Ũ(n) is. Under Assumption 5, the restricted residual bootstrap statistic TRRn diverges

to infinity as
∥∥W(n)

∥∥ → +∞ only when the resample contains Ũ(n). The probability that TRRn is free

from Ũ(n) is given by pRR = P
(
B
(
n, 1

n

)
= 0
)
. Therefore, 100

(
1− pRR

)
% of resamples of

∣∣TRRn ∣∣ will
diverge to +∞ as

∥∥W(n)

∥∥→ +∞. In other words, the t-th bootstrap quantile QRRt of
∣∣TRRn ∣∣ will diverge

to +∞ for all t > pRR as
∥∥W(n)

∥∥→ +∞. We summarize these findings in the following proposition.

Proposition 4. Consider the setup of this section.

(i) Under Assumption 1, the unrestricted residual bootstrap statistic
∣∣TURn ∣∣ of Tn always contains the

outlier W(n).

(ii) Under Assumption 5, the restricted residual bootstrap analog TRRn =
√
n
(
θ̂RR − c

)
contains the

outlier W(n) with probability 1− pRR, and the restricted residual bootstrap quantile QRRt from the

resamples
∣∣TRRn ∣∣ of Tn will diverge to +∞ for all t > pRR.

In Proposition 4, we observe that the unrestricted residual bootstrap statistic TURn is heavily influ-

enced by the outlier W(n). In contrast, under Assumption 5, the restricted residual bootstrap statistic

TRRn is more robust to the outlier W(n). However, since pRR = p# = P
(
B
(
n, 1

n

)
= 0
)
is relatively

smaller than p∗ = P
(
B
(
n, 1

n2

)
= 0
)
(see Table A), the presence of a single outlier can imply divergence

of a larger proportion of the resampled statistics.

We conduct a simulation study to evaluate the performance of the residual bootstrap methods in

the presence of outliers. For comparison, we consider the same simulation setting in Section 3.4. Table

2 reports the Monte Carlo medians of the unrestricted and restricted residual bootstrap quantiles QURt
and QRRt , respectively. We set t = 0.95, and we report also empirical coverages of bootstrap confidence

intervals. First we consider the statistic Tn. In absence of the outlier, the Monte Carlo medians of

both residual bootstrap quantiles are very close to the true quantiles. Furthermore, also the empirical

coverages are very close to the nominal coverage probability 0.95. For instance, in the case of n = 100,

the Monte Carlo medians of the unrestricted and restricted residual bootstrap quantiles are 1.7638 and

1.7610, respectively, while the true quantile is 1.7713. In contrast, in the presence of the outlier, the

quantiles of both bootstrap methods (and also the empirical coverages) end to be quite large. For

instance, in the case of n = 100 and C = 20, the Monte Carlo medians of the unrestricted and restricted

residual bootstrap quantiles are 31.3310 and 31.2815, respectively. Similar findings arise also for residual

bootstrap methods applied to the statistic T dn . In particular, we can observe than in absence of the

outlier both residual bootstrap imply bootstrap quantiles very close to the true quantiles. On the other

hand, in the presence of the outlier both bootstrap quantiles and empirical coverages are extremely

large and very far from the true values. These findings confirm our theoretical results. The residual

bootstrap quantiles are heavily influenced by the outlier and tend to be very large.

We also analyze the size and power properties of the unrestricted and restricted residual bootstrap

tests. Again we consider the same settings introduced in Section 3.4. Table 7 reports the rejection
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frequencies of the null hypothesis for different values of θ0 ∈ [2, 2.3]. Without the outlier, in the case

of θ0 = 2, the rejection frequencies of both residual bootstrap tests are very close to the nominal level

0.05. The power of the bootstrap tests increases as the value of θ0 increases to 2.3. For instance, at

θ0 = 2.3, the rejection frequencies are larger than 85% for both bootstrap tests. In the presence of the

outlier, the size and power of the bootstrap tests are dramatically distorted. In particular, the rejection

frequencies of both residual bootstrap methods are always smaller than 10% even when θ0 = 2.3 (very

low power). In the presence of the outlier, both residual bootstrap critical values tend to be very large,

and both size and power of the bootstrap tests tend to collapse to 0.

3.5.3 Studentized statistic

So far we consider the nonstudentized statistic Tn. Our breakdown point analysis for the bootstrap

can be extended to the studentized tn = θ̂−c
σ̂ , where σ̂ =

√(
1
n

∑n
i=1 Û

2
i

) (∑n
i=1 Z

2
i

)
/ (
∑n

i=1 ZiXi)
2 is

the standard error of θ̂, and Ûi = Yi −Xiθ̂ is the residual.10 In this case, we modify Assumption 1 as

follows.

Assumption 6. W(n) is an outlier for the statistic tn in the sense that

|tn| → +∞ as
∥∥W(n)

∥∥→ +∞.

Assumption 6 characterizes the outliers for the statistic tn, which may be different from those for

Tn defined in Assumption 1. Below we provide some specific example that satisfy this assumption.

We first consider the pairs bootstrap. Note that the pairs bootstrap statistic t#n = θ̂#−θ̂
σ̂# always

contains the outlier W(n) through θ̂. Thus even when the resample to compute θ̂# and σ̂# does not

contain the outlier W(n), the statistic t#n diverges if θ̂ diverges as
∥∥W(n)

∥∥ → +∞. If the resample to

compute θ̂# and σ̂# contains the outlier W(n), the limiting behavior of tn = θ̂#−θ̂
σ̂# is case by case and

may diverge or become indeterminate as
∥∥W(n)

∥∥→ +∞.

We next consider the implied probability bootstrap. Note that the implied probability bootstrap

statistic t∗n = θ̂∗−c
σ̂∗ is centered around the hypothetical value c. Thus, |t∗n| will diverge as

∥∥W(n)

∥∥→ +∞
only when the resample contains the outlier W(n). Furthermore, under Assumption 2, the implied

probability in (3) for the observation W(n) satisfies π(n) → 1
n2 as

∥∥W(n)

∥∥ → +∞, as established in

(4). Thus, the probability that the implied probability bootstrap statistic t∗n is free from the outlier

W(n) converges to p∗ = P
(
B
(
n, 1

n2

)
= 0
)
as
∥∥W(n)

∥∥ → +∞. Therefore, under Assumptions 2 and

6, 100 (1− p∗) % of resamples of |t∗n| will diverge to +∞ as
∥∥W(n)

∥∥ → +∞. In other words, the t-th

bootstrap quantile Q∗t of |t∗n| will diverge to +∞ for all t > p∗. We summarize these findings in the

following proposition.

Proposition 5. Consider the setup of this section.
10The results in this subsection do not change even if we use the heteroskedasticity robust standard error σ̂ =√(∑n

i=1 Û
2
i Z

2
i

)
/
(∑n

i=1 ZiXi
)2.
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(i) Under Assumption 6, the pairs bootstrap analog t#n = θ̂#−θ̂
σ̂# always contains the outlier W(n).

(ii) Under Assumptions 2 and 6, the implied probability bootstrap analog t∗n = θ̂∗−c
σ̂∗ contains the outlier

W(n) with probability 1− p∗, and the implied probability bootstrap quantile Q∗t from the resamples

of |t∗n| diverges to +∞ for all t > p∗ as
∥∥W(n)

∥∥→ +∞.

Similar comments to Proposition 1 apply here. In particular, since the pairs bootstrap statistic

t#n always contains the outlier, we expect that the pairs bootstrap quantiles tend to be very large. In

contrast, the implied probability bootstrap distribution is less affected from the outlier W(n) and its

bootstrap quantiles tend to be low and stable. However, under Assumption 6, the original statistic tn
diverges as

∥∥W(n)

∥∥→ +∞, and the size and power of the implied probability bootstrap test tend to be

close to 1.

We now discuss some example of anomalous observations that satisfy Assumption 6. In Table D, we

consider the same cases introduced in Table C.

Table D: Limits of tn as
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded Limit of |tn|

1 Z X, Y bounded

2 X Y, Z +∞
3 Y X, Z bounded

From this table, we can regard Case 2 as the outliers for tn. Therefore, in the presence of the outlier in

the explanatory variable, we expect that both pairs and implied probability bootstrap tests based on

the statistic tn perform poorly.

We conduct a simulation study to evaluate the performance of the bootstrap methods for tn in

the presence of outliers. We consider two situations: (i) (W1, . . . ,Wn) are generated from the data

generating process introduced in Section 3.4 (No outlier), and (ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i)

for i = 1, . . . , n − 1 and W̃(n) =
(
Ỹ(n), X̃(n), Z̃(n)

)
=
(
Y(n), CXmax, Z(n)

)
with C = 5, 10, 20 and

Xmax = max {X1, . . . , Xn} (Outlier in X). This setup for the outlier corresponds to Case 2 in Table D.

Proposition 5 says that the pairs bootstrap statistic t#n always contains the outlier, while the implied

probability bootstrap statistic t∗n contains the outlier with probability 1− p∗ as
∥∥W(n)

∥∥→ +∞.

Table 3 reports the Monte Carlo medians of the pairs and implied probability bootstrap quantiles Q#
t

and Q∗t , respectively. We set t = 0.95, and we report also empirical coverages of bootstrap confidence

intervals. In absence of the outlier, the Monte Carlo medians of both bootstrap methods are very close

to the true quantiles. Furthermore, also the empirical coverages are very close to the nominal coverage

probability 0.95 For instance, in the case of n = 50, the Monte Carlo medians of the pairs and implied

probability bootstrap quantiles are 1.9466 and 1.9373, respectively, while the true quantile is 1.9664. In

contrast, in the presence of the outlier, the pairs bootstrap quantiles tend to be large, while the implied
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probability bootstrap quantiles tend to be close to the true quantiles without the outlier. For instance,

in the case of n = 50 and C = 20, the Monte Carlo medians of the pairs and implied probability

bootstrap quantiles are 10.5556 and 2.3659, respectively. As expected , the pairs bootstrap empirical

coverages are very close to 1, while the implied probability bootstrap empirical coverages are extremely

small. These findings confirm the theoretical results in Proposition 5.

4 Over-identified case

4.1 Setup

We now extend our breakdown point analysis to an over-identified case with k = 2 and p = 1. Extensions

to high dimensional cases will be briefly discussed in Section 5. In this case, the moment conditions (2)

are written as

E [g (Wi, θ0)] = E

[
g1 (Wi, θ0)

g2 (Wi, θ0)

]
= E

[
Z1i (Yi −Xiθ0)

Z2i (Yi −Xiθ0)

]
= 0.

whereWi = (Yi, Xi, Z
′
i)
′ ∈ R4 and Zi = (Z1i, Z2i)

′. Also in this setting, we assume that all variables have

finite variance. Similar to the just-identified case, we consider the parameter hypothesis testing problem

H0 : θ0 = c against the two-sided alternative H1 : θ0 6= c using the statistics Tn,over =
√
n
(
θ̂ − c

)
based

on a conventional estimator θ̂ and T dn,over =
√
n
(
θ̂d − c

)
based on the GMTM estimator. The point

estimator θ̂ for θ0 is either the two-stage least square estimator

θ̂2SLS =

( n∑
i=1

XiZi

)′( n∑
i=1

ZiZ
′
i

)−1( n∑
i=1

XiZi

)−1(
n∑
i=1

XiZi

)′( n∑
i=1

ZiZ
′
i

)−1( n∑
i=1

ZiYi

)
,

or the two-step GMM estimator

θ̂GMM =

( n∑
i=1

XiZi

)′( n∑
i=1

Û2
i ZiZ

′
i

)−1( n∑
i=1

XiZi

)−1(
n∑
i=1

XiZi

)′( n∑
i=1

Û2
i ZiZ

′
i

)−1( n∑
i=1

ZiYi

)
,

where Ûi = Yi −Xiθ̂2SLS is the residual from the first-step estimation using θ̂2SLS . Since both θ̂2SLS

and θ̂GMM have the same breakdown point properties, we denote θ̂ for either θ̂2SLS or θ̂GMM in this

section. For the over-identified case, we consider the following version of the GMTM estimator

θ̂d = arg min
θ

∥∥∥∥∥ 1

n

n∑
i=1

Zi (Yi −Xiθ) I
{
r (Wi, θ) ≤ r

(
W[n−d], θ

)}∥∥∥∥∥ ,
where r (Wi, θ) = ‖Zi (Yi −Xiθ)‖ is a trimming function ordered as

∥∥r (W[1], θ
)∥∥ ≤ · · · ≤ ∥∥r (W[n], θ

)∥∥,
and d is an integer such that 0 ≤ d < n

2 to determine the amount of trimming.

Similar to the last section, we compare the breakdown point properties of the pairs and implied

probability bootstrap quantiles. In this case, the moment function g is a vector. Thus Back and
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Brown’s (1993) implied probability for the observation Wi from the moment condition E [g (Wi, c)] = 0

is written as

πi =
1

n
− 1

n
(g (Wi, c)− ḡ)′

[
1

n

n∑
i=1

g (Wi, c) g (Wi, c)
′

]−1

ḡ. (5)

Although the implied probability takes a more complicated form than the just-identified case, we can

still apply the same breakdown point analysis to this setting.

4.2 Breakdown point analysis

Based on the above setup, we now conduct the breakdown point analysis for the bootstrap. To define

outliers, Assumption 1 is modified as follows.

Assumption 1’. W(n) is an outlier for the statistic Tn,over in the sense that

|Tn,over| → +∞ as
∥∥W(n)

∥∥→ +∞.

We first consider the pairs bootstrap. As in Section 3.2, the pairs bootstrap statistic T#
n,over =

√
n
(
θ̂# − θ̂

)
always contains the outlier W(n) through θ̂. Even if the pairs bootstrap resample to

compute θ̂# does not contain the outlier, T#
n,over diverges to infinity. If the resample contains the outlier

W(n) possibly multiple times, then
∣∣∣T#
n,over

∣∣∣ may diverge or become indeterminate as
∥∥W(n)

∥∥ → +∞.

Therefore, in this case we can at least say that
∣∣∣T#
n,over

∣∣∣ diverges to infinity as
∥∥W(n)

∥∥ → +∞ when

the resample to compute θ̂# does not contain W(n). The probability for this event is obtained as

p# = P
(
B
(
n, 1

n

)
= 0
)
.

We next consider the implied probability bootstrap. In this case, we impose the following additional

assumption.

Assumption 2’. Let g1

(
W(n), c

)
= Z1(n)

(
Y(n) −X(n)c

)
and g2

(
W(n), c

)
= Z2(n)

(
Y(n) −X(n)c

)
. As-

sume that ∣∣g1

(
W(n), c

)∣∣→ +∞ as
∥∥W(n)

∥∥→ +∞,∣∣g2

(
W(n), c

)∣∣→ +∞ as
∥∥W(n)

∥∥→ +∞.

Similar to Assumption 2, Assumption 2’ is very mild. Using the results in Camponovo and Otsu

(2012), we can show that under Assumption 2’, the implied probability in (5) for the observation W(n)

satisfies

π(n) →
1

n2
+

1

n

(ḡ1− − ḡ2−)2

v11 + v22 − 2v12
, (6)

as
∥∥W(n)

∥∥→ +∞, where ḡ1− = 1
n

∑n−1
i=1 g1(i), ḡ2− = 1

n

∑n−1
i=1 g2(i), v11 = 1

n

∑n−1
i=1 g

2
1(i), v22 = 1

n

∑n−1
i=1 g

2
2(i),

and v12 = 1
n

∑n−1
t=1 g1(i)g2(i).11 Unlike the just-identified case, the limit of the implied probability π(n)

11The technical details for the derivation of the limit of π(n) are provided in equation (9) in Camponovo and Otsu

(2012).
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depends on the terms ḡ1−, ḡ2−, v11, v22, and v12. Therefore, the implied probability bootstrap does not

necessarily draw the outlier with probability smaller than 1
n . Nevertheless, it should be noted that the

terms ḡ1−, ḡ2−, v11, v22, and v12 do not contain the outlier W(n) and thus the second term appearing

in the limit (6) tends to be small when the sample size n is large. Also we can empirically evaluate the

second term in (6) and assess the difference with the uniform weight 1
n .

Note that the implied probability bootstrap statistic T ∗n,over =
√
n
(
θ̂∗ − c

)
diverges to infinity only

when the resample to compute θ̂∗ contains the outlier W(n). From (6), the probability that the implied

probability bootstrap statistic T ∗n,over is free from the outlier W(n) converges to

p∗over = P

(
B

(
n,

1

n2
+

1

n

(ḡ1− − ḡ2−)2

v11 + v22 − 2v12

)
= 0

)
,

as
∥∥W(n)

∥∥ → +∞. Therefore, under Assumptions 1’ and 2’, 100 (1− p∗over) % of resamples of
∣∣T ∗n,over∣∣

will diverge to +∞ as
∥∥W(n)

∥∥ → +∞. In other words, the t-th bootstrap quantile Q∗t of
∣∣T ∗n,over∣∣ will

diverge to +∞ for all t > p∗over. We summarize these findings in the following proposition.

Proposition 6. Consider the setup of this section.

(i) Under Assumption 1’, the pairs bootstrap analog T#
n,over =

√
n
(
θ̂# − θ̂

)
always contains the outlier

W(n), and the pairs bootstrap quantile Q#
t from the resamples of

∣∣∣T#
n,over

∣∣∣ diverges to +∞ for all

t > 1− p# as
∥∥W(n)

∥∥→ +∞.

(ii) Under Assumptions 1’ and 2’, the implied probability bootstrap analog T ∗n,over =
√
n
(
θ̂∗ − c

)
con-

tains the outlier W(n) with probability 1− p∗over, and the implied probability bootstrap quantile Q∗t
from the resamples of

∣∣T ∗n,over∣∣ diverges to +∞ for all t > p∗over as
∥∥W(n)

∥∥→ +∞.

We now consider the statistic T dn,over =
√
n
(
θ̂d − c

)
with d ≥ 1 based on the GMTM estimator.

Under Assumption 2’, it holds r
(
W(n), c

)
=
∥∥Z(n)

(
Y(n) −X(n)c

)∥∥→ +∞ as
∥∥W(n)

∥∥→ +∞. Thus, the

outlier W(n) will be trimmed and θ̂d and T dn,over are bounded as
∥∥W(n)

∥∥ → +∞. On the other hand,

the bootstrap counterparts T d#
n,over =

√
n
(
θ̂d# − θ̂d

)
and T d∗n,over =

√
n
(
θ̂d∗ − c

)
diverge if the resample

contains the outlier W(n) more than d times. The probability that the pairs bootstrap resample to

compute θ̂d# contains the outlier W(n) less than or equal to d times is

pd# = P

(
B

(
n,

1

n

)
≤ d
)
.

Also, from (6), the probability that the implied probability bootstrap resample to compute θ̂d∗ contains

the outlier W(n) less than or equal to d times converges to

pd∗over = P

(
B

(
n,

1

n2
+

1

n

(ḡ1− − ḡ2−)2

v11 + v22 − 2v12

)
≤ d

)
,

as
∥∥W(n)

∥∥ → +∞. Thus, under Assumptions 1’ and 2’, the t-th bootstrap quantile Qd#
t of

∣∣∣T d#
n,over

∣∣∣
will diverge to +∞ for all t > pd#, as

∥∥W(n)

∥∥ → +∞. Moreover, under Assumptions 1’ and 2’ the
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t-th bootstrap quantile Qd∗t of
∣∣T d∗n,over∣∣ will diverge to +∞ for all t > pd∗over, as

∥∥W(n)

∥∥ → +∞. These

findings are summarized as follows.

Proposition 7. Consider the setup of this section.

(i) Under Assumptions 1’ and 2’, the pairs bootstrap analog T d#
n,over =

√
n
(
θ̂d# − θ̂d

)
contains the

outlier W(n) with probability 1 − p#, and the pairs bootstrap quantile Qd#
t from the resamples of∣∣∣T d#

n,over

∣∣∣ diverges to +∞ for all t > pd# as
∥∥W(n)

∥∥→ +∞.

(ii) Under Assumptions 1’ and 2’, the implied probability bootstrap analog T d∗n,over =
√
n
(
θ̂d∗ − c

)
con-

tains the outlier W(n) with probability 1− pd∗over, and the implied probability bootstrap quantile Qd∗t
from the resamples of

∣∣T d∗n,over∣∣ diverges to +∞ for all t > pd∗over as
∥∥W(n)

∥∥→ +∞.

Similar comments to Proposition 2 apply here. As the number of trimmed observations d increases,

both pd# and pd∗over increase. However, for the over-identified case, it is not clear whether pd∗over > pd#

or not. If pd∗over > pd#, then the implied probability bootstrap quantile Qd∗t becomes more robust than

the pairs bootstrap quantile Qd#
t .

Also, similar implications on the size and power properties of the bootstrap tests apply to the over-

identified case. For example, suppose that 1
n2 + 1

n
(ḡ1−−ḡ2−)2

v11+v22−2v12
< 1

n . Then, in the presence of the outlier,

the pairs bootstrap quantiles tend to be quite large. In contrast, the implied probability bootstrap

quantiles are relatively small and stable. Since the statistic T dn never contains W(n), we can expect that

the implied probability bootstrap provides more accurate approximations to the distribution of T dn and

shows desirable size and power properties. These implications are confirmed by a simulation study in

the next subsection.

Finally, we can discuss some example of anomalous observations that satisfy Assumption 1’. In the

case of k = 2 and p = 1, W(n) contains four elements
(
Y(n), X(n), Z1(n), Z2(n)

)
. For illustration, we

consider the following cases.

Table E: Limits of Tn,over as
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded Limit of |Tn,over|

1 Z1 Z2, X, Y bounded

2 Z2 Z1, X, Y bounded

3 X Z1, Z2, Y bounded

4 Y Z1, Z2, X +∞

From this table, we can regard Case 4 as the outliers for Tn. Therefore, in the presence of outliers in

the dependent variable, we recommend to use the implied probability bootstrap using the statistic T dn .
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4.3 Simulation

We conduct a simulation study to illustrate the theoretical findings in the last subsection. Consider iid

samples {Wi}ni=1 = {Yi, Xi, Zi}ni=1 of sizes n = 50 and 100 generated from Yi = Xiθ0 + Ui and Xi =

Z ′iπ0 + Vi, where Zi =

(
Z1i

Z2i

)
∼ N

((
1

0

)
,

(
1 0

0 1

))
,

(
Ui

Vi

)
∼ N

((
0

0

)
,

(
1 0.2

0.2 1

))
,

and π0 = (0.8, 0.6)′. The true parameter value is set as θ0 = 2. We are interested in testing the null

hypothesis H0 : θ0 = 2 against the alternative H1 : θ0 6= 2. For each scenario, the number of bootstrap

replications is 399 for each Monte Carlo sample and the number of Monte Carlo replications is 10,000.

To study robustness of the bootstrap methods for the test statistics Tn,over and T dn,over with d = 1,

we consider two situations: (i) (W1, . . . ,Wn) are generated from the above model (No outlier), and

(ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i = 1, . . . , n − 1 and W̃(n) =

(
Ỹ(n), X̃(n), Z̃1(n), Z̃2(n)

)
=(

CYmax, X(n), Z1(n), Z2(n)

)
with C = 5, 10, 20 and Ymax = max {Y1, . . . , Yn} (Outlier in Y ). This spec-

ification for the outlier corresponds to Case 4 in Table E. Proposition 6 says that as
∥∥W(n)

∥∥ → ∞,

the pairs bootstrap t-th quantile Q#
t from the resamples

∣∣∣T#
n,over

∣∣∣ of Tn,over will diverge to +∞ for all

t > 1 − P
(
B
(
n, 1

n

)
= 0
)
, and the implied probability bootstrap t-th quantile Q∗t from the resamples∣∣T ∗n,over∣∣ of Tn,over will diverge to +∞ for all t > P

(
B
(
n, 1

n2 + 1
n

(ḡ1−−ḡ2−)2

v11+v22−2v12

)
= 0
)
. Also by Proposi-

tion 7, the pairs bootstrap t-th quantile from the resamples
∣∣∣T d#
n,over

∣∣∣ of T dn,over will diverge to +∞ for all

t > P
(
B
(
n, 1

n

)
≤ 1
)
, and the implied probability bootstrap t-th quantile from the resamples

∣∣T d∗n,over∣∣
of T dn,over will diverge to +∞ for all t > P

(
B
(
n, 1

n2 + 1
n

(ḡ1−−ḡ2−)2

v11+v22−2v12

)
≤ 1
)
.

Table 4 reports the Monte Carlo medians of the pairs bootstrap quantiles Q#
t and Qd#

t and implied

probability bootstrap quantiles Q∗t and Qd∗t for |Tn,over| and
∣∣T dn,over∣∣, respectively. We set t = 0.95,

and we report also empirical coverages of bootstrap confidence intervals. First we consider the statistic

|Tn,over|. In absence of the outlier, the Monte Carlo medians of both bootstrap quantiles are very close

to the true quantiles. For instance, in the case of n = 100, the Monte Carlo medians of the pairs

and implied probability bootstrap quantiles are 1.5411 and 1.5207, respectively, while the true quantile

is 1.5488. Also the empirical coverages are very close to the nominal coverage probability 0.95. In

contrast, in the presence of the outlier, the pairs bootstrap quantiles are quite large, while the implied

probability bootstrap quantiles tend to be close to the true quantiles without the outlier. For instance,

in the case of n = 100 and C = 20, the Monte Carlo medians of the pairs and implied probability

bootstrap quantiles are 21.7734 and 1.9692, respectively. These results suggest that in this setting the

term 1
n2 + 1

n
(ḡ1−−ḡ2−)2

v11+v22−2v12
is quite small, and the implied probability bootstrap quantiles are less influenced

from the outlier than the pairs bootstrap quantiles. Finally, as expected the pairs bootstrap empirical

coverages are close to 1, while the implied probability bootstrap coverages are extremely small.

We next consider the statistic
∣∣T dn,over∣∣. In absence of the outlier, the Monte Carlo medians of both

pairs and implied probability bootstrap quantiles are very close to the true quantiles. For instance, in

the case of n = 100, the Monte Carlo medians of the pairs and implied probability bootstrap quantiles

are 1.5292 and 1.4921, respectively, while the true quantile is 1.5031. In contrast, in the presence of
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the outlier, the pairs bootstrap quantiles (and also the empirical coverages) tend to be very large. For

instance, in the case of n = 100 and C = 20, the Monte Carlo median of the pairs bootstrap quantile

is 21.2601. On the other hand, since the implied probability bootstrap is less affected from the outlier,

the implied probability bootstrap quantiles (and also the empirical coverages) remain close to the true

quantiles. For instance, in the case of n = 100 and C = 20, the Monte Carlo median of the implied

probability bootstrap quantile is 1.5201, while the true quantile is 1.5524.

We also study the size and the power properties of the bootstrap tests. In particular, we con-

sider two situations: (i) (W1, . . . ,Wn) are generated from the above model with the parameter value

θ0 ∈ [2, 2.3] (No outlier), and (ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i = 1, . . . , 99 and W̃(100) =(

Ỹ(100), X̃(100), Z̃1(100), Z̃2(100)

)
=
(
10Ymax, X(100), Z1(100), Z2(100)

)
with Ymax = max {Y1, . . . , Y100} (Out-

lier in Y ). We test the null hypothesis H0 : θ0 = 2 under different parameter values of θ0 ∈ [2, 2.3].

Table 8 reports the rejection frequencies of the null hypothesis under different parameter values

θ0 ∈ [2, 2.3]. First we consider the statistic Tn,over. In absence of the outlier, for θ0 = 2, the rejection

frequencies of both bootstrap tests are quite close to the nominal level 0.05. The power of the bootstrap

tests increases as the value of θ0 increases to 2.3. For instance, at θ0 = 2.3, the rejection frequencies

are larger than 85% for both bootstrap tests. In the presence of the outlier, both size and power of the

tests are dramatically distorted. In particular, the rejection frequencies of the pairs bootstrap test are

always smaller than 15% even when θ0 = 2.3 (very low power). In contrast, the rejection frequencies

of the implied probability bootstrap test are always larger than 65% even when θ0 = 2 (severe size

distortion). These are similar to the results obtained in Section 3.4 for the just-identified case. Indeed,

in the presence of the outlier, both size and power of the pairs bootstrap test tend to collapse to 0. On

the other hand, in the presence of the outlier, both size and power of the implied probability bootstrap

test tend to collapse to 1.

Finally, we consider the statistic T dn,over. In absence of the outlier, the rejection frequencies are very

similar to those obtained for the statistic Tn,over. In particular, when θ0 = 2, the rejection frequencies

are very close to the nominal level 0.05. Furthermore, for θ0 6= 2, the rejection frequencies increase (as

θ0 increases to 2.3) and are larger than 85% when θ0 = 2.3. In the presence of the outlier, we observe

that both size and power of the pairs bootstrap test are again dramatically distorted. In particular, the

rejection frequencies of the pairs bootstrap test are always smaller than 15% even when θ0 = 2.3 (very

low power). In contrast, the presence of the outlier does not deteriorate the accuracy of the implied

probability bootstrap. For θ0 = 2, the rejection frequency of the implied probability bootstrap is very

close to the nominal level 0.05. For θ0 = 2.3, the rejection frequency is larger than 85%. Therefore,

similar to the just-identified case, we conclude that the implied probability bootstrap test using the

statistic T dn has desirable size and power properties in the presence of the outlier.
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4.4 Extensions

4.4.1 Multiple outliers

Proposition 6 may be extended to the case where we have m ∈ {1, . . . , n− 1} outliers. To this end, we

modify Assumption 3 as follows.

Assumption 3’.
(
W(n−m+1), . . . ,W(n)

)
are outliers for the statistic Tn,over in the sense that for each

j = 1, . . . ,m,

|Tn,over| → +∞ as
∥∥W(n−j+1)

∥∥→ +∞.

The pairs bootstrap statistic T#
n,over =

√
n
(
θ̂# − θ̂

)
always contains the outliers

(
W(n−m+1), . . . ,W(n)

)
through θ̂. Thus, by Assumption 3’,

∣∣∣T#
n,over

∣∣∣ diverges to infinity as
∥∥W(n−j+1)

∥∥→ +∞ even if the pairs

bootstrap resample to compute θ̂# does not contain the outliers
(
W(n−m+1), . . . ,W(n)

)
. If the resample

contains the outliers
(
W(n−m+1), . . . ,W(n)

)
possibly multiple times, then

∣∣∣T#
n,over

∣∣∣ may diverge or be-

come indeterminate as
∥∥W(n−j+1)

∥∥→ +∞ for j = 1, . . . ,m. Thus, similar to the single outlier case, we

can at least say that
∣∣∣T#
n,over

∣∣∣ diverges to infinity as
∥∥W(n−j+1)

∥∥→ +∞ when the resample to compute

θ̂# does not contain any outlier in
(
W(n−m+1), . . . ,W(n)

)
. The probability for this event is obtained as

p#
m = P

(
B
(
n,
m

n

)
= 0
)
.

Therefore, at least 100p#
m% of resamples of

∣∣∣T#
n,over

∣∣∣ will diverge to +∞ as
∥∥W(n−j+1)

∥∥ → +∞, j =

1, . . . ,m. In other words, the t-th bootstrap quantile Q#
t of

∣∣∣T#
n,over

∣∣∣ will diverge to +∞ for all t > 1−p#
m.

For the implied probability bootstrap, we impose the following additional assumption.

Assumption 4’. For j = 1, . . . ,m and l = 1, 2,∣∣gl (W(n), c
)∣∣ → +∞ as

∥∥W(n)

∥∥→ +∞,
gl(W(n−j+1),c)
gl(W(n),c)

→ 1 as
∥∥W(n)

∥∥→ +∞ and
∥∥W(n−j+1)

∥∥→ +∞.

Using the results in Camponovo and Otsu (2012), under Assumption 4’, we can show that the

implied probability in (5) for the observation W(n) satisfies

π(n) →
m

n2
+

1

n

(ḡ1−,m − ḡ2−,k)
2

v11,m + v22,m − 2v12,m
,

as
∥∥W(n−j+1)

∥∥ → +∞ for all j = 1, . . . ,m, where ḡ1−,m = 1
n

∑n−m
i=1 g1(i), ḡ2−,m = 1

n

∑n−m
i=1 g2(i),

v11,m = 1
n

∑n−m
t=1 g2

1(m), v22,m = 1
n

∑n−m
i=1 g2

2(i), and v12,m = 1
n

∑n−m
i=1 g1(i)g2(i). By applying the same

argument, we obtain π(n−j+1) → m
n2 + 1

n
(ḡ1−,m−ḡ2−,k)

2

v11,m+v22,m−2v12,m
, for all j = 1, . . . ,m. Note that the implied

probability bootstrap statistic T ∗n,over diverges to infinity when the resample contains at least one outlier

from
(
W(n−m+1), . . . ,W(n)

)
. The probability that the implied probability bootstrap resample T ∗n,over of

Tn,over is free from m outliers
(
W(n−m+1), . . . ,W(n)

)
converges to

p∗m,over = P

(
B

(
n,
(m
n

)2
+
m

n

(ḡ1−,m − ḡ2−,m)2

v11,m + v22,m − 2v12,m

)
= 0

)
,
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as
∥∥W(n−j+1)

∥∥→ +∞ for j = 1, . . . ,m. Therefore, under Assumptions 3’ and 4’, 100
(
1− p∗m,over

)
% of

resamples of
∣∣T ∗n,over∣∣ will diverge to +∞ as

∥∥W(n−j+1)

∥∥→ +∞, j = 1, . . . ,m. In other words, the t-th

bootstrap quantile Q∗t of
∣∣T ∗n,over∣∣ will diverge to +∞ for all t > p∗m,over. We summarize these findings

in the following proposition.

Proposition 8. Consider the setup of this section.

(i) Under Assumption 3’, the pairs bootstrap analog T#
n,over =

√
n
(
θ̂# − θ̂

)
always contains the outliers(

W(n−m+1), . . . ,W(n)

)
, and the pairs bootstrap quantile Q#

t from the resamples of
∣∣∣T#
n,over

∣∣∣ diverges
to +∞ for all t > 1− p#

m as
∥∥W(n−j+1)

∥∥→ +∞, j = 1, . . . ,m.

(ii) Under Assumptions 3’ and 4’, the implied probability bootstrap analog T ∗n,over =
√
n
(
θ̂∗ − c

)
con-

tains the outlier
(
W(n−m+1), . . . ,W(n)

)
with probability 1 − p∗m,over, and the implied probability

bootstrap quantile Q∗t from the resamples of
∣∣T ∗n,over∣∣ diverges to +∞ for all t > p∗m,over as∥∥W(n−j+1)

∥∥→ +∞, j = 1, . . . ,m.

Similar comments to Proposition 3 apply. The implied probability bootstrap provides finite quantiles

for a wider range than the pairs bootstrap if
(
m
n

)2
+ m

n
(ḡ1−,m−ḡ2−,m)2

v11,m+v22,m−2v12,m
< m

n . As the number of outliers

m increases, the probability p∗m,over decreases and the range where the implied probability bootstrap

quantiles stay finite becomes narrower.

4.4.2 Studentized statistic

Our breakdown point analysis for the bootstrap can be extended to the studentized statistic tn,over =
θ̂−c
σ̂ , where σ̂ is the standard error of θ̂.12 The outlier in this context is defined as follows.

Assumption 5’. W(n) is an outlier for the statistic tn,over in the sense that

|tn,over| → +∞ as
∥∥W(n)

∥∥→ +∞.

Let us consider the pairs bootstrap. Note that the pairs bootstrap statistic t#n,over = θ̂#−θ̂
σ̂# always

contains the outlier W(n) through θ̂. Similar to the studentized statistic tn analyzed in Section 3.5.3,

even when the resample to compute θ̂# and σ̂# does not contain the outlier, the statistic t#n,over diverges

if θ̂ diverges as
∥∥W(n)

∥∥ → +∞. If the resample to compute θ̂# and σ̂# contains the outlier W(n), the

limiting behavior of t#n,over is case by case and may diverge or become indeterminate as
∥∥W(n)

∥∥→ +∞.

We now consider the implied probability bootstrap. Assumption 2’ guarantees that the implied

probability in (5) for the observation W(n) satisfies π(n) → 1
n2 + 1

n
(ḡ1−−ḡ2−)2

v11+v22−2v12
as
∥∥W(n)

∥∥ → +∞. In

12More precisely, for the two-stage least square estimator θ̂2SLS and the two-step GMM estimator θ̂GMM we

consider the standard error σ̂2SLS =

√(
1
n

∑n
i=1 Û

2
i

) [(∑n
i=1XiZi

)′ (∑n
i=1 ZiZ

′
i

)−1 (∑n
i=1XiZi

)]−1

and σ̂GMM =√[(∑n
i=1XiZi

)′ (∑n
i=1 Ũ

2
i ZiZ

′
i

)−1 (∑n
i=1XiZi

)]−1

, respectively.
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this case, the statistic
∣∣t∗n,over∣∣ diverges as

∥∥W(n)

∥∥ → +∞ only when the resample to compute θ̂∗ and

σ̂∗ contains the outlier W(n). From (6), the probability that the implied probability bootstrap statistic

t∗n,over is free from the outlier W(n) converges to

p∗over = P

(
B

(
n,

1

n2
+

1

n

(ḡ1− − ḡ2−)2

v11 + v22 − 2v12

)
= 0

)
,

as
∥∥W(n)

∥∥ → +∞. Therefore, under Assumptions 2’ and 5’, 100 (1− p∗over) % of resamples of
∣∣t∗n,over∣∣

will diverge to +∞ as
∥∥W(n)

∥∥ → +∞. In other words, the t-th bootstrap quantile Q∗t of
∣∣t∗n,over∣∣ will

diverge to +∞ for all t > p∗over. We summarize these findings in the following proposition.

Proposition 9. Consider the setup of this section.

(i) Under Assumption 5’, the pairs bootstrap analog t#n,over =
√
n
(
θ̂# − θ̂

)
always contains the outlier

W(n).

(ii) Under Assumptions 2’ and 5’, the implied probability bootstrap analog t∗n,over =
√
n
(
θ̂∗ − c

)
con-

tains the outlier W(n) with probability 1− p∗over, and the implied probability bootstrap quantile Q∗t
from the resamples of

∣∣t∗n,over∣∣ diverges to +∞ for all t > p∗over as
∥∥W(n)

∥∥→ +∞.

We discuss some example of anomalous observations that satisfy Assumption 5’. In Table F, we

consider the same cases introduced in Table E.

Table F: Limits of tn,over as
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded Limit of |tn,over|

1 Z1 Z2, X, Y bounded

2 Z2 Z1, X, Y bounded

3 X Z1, Z2, Y +∞
4 Y Z1, Z2, X bounded

From this table, we can regard Case 3 as an example of the outlier for tn,over. In the presence of an

outlier in the explanatory variable, we expect that both pairs and implied probability bootstrap tests

based on the statistic tn,over perform poorly.

We conduct a simulation study to investigate robustness of the bootstrap methods for the test

statistic tn,over. We consider two situations: (i) (W1, . . . ,Wn) are generated using the data generating

mechanism introduced in Section 4.3 (No outlier), and (ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i =

1, . . . , n − 1 and W̃(n) =
(
Ỹ(n), X̃(n), Z̃1(n), Z̃2(n)

)
=
(
Ymax, CX(n), Z1(n), Z2(n)

)
with C = 5, 10, 20 and

Xmax = max {X1, . . . , Xn} (Outlier in X). This specification of the outlier corresponds to Case 3 in

Table F. Proposition 9 says that the pairs bootstrap statistic t#n,over always contains the outlier, while
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the implied probability bootstrap statistic t∗n,over contains the outlier with probability 1 − p∗m,over as∥∥W(n)

∥∥→ +∞.

Table 5 reports the Monte Carlo medians of the pairs and implied probability bootstrap quantiles Q#
t

and Q∗t , respectively. We set t = 0.95, and we report also empirical coverages of bootstrap confidence

intervals. In absence of the outlier, the Monte Carlo medians of both bootstrap methods are very close

to the true quantiles. Also the empirical coverages are very close to the nominal coverage probability

0.95. For instance, in the case of n = 50, the pairs and implied probability bootstrap quantiles are

1.9541 and 1.9454, respectively, while the true quantile is 1.9766. In contrast, in the presence of the

outlier, the pairs bootstrap quantiles are quite large, while the implied probability bootstrap quantiles

tend to be close to the true quantiles without the outlier. For instance, in the case of n = 50 and

C = 20, the pairs and implied probability bootstrap quantiles are 14.2579 and 2.4643, respectively.

These findings confirm the theoretical results in Proposition 9. The implied probability bootstrap is

less influenced from the outlier than the pairs bootstrap.

5 Discussions

5.1 Over-identifying restriction test

Another important issue for over-identified IV regression models is to check the validity of the instru-

ments (i.e., test H0 : E [Zi (Yi −X ′iθ)] = 0 for some θ against H1 : E [Zi (Yi −X ′iθ)] 6= 0 for any θ).

This problem is called the over-identifying restriction test. In the GMM context, the over-identifying

restriction test statistic (so-called Hansen’s J-statistic) is defined as

Jn =

(
n∑
i=1

Zi

(
Yi −X ′i θ̂GMM

))′( n∑
i=1

Û2
i ZiZ

′
i

)−1( n∑
i=1

Zi

(
Yi −X ′i θ̂GMM

))
,

where Ûi = Yi−X ′i θ̂2SLS . Hall and Horowitz (1996) and Brown and Newey (2002) demonstrated higher

order refinements of the pairs bootstrap with recentered moments and implied probability bootstrap,

respectively, over the first-order asymptotic approximation based on the χ2 distribution. Our breakdown

point analysis presented in the last section can be extended to this statistic. To this end, we first modify

Assumption 1’ to define the outlier as the one causing divergence of Jn. We then characterize limiting

behaviors of the implied probability associated with the outlier and derive breakdown point properties

of the bootstrap quantiles.

5.2 Moment function with higher dimension

Our breakdown point analysis can be extended to the case of higher dimensional moment functions with

k > 2. The main issue is to compute the limit of the implied probability π(n) defined in (5). As pointed

out in Camponovo and Otsu (2012), if each element of g
(
W(n), c

)
takes a different limit as

∥∥W(n)

∥∥ →
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+∞, it is necessary to evaluate explicitly the limit of the inverse
[

1
n

∑n
i=1 g (Wi, c) g (Wi, c)

′]−1 ap-

pearing in π(n). Consequently, the result may become more complicated and less intuitive. To obtain

a comprehensible result, it would be reasonable to consider the case where all elements of g
(
X(n), c

)
take only two limiting values. In this case, we can split g

(
X(n), c

)
into two sub-vectors and apply the

partitioned matrix inverse formula for
[

1
n

∑n
i=1 g (Xi, c) g (Xi, c)

′]−1 to derive the limit of the implied

probability π(n).

5.3 Time series data

For time series data, the bootstrap methods discussed in this paper need to be modified to reflect

dependence of the data generating process. Combining the ideas of Kitamura (1997) and Brown and

Newey (2002), Allen, Gregory and Shimotsu (2011) proposed an extension of the implied probability

bootstrap to a time series context by using block averages of moment functions. We expect that the

breakdown point analysis of this paper can be adapted to such a modified bootstrap method (see

Camponovo, Scaillet and Trojani, 2012b, for the breakdown point analysis of resampling methods in

time series data).

6 Empirical example

In this section, we illustrate our breakdown point analysis for bootstrap methods by an empirical

example. We consider the following regression model studied by Romer (1993):

Infi = α0 + β0 ·Openi + Ui,

for i = 1, . . . , n, where Infi is country i’s average annual inflation rate and Openi, a proxy variable for

openness, is country i’s share of imports in the GDP. Romer (1993) employed this model to investigate

whether more open economies tend to have lower inflation rates. To deal with endogeneity in the

openness variable, Romer (1993) used the logarithm of country i’s land area Landi as an instrumental

variable. In this case, the IV estimator of β0 is written as

β̂ =

∑n
i=1 ZiYi∑n
i=1 ZiXi

,

where Yi = Infi − n−1
∑n

i=1 Infi, Xi = Openi − n−1
∑n

i=1Openi, and Zi = Landi − n−1
∑n

i=1 Landi.

As emphasized in Desbordes and Verardi (2012), Romer’s (1993) dataset may contain anomalous

observations related to extremely high inflation rates of some Latin American countries in the 1980’s.

A scatter plot for openness and inflation rates in Figure 1 endorses this concern. Particular anomalous

observations are (i) Bolivia (Infi = 206.7), (ii) Argentina (Infi = 117.0), and (iii) Singapore (Openi =

163.8).

Using our breakdown point analysis, we can determine which of these observations may dramatically

influence β̂ and the bootstrap inference. Since β̂ remains bounded for anomalous observations in the

31



explanatory variable Xi (see Case 2 in Table C), it turns out that Singapore does not have a large impact

on β̂ and the bootstrap inference. In contrast, since β̂ is not bounded for anomalous observations in the

dependent variable Yi (see Case 3 in Table C), it turns out that Bolivia and Argentina may dramatically

influence β̂ and the bootstrap inference. Based on this preliminary analysis, we also consider the GMTM

estimator β̂GMTM with trimming two observations (d = 2):

β̂GMTM = arg min
β

(
1

n

n∑
i=1

Zi (Yi −Xiβ) I
{
ri (β) ≤ r(n−2) (β)

})2

,

where ri (β) = [Zi (Yi −Xiβ)]2 and r(1) (β) ≤ · · · ≤ r(n) (β).

Table 9 reports the pairs and implied probability bootstrap confidence intervals based on β̂ and

β̂GMTM . We observe that both bootstrap methods tend to reject the null hypothesis H0 : β0 = 0

(the pairs bootstrap rejects H0 at the 5% significance level, while the implied probability bootstrap

rejects H0 at the 1% significance level). However, it should be noted that the implied probability

bootstrap confidence intervals are much shorter than the pairs bootstrap confidence intervals. For

instance, the length of the 99% implied probability bootstrap confidence interval based on β̂ is 0.5350,

while for the pairs bootstrap the length is 0.9286. By our breakdown point analysis, these results can

be explained as follows. For the anomalous observations, the implied probabilities are 0 for Bolivia and

0.0013 for Argentina. On the other hand, the pairs bootstrap draws those observations with probability
1

114 = 0.0088. Therefore, the pairs bootstrap analogs of β̂ contain more frequently the anomalous

observations than the implied probability bootstrap analogs of β̂, and the pairs bootstrap confidence

interval tends to be longer than the implied probability bootstrap confidence interval.

In Table 9, we observe that both bootstrap confidence intervals based on β̂GMTM tend to be less

significant against the null hypothesis H0 : β0 = 0 (the pairs bootstrap does not reject H0 at the 10%

significance level, while the implied probability bootstrap rejects H0 at the 5% significance level). These

results are in line with Desbordes and Verardi (2012), who also found that confidence intervals based

on robust estimators tend to be less significant against H0. Also the point estimates are very different

(β̂ = −0.3329 and β̂GMTM = −0.1716) and β̂GMTM is closer to 0.13 Similar to the confidence intervals

based on β̂, the implied probability bootstrap confidence intervals based on β̂GMTM are much shorter

than the pairs bootstrap confidence intervals based on β̂GMTM . For instance, the length of the 99%

implied probability bootstrap confidence interval is 0.4230, while for the pairs bootstrap the length is

0.8002. Again this difference in the lengths of the bootstrap confidence intervals can be explained by the

fact that the pairs bootstrap analogs of β̂GMTM contain more frequently the anomalous observations

than the implied probability bootstrap analogs of β̂GMTM even though the estimator β̂GMTM is robust

to the anomalous observations.

In this empirical example, based on our breakdown point analysis, if the researcher wishes to treat
13We also considered trimming more than two observations but the point estimates β̂GMTM remain quite close to

−0.1716.
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the observations in Bolivia and Argentina as outliers, we recommend to use the GMTM estimator

β̂GMTM and implied probability bootstrap confidence interval.

7 Conclusion

This paper studies robustness of the pairs and implied probability bootstrap inference methods for

instrumental variable regression models. In particular, we analyze the breakdown point properties

of the quantiles of those bootstrap methods for robust and non-robust test statistics for parameter

hypotheses. Simulation studies illustrate the theoretical findings. Our breakdown point analysis can be

an informative guideline for applied researchers to decide which bootstrap method should be applied

under existence of outliers. It is important to extend our analysis to dependent data setups, where

different bootstrap methods, such as block bootstrap, need to be employed. Also, it is interesting to

analyze the breakdown point properties for other implied probabilities, such as the exponential tilting

weights obtained from the information projection by the Boltzmann-Shannon entropy.
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No Outlier Outlier

|Tn| n Y(n) = 5Ymax Y(n) = 10Ymax Y(n) = 20Ymax

True 50 1.8210 9.3181 19.1922 39.0682

100 1.7713 7.2143 14.6622 29.7983

Pairs 50 1.7972 (0.9491) 7.9834 (0.9937) 16.1951 (0.9964) 32.5251 (0.9987)

100 1.7537 (0.9481) 5.8554 (0.9896) 11.7248 (0.9967) 23.3004 (0.9987)

Implied 50 1.7882 (0.9450) 2.6851 (0.5016) 2.7357 (0.3403) 2.6658 (0.1919)

100 1.7497 (0.9461) 2.4731 (0.5425) 2.5712 (0.3765) 2.4642 (0.2191)

No Outlier Outlier

|T dn | n Y(n) = 5Ymax Y(n) = 10Ymax Y(n) = 20Ymax

True 50 1.7388 1.8400 1.8400 1.8400

100 1.7182 1.7827 1.7827 1.7827

Pairs 50 1.7845 (0.9592) 7.6376 (0.9961) 15.5285 (0.9968) 31.1589 (0.9980)

100 1.7457 (0.9591) 5.8030 (0.9952) 11.7246 (0.9976) 23.0146 (0.9988)

Implied 50 1.7473 (0.9534) 1.8857 (0.9619) 1.8327 (0.9590) 1.8005 (0.9574)

100 1.7212 (0.9531) 1.8693 (0.9608) 1.8163 (0.9587) 1.7807 (0.9575)

Table 1: Quantiles of the pairs and implied probability bootstrap for the just-identified case.

The rows labelled “True” report the simulated quantiles of the distribution of |Tn|, and
∣∣T dn ∣∣ based on

20,000 realizations. The rows labelled “Pairs” report the pairs bootstrap quantiles. The rows labelled

“Implied” report the implied probability bootstrap quantiles. The sample sizes are n = 50 and 100. In

brackets, we report the empirical coverages of 95% bootstrap confidence intervals.
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Figure 1: Scatter plot for the empirical example. On the x−Axis and y−Axis, are represented

the proxy variable for the openess of a country and the average annual inflation rate of a country,

respectively.
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No Outlier Outlier

|Tn| n Y(n) = 5Ymax Y(n) = 10Ymax Y(n) = 20Ymax

True 50 1.8210 9.3181 19.1922 39.0682

100 1.7713 7.2143 14.6622 29.7983

R. Residual 50 1.7788 (0.9471) 9.9587 (0.9725) 20.2172 (0.9781) 40.7488 (0.9802)

100 1.7610 (0.9444) 7.7124 (0.9691) 15.5270 (0.9727) 31.2815 (0.9793)

U. Residual 50 1.7858 (0.9473) 9.9887 (0.9735) 20.2941 (0.9786) 40.9144 (0.9810)

100 1.7638 (0.9454) 7.7183 (0.9706) 15.5622 (0.9733) 31.3310 (0.9796)

No Outlier Outlier

|T dn | n Y(n) = 5Ymax Y(n) = 10Ymax Y(n) = 20Ymax

True 50 1.7388 1.8400 1.8400 1.8400

100 1.7182 1.7827 1.7827 1.7827

R. Residual 50 1.7461 (0.9582) 6.5794 (1.0000) 12.6706 (1.0000) 25.1610 (1.0000)

100 1.7375 (0.9571) 5.1123 (1.0000) 9.4927 (1.0000) 18.8101 (1.0000)

U. Residual 50 1.7544 (0.9591) 6.6319 (1.0000) 12.7875 (1.0000) 25.6547 (1.0000)

100 1.7408 (0.9577) 5.1947 (1.0000) 9.7543 (1.0000) 19.2149 (1.0000)

Table 2: Quantiles of the restricted and unrestricted residual bootstrap for the just-

identified case. The rows labelled “True” report the simulated quantiles of the distribution of |Tn|,
based on 20,000 realizations. The rows labelled “R. Residual" report the restricted residual bootstrap

quantiles. The rows labelled “U. Residual” report the unrestricted residual bootstrap quantiles. The

sample sizes are n = 50 and 100. In brackets, we report the empirical coverages of 95% bootstrap

confidence intervals.

No Outlier Outlier

|tn| n X(n) = 5Xmax X(n) = 10Xmax X(n) = 20Xmax

True 50 1.9664 2.8926 4.0525 6.4031

100 1.9652 2.4056 3.0520 4.3312

Pairs 50 1.9466 (0.9438) 4.5537 (1.0000) 7.1891 (1.0000) 10.5556 (1.0000)

100 1.9281 (0.9444) 3.8653 (1.0000) 6.2978 (1.0000) 9.9961 (1.0000)

Implied 50 1.9373 (0.9423) 2.2273 (0.9093) 2.3083 (0.8301) 2.3659 (0.7011)

100 1.9089 (0.9431) 2.1906 (0.9313) 2.2733 (0.9108) 2.3340 (0.8039)

Table 3: Quantiles of the pairs and implied probability bootstrap for the just-identified

case. The rows labelled “True” report the simulated quantiles of the distribution of |tn| based on 20,000

realizations. The rows labelled “Pairs” report the pairs bootstrap quantiles. The rows labelled “Implied”

report the implied probability bootstrap quantiles. The sample sizes are n = 50 and 100. In brackets,

we report the empirical coverages of 95% bootstrap confidence intervals.
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No Outlier Outlier

|Tn,over| n Y(n) = 5Ymax Y(n) = 10Ymax Y(n) = 20Ymax

True 50 1.5831 8.7738 18.0977 36.9841

100 1.5488 6.8020 13.8711 28.2121

Pairs 50 1.5597 (0.9492) 7.3790 (0.9974) 14.9219 (0.9992) 30.1704 (0.9990)

100 1.5411 (0.9494) 5.4235 (0.9915) 10.8790 (0.9986) 21.7734 (0.9998)

Implied 50 1.5365 (0.9454) 2.2006 (0.5007) 2.3037 (0.3268) 2.3477 (0.1884)

100 1.5207 (0.9406) 1.9708 (0.5101) 1.9935 (0.3314) 1.9692 (0.1978)

No Outlier Outlier

|T dn,over| n Y(n) = 5Ymax Y(n) = 10Ymax Y(n) = 20Ymax

True 50 1.5112 1.6134 1.6134 1.6134

100 1.5031 1.5524 1.5524 1.5524

Pairs 50 1.5432 (0.9597) 6.8614 (0.9976) 13.8689 (0.9990) 28.0197 (0.9998)

100 1.5292 (0.9581) 5.2663 (0.9927) 10.4683 (0.9964) 21.2601 (0.9999)

Implied 50 1.5012 (0.9474) 1.5698 (0.9571) 1.5363 (0.9545) 1.5228 (0.9470)

100 1.4921 (0.9454) 1.5617 (0.9565) 1.5311 (0.9540) 1.5201 (0.9497)

Table 4: Quantiles of the pairs and implied probability bootstrap for the over-identified

case. The rows labelled “True” report the simulated quantiles of the distribution of |Tn,over|, and∣∣T dn,over∣∣ based on 20,000 realizations. The rows labelled “Pairs” report the pairs bootstrap quantiles.

The rows labelled “Implied” report the implied probability bootstrap quantiles. The sample sizes are

n = 50 and 100. In brackets, we report the empirical coverages of 95% bootstrap confidence intervals.

No Outlier Outlier

|tn,over| n X(n) = 5Xmax X(n) = 10Xmax X(n) = 20Xmax

True 50 1.9766 3.2956 5.5371 11.0175

100 1.9641 2.5796 3.5563 6.2190

Pairs 50 1.9541 (0.9441) 5.7298 (0.9981) 9.6094 (0.9989) 14.2579 (0.9992)

100 1.9530 (0.9472) 4.4665 (0.9990) 7.9467 (0.9997) 13.3555 (0.9998)

Implied 50 1.9454 (0.9427) 2.2110 (0.8528) 2.3243 (0.6876) 2.4643 (0.5021)

100 1.9431 (0.9424) 2.1326 (0.9206) 2.1774 (0.8365) 2.2308 (0.6269)

Table 5: Quantiles of the pairs and implied probability bootstrap for the over-identified

case. The rows labelled “True” report the simulated quantiles of the distribution of |tn,over| based on

20,000 realizations. The rows labelled “Pairs” report the pairs bootstrap quantiles. The rows labelled

“Implied” report the implied probability bootstrap quantiles. The sample sizes are n = 50 and 100. In

brackets, we report the empirical coverages of 95% bootstrap confidence intervals.
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|Tn| 2.0 2.1 2.2 2.3

Pairs No Outlier 0.0519 0.2233 0.6245 0.8845

Outlier 0.0033 0.0208 0.0622 0.1389

Implied No Outlier 0.0539 0.1818 0.5543 0.8257

Outlier 0.6235 0.7804 0.8446 0.8681

|T dn | 2.0 2.1 2.2 2.3

Pairs No Outlier 0.0409 0.2045 0.6169 0.9132

Outlier 0.0024 0.0050 0.0249 0.0846

Implied No Outlier 0.0469 0.1794 0.5373 0.8122

Outlier 0.0413 0.1691 0.5123 0.8010

Table 6: Empirical rejection frequencies just-identified case. We report the empirical rejection

frequencies of the null hypothesis H0 : θ0 = 2 under different parameter values θ0 = 2.0, 2.1, 2.2, 2.3.

We consider the pairs bootstrap (“Pairs”) and the implied probability bootstrap (“Implied”) applied to

the statistics |Tn| and |T dn |. The sample sizes is n = 100, the significance level is 5%.

|Tn| 2.0 2.1 2.2 2.3

R. Residual No Outlier 0.0556 0.1978 0.5803 0.8447

Outlier 0.0273 0.0491 0.0658 0.0959

U. Residual No Outlier 0.0546 0.2297 0.6312 0.8895

Outlier 0.0267 0.0545 0.0682 0.0961

Table 7: Empirical rejection frequencies just-identified case. We report the empirical rejection

frequencies of the null hypothesis H0 : θ0 = 2 under different parameter values θ0 = 2.0, 2.1, 2.2, 2.3. We

consider the restricted residual bootstrap (“R. Residual”) and the unrestricted residual bootstrap (“U.

Residual”) applied to the statistic |Tn|. The sample sizes is n = 100, the significance level is 5%.
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|Tn,over| 2.0 2.1 2.2 2.3

Pairs No Outlier 0.0506 0.2808 0.6618 0.9303

Outlier 0.0014 0.0142 0.0680 0.1443

Implied No Outlier 0.0594 0.2512 0.6131 0.8707

Outlier 0.6686 0.7773 0.7864 0.7363

|T dn,over| 2.0 2.1 2.2 2.3

Pairs No Outlier 0.0419 0.2415 0.6517 0.9118

Outlier 0.0036 0.0042 0.0398 0.0905

Implied No Outlier 0.0546 0.2222 0.6021 0.8575

Outlier 0.0460 0.2158 0.5920 0.8497

Table 8: Empirical rejection frequencies over-identified case. We report the empirical rejection

frequencies of the null hypothesis H0 : θ0 = 2 under different parameter values θ0 = 2.0, 2.1, 2.2, 2.3.

We consider the pairs bootstrap (“Pairs”) and the implied probability bootstrap (“Implied”) applied to

statistics |Tn,over| and |T dn,over|. The sample sizes is n = 100, the significance level is 5%.

β̂ Quantile Confidence Interval Length

90% [−0.5890;−0.0768] 0.5122

Pairs Bootstrap 95% [−0.6437;−0.0221] 0.6216

99% [−0.7972; 0.1314] 0.9286

90% [−0.5079;−0.1579] 0.3500

Implied Bootstrap 95% [−0.5301;−0.1357] 0.3944

99% [−0.6004;−0.0654] 0.5350

β̂GMTM Quantile Confidence Interval Length

90% [−0.3689; 0.0257] 0.3946

Pairs Bootstrap 95% [−0.4341; 0.0910] 0.5251

99% [−0.5717; 0.2285] 0.8002

90% [−0.2950;−0.0482] 0.2468

Implied Bootstrap 95% [−0.3240;−0.0192] 0.3048

99% [−0.3831; 0.0399] 0.4230

Table 9: Confidence Intervals by the pairs and implied probability bootstrap. The rows

labelled “Pairs Bootstrap” report the pairs bootstrap confidence intervals. The rows labelled “Implied

Bootstrap” report the implied probability bootstrap confidence intervals.
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