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Abstract

This paper presents a simple model of strategic network formation with local com-

plementarities in e�ort levels and positive local externalities for a general class of payo�

functions. Results are obtained for one-sided and two-sided link creation. In both cases

(pairwise) Nash equilibrium networks are nested split graphs, which are a strict subset

of core-periphery networks. The relevance of the convexity of the value function (gross

payo�s as a function of neighbors' e�ort levels when best responding) in obtaining nested

split graphs is highlighted. Under additional assumptions on payo�s, we show that the

only e�cient networks are the complete and the empty network. Furthermore, there

exists a range of linking cost such that any (pairwise) Nash equilibrium is ine�cient

and for a strict subset of this range any (pairwise) Nash equilibrium network structure

is di�erent from the e�cient network. These �ndings are relevant for a wide range

of social and economic phenomena, such as educational attainment, criminal activity,

labor market participation, and R&D expenditures of �rms.

Key Words: Strategic network formation, peer e�ects, strategic complements,

positive externalities. JEL Codes: D62, D85.

1 Introduction

Peer e�ects and social structure play an important role in determining individual behavior

and aggregate outcomes in many social and economic settings. This has been documented

by a large body of empirical work, which �nds peer e�ects and network position crucial for

decisions concerning educational attainment, criminal activity, labor market participation

∗I am grateful to my supervisors Fernando Vega-Redondo and Massimo Morelli for their support and
guidance. I also thank Sebastian Bervoets, Sergio Currarini, Andrea Galeotti, Sanjeev Goyal, In-Uck Park,
Paolo Pin, Brian Rogers, Tim Schmidt-Eisenlohr and participants of the Networks Working Group at the
European University Institute, the UECE Lisbon Meetings 2010 and the CTN 2013 for helpful comments.
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and R&D expenditures of �rms. In these settings an agent's optimal action and payo� is

thought to depend directly on the action or payo� of others (peer e�ects), while the relevant

reference group is determined by the network of bilateral relationships between agents (social

structure).

This paper endogenizes the network in a setting which accounts for peer e�ects. In accor-

dance with empirical studies, peer e�ects are assumed to induce positive local externalities

and strategic complementarities.1 The setup is simple. Agents simultaneously choose a

non-negative, continuous e�ort level and create links at a cost. The signi�cance of a link

is that direct neighbors in the network bene�t from each other's e�ort levels (positive lo-

cal externalities) and an agent's incentive to exert e�ort is strictly increasing in the sum

of his neighbor's e�ort levels (strict strategic complementarities). Furthermore, we assume

payo� functions for which the corresponding value function is convex. That is, when best

responding, own payo�s are convex in the sum of e�ort levels of direct neighbors. Results

for two speci�cations of the model are presented. First, two-sided link formation, where

linking cost are shared equally. For this case we solve for pairwise Nash equilibrium, which

re�ects the bilateral nature of creating a link (and sharing its cost). Second, one-sided link

formation, where linking cost are borne unilaterally. This speci�cation allows us to employ

Nash equilibrium.2

For both, one-sided and two-sided link formation, we show that equilibrium networks

are nested split graphs, a special case of core-periphery networks.3 Core-periphery structures

are frequently observed in empirical work on networks.4 More recently, nested split graphs

have gained increased attention and empirical support has been established in a variety of

contexts.5 Typically, some agents in the periphery are connected to agents in the core and we

1See Hoxby (2000), Sacerdote (2001) for a treatment of peer e�ects in education, Glaeser, Sacerdote and
Scheinkman (1996), Case and Katz (1991) and Ludwig et al (2001) for criminal and delinquent behavior,
Topa (2001) and Conley and Topa (2001) for labor markets and Cohen and Levinthal (1989, 1990) and Levin
and Reiss (1988) for R&D expenditure of �rms.

2Pairwise Nash equilibrium was �rst discussed in Jackson and Wolinsky (1996). For applications see, for
example, Goyal and Joshi (2003) and Belle�amme and Bloch (2004). The one-sided speci�cation follows
Bala and Goyal (2000).

3There are varying de�nitions of core-periphery networks in the social sciences literature. Typically, a
core-periphery structure indicates the existence of one group that is internally densely connected and another
group that is internally sparsely connected (Borgatti and Everett (1999)). We follow the de�nition given in
Bramoullé (2007): A core-periphery network is such that the set of agents can be partitioned into two sets,
called the core and the periphery, where all agents in the core are connected to each other, while no pair of
agents in the periphery is connected. A nested split graph is a graph such that, if the link between i and l
exists and the degree of k is at least as high as the degree of l, then the link between i and k also exists.
All nested split graphs are core-periphery networks, while the converse is not true. For a detailed account
of nested split graphs see Mahadev and Peled (1995).

4Empirical examples of core-periphery networks relevant to this paper are Adamic and Adam (2003) for
friendship, Canter (2004) for crime and Powell et al (1996), Gulati and Gargiulo (1999) and Baker et al
(2004) for R&D networks.

5See Akerman and Larsson (2010) for an example in global arms trade and May et al (2008) for networks
of banks. König, Tessone and Zenou (2012) provide a discussion of nested split graphs with further references
and empirical evidence, brie�y discussed below.
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therefore investigate the possibility of such equilibria to arise. For the case of linear-quadratic

payo�s we provide necessary and su�cient conditions for the existence of a star network

for both link formation speci�cations. Turning again to the more general class of payo�

functions, we show that e�ort levels and gross payo�s are higher for more central agents. This

is in accordance with the empirical literature on networks.6 Perhaps surprisingly, however,

if link formation is two-sided, then the center of a star may obtain strictly lower net payo�s

(i.e., net of linking cost). In these equilibria higher linking cost outweigh higher gross payo�s.

Finally, we provide results for social welfare and show that, if own payo�s are weakly convex

in e�ort levels of neighbors, then the only e�cient network structures are the empty and

the complete network. Moreover, there exists a range of linking cost for which all (pairwise)

Nash equilibria are ine�cient. For a strict subset of this range not only is any (pairwise)

Nash equilibrium ine�cient, but also any (pairwise) Nash equilibrium network structure

is di�erent from the e�cient network. Note that the range of linking cost for which any

(pairwise) Nash equilibrium is ine�cient may be thought of as large, in the sense that a

(pairwise) Nash equilibrium may only be e�cient if the network is empty.

Two empirical papers that are closely related are Calvó-Armengol, Pattacchini and Zenou

(2005 and 2009). The authors use a detailed data set on friendship networks in U.S. high

schools (AddHealth) to test a structural model on a �xed network. This allows for the

measurement of peer e�ects in education and delinquent behavior, respectively. Calvó-

Armengol et al �nd a positive relationship between grades and delinquency rates on the one

hand and centrality on the other hand. Network position turns out to be a key determinant

for an individual's e�ort level. This emphasizes the importance of social structure for peer

in�uences, as opposed to average in-group e�ects. In both papers positive local spillovers

and strategic complementarities in e�ort levels are observed. Note that the payo� function

in Calvó-Armengol et al (2005 and 2009) is the same as the one in the linear-quadratic case

presented here and we therefore endogenize the network for these papers.

The one-sided speci�cation presented in our paper can be seen as the conceptual counter-

part to Galeotti and Goyal (2010). They also solve a simultaneous move game, where agents

choose a non-negative, continuous e�ort level and link formation is one-sided. Externalities

are positive and local, but di�erent from our paper, Galeotti and Goyal (2010) assume strate-

gic substitutes. The only strict equilibria in their paper are core-periphery networks, where

agents in the periphery extend links to agents in the core. Note that the star network, for

which we provide necessary and su�cient conditions, is a special case of the core-periphery

structures obtained in Galeotti and Goyal (2010). We thereby show that core-periphery net-

works, in which agents in the periphery are connected to agents in the core, are not a feature

6Baldwin et al (1997) �nds grades to be positively correlated with centrality for students of an MBA
course. Lin (2001) analyzes job market data and links centrality to obtaining better job o�ers. Powell et al
(1996) and Ahuja (2000) show that more central �rms tend to issue more patents, have higher earnings and
a lower probability of going bankrupt.
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of strategic substitutes alone, but may also be obtained under strategic complementarities.7

The model presented by Baetz (2012) is also related. Baetz' setup is as in the one-sided

link formation speci�cation of our paper, but instead of payo� functions with a convex value

function, Baetz (2012) assumes payo� functions such that the corresponding value function

is concave. A full characterization is not available yet. It can be shown, however, that a

wide range of equilibria may be sustained in equilibrium, such as regular networks, biregular

bipartite graphs, multipartite graphs, and (under fairly restrictive assumptions on payo�s)

also core-periphery networks. That is, if the value function is convex, then all equilibria are

nested split graphs, while if the value function is concave, then many more structures may

arise (under one-sided link formation). To emphasize the relevance of the convexity of the

value function, we indicate in the �nal part of the paper how our equilibrium characterization

extends to the case of strategic substitutes.8 More speci�cally, if link formation is one-sided

and the value function is convex, then all Nash equilibria are nested split graphs, irrespective

of the nature of strategic interaction.

A recent paper by König, Tessone, and Zenou (2012) addresses link formation for the

linear-quadratic speci�cation. Note that the authors interpret their model as one of �nancial

and trade networks and, of course, their interpretation carries over to our model as well.9

The link formation process in König et al (2012) is very di�erent from the one presented

here. The setup is dynamic and in each time period players play a two-stage game. In the

�rst stage, agents choose their e�ort levels on a �xed network, while in the second stage a

randomly selected player may create a new link in the current network, at zero cost. Links

decay over time, with more valuable links decaying at a slower rate. König et al (2012)

then introduce noise into the model and derive the stochastically stable networks. These

are shown to be nested split graphs. The authors test their model using four di�erent data

sets (two banking networks, a global trade network and an arms trade network) and �nd

evidence for nestedness and an overall good �t.

Finally, the paper by Ballester, Calvó-Armengol and Zenou (2006) is also related. Again

the presence of a link in the network (after a payo� decomposition) allows agents to bene�t

from each other's e�ort levels and payo�s are linear-quadratic. Di�erent from our paper,

however, Ballester et al (2006) assume not only local strategic complementarities, but also

allow for global strategic substitutes. The authors then link equilibrium actions to Bonacich

7Note that the payo� function in Galeotti and Goyal (2010) is given by π(xi, yi) = f(xi +
∑
j∈Ni(ḡ) xj)−

c(xi), where f is assumed to be concave and c is linear. By making appropriate assumptions on f and c, we
can generate a model of positive externalities and strategic complements that �ts our setup. Arguably the
simplest such speci�cation is π(xi, yi) = (xi +

∑
j∈Ni(ḡ) xj)

2 − x3
i .

8Note that in Galeotti and Goyal (2010) the value function is linear as long as own e�ort level is positive
and strictly concave thereafter.

9See Appendix C in König, Tessone, and Zenou (2012) for a derivation of the linear-quadratic payo�
speci�cation in the context of networks of banks operating in loan markets and networks of trade relationships
among countries.
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centrality on a �xed network.

The rest of the paper is organized as follows: Section 2 describes the two-sided model

and then presents the analysis. Section 3 concludes. Some of the proofs for the two-sided

speci�cation are relegated to Appendix A, while the one-sided model is presented in its

entirety in Appendix B.

2 The Two-Sided Model

2.1 Model Description

Let N = {1, 2, ..., n} be the set of players with n ≥ 3. Each agent i chooses an e�ort level

xi ∈ X and announces a set of agents to whom he wishes to be linked to, which is represented

by a row vector gi = (gi,1, ..., gi,i−1, gi,i+1, ..., gi,n−1), with gi,j ∈ {0, 1} for each j ∈ N\{i}.
Assume X = [0,+∞) and gi ∈ Gi = {0, 1}n−1. The set of agent i's strategies is denoted by

Si = X×Gi and the set of strategies of all players by S = S1×S2× ...×Sn. A strategy pro�le

s = (x,g) ∈ S then speci�es the individual e�ort level for each player, x = (x1, x2, ..., xn),

and the set of intended links, g = (g1,g2, ...,gn). A link between i and j, denoted with

ḡi,j = 1, is created if and only if both agents intend to create a link. That is, ḡi,j = 1 if

gi,j = gj,i = 1, and ḡi,j = 0 otherwise. From g we thereby obtain the undirected graph ḡ

with ḡi,j = ḡj,i. The presence of a link ḡi,j = 1 allows players to directly bene�t from the

e�ort level exerted by the respective other agent involved in the link. Let Ni(g) = {j ∈ N :

gi,j = 1} be the set of agents to which agent i extends a link and denote the corresponding

cardinality with ηi(g) = |Ni(g)|. De�ne the set of i's neighbors in ḡ (i.e., the set of agents

to which i reciprocates the announcement of a link) with Ni(ḡ) = {j ∈ N : ḡi,j = 1} and
de�ne ηi(ḡ) = |Ni(ḡ)|. The aggregate e�ort level of agent i's neighbors in ḡ is written as

yi =
∑

j∈Ni(ḡ) xj. We sometimes drop the subscript of yi when it is clear from the context.

Given a network ḡ, ḡ + ḡi,j and ḡ − ḡi,j have the following interpretation. When ḡi,j = 0 in

ḡ, ḡ + ḡi,j adds the link ḡi,j = 1, while if ḡi,j = 1 in ḡ, then ḡ + ḡi,j = ḡ. Similarly, if ḡi,j = 1

in ḡ, ḡ − ḡi,j deletes the link ḡi,j, while if ḡi,j = 0 in ḡ, then ḡ − ḡi,j = ḡ. The network is

called empty and denoted with ḡe, if ḡi,j = 0 ∀i, j ∈ N and complete and denoted with ḡc if

ḡi,j = 1 ∀i, j ∈ N.
Payo�s of player i under strategy pro�le s = (x,g) are given by

Πi(s) = π(xi, yi)− ηi(g)k,

where k denotes the cost of extending a link, with k > 0. Gross payo�s π(xi, yi) are a

function of own e�ort, xi, and the sum of e�ort levels of direct neighbors, yi =
∑

j∈Ni(ḡ) xj.

We assume strict positive local externalities and strict strategic complementarities in e�ort

levels, so that ∂π(x,y)
∂y

> 0 and ∂2π(x,y)
∂x∂y

> 0. Further assume that ∂2π(x,y)
∂2x

< 0. The latter
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assumption, together with the convexity of X, guarantees a unique maximizer, which is

denoted by x̄(y). We also assume x̄(y) > 0.10 From ∂2π(x,y)
∂x∂y

> 0 (strict positive externalities)

we know that best response functions are strictly increasing in the sum of e�ort level accessed,

so that ∂x̄(y)
∂y

> 0. Best response functions are assumed to be either linear or concave, i.e.,
∂2x̄(y)
∂2y

= 0 or ∂2x̄(y)
∂2y

< 0. Denote the value function with v(y) = π(x̄(y), y). The value function

yields an agent's gross payo�s when best responding to a given sum of e�ort level accessed.

Throughout we assume v(y) to be convex, ∂2v(y)
∂2y

> 0. In order to guarantee existence, we

further assume that there exists a value of y such that ∂x̄(y)
∂y

< 1
n−1

.

In the following we de�ne pairwise Nash equilibrium (PNE). A strategy pro�le s = (x,g)

is a pairwise Nash equilibrium i�

• s is a Nash Equilibrium, and

• for all ḡi,j = 0, if Πi(x
′
i, x
′
j,x−i,−j, ḡ + ḡi,j) > Πi(s), then Πj(x

′
i, x
′
j,x−i,−j, ḡ + ḡij) <

Πj(s), ∀x′i, x′j ∈ X.

A pairwise Nash equilibrium is therefore both, a Nash equilibrium and pairwise stable.

Social welfare is de�ned as the sum of individual payo�s. For any strategy pro�le s, social

welfare is given by

W (s) =
∑

i∈N Πi(s).

A pro�le s̃ is socially e�cient if W (̃s) ≥ W (s), ∀s ∈S.

2.2 Analysis

We start the analysis by providing a proof for the existence and uniqueness of a Nash

equilibrium on a �xed network. For the case of linear best response functions we employ the

existence result provided by Ballester et al (2006). For the case of concave best response

functions we make use of a �xed point theorem provided by Kennan (2001). As in Kennan's

paper, we de�ne a vector b to be larger than a vector a if and only if bi > ai ∀i ∈ N.

Proposition 1: For any �xed network, ḡ, there exists a unique NE in e�ort levels.

Proof. See the Appendix.

10This assumption guarantees that there does not always, i.e., for any linking cost k, exist a (pairwise)
Nash equilibrium such that the network is empty.
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Lemma 1 shows that agents in a complete component exert equal e�ort levels.

Lemma 1: NE e�ort levels are equal for all players in a complete component.

Proof. Assume to the contrary that there exists a pair of players k and l in a complete

component, such that x∗k 6= x∗l and, without loss of generality, that x∗k > x∗l . Note that

in a complete component, k and l are connected to the same sets of third agents, such

that Nk(ḡ) \ {l} = Nl(ḡ) \ {k}. But then, for x∗k > x∗l , the sum of e�ort levels of l's

neighbors,
∑

j∈Nl(ḡ) x
∗
j , is larger than the sum of e�ort levels of k's neighbors,

∑
j∈Nk(ḡ) x

∗
j .We

have reached a contradiction, since due to strict strategic complementarities
∑

j∈Nl(ḡ) x
∗
j >∑

j∈Nk(ḡ) x
∗
j implies x∗l > x∗k. Q.E.D.

In Lemma 2 we show that e�ort levels are maximal in the complete network.

Lemma 2: NE e�ort levels are maximal in the complete network.

Proof. Denote the Nash equilibrium e�ort level in the complete network, ḡc, with xc∗.

From Lemma 1 we know that xc∗ = x∗i (ḡ
c) ∀i ∈ N . Start by deleting a link ḡi,j from ḡc and

consider each player's best response to xc∗ in ḡc− ḡi,j. Agent i's initial best response will be
lower in ḡc − ḡi,j than in ḡc, as

∑
j∈Ni(ḡc−ḡi,j) x

∗
j <

∑
j∈Ni(ḡc) x

∗
j . Iterating on best responses,

any agent l with ḡ∗i,l = 1 decreases his e�ort level, and those sustaining links with l decrease

their e�ort levels in turn, and so forth. The e�ort level of each agent is a decreasing sequence

of real numbers, which is bounded below by x̄(0). E�ort levels therefore convergence to a

new equilibrium in ḡc− ḡi,j, with x∗l (ḡc− ḡi,j) < x∗(ḡc) ∀l ∈ N. Note that any network ḡ 6= ḡc

can be obtained from ḡc by deleting a sequence of links. E�ort levels are weakly decreasing

at each step and strictly for the deletion of the �rst link in a complete network. Q.E.D.

Next, we de�ne two cost threshold cost, k1 and k2. The �rst threshold, k1, is given by

the gross marginal payo�s (net of linking cost) when a pair of agents creates a link in the

empty network. Note that under pairwise Nash equilibrium we allow both agents creating

a new link to adjust their e�ort levels. The second threshold, k2, is de�ned as the average

gross marginal payo�s of linking to (n− 1) agents in the complete network. Both thresholds

are expressed in terms of the value function.

De�nition 1: k1 = vi(x
∗
j(ḡ

e + ḡi,j))− vi(0) and k2 = v((n−1)x∗(ḡc))−v(0)
n−1

.

Proposition 2 shows that, for linking cost smaller than k1, the unique pairwise Nash

equilibrium is the complete network, while for linking cost larger than or equal to k1, there

exists a pairwise Nash equilibrium such that the network is empty. To see this, note that

with strategic complementarities and a convex value function, the marginal value of adding

a link (and adjusting e�ort levels) is lowest for a pair of agents with no links. That is, if
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linking cost is smaller than k1, then in any network that is not complete, there exists a pair

of agents who �nds it pro�table to create a link (and to adjust their e�ort levels). Therefore,

the unique pairwise Nash equilibrium is the complete network. Conversely, if linking cost is

larger than or equal to k1, then no pair of agents in the empty network �nds it pro�table to

create a link (and to adjust their e�ort levels) and there exists a pairwise Nash equilibrium

such that the network is empty.

Proposition 2: If k < k1, then the unique PNE is the complete network. If k ≥ k1,

then there exists a PNE such that the network is empty.

Proof. See the Appendix.

Proposition 3 shows that for linking cost larger than k2, the unique pairwise Nash equi-

librium is the empty network, while for linking cost smaller than or equal to k2, there exists

a pairwise Nash equilibrium such that the network is complete. Note that the (non-empty)

pairwise Nash equilibrium network that can be sustained at the highest linking cost is the

complete network. This follows from strategic complementarities and the convexity of the

value function, together with our results from Lemma 1 and Lemma 2, that e�ort levels are

equal and maximal in the complete network. The threshold value of k2 is such that, if linking

cost is larger than k2, then an agent in the complete network �nds it pro�table to delete

his links (and adjust his e�ort level). The unique pairwise Nash equilibrium is therefore the

empty network. For linking cost smaller than or equal to k2, no agent in the complete net-

work �nds it pro�table to sever any subset of links (and to adjust his e�ort level). Therefore,

there exists a pairwise Nash equilibrium such that the network is complete.

Proposition 3: If k > k2, then the unique PNE is the empty network. If k ≤ k2, then

there exists a PNE such that the network is complete.

Proof. See the Appendix.

Lemma 3 shows that k1 < k2.

Lemma 3: k1 < k2.

Proof. See the Appendix.

To summarize, for linking cost smaller than k1, the unique PNE is the complete network,

while for linking cost larger than k2 the unique PNE network is the empty network. For

linking cost k ∈ [k1, k2] the complete and the empty network are pairwise Nash equilibria.
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Next, we formally de�ne core−periphery networks (which are called split graphs in the

mathematical graph theory literature) and nested split graphs. In a core-periphery network

the set of agents can be partitioned into two sets, such that all pairs of agents within the

�rst set (the core) are connected and no pair of agents within the second set (the periphery)

is connected. Note that the de�nition does not state anything about links between pairs of

agents where one agent is in the core and the other is in the periphery. The star network is a

special case of a core-periphery network. In a star network there exists a partition of agents

such that the core consists of a single agent and all agents in the periphery are connected

to the the core. A nested split graph is a network such that, if a link between agents i and

l exists, and agent k has a higher or equal number of links (degree) than l, then the link

between i and k also exists. That is, neighborhoods are nested. Nested split graphs display

a core-periphery structure.11 Note that the complete and empty network are nested split

graphs and therefore core-periphery networks (take the periphery or core to be the empty

set, respectively).

De�nition 2: A network ḡ is a core − periphery network (split graph) if the set of

agents N can be partitioned into two sets, C(ḡ) (the core) and P (ḡ) (the periphery), such

that ḡi,j = 1 ∀i, j ∈ C(ḡ) and ḡi,j = 0 ∀i, j ∈ P (ḡ). A star is a core− periphery network in

which the set of agents can be partitioned into two sets, C(ḡ) and P (ḡ), such that | C(ḡ) |= 1

and ḡi,j = 1 ∀i ∈ P (ḡ) and ∀j ∈ C(ḡ).

De�nition 3: A network ḡ is a nested split graph if and only if

[ḡi,l = 1 ∧ ηk(ḡ) ≥ ηl(ḡ)]⇒ ḡi,k = 1.

To illustrate the di�erence between a core-periphery network and a nested split graph we

provide a simple example in Figure 1 below. The numbers in the graph indicate the degree

of an agent.
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Figure 1

11See König et al (2011) and Mahadev and Peled (1995) for properties of nested split graphs.
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In the following we provide three Lemmas which are useful when establishing Proposition

4 and Corollary 1. In Proposition 4 we prove that in any PNE the network is a nested split

graph. Corollary 1 shows that, if all agents display equal e�ort levels, then the network is

either empty or complete, while if there exists a pair of agents with di�erent e�ort levels,

then the network displays a core-periphery structure (which is neither the empty nor the

complete network). In Lemma 4 we prove that in any PNE, if an agent i is linked to agent

l, then agent i must also be linked to any agent k with higher or equal e�ort level than agent

l. This is a direct consequence of the convexity of the value function. Lemma 5 shows that in

any PNE agents with same e�ort levels must be connected to the same set of agents, while

in Lemma 6 we prove that the neighborhoods of agents with lower e�ort levels are contained

in the neighborhoods of agents with higher e�ort levels.

Lemma 4: If ḡ∗i,l = 1, then ḡ∗i,k = 1 for all agents k with x∗k ≥ x∗l .

Proof. Assume to the contrary of the above that ḡ∗i,l = 1 and ḡ∗i,k = 0 for some agent

k with x∗k ≥ x∗l . Note �rst that for ḡ∗i,l = 1 to be part of a PNE, it must be that agent

i and agent j can not pro�tably deviate by deleting the link. For agent i this condition

reads v(
∑

j∈Ni(ḡ∗) x
∗
j)− v(

∑
j∈Ni(ḡ∗) x

∗
j − x∗l ) ≥ k. If linking to agent l is pro�table for agent

i, then linking to any agent k with x∗k ≥ x∗l is likewise pro�table. To see this, note that

v(
∑

j∈Ni(ḡ∗) x
∗
j + x∗k) − v(

∑
j∈Ni(ḡ∗) x

∗
j) > v(

∑
j∈Ni(ḡ∗) x

∗
j) − v(

∑
j∈Ni(ḡ∗) x

∗
j − x∗l ) ≥ k, which

follows from the convexity of the value function and x∗k ≥ x∗l . Therefore, for a link between

agents i and k to be absent in PNE, we need that agent k does not �nd it pro�table to link

to agent i. In the following we show that this can not be the case. For ḡ∗i,l = 1 to be in place

in a PNE, it must be that agent l can not pro�tably deviate by deleting his link with agent

i. That is, we must have v(
∑

j∈Nl(ḡ∗) x
∗
j)− v(

∑
j∈Nl(ḡ∗) x

∗
j − x∗i ) ≥ k. Note next that, due to

x∗k ≥ x∗l and strict strategic complementarities,
∑

j∈Nk(ḡ∗) x
∗
j ≥

∑
j∈Nl(ḡ∗) x

∗
j holds. We can

now write v(
∑

j∈Nk(ḡ∗) x
∗
j+x

∗
i )−v(

∑
j∈Nk(ḡ∗) x

∗
j) > v(

∑
j∈Nl(ḡ∗) x

∗
j)−v(

∑
j∈Nl(ḡ∗) x

∗
j−xi) ≥ k.

The inequalities again follow from the convexity of the value function and
∑

j∈Nk(ḡ∗) x
∗
j ≥∑

j∈Nl(ḡ∗) x
∗
j . We have thereby shown that it is pro�table for agent k to link to agent i and

have reached a contradiction. That is, if ḡ∗i,l = 1, then agent i �nds it pro�table to link

to any agent k with x∗k ≥ x∗l , while any agent k �nds it pro�table to link to agent i and

therefore ḡ∗i,k = 1 for all agents k with x∗k ≥ x∗l . Q.E.D.

Lemma 5: In any PNE, x∗i = x∗k ⇔ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}.

Proof. First, Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i} ⇒ x∗i = x∗k. If ḡ
∗
i,k = 0, then the sum of i

and k's neighbors' e�ort levels is the same, i.e. y∗i =
∑

j∈Ni(ḡ∗) x
∗
j = y∗k =

∑
j∈Nk(ḡ∗) x

∗
j and

therefore x∗i = x∗k. Assume next that ḡ∗i,k = 1 and, without loss of generality, that x∗i > x∗k.

But then k accesses a higher e�ort level than i, y∗i =
∑

j∈Ni(ḡ∗) x
∗
j < y∗k =

∑
j∈Nk(ḡ∗) x

∗
j ,

and we have reached a contradiction. Second, x∗i = x∗k ⇒ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}.
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Assume to the contrary that x∗i = x∗k and Ni(ḡ
∗)\{k} 6= Nk(ḡ

∗)\{i}. Note that for x∗i = x∗k,

e�ort levels accessed must be equal by strict strategic complementarities, so that y∗i = y∗k.

There must therefore exist an agent l, such that l ∈ Nk(ḡ
∗) and l /∈ Ni(ḡ

∗). For the link

ḡ∗k,l = 1 to be in place in ḡ∗, we must have that v(
∑

j∈Nk(ḡ∗) x
∗
j)− v(

∑
j∈Nk(ḡ∗) x

∗
j − x∗l ) ≥ k.

From y∗i = y∗k and the convexity of the value function we then reach a contradiction since

v(
∑

j∈Ni(ḡ∗) x
∗
j +x∗l )−v(

∑
j∈Ni(ḡ∗) x

∗
j) > v(

∑
j∈Nk(ḡ∗) x

∗
j)−v(

∑
j∈Nk(ḡ∗) x

∗
j −x∗l ) ≥ k. Q.E.D.

Lemma 6: In any PNE, x∗i ≤ x∗k ⇔ Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i}.

Proof. First, Ni(ḡ
∗)\{k} ⊆ Nk(ḡ

∗)\{i} ⇒ x∗i ≤ x∗k. If ḡ
∗
i,k = 0, then k accesses a weakly

higher e�ort level, i.e. yi =
∑

j∈Ni(ḡ∗) x
∗
j ≤ yk =

∑
j∈Nk(ḡ∗) x

∗
j and therefore x∗i ≤ x∗k. Assume

next that ḡ∗i,k = 1 and, without loss of generality, that x∗i > x∗k. But then k accesses a strictly

higher e�ort level than i, y∗i =
∑

j∈Ni(ḡ∗) x
∗
j < y∗k =

∑
j∈Nk(ḡ∗) x

∗
j , and we have reached a

contradiction. Second, x∗i ≤ x∗k ⇒ Ni(g
∗) \ {k} ⊆ Nk(g

∗) \ {i}. Assume to the contrary

that x∗i ≤ x∗k and there exists an agent l such that l ∈ Ni(ḡ
∗) and l /∈ Nk(ḡ

∗). For the link

ḡ∗i,l = 1 to be in place in ḡ∗, we must have that v(
∑

j∈Ni(ḡ∗) x
∗
j)− v(

∑
j∈Ni(ḡ∗) x

∗
j − x∗l ) ≥ k.

But from y∗i ≤ y∗k and the convexity of the value function it follows that v(
∑

j∈Nk(ḡ∗) x
∗
j +

xl) − v(
∑

j∈Nk(ḡ∗) x
∗
j) > v(

∑
j∈Ni(ḡ∗) x

∗
j) − v(

∑
j∈Ni(ḡ∗) x

∗
j − x∗l ) ≥ k and we have reached a

contradiction. Q.E.D.

We are now in the position to prove Proposition 4, which states that in any PNE the

network is a nested split graph.

Proposition 4: In any PNE the network is a nested split graph.

Proof. Note �rst that the complete and the empty network are nested split graphs.

We start by showing that in any PNE, if dk(ḡ
∗) ≥ dl(ḡ

∗), then x∗k ≥ x∗l . Assume to the

contrary that x∗l > x∗k. We distinguish two cases. First, dk(ḡ
∗) > dl(ḡ

∗). There then exists

an agent m ∈ Nk(ḡ
∗) and m /∈ Nl(ḡ

∗). But, since ḡ∗m,k = 1 and x∗l > x∗k, by Lemma

4 ḡ∗m,l = 1 and we have reached a contradiction. Assume next that dk(ḡ
∗) = dl(ḡ

∗). If

Nk(ḡ
∗)\{l} = Nl(ḡ

∗)\{k}, then x∗k = x∗l by Lemma 5 and we have reached a contradiction. If

Nk(ḡ
∗)\{l} 6= Nl(ḡ

∗)\{k}, then there exists an agentm ∈ Nk(ḡ
∗)\{l} andm /∈ Nl(ḡ

∗)\{k}.
Again by Lemma 4, since ḡ∗m,k = 1 and x∗l > x∗k, it follows that ḡ

∗
l,m = 1 and we have reached

a contradiction. We have established that in any PNE, if dk(ḡ
∗) ≥ dl(ḡ

∗) then x∗k ≥ x∗l .

Therefore, in any PNE, if ḡ∗i,l = 1 and dk(ḡ
∗) ≥ dl(ḡ

∗), then x∗k ≥ x∗l and by Lemma 4

ḡ∗i,k = 1 and ḡ∗ is a nested split graph. Q.E.D.
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We know from the literature in graph theory that nested split graphs are core-periphery

networks (split graphs).12 Below, we provide an alternative proof, which highlights agent's

incentives of linking and exerting e�ort. Furthermore, a relationship between a property of

the PNE e�ort levels and PNE network structure is established.

Corollary 1: In any PNE

• if x∗i = x∗j ∀i, j ∈ N, then the network is either empty or complete,

• if x∗i 6= x∗j for some i, j ∈ N, then the network is a core-periphery network (which is

neither complete nor empty).

Proof. Lemma 4 directly implies that if x∗i = x∗j ∀i, j ∈ N , then in any PNE the

network is either empty or complete. Next, we focus on the case such that there exists a

pair of agents i and j, with x∗i 6= x∗j .We show that in any PNE the network displays a core-

periphery structure (other than the complete and empty network). Rank agents by their

e�ort levels in increasing order, such that x∗1 ≤ x∗2 ≤ ... ≤ x∗n−1 ≤ x∗n. We know from Lemma

1 that the network is not complete, since there exists a pair of agents i and j such that

x∗i 6= x∗j . The network is not empty, as agents have identical payo� functions and singleton

agents display equal e�ort levels, x̄(0). First, we show that the two lowest ranked agents,

agent 1 and agent 2, are not connected. Assume to the contrary that ḡ∗1,2 = 1. From Lemma

4 we know that in this case agent i must be connected to all agents, since x∗j ≥ x∗2 ∀j ≥ 2.

Lemma 6 then implies the network is complete, since Ni(ḡ
∗) \ {j} ⊆ Nj(ḡ

∗) \ {i} holds for
agents j with x∗j ≥ x∗1 ∀j ≥ 1. But then x∗i = x∗j ∀i, j ∈ N by Lemma 1 and we have reached

a contradiction. Since the network is neither empty nor complete, at least one link exists.

Pick the agent i with the lowest subscript who has a link. If i has more than one link, pick

the link to the agent with the lowest subscript j. We discern two cases. First, agent i and j

are adjacent in the ranking. As i is the agent with the lowest subscript to sustain a link, all

agents with lower subscripts have no links. All agents with a subscript higher or equal to i

are connected to each other: By Lemma 4, agent i is connected to all agents with subscripts

higher or equal than j and by Lemma 6, ḡ∗l,m = 1 ∀l,m ≥ i. The periphery, P (ḡ∗), consists of

agents with subscripts k < i, while the core, C(ḡ∗), consists of agents with subscripts k ≥ i.

Second, agent i and j are not adjacent. Note that since ḡ∗i,j = 1 and x∗i ≤ x∗j−1, we know

by Lemma 6 that the link between j − 1 and j, ḡ∗j−1,j = 1, also exists. Next, check for the

link ḡ∗j−2,j−1. If ḡ
∗
j−2,j−1 = 0, then by Lemma 6 no agent with a subscript lower than j − 2 is

connected to j−1. Furthermore, no pair of agents with subscripts of lower or equal than j−2

is connected. Assume to the contrary that there exists a pair of nodes l,m with l ≤ m < j−2

and ḡ∗l,m = 1. By Lemma 4 we must then have that ḡ∗l,j−1 = 1. This, however, contradicts

12See, for example, Mahadev and Peled (1995).
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Lemma 6, since ḡ∗j−2,j−1 = 0. The periphery, P (ḡ∗), consists of agents with subscripts k < j,

while the core, C(ḡ∗), consists of agents with subscripts k ≥ j. If ḡ∗j−2,j−1 = 1, check for the

link ḡ∗j−3,j−2. If ḡ
∗
j−3,j−2 = 0, then by above argument the periphery, P (ḡ∗), consists of agents

with subscripts k < j−1, while the core, C(ḡ∗), consists of agents with subscripts k ≥ j−1.

If ḡ∗j−3,j−2 = 1, proceed in descending order until a pair of adjacent agents is found that is

not connected and de�ne the core and periphery accordingly. Note that such a pair exists,

since i and j were assumed to be not adjacent and therefore ḡ∗i,i+1 = 0. This completes the

proof. Q.E.D.

Proposition 5 provides an existence result for core-periphery networks that are neither

complete nor empty and in which there are no links between agents in the core and the

periphery. More speci�cally, assume lim ∂π(x,y)
∂x∂y

→0

∂2π(x,y)
∂2y

> 0 and lim ∂π(x,y)
∂x∂y

→0
x̄(0) > 0. Then,

for ∂π(x,y)
∂x∂y

su�ciently small, a core-periphery network exists with at least three agents in the

core (for appropriately chosen k). Denote the cardinality of the core with c(ḡ∗) =| C(ḡ∗) |
and the cardinality of the periphery with p(ḡ∗) =| P (ḡ∗) |. For ease of notation we write c

and p, respectively.

Proposition 5: If lim ∂π(x,y)
∂x∂y

→0

∂2π(x,y)
∂2y

> 0 and lim ∂π(x,y)
∂x∂y

→0
x̄(0) > 0, then for ∂π(x,y)

∂x∂y

su�ciently small, there exists a linking cost k, such that a PNE displays a core−periphery
network with | C(ḡ∗) |≥ 3.

Proof. Partition the set of agents into the core, C(ḡ∗), with ḡ∗i,j = 1 ∀i, j ∈ C(ḡ∗), and

the periphery, P (ḡ∗), with ḡ∗i,j = 0 ∀i, j ∈ P (ḡ∗). Further assume that ḡ∗i,j = 0 ∀i ∈ C(ḡ∗)

and ∀j ∈ P (ḡ∗). That is, we assume a complete component, consisting of C(ḡ∗), and a set

of singletons, P (ḡ∗). Denote the PNE e�ort level of an agent in the core of size c with

x∗c . The condition for an agent in the core to not delete all his links (recall the argument

from Proposition 3) is given by v((c−1)x∗c)−v(0)
c−1

≥ k. Denote with x′c the e�ort level in a

deviation where a pair of agents p ∈ P (ḡ∗) and c ∈ C(ḡ∗) creates a link. The condition

for an agent in the periphery to not �nd it pro�table to link to an agent in the core is

given by k ≥ v(x′c) − v(0). (These are the only two conditions one needs to consider, since

payo�s for an agent in the periphery linking to another agent in periphery are lower). For
∂π(x,y)
∂x∂y

su�ciently small, e�ort levels of all agents are arbitrarily close to x̄(0) > 0 and

lim ∂π(x,y)
∂x∂y

→0

∂2v(y)
∂2y

= lim ∂π(x,y)
∂x∂y

→0

∂2π(x,y)
∂2y

> 0. That is, lim ∂π(x,y)
∂x∂y

→0

∂2v(y)
∂2y

is bounded away from

zero. Note also that the value function v and best response function x̄(0) are continuous. For
∂π(x,y)
∂x∂y

su�ciently small we have v((c−1)x∗c)−v(0)
c−1

> v(x′c) − v(0), where the inequality follows

from ∂2v(y)
∂2y

> 0, c ≥ 3 and all e�ort levels being arbitrarily close to x̄(0) > 0. We can

therefore �nd a value of k such that v((c−1)x∗c)−v(0)
c−1

> k > v(x′c)− v(0). Q.E.D.
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In the linear-quadratic speci�cation of Calvó-Armengol et al (2005 and 2009) ∂2π(x,y)
∂2y

= 0

and Proposition 5 does not apply. Necessary and su�cient conditions for the type of core-

periphery networks described in Proposition 5 can be derived easily, but we omit them here.

Instead, Proposition 6 provides necessary and su�cient conditions for a PNE star network.

The appeal of this proposition is to show the existence of a PNE core-periphery network such

that all agents in the periphery are connected to the core. Recall that the payo� function

in Calvó-Armengol et al (2005 and 2009) is given by π(xi, yi) = xi − β
2
x2
i + λxi

∑
j∈Ni(ḡ) xj,

where λ
β
< 1

n−1
.13

Note �rst that a necessary condition for a PNE to exist is that e�ort levels are a NE

on the corresponding �xed network. Ballester et al (2006) show that a Nash equilibrium

on a �xed network exists if and only if β > λµ1(ḡ), where µ1(ḡ) is the largest eigenvector

of the corresponding adjacency matrix. For a star network the relevant condition reads

β > λ
√
n− 1, which is stated below as n < 1 + λ2

β2 . The �rst condition of Proposition 6,

β > λ(2 +
√

2), imposes an upper bound on λ relative to β, which is independent of k and

n. That is, if the parameter governing strategic complementarities, λ, is su�ciently large

relative to the convexity of the cost function, β, then a PNE star network does not exist

(for any combination of k and n). Note next that for a PNE star network to exist, linking

cost k must be in an intermediate range. The lower bound on linking cost k is given by the

marginal payo�s of two agents in the periphery linking to each other. The upper bound,

in turn, is given by the average marginal payo�s of the center of the star linking to the

remaining n − 1 agents. Both bounds are increasing in n. For β > λ
√
n− 1 the marginal

payo� of a peripheral agent linking to the center is always higher than the center's average

marginal payo� from his n− 1 links to agents in the periphery. Therefore, the requirement

that an agent in the periphery does not �nd it pro�table to delete his link to the center is

satis�ed if k is below the aforementioned upper bound. The lower bound on n (together

with β > λ(2 +
√

2)) then ensures that the upper bound on linking cost is, in fact, (weakly)

larger than the lower bound. The last condition presents the knife-edge case where the lower

bound on linking cost k coincides with the upper bound.

Proposition 6: If best response functions are linear, then there exists a PNE with a

star network if and only if

β > λ(2 +
√

2) and

• β(2β−λ)λ(β+λ)2

2(β−λ)2(β2−(n−1)λ2)2 ≤ k ≤ λ(2β3+(n+1)β2λ−(n−1)λ3)
2β(β2−(n−1)λ2)2 and

13We brie�y show that π(xi, yi) = xi− β
2x

2
i +λxi

∑
j∈Ni(ḡ) xj ful�lls the conditions on our payo� functions

for λ
β < 1

n−1 . Note that ∂π(x,y)
∂y = λx > 0 and ∂2π(x,y)

∂x∂y = λ > 0. The best response function is given by

x̄(y) = 1+λy
β with ∂x̄(y)

∂y = λ
β > 0. The value function is given by v(y) = (1+λy)2

2β and ∂2v(y)
∂2y = λ2

β > 0.

Furthermore, ∂π(x,y)
∂y = λx > 0 (note that x̄(0) = 1

β ) and
∂2π(x,y)
∂x∂y = λ > 0. For existence we require that

λ
β <

1
n−1 , so that ∂x̄(y)

∂y = λ
β <

1
n−1 .
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1 + β2(5β−3λ)
(β−λ)3 < n < 1 + β2

λ2 , or

• k = β(2β−λ)λ(β+λ)2

2(β−λ)2(β2−(n−1)λ2)2 and n = 1 + β2(5β−3λ)
(β−λ)3 holds.

Proof. See the Appendix.

In Proposition 7 we show that in any PNE such that two agents have di�erent e�ort

levels, there exists a core-periphery partition such that agents in the core exert strictly higher

e�ort levels and obtain strictly higher gross payo�s. The reason for expressing the statement

in terms of the existence of such a partition can be illustrated with a star network. In a star

network there are two ways to de�ne a core-periphery network. First, the center of the star

as the core and the remaining spokes as the periphery. Second, the center of the star and one

spoke as the core and the remaining spokes as the periphery. Note that the center of a star

exerts strictly higher e�ort levels than the remaining spokes (this follows from Proposition

7). In the �rst case agents in core exert strictly higher e�ort levels, while in the second case

there exists an agent in the core, such that his e�ort level is equal to those of the periphery.

Proposition 7: In any PNE with a pair of agents i and j, such that x∗i 6= x∗j , there

exists a core-periphery partition of agents, such that x∗i > x∗j and π∗i > π∗j ∀i ∈ C(ḡ∗) and

∀j ∈ P (ḡ∗).

Proof. We start by proving the �rst part of the statement. Rank again agents by their

e�ort levels in increasing order, such that x∗1 ≤ x∗2 ≤ ... ≤ x∗n−1 ≤ x∗n. From Proposition 4

we know that there exists an agent x∗k such that ḡ∗i−1,i = 0 ∀i ≤ k and ḡ∗i,i+1 = 1 ∀i ≥ k. We

discern two cases. First, x∗k = x∗k+1. De�ne C(ḡ∗) = {i : xi ≥ xk} and P (ḡ∗) = {i : xi < xk}
and assume, contrary to the above, that x∗k−1 ≥ x∗k = x∗k+1. From Lemma 6 we know that

Nk+1(ḡ∗)\{k−1} ⊆ Nk−1(ḡ∗)\{k} must hold. That is, if x∗k−1 ≥ x∗k+1, then all of agent k+1's

neighbors are also k− 1's neighbors. But then, since k+ 1 is connected with k, k− 1 is also

connected with k and ḡ∗k−1,k = 1. We have reached a contradiction. Next, x∗k < x∗k+1. In this

case simply de�ne C(ḡ∗) = {i : xi ≥ xk+1} and P (ḡ∗) = {i : xi < xk+1}. For the second part

of the statement note that from x∗i > x∗j we know that y∗i =
∑

k∈Ni(ḡ∗) x
∗
k >

∑
k∈Nj(ḡ∗) x

∗
k = y∗j

holds. We can then write π∗i (x
∗
i , y
∗
i ) > πi(x

∗
j , y
∗
i ) > π∗j (x

∗
j , y
∗
j ), where the inequalities follow

from y∗i > y∗j , positive externalities and a unique maximizer. Q.E.D.

Proposition 7 shows that more central agents obtain higher gross payo�s. In the following

we provide an example which illustrates that the central agent may, however, obtain strictly

lower net payo�s. In this case the cost of sustaining a higher number of links outweighs

higher gross payo�s.
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Example 1: Assume n = 10, β = 2
3
and λ = 1

10
.

From plugging in the parameter values into the conditions in Proposition 6 we know

that the star network is a PNE for 725
11907

≤ k ≤ 16
243

. Payo�s are β(β+λ(n−1))2

2(β2−λ2(n−1))2 − (n − 1)k

for the center and β(β+λ)2

2(β2−λ2(n−1))2 − k for an agent in the periphery. It can easily be checked

that payo�s for an agent in the center are strictly higher than for an agent in the core for
725

11907
≤ k < 125

1944
, while they are strictly higher for an agent in the periphery if 125

1944
< k ≤ 16

243
.

Next we turn to social welfare. Denote the vector of e�cient e�ort levels for a given

network ḡ with x∗(ḡ) and agent i's entry in vector x∗(ḡ) with xi∗(ḡ). That is, x∗(ḡ) yields

the weakly highest sum of payo�s for a given network ḡ, so that W (x∗(ḡ), ḡ) ≥ W (x(ḡ), ḡ)

∀x ∈ X1×X2× ...×Xn. We show in Proposition 8 that, if payo�s are bounded above in the

complete network and ∂2π(x,y)
∂2y

≥ 0, then there exists a linking cost k∗, such that for linking

cost above k∗, the e�cient con�guration is given by the empty network and each agent

exerting e�ort level x̄(0). For linking cost below k∗, the e�cient con�guration is given by

the complete network and each agent exerting the same e�ort level xi∗(ḡ
c) = x∗(ḡ

c) > x̄(0)

∀i ∈ N.
Note that if payo�s are bounded in the complete network, then they are bounded in any

other network. A su�cient condition for bounded payo�s is therefore that π(x, (n − 1)x)

is concave in x and that there exists a stationary point. The linear-quadratic speci�cation

satis�es ∂2π(x,y)
∂2y

≥ 0 and one can easily show that in this case k∗ = 2
n
(1 − (β

2
− λ)(n − 1)),

while the condition that e�cient payo�s are bounded in the complete network is given by
λ
β
< 1

2(n−1)
.

Since the link formation process is not relevant for e�ciency, Proposition 8 and Corollary

2 also hold in the one-sided case. Note, however, that the cost of a link in the one-sided

case is k, while in the two-sided speci�cation it is 2k and the respective bounds have to be

adjusted accordingly.

Proposition 8: If ∂2π(x,y)
∂2y

≥ 0 and payo�s are bounded above in the complete network,

then there exists a k∗, such that for linking cost k ≤ k∗ the e�cient con�guration is given

by the complete network and all agents exerting same e�ort level x∗(ḡ
c) > x̄(0). For k ≥ k∗

the e�cient con�guration is given by the empty network and all agents exerting e�ort level

x̄(0).

Proof. See the Appendix.

Corollary 2 states that for k ∈ (0, k∗) all PNE are ine�cient. Note that if k ∈ (0, k2],

then there exists a PNE network that is complete and therefore coincides with the e�cient

network. However, due to positive externalities, PNE e�ort levels are lower than in the

e�cient con�guration and any PNE is therefore ine�cient. For k ∈ (k2, k∗) the unique
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PNE is the empty network, while the unique e�cient network is complete. For k ≥ k∗ the

unique PNE is e�cient and consists of the empty network and each agent exerting e�ort

level x̄(0). It is also clear that k2 < k∗ and we omit the proof. Note that the range of linking

cost for which any PNE is ine�cient may be thought of as large, since for a PNE to be

e�cient, the network must be empty.

Corollary 2: If k ∈ (0, k∗), then all PNE con�gurations are ine�cient. If k ∈ (k2, k∗),

then all PNE networks are di�erent from the e�cient network, while if k ≥ k∗, then the

unique PNE con�guration is e�cient.

Proof. Omitted.

Remark. We brie�y comment on implications of the convexity of the value function.

More speci�cally, under one-sided link formation, the argument for our equilibrium charac-

terization also goes through with strategic substitutes. To see this, note that when links are

one-sided, then only the agent extending a link in a deviation may adjust his e�ort level.

Therefore, Proposition 11 and Corollary 3 also hold for payo� functions such that e�ort

levels are strategic substitutes, as long as the value function is convex (and link formation is

one-sided). Under two-sided link formation both agents may adjust their e�ort level when

creating a new link and whether Proposition 4 and Corollary 1 carry over is not that clear.

However, it appears plausible that, if the payo� function is such that the value function

is su�ciently convex and agents decrease their e�ort su�ciently little when creating a new

link, then the arguments of Proposition 4 and Corollary 1 go through for this case as well.

3 Conclusion

This paper provides a model of endogenous network formation with peer e�ects, where peer

e�ects are assumed to induce positive local externalities and strategic complementarities

in e�ort levels. These features are descriptive of a wide range of social and economic and

phenomena, such as educational attainment, crime, labor market participation and R&D

expenditures of �rms. We solve the model for a two-sided speci�cation, where both agents

need to agree to form a link, and a one-sided speci�cation, where links are created unilaterally.

In both cases the only (pairwise) Nash equilibrium network structures are nested split graphs,

which are a special case of core-periphery networks, often observed in empirical work. Gross

payo�s and e�ort levels are shown to be higher for central agents. Agents in the periphery

may, however, obtain strictly higher payo�s net of linking cost. This may be informative for

empirical studies, which frequently report higher payo�s and e�ort levels for more central

agents, while typically disregarding linking cost. We show, under additional assumptions on

payo�s, that the only e�cient networks are the complete and the empty network. Moreover,
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there exists a range of linking cost for which any (pairwise) Nash equilibrium is ine�cient.

For a strict subset of this range not only is any (pairwise) Nash equilibrium ine�cient, but

also any (pairwise) Nash equilibrium network structure is di�erent from the e�cient network.

Finally, we emphasize the relevance of the convexity of the value function in obtaining core-

periphery networks and, more speci�cally, nested split graphs. While for payo� functions

such that the value function is convex, all (pairwise) Nash equilibria are nested split graphs,

many more equilibrium structures may arise in the case of concave value functions (Baetz,

2012). Furthermore, we indicate that, as long as the value function is convex and link

formation is one-sided, all Nash equilibrium networks are nested split graphs, irrespective of

whether we consider strategic substitutes or strategic complements.
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4 APPENDIX A - The Two-Sided Model

Proposition 1: For any �xed network, ḡ, there exists a unique NE in e�ort levels.

Proof. We discern two cases. First, linear best response functions, which allow us to use

the existence result provided by Ballester, Calvó-Armengol and Zenou (2006). Write the best

response function as x̄i(
∑

j∈Ni(ḡ) xj) = λ
β

∑
j∈Ni(ḡ) xj+

1
β
(where β governs own concavity and

λ the strength of local interaction). A NE exists and is unique if and only if β > λµ1(ḡ),

where µ1(ḡ) is the largest eigenvalue of the adjacency matrix of ḡ. One can show that the

largest eigenvector for a graph lies between the following bounds max{davg(ḡ),
√
dmax(ḡ)} ≤

µ1(ḡ) ≤ dmax(ḡ),14 where dmax(ḡ) is the maximum degree and davg(ḡ) the average degree

in network ḡ. Note that then the largest eigenvector for a graph with n agents is at most

n − 1 (and maximal and equal to n − 1 in the complete network, ḡc). For the existence

of a unique NE we therefore only need λ
β
< 1

n−1
to hold, where λ

β
is the slope of the best

response function. Second, strictly concave best response functions. De�ne the function

fḡ : Xn → Xn as

fḡ(x) =


x̄(

∑
j∈N1(ḡ)

xj)

...

x̄(
∑

j∈Nn(ḡ)

xj)

.

From strategic complementarities we know that x̄(y) is strictly increasing and, together

with strict concavity of x̄(y), f is increasing and strictly concave. We can now apply Kennan's

result (Theorem 3.3 in Kennan (2001)), which is restated here. Suppose f is an increasing

and strictly concave function from Rn to Rn, such that f(0) ≥ 0, f(a) > a for some positive

vector a, and f(b) < b for some vector b > a. Then f has a unique positive �xed point.

Recall that we assumed x̄(0) > 0 and therefore f(0) > 0. To see that there exists a vector

a such that f(a) > a, choose a = (ε1, ..., εn) such that εi = ε < x̄(0)
n−1
∀i ∈ N and ε > 0.

The sum of neighbor's e�ort levels of an agent with ηi(ḡ) neighbors is given by ηi(ḡ)ε. Note

that we then have x̄(ηi(ḡ)ε) > x̄(0) > ηi(ḡ)ε. The �rst inequality holds because x̄ is strictly

increasing, while the second inequality follows from x̄(0) > ε(n− 1) and n− 1 ≥ ηi(ḡ). Next

we show that there exists a vector b with f(b) < b. Choose again a vector such that all

entries are equal, i.e., b =(b1, ..., bn) with b = bi ∀i ∈ N . The condition f(b) < b can be

written as x̄(ηi(ḡ)b) < b ∀i ∈ N . For b su�ciently large, x̄(ηi(ḡ)b) < b ∀i ∈ N holds due to

the assumption that ∂x̄(y)
∂y

< 1
n−1

for some value of y, the strict concavity of x̄(y) and n ≥ 3.

To show that b > a, note that we can choose ε (and therefore a) arbitrarily close to zero

for x̄(ηi(ḡ)ε) > x̄(0) > ηi(ḡ)ε to hold. Q.E.D.

14See, for example, L. Lovasz, Geometric Representations of Graphs (2009).
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Proposition 2: If k < k1, then the unique PNE is the complete network. If k ≥ k1,

then there exists a PNE such that the network is empty.

Proof. From Proposition 1 we know that there exists a unique equilibrium on a �xed

network, where the only link is the one between agents i and j. Since i and j form a complete

component, x∗ = x∗i = x∗j (from Lemma 1) and the corresponding gross payo�s are given

by v(x∗j(ḡ
e + ḡi,j)) = π∗i (x

∗
i , x
∗
j). If k <vi(x

∗
j(ḡ

e + ḡi,j)) − vi(0) = k1, then a pair of agents

i and j �nds it pro�table to create the link ḡ∗i,j and create e�ort level x∗. Note that this is

the least pro�table link in any network, due to the convexity of the value function v and

strict strategic complementarities in e�ort levels. Therefore, every pair of agents must be

connected for any k < k1 and the unique PNE is the complete network. If, on the other

hand, k ≥vi(x∗j(ḡe + ḡi,j))− vi(0) = k1, then no pair of agents can pro�tably deviate in the

empty network. Therefore, for k ≥ k1 a PNE exists such that the network is empty. Q.E.D.

Proposition 3: If k > k2, then the unique PNE is the empty network. If k ≤ k2, then

there exists a PNE such that the network is complete.

Proof. Note �rst that the relevant deviation to consider in a complete network is an agent

deleting all his links. To see this, note that due to the convexity of v, v(hxc∗)−v((h−1)xc∗) <

v((n − 1)xc∗) − v((n − 2)xc∗) for all 0 < h < n − 1. That is, marginal payo�s are strictly

increasing in the number of links and an agent wants to delete all his links, if any. For

linking cost k ≤ k2 = v((n−1)xc∗)−v(0)
n−1

there therefore exists a complete PNE network, while

for k > k2 there does not, as an agent �nds it pro�table to delete all his links (and to decrease

his e�ort level). Next we show that for k = k2, the only PNE networks are the complete

and the empty network. Assume to the contrary that there exists a PNE with a network

that is neither empty nor complete. Consider the most pro�table deviation of an agent i

in network ḡ∗ 6= ḡc, consisting of deleting h of his ηi(ḡ
∗) links. Note that for any agent i,

n− 1 ≥ ηi(ḡ
∗) ≥ h holds. Denote the network after proposed deviation with ḡ′ and the set

of agents whose links are deleted in the deviation of agent i with H = {j : ḡ∗i,j = 1∧ ḡ′i,j = 0}.
We can then compare average payo�s per link in the complete network ḡc∗ with payo�s in

ḡ∗ 6= ḡc and write

v((n−1)xc∗)−v(0)
n−1

≥ v(ηi(ḡ
∗)xc∗)−v(ηi(ḡ

∗)xc∗−hxc∗)
ηi(ḡ∗)−h >

v(
∑
j∈Ni(ḡ∗)

x∗j )−v(
∑
j∈Ni(ḡ∗)

x∗j−
∑
j∈H x∗j )

ηi(ḡ∗)−h .

The �rst inequality follows from the convexity of v, n−1 ≥ ηi(ḡ
∗) and h ≥ 0. The second

inequality follows from the convexity of v and ηi(ḡ
∗)xc∗ − hxc∗ >

∑
j∈Ni(ḡ∗) x

∗
j −

∑
j∈H x

∗
j

and hxc∗ >
∑

j∈H x
∗
j (for the last two inequalities, recall that e�ort levels are maximal in

the complete network). The threshold k2 was de�ned as k2 = v((n−1)xc∗)−v(0)
n−1

and the only

PNE networks are therefore either the complete network and (from Proposition 2) the empty

network. For linking cost k > k2, agents �nd it pro�table to delete their links and the unique

PNE is the empty network. Q.E.D.
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Lemma 3: k1 < k2.

Proof. k2 − k1 = v((n − 1)x∗(ḡc)) − vi(x
∗
j(ḡ

e + ḡi,j)). From Lemma 2 we know that

x∗(ḡc) > x∗j(g
e + ḡi,j) and since v is strictly increasing, k2 − k1 > 0. Q.E.D.

Proposition 6: If best response functions are linear, then there exists a PNE with a

star network if and only if β > λ(2 +
√

2) and either

• β(2β−λ)λ(β+λ)2

2(β−λ)2(β2−(n−1)λ2)2 ≤ k ≤ λ(2β3+(n+1)β2λ−(n−1)λ3)
2β(β2−(n−1)λ2)2 and

1 + β2(5β−3λ)
(β−λ)3 < n < 1 + β2

λ2 , or

• k = β(2β−λ)λ(β+λ)2

2(β−λ)2(β2−(n−1)λ2)2 and n = 1 + β2(5β−3λ)
(β−λ)3 holds.

Proof. A necessary condition for a PNE star network is that e�ort levels are a NE

on a �xed star network. From Ballester (2006) we know that a NE on a star network

with n agents exists if and only if β > λ
√
n− 1, which we write as n < 1 + β2

λ2 below.

Note next that in a star network, all agents in the periphery access the same e�ort level,

x∗c , and therefore all agents in the periphery display the same e�ort level, x∗p. The agent in

the center, c, therefore maximizes xc ∈ argmaxxc∈Xxc − β
2
x2
c + λxc(n − 1)xp, while for an

agent in the periphery we have xp ∈argmaxxp∈Xxp − β
2
x2
p + λxpxc. The reaction functions

are given by xc(xp) = 1+λxp(n−1)

β
and xp(xc) = 1+λxc

β
. Equilibrium e�ort levels are given by

x∗c=
β+λ(n−1)
β2−λ2(n−1)

and x∗p = β+λ
β2−λ2(n−1)

. Plugging equilibrium e�ort levels back into the payo�

function yields equilibrium gross payo�s of π∗c = β(β+λ(n−1))2

2(β2−λ2(n−1))2 and π∗p = β(β+λ)2

2(β2−λ2(n−1))2 . Next,

we calculate deviation payo�s of when two agents in the periphery create a link. Denote with

x1′
p and x2′

p the e�ort levels of the two agents involved in the new link. A deviating agent

maximizes x1′
p ∈argmaxx1′

p ∈Xx
1′
p −

β
2
(x1′

p ) +λx1′
p (xc +x2′

p ), which yields the following reaction

function x1′
p (x∗c , x

2′
p ) =

1+λ(x∗c+x2′
p )

β
. Due to symmetry, deviation e�ort levels are given by

x1′
p (x∗c , x

2′
p ) = x2′

p (x∗c , x
1′
p ) = x′p = β2+λβ

(β−λ)(β2−λ2(n−1))
and corresponding deviation gross payo�s

by π′p = β3(β+λ)2

2(β−λ)2(β2−λ2(n−1))2 . For the existence of a star network we now need three conditions

to hold simultaneously. First, linking cost k must be such that an agent in the periphery

�nds it pro�table to link to the center of the star. Second, given the link with the center, an

agent in the periphery does not �nd it pro�table to link to another agent in the periphery.

We can write this as β(β+λ)2

2(β2−λ2(n−1))2 − 1
2β
≥ k and k ≥ β3(β+λ)2

2(β−λ)2(β2−λ2(n−1))2 − β(β+λ)2

2(β2−λ2(n−1))2 =
β(2β−λ)λ(β+λ)2

2(β−λ)2(β2−(n−1)λ2)2 , respectively. Note that
1

2β
are the payo�s of a singleton. Third, linking

cost k must be such that the center of the star �nds it pro�table to link to the periphery.

We can write this as ( β(β+λ(n−1))2

2(β2−λ2(n−1))2 − 1
2β

)/(n − 1) = λ(2β3+(n+1)β2λ−(n−1)λ3)
2β(β2−(n−1)λ2)2 ≥ k. First we

show that for β >
√
n− 1λ the marginal payo�s of an agent in the periphery linking to the

center always larger than average marginal payo�s of the center when linking to the n − 1

agents in the periphery. Subtracting the latter from the former one obtains (n−1)λ2

2(β3−(n−1)βλ2)
.
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The nominator is positive and we can focus on the denominator 2β(β2 − (n− 1)λ2), which

is positive for β >
√
n− 1λ. Combining the two remaining inequalities one can show after

some algebraic manipulation that they simultaneously hold if and only if β > (2 +
√

2)λ and

either β(2β−λ)λ(β+λ)2

2(β−λ)2(β2−(n−1)λ2)2 ≤ k ≤ λ(2β3+(n+1)β2λ−(n−1)λ3)
2β(β2−(n−1)λ2)2 and 1 + β2(5β−3λ)

(β−λ)3 < n < 1 + β2

λ2 or

k = β(2β−λ)λ(β+λ)2

2(β−λ)2(β2−(n−1)λ2)2 and n = 1 + β2(5β−3λ)
(β−λ)3 holds.15 Q.E.D.

Proposition 8: If ∂2π(x,y)
∂2y

≥ 0 and payo�s are bounded above in the complete network,

then there exists a k∗, such that for linking cost k ≤ k∗ the e�cient con�guration is given

by the complete network and all agents exerting same e�ort level x∗(ḡ
c) > x̄(0). For k ≥ k∗

the e�cient con�guration is given by the empty network and all agents exerting e�ort level

x̄(0).

Proof. We show the above result in three steps.

Step 1: A network that is not empty or complete is not e�cient for any linking cost k.

Assume to the contrary that the e�cient network ḡ∗ /∈ {ḡe, ḡc}. We discern two cases.

Case 1: The e�cient vector of e�ort levels, x∗(ḡ∗), is such that all agents exert the same

e�ort level, x∗ = xi∗(ḡ∗) ∀i ∈ N.
Note that forW (x∗(ḡ∗), ḡ∗) to be maximal it must be thatW (x∗(ḡ∗), ḡ∗) ≥ W (x∗(ḡ∗), ḡ∗−

ḡi,j) for any existing link in ḡ∗. Otherwise, deleting a link increases total payo�s and

W (x∗(ḡ∗), ḡ∗− ḡi,j) > W (x∗(ḡ∗), ḡ∗), contradicting our assumption that ḡ∗ is e�cient. That

is, the marginal gross bene�t of a link in ḡ∗ is weakly larger than the cost of linking, even when

e�ort levels (suboptimally) remain the same after deleting the link. But then for any pair of

agents l andm such that ḡ∗l,m = 0, we have thatW (x∗(ḡ∗), ḡ∗+ ḡl,m) ≥ W (x∗(ḡ∗), ḡ∗), which

follows directly from ∂2π(x,y)
∂2y

≥ 0 and all agents exerting equal e�ort. Due to ∂2π(x,y)
∂x∂y

> 0,

x∗(ḡ∗) does not satisfy the �rst order conditions for W (x∗(ḡ∗), ḡ∗ + ḡl,m) and there exists a

vector of e�ort levels x′ such that W (x′, ḡ∗ + ḡl,m) > W (x∗(ḡ∗), ḡ∗).

Case 2: The e�cient vector of e�ort levels, x∗(ḡ∗), is such that there exists a pair of

agents i and j with xi∗(ḡ∗) 6= xj∗(ḡ∗).

Denote with i an agent with the weakly highest e�ort level and with j an agent such

that xj∗(ḡ∗) < xi∗(ḡ∗). We start by showing that Nj(ḡ∗) ⊂ Ni(ḡ∗). First note that for ḡ∗

to be e�cient, there can be no agent l such that l ∈ Nj(ḡ∗) and l /∈ Ni(ḡ∗). Otherwise, due

to ∂2π(x,y)
∂2y

≥ 0, switching the link of l with j to a link from l to i strictly increases payo�s.

A con�guration in which Nj(ḡ∗) = Ni(ḡ∗) and xj∗ < xi∗ is also not e�cient, which follows

directly from W 's �rst order conditions for xj and xi. Therefore, Nj(ḡ∗) ⊂ Ni(ḡ∗) holds for

xj∗(ḡ∗) < xi∗(ḡ∗). In the following we discern two subcases.

Case 2, Subcase 1: Agent i and j are not connected, ḡ∗i,j = 0.

We start by showing that for any con�guration with ḡ∗ /∈ {ḡe, ḡc} and xj∗(ḡ∗) < xi∗(ḡ∗),

there exists an alternative con�guration, denoted with x′ and ḡ′, which yields weakly larger

15The calculations were executed with Mathematica and the codes are available upon request.
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payo�s than W (x∗(ḡ∗), ḡ∗). De�ne x′ as x′ = (x1∗, ..., xj−1∗, xi∗, xj+1∗, ..., xn∗) and ḡ′ as

ḡ′ = ḡ∗ +
∑

l∈Ni(ḡ∗) ḡjl. That is, x′ and g′ is a con�guration where, relative to x∗ and

ḡ∗, the e�ort level of j is increased to i's e�ort level in x∗ and j is linked in ḡ′ to all

agents to whom i is linked to in ḡ∗. Note �rst that for W (x∗(ḡ∗), ḡ∗) to be e�cient, it

must be that W (x∗(ḡ∗), ḡ∗) ≥ W (x′′, ḡ′′), where x′′ = (x1∗, ..., xi−1∗, xj∗, xi+1∗, ..., xn∗) and

ḡ′′ = ḡ∗ −
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) ḡil. That is, payo�s W (x∗(ḡ∗), ḡ∗) must be at least as large as in

a con�guration where, relative to x∗ and ḡ∗, agent i's e�ort level in x′′ is decreased to j′s

e�ort level in ḡ∗ and i is linked to agents in ḡ′′, to which j sustains links in ḡ∗. The di�erence

in total payo�s of con�guration x∗(ḡ∗), ḡ∗ and x′′, ḡ′′ is given by

W (x∗(ḡ∗), ḡ∗)−W (x′′, ḡ′′) =

πi(xi∗,
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) xl∗ +
∑

l∈Nj(ḡ∗) xl∗)− πi(xj∗,
∑

l∈Nj(ḡ∗) xl∗)

+
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,
∑

k∈Nl(ḡ∗)
xk∗)−

∑
l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,

∑
k∈Nl(ḡ∗) xk∗ − xi∗)

− | Ni(ḡ∗) \Nj(ḡ∗) | k ≥ 0.

The di�erence of the �rst and second term yields the gross marginal e�ect on i's payo�s

from increasing the e�ort level from xj∗ to xi∗ and accessing e�ort levels of agents l ∈
Ni(ḡ∗) \ Nj(ḡ∗). The di�erence of the third and fourth term yields the e�ect on payo�s of

agents l ∈ Ni(ḡ∗) \Nj(ḡ∗) accessing i
′s e�ort level xi∗ in ḡ∗, while the last term are the cost

of additional links in ḡ∗ as compared to ḡ′′. The inequality just follows from the assumption

that the con�guration x∗(ḡ∗), ḡ∗ is e�cient. We can now write an analogous expression for

W (x′, ḡ′)−W (x∗(ḡ∗), ḡ∗), which is given by

W (x′, ḡ′)−W (x∗(ḡ∗), ḡ∗) =

= πj(xi∗,
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) xl∗ +
∑

l∈Nj(ḡ∗) xl∗)− πj(xj∗,
∑

l∈Nj(ḡ∗) xl∗)

+
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,
∑

k∈Nl(ḡ∗) xk∗ + xi∗)−
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,
∑

k∈Nl(ḡ∗) xk∗)

− | Ni(ḡ∗) \Nj(ḡ∗) | .

Note that the �rst di�erence (between the �rst and second term) inW (x′, ḡ′)−W (x∗(ḡ∗), ḡ∗)

is the same as in W (x∗(ḡ∗), ḡ∗)−W (x′′, ḡ′′). Likewise, cost of linking are the same, so that

we can focus on the di�erences of the third and fourth terms, which stem from the e�ect on

agents l ∈ Ni(ḡ∗) \ Nj(ḡ∗). From
∂2π(x,y)
∂2y

≥ 0 we know that the di�erence of the third and

fourth term is weakly larger in W (x′, ḡ′)−W (x∗(ḡ∗), ḡ∗) than in W (x∗(ḡ∗), ḡ∗)−W (x′′, ḡ′′)

and therefore W (x′, ḡ′) −W (x∗(ḡ∗), ḡ∗) ≥ W (x∗(ḡ∗), ḡ∗) −W (x′′, ḡ′′). Note that x′, ḡ′ is

suboptimal since ∂2π(x,y)
∂x∂y

> 0 and the �rst order conditions for agents l ∈ Ni(ḡ∗) \ Nj(ḡ∗)
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are not satis�ed in x′, ḡ′. That is, there exists a vector of e�ort levels x∗(ḡ
′) such that

W (x∗(ḡ
′), ḡ′) > W (x′, ḡ′) ≥ W (x∗(ḡ∗), ḡ∗). We have reached a contradiction.

Case 2, Subcase 2: Agent i and j are connected, ḡ∗i,j = 1.

By a similar argument as above, we show that a pro�le of e�ort levels x′ and a net-

work ḡ′ yields strictly larger payo�s than W (x∗(ḡ∗), ḡ∗), so that W (x′, ḡ′) > W (x∗(ḡ∗), ḡ∗),

where x′ = (x1∗, ..., xj−1∗, xi∗, xj+1∗, ..., xn∗) and ḡ′ = ḡ∗ +
∑

l∈Ni(ḡ∗) ḡjl. That is, a con�g-

uration x′ and ḡ′, where (relative to x∗ and ḡ∗) the e�ort level of j is increased to i's

e�ort level in x∗ and j is linked in ḡ′ to all agents to whom i is linked to in ḡ∗. Note

that for W (x∗(ḡ∗), ḡ∗) to be e�cient, it must be that W (x∗(ḡ∗), ḡ∗) ≥ W (x′′, ḡ′′), where

x′′ = (x1∗, ..., xi−1∗, xj∗, xi+1∗, ..., xn∗) and ḡ′′ = ḡ∗ −
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) ḡil. That is, payo�s

W (x∗(ḡ∗), ḡ∗) must be at least as large as in a con�guration where, relative to x∗ and ḡ∗,

agent i's e�ort level in x′′ is decreased to j's e�ort level in ḡ∗ and i links to agents in ḡ′′, to

which j sustains links in ḡ∗. Since W (x∗(ḡ∗), ḡ∗) is assumed to be e�cient, it must be that

W (x∗(ḡ∗), ḡ∗)−W (x′′, ḡ′′) ≥ 0. We can write for W (x∗(ḡ∗), ḡ∗)−W (x′′, ḡ′′)

W (x∗(ḡ∗), ḡ∗)−W (x′′, ḡ′′) =

= πi(xi∗,
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) xl∗ +
∑

l∈Nj(ḡ∗)\{i} xl∗ + xj∗)− πi(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xj∗)

+
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,
∑

k∈Nl(ḡ∗) xk∗)−
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,
∑

k∈Nl(ḡ∗) xk∗ − xi∗)

− | Ni(ḡ∗) \Nj(ḡ∗) | k ≥ 0.

While for W (x′, ḡ′)−W (x∗(ḡ∗), ḡ∗) we have

W (x′, ḡ′)−W (x∗(ḡ∗), ḡ∗) =

= πj(xi∗,
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) xl∗ +
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗)− πj(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗)

+
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,
∑

k∈Nl(ḡ∗) xk∗ + xi∗)−
∑

l∈Ni(ḡ∗)\Nj(ḡ∗) πl(xl∗,
∑

k∈Nl(ḡ∗) xk∗)

− | Ni(ḡ∗) \Nj(ḡ∗) | .

Again the linking cost is the same in both expressions and the di�erence between the

third and fourth term is, due to ∂2π(x,y)
∂2y

≥ 0, weakly larger in W (x′, ḡ′)−W (x∗(ḡ∗), ḡ∗) than

in W (x∗(ḡ∗), ḡ∗) −W (x′′, ḡ′′). However, the �rst di�erence is strictly larger in W (x′, ḡ′) −
W (x∗(ḡ∗), ḡ∗) than in W (x∗(ḡ∗), ḡ∗) −W (x′′, ḡ′′). This follows from xi∗(ḡ∗) > xj∗(ḡ∗) and

strict strategic complementarities (strictly increasing di�erences of π). Therefore,W (x′, ḡ′) >

W (x∗(ḡ∗), ḡ∗) and the e�cient network is either complete or empty.

Step 2: E�cient e�ort levels in the complete network are equal.

Assume to the contrary that there exist a pair of agents such that xi∗(ḡ
c) 6= xj∗(ḡ

c) and

assume without loss of generality that xi∗(ḡ
c) > xj∗(ḡ

c). For W (xi∗, xj∗,x−i,−j∗, ḡ
c) to be
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e�cient we need that W (xi∗, xj∗,x−i,−j∗, ḡ
c) −W (xj∗, xj∗,x−i,−j∗, ḡ

c) ≥ 0. In the following

we show that

W (xi∗, xi∗,x−i,−j∗, ḡ
c)−W (xi∗, xj∗,x−i,−j∗, ḡ

c) >

W (xi∗, xj∗,x−i,−j∗, ḡ
c)−W (xj∗, xj∗,x−i,−j∗, ḡ

c) ≥ 0

and therefore W (xi∗, xi∗,x−i,−j∗, ḡ
c) > W (xi∗, xj∗,x−i,−j∗, ḡ

c). Again we write out the

respective expressions. First,

W (xi∗, xi∗,x−i,−j∗, ḡ
c)−W (xi∗, xj∗,x−i,−j∗, ḡ

c) =

= πi(xi∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xi∗)− πi(xi∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xj∗)

+πj(xi∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗)− πj(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗)

+
∑

l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,
∑

k∈Nl(ḡ∗)\{i,j} xk∗ + xi∗ + xi∗)

−
∑

l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,
∑

k∈Nl(ḡ∗)\{i,j} xk∗ + xi∗ + xj∗)

Second,

W (xi∗, xj∗,x−i,−j∗, ḡ
c)−W (xj∗, xj∗,x−i,−j∗, ḡ

c) =

= πj(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗)− πj(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xj∗)

+πi(xi∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xj∗)− πi(xj∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xj∗)

+
∑

l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,
∑

k∈Nl(ḡ∗)\{i,j} xk∗ + xi∗ + xj∗)

−
∑

l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,
∑

k∈Nl(ḡ∗)\{i,j} xk∗ + xj∗ + xj∗)

To evaluate

W (xi∗, xi∗,x−i,−j∗, ḡ
c)−W (xi∗, xj∗,x−i,−j∗, ḡ

c) >

W (xi∗, xj∗,x−i,−j∗, ḡ
c)−W (xj∗, xj∗,x−i,−j∗, ḡ

c)

we again compare across pairs of terms of the expressions. Comparing the respective �rst

and second terms we have

πi(xi∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xi∗)− πi(xi∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xj∗) >

πj(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗)− πj(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xj∗).

The inequality follows from ∂2π(x,y)
∂x∂y

> 0. For the third and fourth term we can write
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πj(xi∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗)− πj(xj∗,
∑

l∈Nj(ḡ∗)\{i} xl∗ + xi∗) >

πi(xi∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xj∗)− πi(xj∗,
∑

l∈Ni(ḡ∗)\{j} xl∗ + xj∗),

again this follows from ∂2π(x,y)
∂x∂y

> 0. For the di�erence of the �fth and sixth term we have∑
l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,

∑
k∈Nl(ḡ∗)\{i,j} xk∗ + xi∗ + xi∗)

−
∑

l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,
∑

k∈Nl(ḡ∗)\{i,j} xk∗ + xi∗ + xj∗) ≥∑
l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,

∑
k∈Nl(ḡ∗)\{i,j} xk∗ + xi∗ + xj∗)

−
∑

l∈Ni(ḡ∗)\{i,j} πl(xl∗,xj∗,
∑

k∈Nl(ḡ∗)\{i,j} xk∗ + xj∗ + xj∗),

which follows form ∂2π(x,y)
∂2y

≥ 0. Therefore,W (xi∗, xi∗,x−i,−j∗, ḡ
c) > W (xi∗, xj∗,x−i,−j∗, ḡ

c)

and we have reached a contradiction. That is, in the complete network e�ort levels must be

such that x∗(ḡ
c) = xi∗ ∀i ∈ N.

Step 3: There exists a linking cost k∗, such that for k ≤ k∗ the e�cient network is

complete, while for k ≥ k∗ the e�cient network is empty.

Note �rst that for any vector of e�ort levels x, total gross payo�s are larger in the

complete network than in any other network, while the di�erence in linking cost is bounded

by kn(n−1). That is, if payo�s are bounded in the complete network, then they are bounded

for any other network. From the �rst order conditions and ∂2π(x,y)
∂x∂y

> 0 we know that

x∗(ḡ
c) > x̄(0). Since payo�s are bounded and total linking cost is linearly increasing in k for

any network that is not empty, there exists a linking cost k∗, such that for linking cost k

smaller or equal than k∗, the e�cient network is complete, while for linking cost k larger or

equal than k∗, the e�cient network is empty (with agents exerting e�ort level x̄(0)). Q.E.D.

5 APPENDIX B - The One-Sided Model

5.1 Model Description

The one-sided speci�cation di�ers from the two-sided model in that only one agent needs to

extend a link (and bear the cost), in order for a pair of agents to bene�t from each other's

e�ort level. This allows us to use Nash equilibrium as equilibrium concept. Note that under

pairwise Nash equilibrium, pairs of agents can create only one link at a time and both agents

may adjust their e�ort levels. Under Nash equilibrium, we consider deviations where an

agent may extend multiple links (and simultaneously delete any subset of existing ones),

but only the (single) deviating agent may adjust e�ort levels.

Let again N = {1, 2, ..., n} be the set of players, with n ≥ 3 . As before, each player i

chooses a personal e�ort level xi ∈ X and a set of links, which are represented as a row vector
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gi = (gi,1,..., gii−1, gii+1,..., gin), where gij ∈ {0, 1} for each j ∈ N\{i}. Assume X = [0,+∞)

and gi ∈ Gi = {0, 1}n−1. The set of strategies of i is denoted by Si = X × Gi and the

set of strategies of all players by S = S1 × S2 × ... × Sn. A strategy pro�le s = (x,g) ∈ S
again speci�es the individual e�ort level of each player, x = (x1,x2,..., xn), and a set of links

g = (g1,g2, ...,gn). Agent i is said to sustain or extend a link to j, if gi,j = 1 and to receive a

link from j, if gj,i = 1. The network of relations g is a directed graph, i.e., it is possible that

gi,j 6= gj,i. Let Ni(g) = {j ∈ N : gi,j = 1} be the set of agents i has extended a link to and

de�ne ηi(g) = |Ni(g)|. Call the closure of g an undirected network, denoted by ḡ =cl(g),

where ḡi,j = max{gi,j, gj,i} for each i and j in N. Denote with Ni(ḡ) ={j ∈ N : ḡi,j = 1}
the set of players that are directly connected to i. The e�ort level of i's direct neighbors

can then be written as yi =
∑

j∈Ni(ḡ) xj. We will drop the subscript of yi when it is clear

from the context. Given a network g, g + gi,j and g− gi,j have the following interpretation.
When gi,j = 0 in g, g + gi,j adds the link gi,j = 1, while if gi,j = 1 in g, then g + gi,j = g.

Similarly, if gi,j = 1 in g, g− gi,j deletes the link gi,j, while if gi,j = 0 in g, then g− gi,j = g.

The network is said to be empty and denoted by ḡe if ḡi,j = 0 ∀i, j ∈ N and complete and

denoted by ḡc if ḡi,j = 1 ∀i, j ∈ N.
Payo�s of player i under strategy pro�le s = (x,g) are given by

Πi(s) = π(xi, yi)− ηi(g)k,

where k denotes the cost of extending a link. The assumptions on the payo� function are

as in the one-sided speci�cation. A Nash equilibrium is a strategy pro�le s∗=(x∗,g∗) such

that

Πi(s
∗
i , s
∗
−i) ≥ Πi(si, s

∗
−i), ∀si ∈ Si,∀i ∈ N .

Denote the directed equilibrium network by g∗ and the undirected equilibrium network

by ḡ∗. Social welfare is again de�ned as the sum of individual payo�s. For any strategy

pro�le s, social welfare is given by

W (s) =
∑

i∈N Πi(s).

A pro�le s̃ is socially e�cient if W (̃s) ≥ W (s), ∀s ∈S.

5.2 Analysis

Note that in the main part of the paper we assume the network to be �xed for Proposition

1, Lemma 1, Lemma 2 and Lemma 3 and therefore these results do not depend on the

speci�cation of link formation. Similarly, for the e�ciency result in Proposition 8, the link

formation process is not relevant and the result from the two-sided case carries over. Note,
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however, that the cost for a link in the one-sided case is k, while in the two-sided speci�cation

it is 2k and the respective bounds have to be adjusted accordingly. We start by showing

that in any NE there can be at most one link between any pair of players.

Lemma 7: In any NE s∗=(x∗,g∗), there is at most one directed link between any pair

of agents i, j ∈ N.

Proof. Assume that s∗=(x∗,g∗) is a Nash equilibrium and that gi,j = gj,i = 1. But then

i can pro�tably deviate by cutting the link to j, such that gi,j = 0. Gross payo�s remain

unchanged, while i's linking total cost decrease by k. Q.E.D.

In Lemma 8 we show, again using the convexity of the value function, that in any Nash

equilibrium, if i extends a link to l, then i must also be connected to agent k, for any k such

that x∗k ≥ x∗l . Note that we do not require that i extends a link to k, but only that i and k

are connected. That is, it may be agent k extending the link to agent i.

Lemma 8: In any NE s∗=(x∗,g∗), if g∗i,l = 1 then ḡ∗i,k = 1 ∀k : x∗k ≥ x∗l .

Proof. For g∗i,j = 1 to be part of a NE, it must be that v(
∑

j∈Ni(ḡ) x
∗
j)− v(

∑
j∈Ni(ḡ) x

∗
j −

x∗l ) ≥ k . Assume, contrary to the above statement, that ḡ∗i,k = 0 for some k with x∗k ≥ x∗l .

This, however, can not be a NE, since i then �nds it pro�table to extend a link to agent k.

To see this, note that v(
∑

j∈Ni(g) x
∗
j +xk)−v(

∑
j∈Ni(g) x

∗
j) > v(

∑
j∈Ni(g) x

∗
j)−v(

∑
j∈Ni(g) x

∗
j−

x∗l ) ≥ k, where the inequalities follow from the convexity of the value function. We have

reached a contradiction and therefore ḡ∗i,k = 1 for all agents k with x∗k ≥ x∗l . Q.E.D.

The following Lemma shows that if i extends a link to l, then any agent k with a higher

or equal e�ort level than i must also be connected to l. Again this follows from the convexity

of the value function.

Lemma 9: In any NE s∗=(x∗,g∗), if g∗i,l = 1 then ḡ∗k,l = 1 ∀k : x∗k ≥ x∗i .

Proof. For g∗i,j = 1 to be part of a NE, it must be that v(
∑

j∈Ni(ḡ) x
∗
j)− v(

∑
j∈Ni(ḡ) x

∗
j −

x∗l ) ≥ k . Assume, contrary to the above statement, that ḡ∗k,l = 0 for some k with x∗k ≥
x∗i . Note next that, for x∗k ≥ x∗i to hold we must have

∑
j∈Nk(ḡ) x

∗
j ≥

∑
j∈Ni(ḡ) x

∗
j , which

follows directly from strict strategic complementarities. Therefore, v(
∑

j∈Nk(g) x
∗
j + x∗l ) −

v(
∑

j∈Nk(g) x
∗
j) > v(

∑
j∈Ni(g) x

∗
j) − v(

∑
j∈Ni(g) x

∗
j − xl) ≥ k, where the inequalities follow

from the convexity of the value function and we have reached a contradiction. Q.E.D.

Similar to the two-sided speci�cation, we again de�ne two bounds, k1 and k2. In Propo-

sition 9 we show that for k smaller than k1, the unique Nash equilibrium is such that the

network is complete, while for k larger or equal than k1, there exists a Nash equilibrium
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such that the network is empty. Proposition 10 shows that for linking cost larger than k2,

the unique Nash equilibrium is such that the network is empty, while for k smaller or equal

to k2, there exists a Nash equilibrium such that the network is complete. Note that the

thresholds k1 and k2 are de�ned di�erently from the two-sided speci�cation. Due to the

convexity of the value function, the most pro�table deviation in the empty network is to

extend a link to all remaining agents (where no agent other than the deviating agent adjust

his e�ort level). The second threshold, k2, is the maximal linking cost that can be sustained

in the complete network. Due to the convexity of the value function the agent with the

fewest incoming links has the greatest incentives to deviate. That is, the network that may

sustain the maximum linking cost is the one where incoming and outgoing links are evenly

distributed. With n agents there are n(n−1)
2

pairs of agents. For n odd this implies that when

incoming and outgoing links are evenly distributed, each agent has n−1
2

incoming and n−1
2

outgoing links. For n even, n
2
agents have n

2
incoming and n−2

2
outgoing links and n

2
agents

have n−2
2

incoming and n
2
outgoing links. For simplicity we assume in the following that n

is odd. Analogous results are easily derived for n even.

De�nition 2: k1 = v((n−1)x̄(0))−v(0)
n−1

and k2 = 2
n−1

(v((n− 1)x∗(gc))− v(n−1
2
x∗(gc)).

Proposition 9: If k < k1, then the unique NE network is the complete network. If

k ≥ k1, then there exists a NE such that the network is empty.

Proof. If k < k1 then an agent �nds it pro�table to create a link to all remaining n− 1

agents in an empty network, since average payo�s per link are given by v((n−1)x̄(0))−v(0)
n−1

with
v((n−1)x̄(0))−v(0)

n−1
> k. This is the most pro�table deviation in an empty network, due to the

convexity of the value function. Assume there exists a g∗ /∈ {ge,gc} with k < k1. Consider

the deviation of an agent i, with ηi(ḡ
∗) < n−1, who links to all agents he is not connected to

in g∗, i.e., k /∈ Ni(ḡ
∗). To simplify notation, we write ηi for ηi(ḡ

∗) in the following. Average

marginal payo�s per link of proposed deviation are given by

v(
∑
j∈Ni\{i}

x∗j )−v(
∑
j∈Ni(ḡ∗)

x∗j )

n−1−ηi .

We can now write

v(
∑
j∈Ni\{i}

x∗j )−v(
∑
j∈Ni(ḡ∗)

x∗j )

n−1−ηi > v((n−1)x̄(0))−v(ηix̄(0))
n−1−ηi .

To see that the inequality holds, note �rst that
∑

j∈Ni(ḡ∗) x
∗
j > ηix̄(0), since x̄(0) is the

e�ort level of a singleton and connected agents display strictly larger e�ort levels in any

NE. Second, that
∑

j∈Ni\{i} x
∗
j −

∑
j∈Ni(ḡ∗) x

∗
j ≥ (n− 1− ηi)x̄(0). That is, when linking to

the remaining n − 1 − ηi agents in proposed deviation, the minimum additional e�ort level

accessed is given by (n− 1− ηi)x̄(0). The condition above then follows from the convexity

of the value function. Note next that
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v((n−1)x̄(0))−v((ηix̄(0))
n−1−ηi > v((n−1)x̄(0))−v(0)

n−1

also holds, again from the convexity of the value function, and we therefore have

v(
∑
j∈Ni\{i}

x∗j )−v(
∑
j∈Ni(ḡ∗)

x∗j )

n−1−ηi > v((n−1)x̄(0))−v(0)
n−1

> k.

Therefore, if k < k1, a pro�table deviation exists in any g∗ 6= gc. It is easy to see that

there then exists a NE with g∗ = gc for k < k1. If, on the other hand k ≥ k1, then no agent

can pro�tably deviate in the empty network, and a NE exists such that g∗ = ge. Q.E.D.

Before proceeding to Proposition 10, we show that in any Nash equilibrium such that the

network is neither empty nor complete, there exists an agent that extends at least one link

and has less than n−1
2

incoming links. This result is useful when proving that the network that

can be sustained at the highest linking cost is the complete network with evenly distributed

incoming links.

Lemma 10: In any NE network that is neither empty nor complete, there exists an

agent with ηi(g) ≥ 1 and ηi(ḡ)− ηi(g) < n−1
2
.

Proof. We discern two cases. First, every agent extends at least one link and receives

at least n−1
2

links. That is, ηi(g) ≥ 1 and ηi(ḡ)− ηi(g) ≥ n−1
2
∀i ∈ N. But then there are at

least n(n−1)
2

links in the network and the network is complete. Second, not everyone extends

a link. Assume there are k < n agents who extend a link. Since there are no incoming

links from the remaining n − k agents, the maximum number of incoming links among the

k agents extending a link is given by k(k−1)
2

. That is, on average an agent has k−1
2

incoming

links. The maximum of the minimum number of incoming links is therefore given by k−1
2

(if the network among the k agents is complete and incoming links are distributed evenly).

Since k < n, there must be one agent with at most k−1
2
< n−1

2
incoming links who extends a

link. Q.E.D.

Proposition 10: If k > k2, then the unique NE is the empty network. If k ≤ k2, then

there exists a NE such that the network is complete.

Proof. We will �rst show that the highest cost that can be sustained under the complete

network is given by k2. Denote the NE e�ort level in a complete network with xc∗. In the

complete network the agent extending the highest number of links (and therefore receiving

the fewest number of links) is the one with the highest incentives to delete his links. To see

this, write

v((n−1)xc∗)−v((n−1−h)xc∗)
n−1−h > v((n−1)xc∗)−v((n−1−h′)xc∗)

n−1−h′ ,
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where h′ > h > 0. The inequality holds by the convexity of the value function. The

network that minimizes the maximum number of links extended by agents in a network

is such that each agent extends n−1
2

links (and receives n−1
2

links). Therefore, the highest

linking cost that can be sustained in a complete network are given by k = k2. It is easy to

see that for k < k2 there exists a NE such that ḡ∗ = ḡc. Assume next, and contrary to

the above statement, that for k > k2 there exists a NE such that ḡ∗ 6= ḡe. k2 was derived

as the maximal payo�s sustainable in a complete network, and therefore for k > k2, there

does not exist a NE such that ḡ∗ = ḡc. Next, we show that for k > k2 there also does not

exist a NE with ḡ∗ /∈ {ḡe, ḡc}. Assume the contrary. Pick an agent with less than n−1
2

incoming links, ηi(ḡ
∗)− ηi(g∗) < n−1

2
, and at least one outgoing link, ηi(g

∗) ≥ 1. We know

from Lemma 8 that such an agent exists in ḡ∗ /∈ {ḡe, ḡc}. We consider a deviation where

this agent deletes all his links. To see that the deviation considered is pro�table, note that

in the complete network the average marginal payo� from extending links to all remaining

agents is larger for an agent with n−1
2

incoming links, than for an agent with fewer incoming

links, i.e., for an agent withηi(ḡ
∗) − ηi(g

∗) < n−1
2
. From ηi(ḡ

∗) − ηi(g
∗) < n−1

2
we have

n− 1− (ηi(ḡ
∗)− ηi(g∗)) > n−1

2
. The following inequality then holds, again by the convexity

of v,

v((n−1)xc∗)−v(n−1
2
xc∗)

n−1
2

> v((n−1)xc∗)−v((ηi(ḡ
∗)−ηi(g∗))xc∗)

n−1−(ηi(ḡ∗)−ηi(g∗)) .

Note that, given ηi(ḡ
∗) − ηi(g

∗) < n−1
2

incoming links, average marginal payo�s are

highest when linking to all remaining agents with e�ort level xc∗. As ηi(ḡ
∗) is at most n− 1,

we can write

v((n−1)xc∗)−v((ηi(ḡ
∗)−ηi(g∗))xc∗)

n−1−(ηi(ḡ∗)−ηi(g∗)) ≥ v(ηi(ḡ
∗)xc∗)−v((ηi(ḡ

∗)−ηi(g∗))xc∗)
ηi(g∗)

.

Finally, note that by Lemma 2 e�ort levels are maximal in the complete component and

by the convexity of v we can therefore write

v(ηi(ḡ
∗)xc∗)−v((ηi(ḡ

∗)−ηi(g∗))xc∗)
ηi(g∗)

>
v(
∑
j∈Ni(ḡ∗)

x∗j )−v(
∑
j∈Ni(g∗)

x∗j )

ηi(g∗)
.

Average marginal payo�s are highest in the complete network where each agent extends
n−1

2
links and therefore for k > k2 the empty network is the unique NE network. Q.E.D.

Lemma 11 shows that k1 < k2. We have therefore shown that, for linking cost smaller

than k1, the unique NE is the complete network, while, for linking cost larger than k2, the

unique NE network is the empty network. For linking cost k ∈ [k1, k2] the complete and

the empty network are Nash equilibria.
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Lemma 11: 0 < k1 < k2.

Proof. Recall the de�nitions of k1 = v((n−1)x̄(0))−v(0)
n−1

and k2 =
2(v((n−1)xc∗)−v((n−1

2
)xc∗))

n−1
.

The inequalities then follow from x̄(0) > 0, xc∗ > x̄(0) and the convexity of the value

function. Q.E.D.

The following Lemma shows that in any Nash equilibrium, if a pair of agents exert same

e�ort levels, then they must share the same neighborhoods. The proof is a direct consequence

of the convexity of the value function.

Lemma 12: In any NE s∗=(x∗,g∗), x∗i = x∗k ⇔ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}.

Proof. First, Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i} ⇒ x∗i = x∗k. If ḡ
∗
i,k = 0, then i and k access

the same e�ort level, i.e., yi =
∑

j∈Ni(ḡ∗) x
∗
j = yk =

∑
j∈Nk(ḡ∗) x

∗
j and therefore x∗i = x∗k.

Assume next that ḡ∗i,k = 1 and, without loss of generality that x∗i > x∗k. But then k accesses

a higher e�ort level than i, yi =
∑

j∈Ni(ḡ∗) x
∗
j < yk =

∑
j∈Nk(ḡ∗) x

∗
j , and we have reached a

contradiction. Second, x∗i = x∗k ⇒ Ni(ḡ
∗) \ {k} = Nk(ḡ

∗) \ {i}. Assume to the contrary that

x∗i = x∗k and Ni(ḡ
∗)\{k} 6= Nk(ḡ

∗)\{i}. Note that for x∗i = x∗k, e�ort levels accessed must be

equal by strict strategic complementarities, so that yi = yk. For Ni(ḡ
∗) \ {k} 6= Nk(ḡ

∗) \ {i}
to hold, there must exist an agent l, such that l ∈ Nk(ḡ

∗) and l /∈ Ni(ḡ
∗). For the link ḡ∗k,l = 1

to be in place in ḡ∗ we must have that v(
∑

j∈Nk(ḡ∗) x
∗
j)− v(

∑
j∈Nk(ḡ∗) x

∗
j −x∗l ) ≥ k. But from

yi = yk and the convexity of the value function v(
∑

j∈Ni(ḡ∗) x
∗
j + xl) − v(

∑
j∈Nk(ḡ∗) x

∗
j) >

v(
∑

j∈Nk(ḡ∗) x
∗
j)− v(

∑
j∈Nk(ḡ∗) x

∗
j − x∗l ) ≥ k holds and we reach a contradiction. Q.E.D.

Lemma 13 shows that in any Nash equilibrium, if an agent i exerts a weakly lower e�ort

level than another agent k, then agent i's neighborhood is contained in k's neighborhood.

Lemma 13: In any NE s∗=(x∗,g∗), x∗i ≤ x∗k ⇔ Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i}.

Proof. First, Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i} ⇒ x∗i ≤ x∗k. If ḡ
∗
i,k = 0, then k accesses a

weakly higher e�ort level, i.e., yi =
∑

j∈Ni(ḡ∗) x
∗
j ≤ yk =

∑
j∈Nk(ḡ∗) x

∗
j and therefore x∗i ≤ x∗k.

Assume next that ḡ∗i,k = 1 and, without loss of generality, that x∗i > x∗k. But then k accesses

a strictly higher e�ort level than i, yi =
∑

j∈Ni(ḡ∗) x
∗
j < yk =

∑
j∈Nk(ḡ∗) x

∗
j , and we have

reached a contradiction. Second, x∗i ≤ x∗k ⇒ Ni(ḡ
∗) \ {k} ⊆ Nk(ḡ

∗) \ {i}. Assume to the

contrary that x∗i ≤ x∗k and there exists an agent l such that l ∈ Ni(ḡ
∗) and l /∈ Nk(ḡ

∗).

For the link ḡ∗i,l = 1 to be in place in ḡ∗, either g∗i,l = 1 or g∗l,i = 1. If g∗i,l = 1, then

v(
∑

j∈Ni(ḡ∗) x
∗
j) − v(

∑
j∈Ni(ḡ∗) x

∗
j − x∗l ) ≥ k must hold. But from yi ≤ yk and the convexity

of the value function can write v(
∑

j∈Nk(ḡ∗) x
∗
j + xl) − v(

∑
j∈Nk(ḡ∗) x

∗
j) > v(

∑
j∈Ni(ḡ∗) x

∗
j) −

v(
∑

j∈Ni(ḡ∗) x
∗
j − x∗l ) ≥ k and we have reached a contradiction. We can apply an analogous

argument for g∗l,i = 1. Q.E.D.

32



In Proposition 11 we show that all Nash equilibria are nested split graphs.

Proposition 11: In any NE the network is a nested split graph.

Proof. Note �rst that the complete and the empty network are nested split graphs.

We start by showing that in any NE, if dk(ḡ
∗) ≥ dl(ḡ

∗), then x∗k ≥ x∗l . Assume to the

contrary that x∗l > x∗k. We distinguish two cases. First, dk(ḡ
∗) > dl(ḡ

∗). Then there

exists an agent m ∈ Nk(ḡ
∗) and m /∈ Nl(ḡ

∗). Distinguish two subcases. First, agent m

extends a link to k and g∗m,k = 1. But then, by x∗l > x∗k and Lemma 8, ḡ∗m,l = 1 and

we have reached a contradiction. Second, agent k extends a link to m and g∗k,m = 1. But

then, by Lemma 9, ḡ∗l,m = 1 must hold and we have reached a contradiction. Assume next

that dk(ḡ
∗) = dl(ḡ

∗). If Nk(ḡ
∗) \ {l} = Nl(ḡ

∗) \ {k}, then x∗k = x∗l by Lemma 12 and we

have reached a contradiction. If Nk(ḡ
∗) \ {l} 6= Nl(ḡ

∗) \ {k}, then there exists an agent

m ∈ Nk(ḡ
∗) \ {l} and m /∈ Nl(ḡ

∗) \ {k}. The argument that, in fact, m ∈ Nl(ḡ
∗) \ {k} is

analogous to the previous case and we again reach a contradiction. We have established that

in any NE, if dk(ḡ
∗) ≥ dl(ḡ

∗), then x∗k ≥ x∗l . Next we show that in any NE, if ḡ∗i,l = 1

and dk(ḡ
∗) ≥ dl(ḡ

∗) (and therefore x∗k ≥ x∗l ), then ḡ
∗
i,k = 1. We distinguish two cases. First,

g∗i,l = 1. Then, by Lemma 8 ḡ∗i,k = 1. Second, g∗l,i = 1. Then, by Lemma 9 ḡ∗i,k = 1. That is,

ḡ∗ is a nested split graph. Q.E.D.

We know from the literature in graph theory that nested split graphs are core-periphery

networks (split graphs).16 Below, we provide a separate proof, which highlights agent's

incentives of linking and exerting e�ort. Furthermore, a relationship between a property of

the NE e�ort levels and NE network structure is established.

Corollary 3: In any NE

• if x∗i = x∗j ∀i, j ∈ N, then the network is either empty or complete,

• if x∗i 6= x∗j for some i, j ∈ N, then the network is a core-periphery network (that is

neither complete nor empty).

Proof. Lemma 9 directly implies that the only networks such that x∗i = x∗j ∀i, j ∈ N are

the empty and the complete network. Next, we show that in any NE such that there exists

a pair of agents i and j, such that x∗i 6= x∗j , the network displays a core-periphery structure

(other than the complete or empty network). Rank agents by their e�ort levels in increasing

order, such that x∗1 ≤ x∗2 ≤ ... ≤ x∗n−1 ≤ x∗n. We know from Lemma 1 that the network is

not complete, since there exists a pair of agents i and j such that x∗i 6= x∗j . The network is

not empty, as agents have identical payo� functions and singleton agents display same e�ort

16See, for example, Mahadev and Peled (1995)
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levels, x̄(0). We start by showing that the two lowest ranked agents, agent 1 and agent 2,

are not connected. Two cases are to be discerned. First, g∗1,2 = 1. From Lemma 8 we know

that agent 1 must be connected to all agents remaining agents, since x∗j ≥ x∗2 ∀j ≥ 2. Lemma

13 implies that the network is complete since Ni(g
∗) \ {j} ⊆ Nj(g

∗) \ {i} holds for agents
j with x∗j ≥ x∗1 ∀j ≥ 1. But then x∗i = x∗j ∀i, j ∈ N by Lemma 1 and we have reached a

contradiction. Second, g∗2,1 = 1. From Lemma 9 we know that agent 1 is connected to all

agents, since x∗j ≥ x∗2 ∀j ≥ 2 and the above argument applies. Since the network is neither

empty, nor complete, at least one link exists. Pick the agent i with the lowest subscript

that is involved in a link and, if i is involved in more than one link, consider the link to the

agent with the lowest subscript j. We discern two cases, g∗i,j = 1 and g∗j,i = 1. First, g∗i,j = 1.

We can discern two subcases. First, agent i and j are adjacent. As i is the agent with the

lowest subscript involved in a link, all agents with lower subscripts have no links. All agents

with a subscript higher or equal to i are connected to each other. To see this, note that by

Lemma 8, agent i is connected to all agents with a subscript higher or equal than j. But then

by Lemma 13, ḡ∗l,m = 1 ∀l,m ≥ i. The periphery, P (g∗), consists of agents with subscripts

k < i, while the core, C(g∗), consists of agents with subscripts k ≥ i. The argument for the

case where g∗j,i = 1 is analogous. Assume next that i and j are not adjacent. Note that

since g∗i,j = 1 and from x∗i ≤ x∗j−1, we know by Lemma 9 that the link between j − 1 and j,

ḡ∗j−1,j = 1, also exists. Next, check for the link ḡ∗j−2,j−1. If ḡ
∗
j−2,j−1 = 0, then by Lemma 9 no

agent with a subscript lower than j− 2 is connected to j− 1. Furthermore, no pair of agents

with subscripts of lower or equal than j− 2 is connected. Assume to the contrary that there

exists a pair of nodes l,m with l ≤ m < j − 2 and ḡ∗l,m = 1. By Lemma 8 we must then

have that ḡ∗l,j−1 = 1. This, however, contradicts Lemma 3, since ḡ∗j−2,j−1 = 0. The periphery,

P (g∗), consists of agents with subscripts k < j, while the core, C(g∗), consists of agents with

subscripts k ≥ j. If ḡ∗j−2,j−1 = 1, check for the link ḡ∗j−3,j−2. If ḡ
∗
j−3,j−2 = 0, then by above

argument the periphery, P (g∗), consists of agents with subscripts k < j − 1, while the core,

C(g∗), consists of agents with subscripts k ≥ j − 1. If ḡ∗j−3,j−2 = 1, proceed in descending

order until a pair of adjacent agents is found that is not connected and de�ne the core and

periphery accordingly. Note that such a pair of agents exists, since i and j were assumed to

not be adjacent and therefore ḡ∗i,i+1 = 0. This completes the proof. Q.E.D.

In Proposition 12 we show that in anyNE such that two agents have di�erent e�ort levels,

there exists a core-periphery partition such that agents in the core exert strictly higher e�ort

levels and obtain strictly higher gross payo�s.
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Proposition 12: In any NE with a pair of agents i and j, such that x∗i 6= x∗j , there

exists a core-periphery partition of agents, such that x∗i > x∗j and π∗i > π∗j ∀i ∈ C(ḡ∗) and

∀j ∈ P (ḡ∗).

Proof. Rank again agents by their e�ort levels in increasing order, such that x∗1 ≤ x∗2 ≤
... ≤ x∗n−1 ≤ x∗n. From Proposition 11 we know that there exists an agent x∗k such that

ḡ∗i−1,i = 0 ∀i ≤ k and ḡ∗i,i+1 = 1 ∀i ≥ k. We discern two cases. First, x∗k = x∗k+1. De�ne

C(ḡ∗) = {i : xi ≥ xk} and P (ḡ∗) = {i : xi < xk} and assume, contrary to the above, that

x∗k−1 ≥ x∗k = x∗k+1. From Lemma 13 we know that Nk+1(ḡ∗) \ {k − 1} ⊆ Nk−1(ḡ∗) \ {k}
must hold. That is, if x∗k−1 ≥ x∗k+1, then all of agent k + 1's neighbors are also k − 1's

neighbors. But then, since k + 1 is connected with k, k − 1 is also connected with k and

ḡ∗k−1,k = 1. We have reached a contradiction. Next, x∗k < x∗k+1. In this case simply de�ne

C(ḡ∗) = {i : xi ≥ xk+1} and P (ḡ∗) = {i : xi < xk+1}. For the second part of the statement

note that from x∗i > x∗j we know that y∗i =
∑

k∈Ni(ḡ∗) x
∗
k >

∑
k∈Nj(ḡ∗) x

∗
k = y∗j holds. We can

then write π(x∗j , y
∗
i ) > π∗j (x

∗
j , y
∗
j ), where the inequality follows from positive externalities.

Q.E.D.

Next, we de�ne a periphery-sponsored core-periphery network as a core-periphery network

where all agents in the periphery extend links to all agents in the core. A core-sponsored

core-periphery network is a core-periphery network where all agents in the core extend links

to all agents in the periphery.

De�nition 3: A network g is a periphery− sponsored core− periphery network if the

set of agents N can be partitioned into two sets, C(g) (the core) and P (g) (the periphery),

such that ḡi,j = 1 ∀i, j ∈ C(g), ḡi,j = 0 ∀i, j ∈ P (g) and gi,j = 1∀i ∈ C(g) and ∀i ∈ P (g).

A network g is a core − sponsored core − periphery network if the set of agents N can

be partitioned into two sets, C(g) (the core) and P (g) (the periphery), such that ḡi,j = 1

∀i, j ∈ C(g), ḡi,j = 0 ∀i, j ∈ P (g) and gi,j = 1∀i ∈ C(g) and ∀i ∈ P (g).

Lemma 14: There does not exist a NE such that the network is a center-sponsored star.

Proof. Assume to the contrary that the center extends link to all agents in the periphery.

Note that the center extends n−1 links to agents with e�ort level x∗p. That is, for this to be a

NE,
v((n−1)x∗p)−v(0)

n−1
≥ k needs to hold. Furthermore, we need that an agent in the periphery

does not �nd it pro�table to deviate by extending links to the remaining n− 2 agents in the

periphery. That is, we need k ≥ v((n−2)x∗p)−v(x∗c)

n−2
to hold. However, from Proposition 12 we

know that x∗c > x∗p (and therefore (n−2)x∗p+x∗c > (n−1)x∗p) and then, from the convexity of

the value function,
v((n−2)x∗p)−v(x∗c)

n−2
>

v((n−1)x∗p)−v(0)

n−1
holds. We have reached a contradiction.

Q.E.D.
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Corollary 3: For any NE star network in which the center obtains lower payo�s than an

agent in the periphery, there exists another NE star network with a core-periphery partition

such that the center obtains strictly higher payo�s than agents in the periphery .

Proof. From Lemma 14 we know that there does not exist a NE star network such

that the center extends links to all agents in the periphery. This leaves two con�gurations.

First, periphery-sponsored star networks and second, networks where some agents in the

periphery extend links to the center and the center, in turn, extends links to some agents in

the periphery. In a periphery-sponsored star network, payo�s of the center are strictly larger

than payo�s of an agent in the periphery. To see this, note that from Proposition 12 and

strategic complementarities we know that (n − 1)x∗p > x∗c . That is, the center's neighbors

not only exert higher e�ort level and gross payo�s are therefore higher, but the center does

also not incur any linking cost. For the second case, note that some of the agents in the

periphery extend a link to the central agent. But then there exists another NE which is

a periphery-sponsored star network, for which we have just shown that payo�s are strictly

larger for an agent in the center. Q.E.D.

Proposition 13 presents necessary and su�cient conditions for the existence of a NE star

network for the linear-quadratic payo� function proposed in Calvó-Armengol et al (2005 and

2009), which is given by π(xi, yi) = xi− β
2
x2
i +λxi

∑
j∈Ni(ḡ) xj. Note that for the existence of

a NE star network, we only need to check for periphery-sponsored stars. This follows from

Lemma 14, which shows that a center-sponsored star does not exist, and therefore in any

NE star network at least one agent in the periphery extends a link to the center. That is, if

a NE star network exists such that the central agent extends a link, then there also exists

a NE with a periphery-sponsored star network, while the converse need not hold. As in

Proposition 6, the condition for a NE on a �xed network is given by n < 1+ λ2

β2 . However, in

the one-sided link formation speci�cation this condition does not bind, as the upper bound

on n (presented below) is always smaller than 1+ λ2

β2 for λ and β positive. The �rst condition

of Proposition 13, β ≥ 5λ, imposes an upper bound on λ relative to β, which is independent

of k and n. That is, if the parameter governing strategic complementarities, λ, is su�ciently

large relative to the convexity of the cost function, β, then a NE star network does not exist

(for any combination of k and n). Note next that for a NE star network to exist, linking

cost k must be in an intermediate range. The lower bound on linking cost k is given by the

marginal payo�s of an agent in the periphery linking to all n − 2 agents in the periphery,

while keeping his link to the center. That is, for k larger than the lower bound, an agents in

the periphery will not �nd it pro�table to link to the remaining agents in the periphery. The

upper bound, in turn, is given by the marginal payo�s of periphery linking to the center.

Therefore, for linking cost k smaller than the upper bound, an agent in the periphery does

not �nd it pro�table to delete his links with the central agent. Note that bounds on linking
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cost k are increasing in n. The bounds on n (together with β ≥ 5λ) then ensure that the

upper bound on linking cost is, in fact, (weakly) larger than the lower bound. The last two

conditions present the knife-edge cases where the lower bound on linking cost k coincides

with the upper bound.

Proposition 13: If best response functions are linear, then a NE with a star network

exists if and only if

• β > 5λ and either

�
λ(β+λ)2(2β+(n−2)λ)

2β(β2−(n−1)λ2)2 ≤ k ≤ β(β+λ)2

2(β2−λ2(n−1))2 − 1
2β

and

(β−λ)2

2λ2 −
√

(β−5λ)(β−λ)(β+λ)2

4λ4 ≤ n ≤ (β−λ)2

2λ2 +
√

(β−5λ)(β−λ)(β+λ)2

4λ4 , or

�
λ(β+λ)2(2β+(n−2)λ)

2β(β2−(n−1)λ2)2 = k and (β−λ)2

2λ2 +
√

(β−5λ)(β−λ)(β+λ)2

4λ2 = n, or

• β ≥ 5λ, β(β+λ)2

2(β2−λ2(n−1))2 − 1
2β

= k and (β−λ)2

2λ2 −
√

(β−5λ)(β−λ)(β+λ)2

4λ2 = n.

Proof. From Lemma 14 we know that in a NE star network there must be at least

one peripheral player extending a link to the center and we can therefore focus on periphery

sponsored core-periphery networks. Note next that that in a star network, all agents in the

periphery access the same e�ort level, x∗c , and therefore all agents in the periphery display the

same e�ort level, x∗p. The agents in the core maximize xc ∈ argmaxxc∈Xxc−β
2
x2
c+λxc(n−1)xp,

where xp is the e�ort level of agents in the periphery. For an agent in the periphery we have

xp ∈argmaxxp∈Xxp− β
2
x2
p+λxpxc. The reaction functions are given by xc(xp, x̂c) = 1+λxp(n−1)

β

and xp(xc) = 1+λxc
β

, respectively. Equilibrium e�ort levels are given by x∗c=
β+λ(n−1)
β2−λ2(n−1)

and

x∗p = β+λ
β2−λ2(n−1)

. Plugging equilibrium e�ort levels back into the payo� function, yields

equilibrium gross payo�s of π∗c = β(β+λ(n−1))2

2(β2−λ2(n−1)
and π∗p = β(β+λ)2

2(β2−λ2(n−1))2 . Next, we calculate

deviation payo�s of an agent in the periphery linking to all n − 2 remaining agents in the

periphery. A deviating agent maximizes xdp ∈argmaxxdp∈Xx
d
p−

β
2
(xdp)

2 + λxdp(x
∗
c + (n− 2)x∗p),

which yields the following reaction function xdp(x
∗
c , x
∗
p) =

1+λx∗c+λx∗p(n−2)

β
. The deviation e�ort

level is given by xdp(x
∗
c , x
∗
p) = (β+λ)(β+λ(n−2))

β(β2−λ2(n−1))
and corresponding deviation gross payo�s by

πdp = (β+λ)2(β+λ(n−2))2

2β(β2−λ2(n−1))2 . For the existence of a periphery-sponsored core-periphery network

we need two conditions to hold. First, linking cost k must be such that an agent in the

periphery does not �nd it pro�table to delete his link to the central agent and, second,

agents in the periphery do not �nd it pro�table to link to the remaining (n−1) agents in the

periphery, given the link to the center. The �rst condition then reads β(β+λ)2

2(β2−λ2(n−1))2 − 1
2β
≥ k,

where 1
2β

are the payo�s of an agent without any links. The second condition is given

by k ≥ ( (β+λ)2(β+λ(n−2))2

2β(β2−λ2(n−1))2 − β(β+λ)2

2(β2−λ2(n−1))2 )/(n − 2) = λ(β+λ)2(2β+(n−2)λ)
2β(β2−(n−1)λ2)2 . Combining the two

inequalities one can show after some algebraic manipulation that these two conditions hold
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if and only if β > 5λ and either λ(β+λ)2(2β+(n−2)λ)
2β(β2−(n−1)λ2)2 ≤ k ≤ β(β+λ)2

2(β2−λ2(n−1))2 − 1
2β

and (β−λ)2

2λ2 −√
(β−5λ)(β−λ)(β+λ)2

4λ4 ≤ n ≤ (β−λ)2

2λ2 +
√

(β−5λ)(β−λ)(β+λ)2

4λ4 or, one of two knife-edge cases, where

the upper and lower bound on k coincide, i.e. β > 5λ and λ(β+λ)2(2β+(n−2)λ)
2β(β2−(n−1)λ2)2 = k and (β−λ)2

2λ2 +√
(β−5λ)(β−λ)(β+λ)2

4λ2 = n or β ≥ 5λ, β(β+λ)2

2(β2−λ2(n−1))2 − 1
2β

= k and (β−λ)2

2λ2 −
√

(β−5λ)(β−λ)(β+λ)2

4λ2 =

n.17 Q.E.D.

17The calculations were executed with Mathematica and the codes are available upon request.
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