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Abstract

Nonparametric regression is developed for data with both a temporal and a cross-sectional
dimension. The model includes additive, unknown, individual-specific components and allows
also for cross-sectional and temporal dependence and conditional heteroscedasticity. A simple
nonparametric estimate is shown to be dominated by a GLS-type one. Asymptotically optimal
bandwidth choices are justified for both estimates. Feasible optimal bandwidths, and feasi-
ble optimal regression estimates, are asymptotically justified, with finite sample performance
examined in a Monte Carlo study.
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1. Introduction

The advantages of panel data have been exploited in many econometric model settings, following
the early and influential contributions of Cheng Hsiao (see e.g. Hsiao (1986)). Much of the lit-
erature stresses parametric regression and/or time trending effects, alongside unknown individual
effects. Nonparametric models lessen the risk of misspecification and can be useful in relatively
large data sets, and have already featured in panel settings. Ruckstuhl, Welsh and Carroll (2000)
asymptotically justifed nonparametric regression estimation when time series length T increases and
cross-sectional size N is fixed, and there is no cross-sectional dependence. Henderson, Carroll and Li
(2008) estimated non-parametric and semi-parametric (partly linear) regressions. Robinson (2012)
effi ciently estimated a nonparametric trend in the presence of possible cross-sectional dependence;
the present paper considers similar issues in a model in which the nonparametric regression is a func-
tion of a possibly vector-valued observable stationary sequence that is common to all cross-sectional
units. As in the previous reference, T is asssumed large relative to N , as can be relevant when the
cross-sectional units are large entities such as countries/regions or firms. Disturbances may exhibit
cross-sectional dependence due to spillovers, competition, or global shocks, and such dependence, of
a general and essentially nonparametric nature, is allowed.

We describe an observable array Yit, i = 1, · · · , N, t = 1, · · · , T, by

Yit = λi +m(Zt) + Uit, i = 1, · · · , N, t = 1, · · · , T, (1)

where the λi are unknown individual fixed effects, Zt is a q-dimensional vector of time-varying sto-
chastic regressors that are common to individuals, m is a nonparametric function, and Uit is an
unobservable zero-mean array. The common trend model of Robinson (2012) replaced Zt by the
deterministic argument t/T . He showed how to improve on simple estimates of m by generalised
least squares (GLS) ones using estimates of the cross-sectional variance matrix of Uit. Employing
instead a stochastic Zt requires somewhat different methodology and substantially different asymp-
totic theory, is more relevant in some circumstances, and also admits the possibility of conditional
heteroscedasticity of Uit. Furthermore, though he discussed implications of serial dependence in
Uit, the results of Robinson (2012) assumed temporal independence; we allow Uit to be a weakly
dependent stationary process with nonparametric autocorrelation. In addition, whereas Robinson
(2012) focussed on mean squared error (MSE) properties, we also establish asymptotic normality of
estimates of m. Throughout, asymptotic theory is with respect to T → ∞, with either N → ∞
slowly relative to T, or N fixed.

While (1) is of practical interest in itself, our interest in it can be more broadly motivated from
a semiparametric model involving also time-varying, individual-specific regressors. For example, if
Yit denotes a house price index of Eurozone countries, Zt the interest rate set by the European
Central Bank, and Xit country-specific covariates (such as GDP, inflation and stock market index),
we consider the partly linear specification:

Yit = λi +X ′itγ +m(Zt) + Uit. (2)

For a given cross-sectional ordering, differencing (2) over i gives

Yit − Yi−1,t = λi − λi−1 + (Xit −Xi−1,t)
′γ + Uit − Ui−1,t, i = 2, · · · , N,

and then differencing over t gives

(Yit − Yi−1,t)− (Yi,t−1 − Yi−1,t−1) = [(Xit −Xi−1,t)− (Xi,t−1 −Xi−1,t−1)]
′γ

+(Uit − Ui−1,t)− (Ui,t−1 − Ui−1,t−1), (3)
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t = 2, · · · , T. Denote by γ̂ an estimate of γ obtained from (3) by, for example, least squares, at a
rate that can be faster under suitable conditions than the nonparametric rate which would apply
to estimation of m. Thus the methods developed in the paper should be justifiable with Yit in (1)
replaced by Yit −X ′itγ̂.

The plan of the paper is as follows. Section 2 introduces a simple kernel estimate of m and
presents its asymptotic MSE and the consequent optimal choice of bandwidth, and establishes its
asymptotic normality. Section 3 presents generalized least squares (GLS) estimates of m using
the unknown cross-sectional covariance matrix of Uit, with asymptotic properties. In Section 4
estimates of the cross-sectional covariance matrix are inserted and asymptotically justified. Section
5 presents a small Monte Carlo study of finite sample performance. Proofs of theorems are provided
in Appendix A, while Appendix B contains some useful lemmas, of which Lemma 6 constitutes
an additional contribution in offering a decomposition of U-statistics of order up to 4, under serial
dependence.

2. Simple non-parametric regression estimation

We can write (1) in N -dimensional vector form as

Y·t = λ+m(Zt)1N + U·t, t = 1, · · · , T, (4)

where Y·t = (Y1t, · · · , YNt)′, λ = (λ1, · · · , λN )′, 1N = (1, · · · , 1)′, U·t = (U1t, · · · , UNt)′, the prime
denoting transposition. In (1), λi and m are identified only up to a location shift. As in Robinson
(2012), the (arbitrary) restriction

N∑
i=1

λi = 0 (5)

identifies m up to vertical shift and leads to

ȲAt = m(Zt) + ŪAt, (6)

where we introduce the cross-sectional averages ȲAt =
∑N
i=1 Yit/N, ŪAt =

∑N
i=1 Uit/N . From

(6), we can nonparametrically estimate m using the time series data (ȲAt, Z
′
t). We employ the

Nadaraya-Watson (NW) estimate

m̃(z) =
m̃n(z)

m̃d(z)
,

where the numerator and denominator are given by

m̃n(z) =

T∑
t=1

K
(Zt − z

a

)
ȲAt, m̃d(z) =

T∑
t=1

K
(Zt − z

a

)
,

a is a positive bandwidth, and

K(u) =

q∏
j=1

k(uj), u = (u1, u2, · · · , uq)′, (7)

where k is a univariate kernel function. More general, non-product, choices of K, and/or a more
general diagonal or non-diagonal matrix-valued bandwidth, could be employed in practice but (7)

3



with a single scalar bandwidth affords relatively simple conditions. Let K`, ` ≥ 1, denote the class
of even k satisfying∫

R
k(u)du = 1,

∫
R
uik(u)du = 0, i = 1, · · · , `− 1, sup

u
(1 + |u|`+1)|k(u)| <∞.

We introduce regularity conditions on Zt, Uit similar to those employed by Robinson (1983) and
a number of subsequent references on nonparametric time series regression.

Assumption 1 For all i ≥ 1, (Z ′t, U1t, · · · , Uit)′ is a jointly stationary α-mixing process with
mixing coeffi cient αi(j). Define α(j) = max

i
αi(j). For some µ > 2,

∞∑
j=n

α1−2/µ(j) = o(n−1), as n→∞.

Assumpton 2 For all i ≥ 1, t ≥ 1, E(Uit|Zt) = 0 almost surely (a.s.).

Assumption 3 Zt has continuous probability density function (pdf) f(z) .

Assumption 4 f(z) and m(z) have bounded derivatives of total order s.

Assumption 5 The conditional expectation functions ωij(z) = E(UitUjt|Zt = z), i, j =

1, 2, · · · , are uniformly bounded and continuous.

Strictly, these and other assumptions need hold only at those z at which m is to be estimated,
but for simplicity we present them globally.

Assumption 6 k(u)∈Ks.

Assumption 7 As T →∞, a+ (Taq)
−1 → 0.

Let fj(z, u) denote the joint pdf of (Zt, Zt+j), j 6= 0, and fj,k(z, u, w) denote the joint pdf of
(Zt, Zt+j , Zt+j+k), j 6= 0, j + k 6= 0. Denote by C a generic positive finite constant.

Assumption 8

(i) For some ξ > 0, supz ‖z‖ξf(z) <∞.

(ii) supz,u fj(z, u) ≤ C, j ≥ 1; supz,u,w fjk(z, u, w) ≤ C, j, k ≥ 1.

Assumption 8 (ii) is natural given that Assumption 3 implies boundedness of f . Assumption 8
(i) is from Hansen (2008) and is later needed to obtain a uniform rate of convergence.

Assumption 9 For µ > 2 of Assumption 1, E|m(Zt)|µ <∞ and E|Uit|µ ≤ C <∞, i≥1, t ≥ 1.

Assumption 10 For all i ≥ 1 and some c > µ, the conditional moment functions E(|Uit|c|Zt = z)

exist and are continuous at Zt = z.

Assumptions 9 and 10 are both from Robinson (1983).

As always the randomness of m̃d(ζ) gives rise to diffi culty in obtaining an exact expression for
the MSE of m̃(z), so we study an the "approximate" MSE,

MSEs

(
m̃(z)

)
= Vs(m̃(z)) + B2s (m̃(z)),

where

Vs(m̃(z)) =
V ar (m̃n(z))

E2 (m̃d(z))
, Bs(m̃(z)) =

E (m̃n(z))

E (m̃d(z))
−m(z),
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and we stress kernel order s, since this asymptotically affects the approximate bias Bs and hence
MSEs; as usual these are decreasing in s, a higher order kernel exploiting assumed smoothness.

Define
κ =

∫
R
k2(u)du, χ` =

∫
R
u`|k(u)|du <∞, ` = 1, ..., s,

the N ×N matrix ΩN (z) to have (i, j) th element ωij(z), and

Φs(z) =

q∑
j1=1

...

q∑
js=1

∂s {m(z)f(z)}
∂zs1(j1)...∂z

sq
(jq)

.

Theorems 1-3 are essentially restatements of earlier results so proofs are not given. Define

vN (z) =
1′NΩN (z)1N

N2
.

By a ∼ b we mean a/b→ 1 as T →∞.

Theorem 1. Under Assumptions 1-10, and if f(z) > 0, as T →∞,

MSEs

(
m̃(z)

)
∼ κqvN (z)

Taqf(z)
+

{
χsa

s

f(z)
Φs(z)

}2
. (8)

The first term on the right reflects the variance of the cross-sectional average ŪAt. We do not
express the result in terms of an approximation to vN (z) as N → ∞ so (8) is valid for both N
fixed and N increasing with T. Note that vN (z) =

∑N
i,j ωij(z)/N

2 reflects the strength of cross-
sectional dependence in Uit, and arose also in Robinson (2012). As discussed there, in case N
increases with T , vN (z) = O(N−1) is analogous to a common weak dependence assumption in time
series. Boundednes of the ωij(z) implies only vN (z) = O(1), allowing "long-range cross-sectional
dependence". On the other hand, when vN (z)→ 0 the rate of convergence of m̃(z) improves.

Define the MSE-optimal bandwidth

aoptms (z) = argmin
a

[
κqvN (z)

Taqf(z)
+

{
χsa

s

f(z)
Φs(z))

}2]
.

Theorem 2. Under Assumptions 1-10,

aoptms (z) =
(κqf(z)vN (z)

Tχ2sΦs(z))
2

) 1
q+2s

.

Next we establish asymptotic normality.

Assumption 11 Taq+2s → 0 as T →∞.

Let A1/2 denote the unique matrix square root of a positive definite matrix A and Id the d × d
identity matrix.

Theorem 3. Under Assumptions 1-11, for fixed points zi ∈ Rq, i = 1, ..., d, such that f (zi) > 0,

and ΩN (zi) is nonsingular for all N, i = 1, ..., d, as T →∞,

(Taq)
1
2 V

−1/2
N

(
m̃(z1)−m(z1), · · · , m̃(zd)−m(zd)

)′ d−→ Nd(0,Id),

where VN is the d× d diagonal matrix with ith diagonal element κqvN (zi)/f(zi).
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3. Improved estimation

We now develop more effi cient estimates of m, analogously to Robinson (2012), allowing also for
conditional heteroscedasticity. The identifying condition (5) of the previous section was arbitrary.
In general we can rewrite (4) as

Y·t = λ(w) +m(w)(Zt)1N + U·t,

where, for a given N × 1 weight vector w,

w′λ(w) = 0, (9)

leading to
w′Y·t = m(w)(Zt) + w′U·t.

There is a vertical shift between m(w) identified by (9) and m identified by (5), namely, m(w)(z)−
m(z) = w′λ for all z. As in Robinson (2012) we an choose w to minimize variance. In place of
the factor vN (z) of the previous section, we have vNw(z) = V ar(w′U·t|Zt = z) = w′ΩN (z)w, and
deduce the optimal w = w(z),

w∗(z) = argmin
w

vNw(z) = (1′NΩN (z)−11N )−1ΩN (z)−11N ,

imposing

Assumption 12 The matrix ΩN (z) is nonsingular for all N.

Correspondingly an optimal NW estimate is

m̃∗(z) =
m̃∗n(z)

m̃d(z)
. (10)

where

m̃∗n(z) =

T∑
t=1

K
(Zt − z

a

)
w∗(z)′Y·t.

Define
MSEs

(
m̃∗(z)

)
= Vs(m̃

∗(z)) + B2s (m̃∗(z)),

where

Vs(m̃
∗(z)) =

V ar (m̃∗n(z))

E2 (m̃d(z))
, Bs(m̃(z)) =

E (m̃∗n(z))

E (m̃d(z))
−m(w∗)(z),

where m∗(z) = m(z) + w∗(z)′λ with m and λ as in (1), and let

v∗N (z) =
(
1′NΩN (z)−11N

)−1
.

Theorem 4. Under Assumptions 1 -10 and 12, and if f(z) > 0, as T →∞,

MSE
(
m̃∗(z)

)
∼ κqv∗N (z)

Taqf(z)
+

{
χsa

s

f(z)
Φs(z)

}2
.

The bias contribution is as in Theorem 1 of the previous section.

6



Define the MSE-optimal bandwidth

aoptm∗s (z) = argmin
a

[
κqv∗N (z)−1

Taqf(z)
+

{
χsa

s

f(z)
Φ(m̃(z))

}2]
.

Theorem 5. Under Assumptions 1 -10 and 12,

aoptm∗s (z) =
(κqf(z)v∗N (z)−1

Tχ2sΦs(z)
2

) 1
q+2s

.

Theorem 6. Under Assumptions 1-12, for distinct fixed points zi ∈ Rq, i = 1, ..., d, such that
f (zi) > 0, and ΩN (zi) is nonsingular for all N, i = 1, ..., d, as T →∞,

(Taq)
1
2V ∗N

−1/2
(
m̃∗(z1)−m∗(z1), · · · , m̃∗(zd)−m∗(zd)

)′
→d Nd(0, Id),

where m∗(z) = m(z) + w∗(z)′λ with m and λ from (1) and V ∗N is the d × d diagonal matrix with
ith diagonal element κqv∗N (zi)/f (zi).

As in Robinson (2012) v∗N (z ) < vN (z ) unless ΩN (z) has an eigenvector 1N , where Robinson
(2012) discussed the extent to which the latter occurs in factor and spatial autoregressive models.
The rate of convergence of m̃∗(z) depends on the rate of increase, if any, of v∗N (z ); when N →∞ as
T →∞, m̃∗(z) converges faster than m̃(z) if vN (z )/v∗N (z )→ 0.

Conditional heteroscedasticity in Uit implies that w∗(z) varies with z, so (unlike in Robinson
(2012)) the difference between m∗(z) and m(z) varies with z,

m∗(z)−m(z) = w∗(z)′λ. (11)

Thus for comparability one can first carry out optimal NW estimation for each z of interest, then
adjust to a common baseline by means of an estimate of λ in (4). Defining the temporal and overall
averages ȲiA = T−1

∑T
t=1 Yit, i = 1, ..., N, ȲAA = N−1

∑N
i=1 ȲiA, we estimate λi by

λ̂i = ȲiA − ȲAA, i = 1, ..., N.

Now

λ̂i − λi =
1

T

T∑
t=1

m(Zt) +
1

T

T∑
t=1

Uit −
(

1

T

T∑
t=1

m(Zt) +
1

NT

T∑
t=1

N∑
i=1

Uit

)

= λi +
1

T

T∑
t=1

Uit −
1

NT

T∑
t=1

N∑
i=1

Uit,

and under Assumptions 1 and 5 this isOp
(
T−1/2

)
, implying λ̂i is

√
T−consistent, and thus converges

faster than our nonparametric estimates of m.

4. Feasible optimal estimation

Given ΩN (z) is unknown, m̃∗(z) is infeasible. Feasible estimation requires an estimate that ap-
proximates ΩN (z) suffi ciently well for large T, and possibly large N. For this purpose we use (cf.
Robinson (2012)) the residuals

Ûit = Yit − ȲiA − m̃(Zt) + ȲAA, i = 1, ..., N, t = 1, ..., T.
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Defining Û·t =
(
Û1t, ..., ÛNt

)′
, to allow for nonparametric conditional heteroscedasticity we employ

the kernel estimates

Ω̂N (z) =

T∑
t=1

L ((Zt−z)/h) Û·tÛ
′
·t

T∑
t=1

L ((Zt−z)/h)

, (12)

for a scalar bandwidth h and q−dimensional kernel function L, where h satisfies different conditions
from a and will thus be chosen differently, and L need not be identical to K, motivated by the
fact that L will be assumed to have compact support, to facilitate technical treatment of the ratios
L ((Zt−z)/h) /f(Zt), 1/f(z) not necessarily being integrable; however, L is assumed to have product
form analogous to K given by (7). In some circumstances we may be prepared to assume the Uit are
conditionally homoscedastic (or to have parametric conditional heteroscedasticity), where theoretical
justification is more similar to that in Robinson (2012), and for the sake of brevity we focus only on
the smoothed nonparametric estimate (12).

Theoretical demonstration that Ω̂N (z) can be replaced by ΩN (z) involves treatment of U-statistic-
like quantities, for which β-mixing assumptions on Zt and Uit are more effective than α-mixing ones.

Assumption 13 For all i ≥ 1, (Z ′t, U1t, · · · , Uit)′ is a jointly stationary vector β-mixing process
with mixing coeffi cient βi(j) and is α-mixing with mixing coeffi cient αi(j). Define β(j) = max

i
βi(j)

and α(j) = max
i
αi(j).

(i) For some θ > max{8, 2q}, β(j) = O(j−θ) as j →∞.

(ii)For some κ > 1 + q, α(j) = O(j−κ) as j →∞.

Assumption 13 (ii) (which was required in Hansen (2008)) is implied by Assumption 13 (i) if
θ > κ.

Assumption 9′ For any p, max
i
E|Uit|p <∞.

Assumption 9′ greatly strengthens the moment condition on Uit in Assumption 9 and is required
to simplify the result and proof of Theorem 7 below.

Assumption 14 The kernel k(·) used in the preliminary stage NW estimation is an even and
uniformly bounded function that belongs to Ks and satisfies |k(u)| ≤ C exp(−|u|).

Assumption 15 For all i, j ≥ 1, ωij(z) has uniformly bounded derivatives of total order p.

Assumption 16 L(u) =

q∏
j=1

`(uj), where ` ∈ Kp is even and uniformly bounded with bounded

support.

Assumptions 15 and 16 together help to ensure that the bias of each element of the estimate (12)
of ΩN (z) is O(hp).

Assumption 17 (i) As T →∞, Thmax{p,2s} →∞.

(ii) For some % = κ−1−q
κ+3−q with κ as in Assumption 13 (ii), log T/(T %hq)→ 0 as T →∞.

Assumption 17 (ii) is from Hansen (2008) and implies Thq → ∞, which is needed to make the
variance of the first stage estimate of f tend to zero.
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Denote by ω̂ij(z) the (i, j)th element of Ω̂N (z).

Theorem 7. Under Assumptions 2, 3, 4, 8, 9′, 13-17, for arbitrarily small ε > 0, as T →∞,

max
1≤i,j≤N

|ω̂ij(z)− ωij(z)| = Op(RTh), N ≥ 1,

where
RTh = hp + h2s−ε +

(
Thq+ε

)−1/2
. (13)

The rate (13) is important in establishing Theorems 8 and 9 below.

Recall that Theorems 2 and 5 provide optimal bandwidth choices when ΩN (z) is known. Our
feasible optimal bandwidths are

âoptms (z) =
(κq f̂(z)v̂N (z)

Tχ2sΦ̂s(z)
2

) 1
q+2s

, âoptm∗s (z) =
(κq f̂(z)v̂∗N (z)

Tχ2sΦ̂s(z)
2

) 1
q+2s

,

where

v̂N (z) =
1′N Ω̂N (z)1N

N2
, v̂∗N (z) =

(
1′N Ω̂N (z)−11N

)−1
,

and Φ̂s(z) is a consistent estimate of Φs(z).

The next theorem shows that the infeasible and feasible optimal bandwidth choices are asymp-
totically equivalent under additional conditions. Denote by ‖.‖ the spectral norm of a matrix.

Assumption 18 The estimates f̂ and Φ̂ are such that asymptotically,

f̂(z)− f(z) = Op

(
‖ΩN (z)‖−1‖Ω̂N (z)− ΩN (z)‖

)
,

Φ̂2s(z))− Φ2s(z)) = Op

(
‖ΩN (z)‖−1‖Ω̂N (z)− ΩN (z)‖

)
.

Assumption 18 is unprimitive, but ensures that the errors in estimating f(z) and Φ2s(z) are negligible,
so as to yield asymptotic equivalence of feasible and infeasible optimal bandwidths.

Assumption 19 If N →∞ as T →∞, NRTh = o(1).

Assumption 19 requires that the rate RTh obtained in Theorem 7 converges suffi ciently fast to 0.

Assumption 20 As N →∞,

‖ΩN (z)−1‖+
N1′NΩN (z)−21N
(1′NΩN (z)−11N )2

= O(1).

Assumption 20 was discussed in detail in Robinson (2012), where it was noted that a suffi cient
(but not necessary) condition for the second term on the right hand side to be bounded is that the
greatest eigenvalue of ΩN (z) is bounded; see Robinson (2012) for an example where this term may
be bounded although the greatest eigenvalue of ΩN (z) may diverge with N .

Theorem 8. Under Assumptions 2, 3, 4, 8, 9′, 12-20, as T→∞,

âoptms (z)

aoptms (z)
→p 1,

âoptm∗s (z)

aoptm∗s (z)
→p 1.
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Next, we define a feasible optimal NW estimate as

m̂∗(z) =

(
1′N Ω̂−1N (z)1′N

)−1
1′N Ω̂−1N (z)

T∑
t=1

K
(Zt − z

a

)
Y·t

m̂d(z)
.

Assumption 21 Let ψ = min {2s− ε, p} for an arbitrarily small ε > 0, where p is as in
Assumption 15. p, s, a, h,N are such that p > s and as T →∞, Thq+2ψ →∞, Taq+2s = O(1) and
Nhψ = o(as).

Assumption 21 actually requires the bandwidth h, used in the preliminary stage, to decay slower
than the bandwidth a since s < ψ. We need to impose greater smoothness assumption on Ω

compared to m and f by requiring p > s in order to make sure that non-parametric estimation of Ω

yields small enough bias. Since Theorem 4 shows that m̃∗(z) has exact rate v∗N (z)1/2 (Taq)
−1/2

+as

in probability, our final theorem justifies m̂∗(z) as adequately approximating it.

Theorem 9. Under Assumptions 2, 3, 4, 8, 9′ and 12-21, as T →∞,

m̂∗(z)− m̃∗(z) = op

(
v∗N (z)1/2 (Taq)

−1/2
+ as

)
.

Based on Theorem 9, one could establish an asymptotic normality result for m̂∗(z), with the
same limit distribution as m̃∗(z) (see Theorem 6).

5. Finite sample performance

A small simulation study compares finite sample performance of the three estimates m̃, m̃∗ and m̂∗.
It is of interest to see the extent to which the feasible optimal estimate m̂∗ matches the effi ciency
of the infeasible optimal estimate m̃∗ and whether it is actually better than the simple m̃(z), given
the sampling error in estimating ΩN (z). Our simulation design closely resembles that of Robinson
(2012). In (1) we set q = 1, m(z) = 1/(1 + z2) and generated λ1, · · · , λN−1 as independent N(0, 1)

variates, kept fixed across replications, with λN = −λ1−· · ·−λN−1.We generated the Uit according
to the factor model

Uit = bi(Zt)ηt +
√

0.5εit, i ≥ 1, t ≥ 1,

where bi(z) = bi(1 + |z|)(i−1)/4, with the bi generated as independent N(0, 10) variates, kept fixed
across replications, and the sequences {Zt}, {ηt}, {εit}, i = 1, · · · , N generated as independent
Gaussian first order autoregressions, with innovations having unit variance and four different values
of the autoregressive coeffi cient ρ were employed ρ = 0, 0.2, 0.5, 0.8. This setting gives rise to strong
cross-sectional dependence, varying degrees of temporal dependence, and conditional heteroscedas-
ticity of the Uit where the factor loadings were functions of Zt, engineering the desired conditional
heteroscedasticity of the covariance matrix. In particular,

ΩN (z) = 0.5IN + b(z)b′(z),

where the N × 1 vector b(z) has ith element bi(z). The points at which the functions are esti-
mated, and the second stage bandwidth choice, are in line with those of Robinson (2012): the
one-dimensional regressor was generated to have mean 0.5 and variance 1

16 , so the bulk of obser-
vations lie in the interval [0.1], and with d = 1, z1 = 0.25, z2 = 0.5, z3 = 0.75. The second stage
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bandwidth parameters were set to be a = 0.1, 0.5, 1. Because of the need for oversmoothing in the
first stage, required by Assumption 21, we set the first stage a to be 1.2 times the second stage ones.

Tables 1 reports Monte Carlo MSE for the various settings, with (N,T ) = (5, 100) and (N,T ) =

(10, 500). There are 2 × 4 × 3 × 3 = 72 cases in total and each case is based on 1000 replications.
There are throughout substantial improvements with increase in (N,T ). The reduction in MSE by
using m̃∗ relative to m̃ mainly reflects the extent of cross-sectional correlation. The reduction in
MSE is more pronounced for smaller a, where variance dominates bias. As expected m̃∗ mostly
performs better than m̂∗, but in 11 cases of the 72 the reverse outcome is observed; these all
happened for larger a (0.5 or 1).

Tables 2 and 3 respectively report relative Monte Carlo MSE of m̃∗ and m̂∗ to m̃ and were
designed to facilitate comparison between differing strengths of serial dependence. In Table 2,
greater serial dependence often leads to (sometimes significant) improvement in the performance of
m̃∗ relative to m̃, in fact, the MSE ratio for m̃∗ is smaller when ρ = 0.8 compared to ρ = 0 in every
case. Indeed for a = 0.5 and 1 there is monotone improvement in relative performance of m̃∗ with
increase in ρ. In Table 3, similar patterns to those of Table 2 are seen.

11



Table 1: Monte Carlo MSE
N=5 T=100 N=10 T=500

ρ z a M̂SEm̃ M̂SEm̃∗ M̂SEm̂∗ M̂SEm̃ M̂SEm̃∗ M̂SEm̂∗

0 0.25 0.1 0.4092 0.0107 0.1398 0.0758 0.0014 0.0172
0.5 0.1117 0.0141 0.0131 0.0359 0.0126 0.0152
1 0.1129 0.0246 0.0147 0.0431 0.0234 0.0251

0.5 0.1 0.2817 0.0062 0.0523 0.0659 0.0008 0.0103
0.5 0.0991 0.0022 0.0111 0.0228 0.0004 0.0036
1 0.095 0.0021 0.0107 0.0219 0.0004 0.0038

0.75 0.1 0.5918 0.011 0.1274 0.1236 0.0014 0.0206
0.5 0.1416 0.0157 0.0235 0.0421 0.0134 0.0103
1 0.123 0.0246 0.0326 0.0455 0.0223 0.0166

0.2 0.25 0.1 0.4344 0.0115 0.1526 0.0851 0.0015 0.018
0.5 0.1541 0.0151 0.0145 0.0456 0.0128 0.0155
1 0.1582 0.0256 0.0167 0.0537 0.0236 0.0254

0.5 0.1 0.3108 0.007 0.0522 0.0802 0.001 0.0106
0.5 0.145 0.0031 0.0128 0.0336 0.0005 0.004
1 0.1417 0.0031 0.0125 0.0326 0.0006 0.0041

0.75 0.1 0.6228 0.0114 0.1538 0.1436 0.0015 0.0214
0.5 0.1899 0.0166 0.0247 0.0544 0.0135 0.0106
1 0.1713 0.0256 0.0342 0.0567 0.0225 0.0169

0.5 0.25 0.1 0.5717 0.0157 0.2047 0.1261 0.0021 0.025
0.5 0.2836 0.0181 0.0223 0.0747 0.0132 0.0176
1 0.2953 0.0285 0.0245 0.0851 0.0241 0.0278

0.5 0.1 0.4658 0.01 0.0701 0.1109 0.0014 0.013
0.5 0.2868 0.0061 0.0203 0.0653 0.0009 0.006
1 0.2812 0.0061 0.0202 0.0648 0.001 0.0061

0.75 0.1 0.8636 0.0164 0.2183 0.2013 0.0021 0.0276
0.5 0.3462 0.0198 0.0332 0.0914 0.014 0.0125
1 0.3139 0.0286 0.0416 0.0895 0.0229 0.0186

0.8 0.25 0.1 1.3983 0.0321 0.829 0.2814 0.0046 0.0664
0.5 0.8153 0.0295 0.0561 0.1935 0.0151 0.0285
1 0.8284 0.0398 0.056 0.2097 0.0259 0.0387

0.5 0.1 1.0854 0.0231 0.1601 0.2623 0.0032 0.0288
0.5 0.8281 0.0172 0.0523 0.192 0.0026 0.0163
1 0.8193 0.0173 0.0515 0.1915 0.0027 0.0163

0.75 0.1 1.9009 0.0344 0.7075 0.4748 0.0045 0.0709
0.5 0.9368 0.0321 0.0666 0.2372 0.0158 0.0225
1 0.8578 0.0401 0.0727 0.2184 0.0247 0.0281
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Table 2: Relative MSE: MSE(m̃∗(z))/MSE(m̃(z))

N = 5, T = 100

z a\ρ 0 0.2 0.5 0.8
0.25 0.1 0.0261 0.0265 0.0275 0.023

0.5 0.1262 0.098 0.0638 0.0362
1 0.2179 0.1618 0.0965 0.048

0.5 0.1 0.022 0.0225 0.0215 0.0213
0.5 0.0222 0.0214 0.0213 0.0208
1 0.0221 0.0219 0.0217 0.0211

0.75 0.1 0.0186 0.0183 0.019 0.0181
0.5 0.1109 0.0874 0.0572 0.0343
1 0.2 0.1494 0.0911 0.0467

N = 10, T = 500

z a\ρ 0 0.2 0.5 0.8
0.25 0.1 0.0185 0.0176 0.0167 0.0163

0.5 0.351 0.2807 0.1767 0.078
1 0.5429 0.4395 0.2832 0.1235

0.5 0.1 0.0121 0.0125 0.0126 0.0122
0.5 0.0175 0.0149 0.0138 0.0135
1 0.0183 0.0184 0.0154 0.0141

0.75 0.1 0.0113 0.0104 0.0104 0.0095
0.5 0.3183 0.2482 0.1532 0.0666
1 0.4901 0.3968 0.2559 0.1131
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Table 3: Relative MSE: MSE(m̂∗(z))/MSE(m̃(z))

N = 5, T = 100

z a\ρ 0 0.2 0.5 0.8
0.25 0.1 0.3416 0.3513 0.3581 0.5929

0.5 0.1173 0.0941 0.0786 0.0688
1 0.1302 0.1056 0.083 0.0676

0.5 0.1 0.1857 0.168 0.1504 0.1475
0.5 0.112 0.0883 0.0708 0.0632
1 0.1126 0.0882 0.0718 0.0629

0.75 0.1 0.2153 0.2469 0.2528 0.3722
0.5 0.166 0.1301 0.0959 0.0711
1 0.2650 0.1997 0.1325 0.0848

N = 10, T = 500

z a\ρ 0 0.2 0.5 0.8
0.25 0.1 0.2269 0.2115 0.1983 0.236

0.5 0.4234 0.3399 0.2356 0.1473
1 0.5824 0.473 0.3267 0.1845

0.5 0.1 0.1563 0.1322 0.1172 0.1098
0.5 0.1579 0.119 0.0919 0.0849
1 0.1735 0.1258 0.0941 0.0851

0.75 0.1 0.1667 0.149 0.1371 0.1493
0.5 0.2447 0.1949 0.1368 0.0949
1 0.3648 0.2981 0.2078 0.1287
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Appendix A. Proofs of Theorems 7-9

Proof of Theorem 7. Writing Lt = L((Zt − z) /h), f̃(z) = (Thq)
−1∑T

t=1 Lt,

ω̂ij(z)− ωij(z) = (Thq)
−1

T∑
t=1

Lt{ÛitÛjt − ωij(z)}/f̃(z) := R
(1)
ij +R

(2)
ij , (14)

where

R
(1)
ij =

T∑
t=1

Lt{UitUjt − ωij(z)}/f̃(z), R
(2)
ij =

T∑
t=1

Lt{ÛitÛjt − UitUjt}/f̃(z).

Under Assumptions 13, 15 and 16, it can be shown that R(1)ij = Op

(
(Thq)

−1/2
+ hp

)
, R

(1)
ij being

the estimation error of the NW estimate of E(UitUjt|Zt = z) = ωij(z). Next, we show that R
(2)
ij =

Op (RTh). Denote di = ŪAA − ŪiA and et = m(Zt)− m̃(Zt), so Ûit = Uit + di + et and thence

ÛitÛjt − UitUjt = (di + et)(dj + et) + Uit(dj + et) + Ujt(di + et), (15)

R
(2)
ij = (Thq)

−1
T∑
t=1

Lt{(di + et)(dj + et) + Uit(dj + et) + Ujt(di + et)}/f̃(z) (16)

Now f̃(z) = f(z) + op(1) from Assumptions 3, 4, 13, 14 and 17 (ii), so

1

f̃(z)
=

1

f(z) + op(1)
= Op(1). (17)

We look next at the following terms in the numerator of (16):

(Thq)
−1

T∑
t=1

Lt{didj + Uitdj + Ujtdi}. (18)

From the implied weak correlation across t of Uit and V ar(ŪAt) ≤ C implied by Assumption 9′,

di =
1

NT

T∑
t=1

N∑
i=1

Uit −
1

T

T∑
t=1

Uit =
1

T

T∑
t=1

ŪAt −
1

T

T∑
t=1

Uit = Op(T
−1/2).

Therefore, the contribution of the first term in braces in (18) is

didj
1

Thq

T∑
t=1

Lt = Op
(
T−1

)
f̃(z) = Op

(
T−1

)
.

The other contributions to (18) are both of form

dj
1

Thq

T∑
t=1

LtUit = Op

(
T−1/2

)
×Op

(
(Thq)

−1/2
)

= Op

(
T−1h−q/2

)
,

because
∑T
t=1 LtUit/ (Thq) consistently estimates E(Uit|Zt = z) = 0, with zero bias and the usual

variance. Thus, R(2)ij = Op (RTh). The remaining terms in the numerator of (16), are

(Thq)
−1

T∑
t=1

Lt{e2t + Uitet + Ujtet + diet + djet}. (19)

Consider

(Thq)
−1

T∑
t=1

Lt{ẽ2t + Uitẽt + Ujtẽt + diẽt + dj ẽt}, (20)
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introducing the leave-one-out counterpart of et, namely ẽt = (lt − nt)/f̃t, with f̃t = f̃(Zt),

lt = (Thq)
−1

T∑
s=1,s6=t

Kst{m(Zt)−m(Zs)}, nt = (Thq)
−1

T∑
s=1,s6=t

KstŪAs,

for Kst = K ((Zs − Zt) /h) . Now (20) is bounded by AT +BT + CT +DT +O(T−1/2){ ET + FT },
where

AT =
C

Thq

T∑
t=1

|Lt|
n2t

f̃2t
, BT =

C

Thq

T∑
t=1

|Lt|
l2t

f̃2t
, CT =

∣∣∣∣∣ CThq
T∑
t=1

LtUit
lt

f̃t

∣∣∣∣∣ ,
DT =

∣∣∣∣∣ CThq
T∑
t=1

LtUit
nt

f̃t

∣∣∣∣∣ , ET =

∣∣∣∣∣ CThq
T∑
t=1

Lt
nt

f̃t

∣∣∣∣∣ , FT =

∣∣∣∣∣ CThq
T∑
t=1

Lt
lt

f̃t

∣∣∣∣∣ .
Bounds for these quantities will be obtained below. First we consider the asymptotic equivalence
between (19) and (20) .

We have

et − ẽt = (Thq)
−1
Ktt{m(Zt)−m(Zt)}+ (Thq)

−1
KttŪAt = (Thq)

−1
K(0)ŪAt.

We need to show negligibility of

(Thq)
−1

T∑
t=1

Lt{(e2t − ẽ2t ) + Uit(et − ẽt) + Ujt(et − ẽt) + di(et − ẽt) + dj(et − ẽt)}.

First, ∣∣∣∣∣ 1

Thq

T∑
t=1

Lt{Uit(et − ẽt) + di(et − ẽt)}
∣∣∣∣∣ ≤ C

(Thq)2

∣∣∣∣∣
T∑
t=1

LtUitŪAt

∣∣∣∣∣+
C

(Thq)2
di

∣∣∣∣∣
T∑
t=1

LtŪAt

∣∣∣∣∣
= Op

(
(Thq)

−1 (
hp + (Thq)

−1/2 ))
+Op

(
(Thq)

−1
T−1/2 (Thq)

−1/2
)

= op(RTh),

noting that (Thq)
−1

T∑
t=1

LtUitŪAt is the NW estimate of E(UitŪAt|Zt = z) =

N∑
j=1

ωij(z)/N, with

bias O (hp) in view of Assumptions 15 and 16, and variance O
(
(Thq)−1

)
, while (Thq)

−1
T∑
t=1

LtŪAt

is the NW estimate of E(ŪAt|Zt = z) = 0, with zero bias and variance O
(
(Thq)−1

)
.

Next,

(Thq)
−1

T∑
t=1

Lt(e
2
t − ẽ2t ) = (Thq)

−1
T∑
t=1

Lt(et − ẽt)(2ẽt + (et − ẽt))

= (Thq)
−1
K(0)

[
2

T∑
t=1

LtẽtŪAt − (Thq)
−1
K(0)

T∑
t=1

LtŪ
2
At

]
. (21)

The second term is

(Thq)
−2
K(0)

T∑
t=1

LtŪ
2
At = (Thq)

−1
K(0)Op

(
hp + (Thq)

−/2
)

= op(RTh),

noting that the MSE of the NW estimate (Thq)
−1∑T

t=1 LtŪ
2
At of E(Ū2At|Zt = z) =

∑N
i,j=1 ωij(z)/N

2

is O(h2p+(Thq)−1) in view of Assumptions 13, 15 and 16. The first term of (21) satisfies the same
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upper bound as CT + DT noting the similarity of (Thq)
−1∑T

t=1 LtẽtŪAt to (Thq)
−1∑T

t=1 LtẽtUit.
To bound CT and DT , Assumption 9′, is repeatedly used. The same proof, and therefore the same
upper bound, applies to the first term of (21) by replacing Uit with ŪAt and using E|ŪAt|p <∞ for
all even p ≥ 2 from Assumption 9′.

To complete the proof of Theorem 7 we need to show that

AT +BT + CT +DT ≤ CRTh, (22)

ET + FT ≤ CT 1/2RTh. (23)

The quantities AT , · · · , FT can be decomposed into two types of terms. Write

1

f̃t
=

1

ft
+

(ft − f̃t)
f̃tft

. (24)

The first type of term in the decompositions of AT , · · · , FT involves 1/ft and takes the form of
a U-statistic; bounding them is complicated by serial dependence in Zt and Uit. These terms
will be analyzed using Lemma 6, which bounds the difference between such U-statistics and their
counterparts under independence. Bounding the first type of term, first, the asymptotic order of the
expectation of the U-statistic kernel under the corresponding independent process will be derived
and, secondly, the remainder terms evaluated, applying Lemma 6. The second type of term involves
(ft− f̃t)/f̃tft, and to analyze these we use a uniform rate of convergence result, in particular, Hansen
(2008): under Assumptions 4, 8 (ii), 13 (ii), 14 and 17 (ii),

sup
z∈Rq

∣∣∣f̃(z)− f(z)
∣∣∣ = Op

((
log T (Thq)

−1
)1/2

+ hs
)
, (25)

where s was defined in Assumption 4. Note for later use that Assumption 17 (ii) implies

Thq+ε0 →∞ for some small ε0 > 0. (26)

In the rest of the proof, we denote

γ =
2 + ε

θ
, for arbitrarily small ε ∈ (0, ε0/3) , (27)

where θ is in Assumption 13 (i).

Upper bound on AT . We show that for some ε > 0,

AT = O(r1T ), where r1T = (Thq)
−3
(
T 2h2q−ε + T 2h3q(1−γ)−ε

)
, (28)

which implies (22) for AT . We first write, using (24),

AT ≤ C

Thq

T∑
t=1

|Lt|
n2t
f2t

+
C

Thq

T∑
t=1

|Lt|n2t
(f2t − f̃2t

f2t f̃
2
t

)
≤ CA′T + C max

t:Lt 6=0

∣∣∣∣∣f2t − f̃2tf2t f̃
2
t

∣∣∣∣∣A′′T , (29)

where

A′T =
1

Thq

T∑
t=1

|Lt|
n2t
f2t
, A′′T =

C

Thq

T∑
t=1

|Lt|n2t .
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We can consider max
t:Lt 6=0

∣∣∣(f2t − f̃2t )/(f2t f̃
2
t )
∣∣∣ because any t with corresponding (Zt−z)/h falling outside

the bounded support of L is assigned zero weight. We show that

EA′T = O(r1T ), (30)

EA′′T = O(r1T ), (31)

max
t:Lt 6=0

∣∣∣∣∣f2t − f̃2tf2t f̃
2
t

∣∣∣∣∣ = Op

((
log T (Thq)

−1
)1/2

+ hs
)

= op(1), (32)

which implies (28).

To bound A′T , let
∑
t1,··· ,tk

′ denote summation over non-overlapping indices (t1, · · · , tk) for k ≥ 2,

whence

E(A′T ) = (Thq)
−3
E
( T∑
t1,t2=1

′
|Lt1 |
f2t1

Ū2At2K
2
t1t2

)
(33)

+ (Thq)
−3
E
( T∑
t1,t2,t3=1

′
|Lt1 |
f2t1

ŪAt2ŪAt3Kt1t2Kt1t3

)
(34)

= (Thq)
−3

(A1T +A2T ). (35)

To prove (30), it remains to show that for i = 1, 2,

AiT ≤ Cr1T . (36)

Noting that A1T and A2T are expectations of second and third order U-statistics, we can apply
Lemma 6 (i) and (ii). Denote Wt = WtT = (Z ′t, U1t, · · · , UNt)′, where N = NT may increase with
T . Let {W̃t} denote an i.i.d. process with the same marginal distribution (for a single t) as Wt, and
independent of {Wt}.

To prove (36) for i = 1, note that A1T is a second order U-statistic with kernel

φT (Wt,Ws) = |Lt|f−2t Ū2AtK
2
ts.

By Lemma 6 (i),

|A1T | = |
∑
t,s

′
EφT (Wt,Ws)| ≤ T (T − 1)|EφT (W̃1, W̃2)|+ CTM1−γ

T2 . (37)

Denote expectation under a serially independent process by E∗. Trivially,

E(φT (W̃t, W̃s)) = E∗
(
|Lt|f−2t Ū2AsK

2
ts

)
= E∗

(
|Lt|f−2t E∗

(
Ū2AsK

2
ts|Zt

))
.

By Holder’s inequality with p, r > 1 and p−1 + r−1 = 1,

E∗
(
Ū2AsK

2
ts|Zt

)
≤
[
E∗
(
|ŪAs|2p|Zt

)] 1
p
[
E∗
(
|Kts|2r|Zt

)] 1
r =

[
E
(
|ŪAs|2p

)] 1
p
[
E∗
(
|Kts|2r|Zt

)] 1
r ,

where the last step holds because of the supposed independence between ŪAs and Zt. Assumption 9′

yields E(|ŪAs|2p) <∞ for arbitrarily large p, so we can choose r = 1+ς for an arbitrarily small ς > 0.
Since Assumption 14 implies

∫
|k(u)|2rdu <∞, we have E∗

(
|Kts|2r|Zt = z

)
= O(hq) uniformly in z

by Lemma 1. Therefore, E∗
(
Ū2AsK

2
ts|Zt = z

)
= O

(
h

q
1+ς

)
= O

(
hq−qς/(1+ς)

)
uniformly in z. Hence

E(φT (W̃t, W̃s)) ≤ Chq−
qς
1+ςE

(
f−2t |Lt|

)
= O

(
h2q−

qς
1+ς

)
, (38)
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where the last step follows by Lemma 3, and ε = qς (1 + ς)
−1 is arbitrarily small positive, given

ς > 0 can be set arbitrarily small.

Next define
MT2 = max

1≤s<t≤T

(
E|φ̃T (Ws,Wt)|

1
1−γ + E|φ̃T (W̃sW̃t)|

1
1−γ

)
,

where φ̃T (Ws,Wt) = φT (Ws,Wt) + φT (Wt,Ws), and these and other subscripted M quantities are
expressed in somewhat different form in Appendix B. We have

E|φT (Wt,Ws)|
1

1−γ = E
(∣∣f−2t LtŪ

2
AsK

2
ts

∣∣ 1
1−γ
)
≤
(
E
∣∣Ūs∣∣ 2p

1−γ
) 1
p

(
E
∣∣f−2t LtK

2
ts

∣∣ r
1−γ
) 1
r

= O
(
h2q−

2qς
1+ς

)
,

where the last step follows using Lemma 4 (i) and choosing r = 1 + ς for arbitrarily small ς > 0.
Similarly,

E|φT (Ws,Wt)|
1

1−γ = O
(
h2q−

2qς
1+ς

)
,

E|φT (W̃s, W̃t)|
1

1−γ = E∗(|f−2t LtŪ
2
AsK

2
ts|

1
1−γ ) =

(
h2q−

2qς
1+ς

)
.

This gives M1−γ
T2 ≤ Ch2q(1−γ)−

2q(1−γ)ς
1+ς = O(h2q(1−γ)−ε), where ε = 2q(1 − γ)ς/(1 + ς) > 0 is

arbitrarily small.

Hence, the above upper bound on M1−γ
T2 , together with (37) and (38) implies (36) for i = 1.

From (37),

A1T = O
(
T 2h2q−ε

)
+O

(
Th2q(1−γ)−ε

)
.

For the latter rate, we have

Th2q(1−γ)−ε = T 2h3q(1−γ)−ε(Thq(1−γ))−1 = O(T 2h3q(1−γ)−ε),

where the last step holds by Assumption 17 (ii), which implies Thq →∞.

To prove (36) for i = 2, note that the U-statistic kernel function of A2T is

φT (Wt,Ws,Wr) = f−2t |Lt| ŪAsŪArKtsKtr.

The proof structure follows that for A1T . By Lemma 6 (ii),

|A2T | ≤ T 3|EφT (W̃1, W̃2, W̃3)|+ C(T 2M1−γ
T12 + TM1−γ

T3 ). (39)

The expectation under independence is

E[φT (W̃t, W̃s, W̃r)] = E∗
(
f−2t |Lt|E∗(ŪAsKts|Zt)E∗(ŪArKtr|Zt)

)
= 0,

because by Assumption 2, E∗(ŪAsKts|Zt) = E∗[KtsE
∗(ŪAs|Zs)|Zt] = E∗[Kts · 0|Zt] = 0. Next, will

use Lemma 6 (ii) to bound MT3 and MT12. We show that

MT12 = max
1≤s<t≤T

(E|φ̃T (W̃t, W̃s,Wr)|
1

1−γ + E|φ̃T (W̃t, W̃s, W̃r)|
1

1−γ ) = O(h3q−
3qς
1+ς ), (40)

MT3 = max
1≤s<t≤T

(E|φ̃T (W̃t,Ws,Wr)|
1

1−γ + E|φ̃T (W̃t, W̃s,Wr)|
1

1−γ ) = O(h2q−
2qς
1+ς ), (41)

which with (39) imply A2T ≤ CT 2h3q(1−γ)−ε+CTh2q(1−γ)−ε ≤ CT 2h3q(1−γ)−ε because Thq(1−γ) →
∞ by Assumption 17 (ii). This proves (36) for i = 2.
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To prove (40), we need to isolate cases when the variables that enter φT fall in either two or
three independent subsets. The methods and conditions used to derive the upper bounds apply
uniformly over 1 ≤ r, s, t,≤ T so the max operator is redundant: we are concerned only with how
the arguments Wr,Ws,Wt are divided into independent subsets. For the case of two independent
subsets, the symmetry between Ws and Wr in φT means that it suffi ces to consider two distinct
cases, namely {W̃t,Ws,Wr} and {W̃r,Wt,Ws}.

For {W̃t,Ws,Wr}, we show that

E|φT (W̃t,Ws,Wr)|
1

1−γ = Et,sr

(∣∣f−2t Lt
∣∣ 1
1−γ Et,sr

(∣∣ŪAsŪArKtsKtr

∣∣ 1
1−γ |Zt

))
= O

(
h3q−

2qς
1+ς

)
,

(42)
where Et,sr denotes expectation taken under {W̃t,Ws,Wr}. To show (42), note that for p, w > 1,
p−1 + w−1 = 1,

Et,sr

(∣∣ŪAsŪArKtsKtr

∣∣ 1
1−γ |Zt = z

)
≤
[
Et,sr

(∣∣ŪAsŪAr∣∣ p
1−γ |Zt = z

)] 1
p
[
Et,sr

(
|KtsKtr|

w
1−γ |Zt = z

)] 1
w

=

[
Et,sr

(∣∣ŪAsŪAr∣∣ p
1−γ
)] 1

p
[
Et,sr

(
|KtsKtr|

w
1−γ |Zt = z

)] 1
w

,

by the presumed independence between {ŪAs, ŪAr} and Zt. By the Schwarz inequality and Assump-
tion 9′,

Et,sr

(∣∣ŪAsŪAr∣∣ p
1−γ
)
≤
[
E
(∣∣ŪAs∣∣ 2p

1−γ
)
E
(∣∣ŪAr∣∣ 2p

1−γ
)]1/2

≤ C <∞

for arbitrarily large p > 1. We set w = 1 + ς for arbitrarily small ς > 0. Now,

Et,sr

(
|KtsKtr|

w
1−γ |Zt = z

)
≤ sup

v,y
f|r−s|(v, y)

∫
|K
(v − z

h

)
|
w

1−γ dv

×
∫
|K
(y − z

h

)
|
w

1−γ dy = O(h2q)

uniformly in z by Lemma 1. The above estimates together with Lemma 3 imply the bound (42):

Et,sr

(∣∣f−2t Lt
∣∣ 1
1−γ Et,sr

(∣∣ŪAsŪArKtsKtr

∣∣ 1
1−γ |Zt

))
= E

(∣∣f−2t Lt
∣∣ 1
1−γ
)
O(h

2q
(1+ς) )

= O
(
hq × h

2q
(1+ς)

)
= O

(
h3q−

2qς
(1+ς)

)
.

The contribution for {W̃r,Wt,Ws} in MT12 is bounded by

Ets,r|φT (Wt,Ws, W̃r)|
1

1−γ =
(
Ets,r

∣∣f−2t LtŪAsKts

∣∣ 1
1−γ Ets,r

(∣∣ŪArKtr

∣∣1−γ |Zt))
= O

(
h

3q
1+ς

)
, (43)

applying Holder’s inequality:

Ets,r

(∣∣ŪArKtr

∣∣1−γ |Zt = z
)
≤ Ets,r

(∣∣ŪAr∣∣ p
1−γ
) 1
p

Ets,r

(
|Ktr|

w
1−γ |Zt = z

) 1
w

= O(h
q

1+ς ),

where we note that, by Lemma 1, E
(
|Ktr|

w
1−γ |Zt = z

)
= O(hq) uniformly over z, with w = 1 + ς.

Now, since Ws and Wt are dependent,

Ets,r

(∣∣f−2t LtŪAsKts

∣∣ 1
1−γ
)
≤ C

[
Ets,r

(∣∣ŪAs∣∣ p
1−γ
)] 1

p
[
Ets,r

(∣∣f−2t LtKts

∣∣ w
1−γ
)] 1

w

= O
(
h

2q
1+ς

)
,
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again with w = 1 + ς, and completes the proof of (40). The contribution to MT12 for (W̃t, W̃s, W̃r)

is no greater than that of the two cases presented above, since the steps to get to the upper bounds
in the cases of {W̃t,Ws,Wr} and {W̃r,Wt,Ws} apply to that of (W̃t, W̃s, W̃r).

To prove (41) , under dependence between all three time points

E
(∣∣f−2t LtŪAsKtsŪArKtr

∣∣ 1
1−γ
)
≤ C

[
E
(∣∣ŪAs∣∣ 2p

1−γ
)] 1

p
[
E
(∣∣f−2t LtKtr

∣∣ w
1−γ
)] 1

w

= O
(
h

2q
1+ς

)
with w = 1 + ς, for an arbitrarily small ς > 0 and Assumption 9′ yielding E

(∣∣ŪAs∣∣ 2p
1−γ
)
<∞, and

Lemma 4 (i). This rate dominates those of the contributions from (W̃t,Ws,Wr) and (Wt,Ws, W̃r)

presented above and proves (41), and completes the proof of (30).

To prove (31), note that A′′T differs from A′T only in lacking the factor f
−2
t in its summand, so

clearly EA′′T has the same bound as EA
′
T .

To prove (32), note first that since f(z) > 0, l = 1, 2, · · · , d, for T large enough there exists c > 0

such that min
t:Lt 6=0

f(Zt) ≥ c, due to the bounded support of L, continuity of f, and h→ 0. Now

max
t:Lt 6=0

∣∣∣∣∣f2t − f̃2tf2t f̃
2
t

∣∣∣∣∣ ≤ max
t:Lt 6=0

∣∣∣f2t − f̃2t ∣∣∣ max
t:Lt 6=0

∣∣f−2t ∣∣ max
t:Lt 6=0

∣∣∣f̃−2t ∣∣∣ .
The second factor is Op(1), while

max
t:Lt 6=0

∣∣∣f2t − f̃2t ∣∣∣ = max
t:Lt 6=0

∣∣∣(ft − f̃t)2 + 2f̃t(ft − f̃t)
∣∣∣

≤
[

max
t:Lt 6=0

∣∣∣ft − f̃t∣∣∣]2 + 2 max
t:Lt 6=0

|ft| max
t:Lt 6=0

|ft − f̃t| = Op

((
log T

Thq

)1/2
+ hs

)
= op(1),

since by (25),

max
t:Lt 6=0

∣∣∣ft − f̃t∣∣∣ ≤ sup
∣∣∣f(z)− f̃(z)

∣∣∣ = Op

((
log T

Thq

)1/2
+ hs

)
,

and

max
t:Lt 6=0

∣∣∣f̃−2t ∣∣∣ =

(
min
t:Lt 6=0

|f̃2t |
)−1

= Op(1),

because min
t:Lt 6=0

|f̃2t | ≥ min
t:Lt 6=0

|f2t | − max
t:Lt 6=0

|f̃2t − f2t | = min
t:Lt 6=0

|ft| + op(1) ≥ c + op(1). Thus (32) is

proved.

Upper bound on BT . We show that

BT = Op(r2T ), where r2T = (Thq)
−3
(
T 3h3q+2s + T 2h2q+2 + T 2h3q(1−γ)+2

)
, (44)

which also implies (22) for BT . We have

BT ≤ B′T + max
t:Lt 6=0

∣∣∣∣∣f2t − f̃2tf2t f̃
2
t

∣∣∣∣∣B′′T = B′T +Op(1)B′′T ,

by (32) and where

B′T =
1

Thq

T∑
t=1

|Lt|
l2t
f2t
, B′′T =

1

Thq

T∑
t=1

|Lt|l2t .
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It suffi ces to show that EB′T = O(r2T ), EB′′T = O(r2T ). We have E(B′T ) = (Thq)
−3

(B1T +

B2T ), where

B1T = E
( T∑
t1,t2=1

′
|Lt1 |
f2t1
{mt1 −mt2)}2K2

t1t2

)
,

B2T = E
( T∑
t1,t2,t3=1

′
|Lt1 |
f2t1
{mt1 −mt2}Kt1t2{mt1 −mt3}Kt1t3

)
,

writing mt = m(Zt). We show that

B1T = O
(
T 2h2q+2 + Th2q(1−γ)+2

)
, (45)

B2T = O
(
T 3h2q+2s + T 2h3q(1−γ)+2

)
. (46)

Now B1T is the expectation of a second order U-statistic with kernel φT (Wt,Ws) = f−2t |Lt|{mt −
ms}2K2

ts. By Lemma 6 (i),

B1T ≤ CT 2|EφT (W̃t, W̃s)|+ CTM1−γ
T2 .

Thus to prove (45), we show that

|EφT (W̃t, W̃s)| ≤ Ch2q+2, MT2 ≤ Ch2q+
2

1−γ .

Under independence,

E(φT (W̃t, W̃s)) = E∗
(
f−2t |Lt|{mt −ms}2K2

ts

)
= E∗

(
f−2t |Lt|E∗

(
(mt −ms)

2K2
ts|Zt

))
= O(h2q+2),

by Lemmas 2 and 3, while, similarly to A1T ,

M2T ≤ E
(∣∣f−2t Lt

∣∣ 1
1−γ |(mt −ms)Kts|

2
1−γ
)

+E∗
(∣∣f−2t Lt

∣∣ 1
1−γ |(mt −ms)Kts|

2
1−γ
)

= O
(
h2q+

2
1−γ

)
,

by Lemma 4 (iii), as desired, proving(45) .

To prove (46) we show

B2T = O
(
T 3h3q+2s + T 2h3q(1−γ)+2 + Th2q(1−γ)+2

)
, (47)

which is O
(
T 3h3q+2s + T 2h3q(1−γ)+2

)
as desired because of Assumptions 17 (ii). Note that B2T is

a third order U-statistic with kernel

φT (Wt,Ws,Wr) = f−2t |Lt|(mt −ms)Kts(mt −mr)Ktr. (48)

By Lemma 6 (ii),

|B2T | ≤ T 3|E(φT (W̃t, W̃s, W̃r)|+ C(T 2M1−γ
T12 + TM1−γ

T3 ).

To prove (47), we show

|E(φT (W̃t, W̃s, W̃r)| ≤ Ch2q+2s, (49)

MT12 ≤ Ch3q+
2

1−γ , (50)

MT3 ≤ Ch2q+
2

1−γ . (51)
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We have

|E(φT (W̃t, W̃s, W̃r)| = |E∗
(
f−2t |Lt|(mt −ms)Kts(mt −mr)Ktr

)
|

≤ E∗
(
f−2t |Lt|

∣∣E∗({mt −ms)Kts

∣∣Zt)∣∣ |E∗((mt −mr)Ktr|Zt)
∣∣)

≤ Ch2(q+s)E∗
(
f−2t |Lt|

)
= O

(
h3q+2s

)
,

by Lemma 2 (i) and Lemma 3, to prove (49). The bound (50) follows like that of A2T above. To
prove (51) , due to the symmetry between Ws and Wr in (48), it suffi ces to consider two distinct
cases when there are two independent subsets. For (Ws,Wr, W̃t),

Esr,t

[∣∣f−2t Lt
∣∣ 1
1−γ Esr,t

(
|(mt −ms)Kts(mt −mr)Ktr|

1
1−γ

∣∣Zt)]
≤ Ch2q+

2
1−γE

[∣∣f−2t Lt
∣∣ 1
1−γ
]

= O
(
h3q+

2
1−γ

)
,

because uniformly over z, under Assumption 4 and by Lemma 1

Esr,t

(
|(mt −ms)Kts(mt −mr)Ktr|

1
1−γ

∣∣Zt)
≤ sup

w,y
f|s−t|(w, y)

∫
|{m(z)−m(w)}K

(z − w
h

)
|

1
1−γ dw∫

|{m(z)−m(y)}K
(z − y

h

)
|

1
1−γ dy

≤ C
[∫
‖y‖

1
1−γK(y)dy

]2
=O

(
h2q+

2
1−γ

)
.

For (Wt,Wr, W̃s),

Etr,s

[∣∣f−2t Lt(mt −mr)Ktr

∣∣ 1
1−γ Etr,s

(
|(mt −ms)Kts|

1
1−γ

∣∣Zt)]
≤ Chq+

1
1−γEtr,s

(∣∣f−2t Lt(mt −mr)Ktr

∣∣ 1
1−γ
)

= O
(
h3q+

2
1−γ

)
,

by Lemma 2 and then applying Lemma 4 (iii). The same bound follows in the case of (W̃r, W̃s, W̃t),

by the same steps. Under dependence across all three time periods,

MT3 = E
[∣∣f−2t Lt(mt −mr)Ktr(mt −ms)Kts

∣∣ 1
1−γ
]

≤
[
E
∣∣f−2t Lt(mt −mr)Ktr

∣∣ 2
1−γ
]1/2 [

E
∣∣f−2t Lt(mt −ms)Kts

∣∣ 2
1−γ
]1/2

,

which is O
(
h2q+

2
1−γ

)
by Lemma 4 (iii), which yields (51) and completes the proof of (46). Finally,

EB′′T = O(r2T ) follows in the same way as EB′T , in view of the similarity of B
′′
T to B

′
T . Thus (44)

is proved.

Upper bound on CT . From (24), CT ≤ C ′T + C ′′T , where

C ′T=

∣∣∣∣∣ 1

Thq

T∑
t=1

LtUit
lt
ft

∣∣∣∣∣ , C ′′T =

∣∣∣∣∣ 1

Thq

T∑
t=1

LtUitlt
ft − f̃t
f̃tft

∣∣∣∣∣ .
We shall show that

C ′T = Op(r3T ), where r3T = (Thq)
−2
(
T 3h3q+2−ε + T 3h4q(1−γ)+2−ε + T 2h2q(1−γ)+2−ε

)1/2
,(52)

C ′′T = Op(r2T + h2s−ε +
(
Thq+ε

)−1
log T ), (53)
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implying (22) for CT .

We first prove (53), noting that

C ′′T ≤ 1

Thq

T∑
t=1

|Lt|{|Uit
ft − f̃t
ft
|2 + (

lt

f̃t
)2}

≤ max
t:Lt 6=0

|ft − f̃t
ft
|2( 1

Thq

T∑
t=1

|Lt|U2it)+BT . (54)

By (44), BT = Op(r2T ). The first term in (54) is O
(
h−qς/(1+ς)

)
= O(h−ε) for some small ε =

qς/(1 + ς) > 0 with arbitrarily small ς > 0, because, by Lemma 3,

E[|Lt|U2it] ≤ (E|Lt|w)1/w(E|Uit|2p)1/p ≤ Ch
q

1+ς = Chq−
qς
1+ς ,

where we set w = 1 + ς for an arbitrarily small ς > 0 with E|Uit|2p <∞ by Assumption 9′. In view
of (32) the first term in (54) is Op( (Thq+ε)

−1
log T+h2s−ε), to prove (53).

To prove (52) it suffi ces to show that

E(C ′T )2 ≤ C
( 1

Thq
)4

(T 3h3q+2−ε + T 3h4q(1−γ)+2−ε + T 2h2q(1−γ)+2−ε). (55)

Write

E(C ′T )2 = (Thq)
−4

T∑
t1,t2=1

′ T∑
t3,t4=1

′

E

(
Lt1
ft1

Lt3
ft3

Uit1Uit3Kt1t2Kt3t4(mt1 −mt2)(mt3 −mt4)

)

= (Thq)
−4

T∑
t1,t2=1

′ T∑
t3,t4=1

′

{1I1E(· · · ) + 1I2E(· · · ) + 1I3E(· · · )} := (Thq)
−4

(C1T + C2T + C3T ) ,

where I1 ∪ I2 ∪ I3 = [1, · · · , T ]4 with

I1 = {(t1 = t3, t2 = t4), (t1 = t4, t2 = t3)},
I2 = {(t1 = t3, t2 6= t4), (t1 = t4, t2 6= t3), (t3 = t2, t1 6= t4), (t2 = t4, t1 6= t3)}
I3 = {(t1 6= t3, t2 6= t4)}.

We show that

C1T = O(T 2h2+2q−ε), (56)

C2T = O(T 3h2+3q−ε), (57)

C3T = O
(
T 3h4q(1−γ)+2−ε + T 2h2q(1−γ)+2−ε

)
, (58)

which proves (55).

To prove (56), note that

C1T ≤
T∑

t,s=1

E
(L2t
f2t
U2itK

2
ts(mt −ms)

2 +

∣∣∣∣Ltft Lsfs UitUis
∣∣∣∣K2

ts(mt −ms)
2
)

≤ 3

T∑
t,s=1

E
(L2t
f2t
U2itK

2
ts(mt −ms)

2
)
≤ CT 2h2+2q−ε,
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because by Holder’s inequality, setting r = 1 + ς with arbitrarily small ς > 0, and E|Uit|2p <∞ for
arbitrarily large p > 0 by Assumption 9′,

T∑
t,s=1

E
(
f−2t L2tU

2
itK

2
ts(mt −ms)

2
)
≤ C

(
E
∣∣f−1t LtKts(mt −ms)

∣∣2r)1/r(E |Uit|2p)1/p
≤ C(h2q+2r)1/r ≤ Ch

2q
r +2 ≤ Ch2+

2q
(1+ς) = O(h2q+2−ε),

by Lemma 4 (iii).

To prove (57), it suffi ces to show that

E
(
1I2E

∣∣f−1t1 f−1t3 Lt1Lt3Uit1Uit3Kt1t2Kt3t4(mt1 −mt2)(mt3 −mt4)
∣∣) ≤ Ch2+3q−ε. (59)

We need to check (59) in the following four cases.

Case 1, (t1 = t3, t2 6= t4). The expectation in (59)becomes

E
(
f−2t L2tU

2
it|KtsKtr(mt −ms)(mt −mr)|

)
≤
(
E
∣∣f−2t L2tKtsKtr(mt −ms)(mt −mr)

∣∣w)1/w(E |Uit|2p)1/p
≤ Ch

(3q+2w)
w = O(h2+3q−ε), (60)

selecting w = 1 + ς for arbitrarily small ε > 0, using Lemma 4 (iv) and Assumption 9′, and taking ε

∈
(

0, 3qς/ (1 + ς)
−1
)
.

Case 2, (t1 = t4, t2 6= t3). The expectation in (59) is

E
∣∣f−1t f−1s LtLsUitUisKtsKrt(mt −ms)(mt −mr)

∣∣.
From the inequality (ab)

2 ≤ a2 + b2, (59) follows similarly to (60).

Case 3, (t3 = t2, t1 6= t4). The argument is the same as in Case 2.

Case 4, (t2 = t4, t1 6= t3). The argument is the same as in Case 2.

To prove (58), note that C3T is the expectation of a fourth-order U-statistic, whose kernel is

φT (Wt,Ws,Wr,Wu) = f−1t f−1r LtLrUitUirKtsKru(mt −ms)(mr −mu).

By Lemma 6 (iii),

|C3T | ≤ T 4|EφT (W̃1, W̃2, W̃3, W̃4)|+ C(T 3M1−γ
T112 + T 2M1−γ

T13 + T 2M1−γ
T4 ).

Under independence,

EφT (W̃1, W̃2, W̃3, W̃4) = E∗
(
f−1t LtKts(mt −ms)E

∗(Uit|Zt, Zs)
)

×E∗
(
f−1r LrKru(mr −mu)E∗(Uir|Zr, Zu)

)
= 0,

by Assumption 2. We will show that

MT112 ≤ Ch4q+
2

1−γ−
4qς
1+ς = O(h4q+

2
1−γ−ε), (61)

MT13,MT4 ≤ Ch2q+
2

1−γ−
2ς
1+ς = O(h2q+

2
1−γ−ε), (62)

which proves (58).
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To prove (61), as noted in the proof of Lemma 6 (iii), MT112 is the maximal (1−γ)−1th moment
when partitioning the four time periods into either three or four independent subsets. There are
three distinct combinations of dependence to be considered in the case of three independent subsets.

For (Wr,Wu, W̃t, W̃s), one can separate out expectations,

Eru,t,s

[∣∣f−1t LtUit
∣∣ 1
1−γ Eru,t,s

(
|Kts(mt −ms)|

1
1−γ |Zt

)]
Eru,t,s

[∣∣f−1r LrUirKru(mr −mu)
∣∣ 1
1−γ
]

= O(hq+
1

1−γ × hq/w × h(2q+
w

1−γ )/w) = O
(
h4q+

2
1−γ−

3qς
1+ς

)
= O

(
h4q+

2
1−γ−ε

)
,

by Lemma 2 (ii), Lemma 3, and Holder’s inequality with Assumption 9′, where we set w = 1 + ς for
arbitrarily small ς > 0,

Eru,t,s[|Kts(mt −ms)|
1

1−γ |Zt] = O(hq+
1

1−γ ), (63)

E|f−1t LtUit|
1

1−γ ≤ (E|Uit|
p

1−γ )1/p(E|f−1t Lt|
w

1−γ )1/w = O(h
q
w ), (64)

and by Lemma 4 (iii),

Eru,t,s

[∣∣f−1r LrUirKru(mr −mu)
∣∣ 1
1−γ
]
≤ (E|Uir|

p
1−γ )1/p(Eru,t,s|f−1r LrKru{(mr −mu)}|

w
1−γ )1/w

= O(h(2q+
w

1−γ )
1
w ) = O(h

2q
w +

1
1−γ ).

For (Ws,Wu, W̃t, W̃r), the (1− γ)−1th moment of the kernel is

Esu,t,r{
∣∣f−1t f−1r LtLrUitUir

∣∣ 1
1−γ Esu,t,r

(
|Kts(mt −ms)Kru(mr −mu)|

1
1−γ |Zt, Zr

)
}

≤ Ch2q+
2

1−γ × h2q−ε = O
(
h4q+

2
1−γ−ε

)
, (65)

because the inner conditional expectation evaluated at Zt = z, Zr = u is bounded by

sup
w,y

f|u−s|(w, y)

(∫ ∣∣∣∣K (w − zh

)
{m(z)−m(w)}

∣∣∣∣ 1
1−γ
)2

= O(h2q+
2

1−γ )

uniformly over z and u due to Lemma 1, and, noting the independence between W̃t and W̃r, by (64),
while

Esu,t,r

(∣∣f−1t f−1r LtLrUitUir
∣∣ 1
1−γ
)

= E
(∣∣f−1t LtUit

∣∣ 1
1−γ
)
E
(∣∣f−1r LrUir

∣∣ 1
1−γ
)

= O(h
2q
w ) = O

(
h2q−

2qς
1+ς

)
= O

(
h2q−ε

)
.

For (Wt,Wr, W̃s, W̃u), by (63),

Etr,s,u{
∣∣f−1t f−1r LtLrUitUir

∣∣ 1
1−γ Etr,s,u

(
|Kts(mt −ms)|

1
1−γ |Zt

)
Etr,s,u

(
|Kru(mr −mu)|

1
1−γ |Zr

)
}

≤ Ch2(q+
1

1−γ )Etr,s,u
∣∣f−1t f−1r LtLrUitUir

∣∣ 1
1−γ = O

(
h

2q
1+ς × h2q+

2
1−γ−

2qς
1+ς

)
= O

(
h4q+

2
1−γ−ε

)
,

since by Lemma 4 (ii),

E
∣∣f−1t f−1r LtLrUitUir

∣∣ 1
1−γ ≤ (E|UitUir|

p
1−γ )1/p(E|f−1t f−1r LtLr|

w
1−γ )1/w = O(h

2q
w ) = O(h

2q
1+ς ),

(66)
setting w = 1 + ς for arbitrarily small ς > 0. This proves (61).
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For both MT13 and MT4, one finds the upper bound that holds for all relevant combinations of
dependence:

E
[∣∣f−1t f−1r LtLrUitUirKts(mt −ms)Kru(mr −mu)

∣∣ 1
1−γ
]

≤
(
E
∣∣f−1t LtUitKts(mt −ms)

∣∣ 2
1−γ E

∣∣f−1r LrUirKru(mr −mu)
∣∣ 2
1−γ
)1/2

≤ (E
∣∣f−1t LtUitKts(mt −ms)

∣∣ p
1−γ )1/2p(E |Uit|

2w
1−γ )1/w

×(E
∣∣∣∣f−1r LrUirKru(mr −mu)

∣∣∣∣ p
1−γ )

1/2p
(E |Ur|

2w
1−γ )1/w

= h2q+
2w
1−γ = O

(
h2q+

2
1−γ−

2ς
1+ς

)
,

by setting w = 1 + ς and Lemma 4 (iii), which proves (65).

Upper bound on DT . By (24), DT ≤ D′T +D′′T , where

D′T =

∣∣∣∣∣ 1

Thq

T∑
t=1

LtUit
nt
ft

∣∣∣∣∣ , D′′T =

∣∣∣∣∣ 1

Thq

T∑
t=1

LtUitnt
ft − f̃t
f̃tft

∣∣∣∣∣ .

We show that

D′T = Op(r4T ), where r4T = (Thq)
−2 (

T 3h2q−ε + T 2h3q−ε
)1/2

, (67)

D′′T = Op(r1T +
log T

Thq+ε
+ h2s−ε), (68)

where r1T is as in (28), to prove (36) for DT .

To prove (68), similarly to the proof of (53),

D′′T ≤
1

Thq

T∑
t=1

|Lt|{
∣∣∣∣∣Uit ft − f̃tf̃tft

∣∣∣∣∣
2

+
n2t
f2t
} = Op(r1T +

log T

Thq+ε
+ h2s−ε)

using (28) and (32) .

To prove (67), it suffi ces to show

E(D′T )2 ≤ C (Thq)
−4 (

T 3h3q−ε + T 2h2q−ε
)
. (69)

Now

E(D′T )2 = (Thq)
−4

T∑
t1,t2=1

′ T∑
t3,t4=1

′

E

(
Lt1
ft1

Lt3
ft3

Uit1Uit3Kt1t2Kt3t4ŪAt2ŪAt4

)

= (Thq)
−4

T∑
t1,t2=1

′ T∑
t3,t4=1

′

{1I1E[· · · ] + 1I2E[· · · ] + 1I3E[· · · ]}

: = (Thq)
−4

(D1T +D2T +D3T ),

where I1, I2 and I3 are as before. Then (69) follows on showing that for arbitrarily small ε > 0,

D1T = O(T 2h2q−
2qς
1+ς ) = O(T 2h2q−ε), (70)

D2T = O(T 3h3q−
3qς
1+ς ) = O(T 3h3q−ε), (71)

D3T = O
(
T 3h4q−

4qς
1+ς + T 2h3q−

3qς
1+ς

)
= O

(
T 3h4q−ε + T 2h3q−ε

)
. (72)
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To prove (70), as in the proof for C1T ,

D1T ≤
T∑

t,s=1

E
(
f−2t L2tU

2
itK

2
tsŪ

2
As +

∣∣f−1t Ltf
−1
s LsUitUisŪAtŪAs

∣∣K2
ts

)
≤ 3

T∑
t,s=1

E
(
f−2t L2tU

2
itŪ

2
AsK

2
ts

)
≤ CT 2h2q−

2qς
1+ς ,

because we set r = 1 + ς for a very small ς below,

T∑
t,s=1

E
(
f−2t L2tU

2
itŪ

2
AsK

2
ts

)
≤
(
E
∣∣f−1t LtKts

∣∣2r)1/r(E ∣∣UitŪAs∣∣2p)1/p ≤ Ch 2q
r ≤ Ch2q−

2qς
1+ς ,

by Lemma 4 (i) and Assumption 9′, which proves (70).

To prove (71), it suffi ces to show that

E
(
1I2E

∣∣f−1t1 f−1t3 Lt1Lt3Uit1Uit3ŪAt2ŪAt4Kt1t2Kt3t4

∣∣) ≤ Ch3q− 3qς
1+ς . (73)

According to the definition of I2, we need to check (73) in four cases.

Case 1, (t1 = t3, t2 6= t4). We have

E
(
f−2t L2tU

2
it|KtsKtrŪAsŪAr|

)
≤
(
E
∣∣f−2t L2tKtsKtr

∣∣w)1/w(E |Uit|2p |ŪAsŪAr|p)1/p
≤ Ch

3q
w ≤ Ch3q−

3qς
1+ς , (74)

setting w = 1+ ς for a small ς > 0, and using Lemma 4 (v), and Holder’s inequality and Assumption
9′.

Case 2, (t1 = t4, t2 6= t3). The expectation in (73) is bounded by

E
∣∣f−2t L2tU

2
itŪ

2
AtKtsKrt

∣∣+ E
∣∣f−2s L2sU

2
isŪ

2
AsKtsKrt

∣∣,
whence (73) follows similarly as in (74).

Case 3, (t3 = t2, t1 6= t4). The expectation in (73) is

E
∣∣f−1t Ltf

−1
s LsUitUisKtsKsrŪAsŪAr

∣∣,
and (73) follows as in Case 2.

Case 4, (t2 = t4, t1 6= t3). The expectation in (73) is

E
∣∣f−1t Ltf

−1
s LsUitUisKtsKrsŪ

2
As

∣∣,
and (73) follows as in Case 2.

To prove (72) , we show that

D3T = O

((
1

Thq

)4 [
T 3h4q(1−γ)−

4q(1−γ)ς
(1+ς) + T 2h3q(1−γ)−

3q(1−γ)ς
(1+ς)

])
. (75)

Denote φT (Wt,Ws,Wr,Wu) = f−1t Ltf
−1
s LsUitUirŪAsŪAsKtsKru. By Lemma 6 (iii),

|D3T | ≤ T 4|EφT (W̃1, W̃2, W̃3, W̃4)|+ C
(
T 3M1−γ

T112 + T 2M1−γ
T13 + T 2M1−γ

T4

)
.
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The expectation under independence is, by Assumption 2,

EφT (W̃1, W̃2, W̃3, W̃4) = E∗
(
f−1t Ltf

−1
r LrUitUirKtsKruŪAsŪAu

)
= E∗

(
f−1t LtKtsE

∗(ŪAs|Zt, Zs)E∗(Uit|Zt, Zs)
)
E∗
(
f−1r LrKruE

∗(ŪAu|Zr, Zu)E∗(Uir|Zr, Zu)
)

= 0.

We will show that

MT112 ≤ Ch4q−
4qς
1+ς , (76)

MT13,MT4 ≤ Ch3q−
3qς
1+ς , (77)

which proves (75).

The proof of (76) is similar to that of (61). As noted in the proof of Lemma 6 (iii), MT112 is
the maximal (1− γ)−1th moment when partitioning the four time periods into either three or four
independent subsets. There are three distinct combinations of dependence to be considered in the
case of three independent subsets.

For (Wr,Wu, W̃t, W̃s), one can separate out expectations,

Eru,t,s

[∣∣f−1t LtKtsUitŪAs
∣∣ 1
1−γ
]
Eru,t,s

[∣∣f−1r LrKruUirŪAu
∣∣ 1
1−γ
]

= E∗
[∣∣f−1t LtUit

∣∣ 1
1−γ E∗(

∣∣KtsŪAs
∣∣ 1
1−γ |W̃t)

]
Eru,t,s

[∣∣f−1r LrUirKruŪAu
∣∣ 1
1−γ
]

= O
(
h2q−

2qς
1+ς

)
×O

(
h2q−

2qς
1+ς

)
= O

(
h4q−

4qς
1+ς

)
,

because by Lemma 1 and 3 and Assumption 9′ and setting w = 1 + ς for arbitrarily small ς > 0,

E|f−1t LtUit|
1

1−γ ≤(E|Uit|
p

1−γ )1/p(E|f−1t Lt|
w

1−γ )1/w = O(h
q
w ), (78)

E|KtsŪAs|
1

1−γ ≤ (E|ŪAs|
p

1−γ )1/p(E|Kts|
w

1−γ )1/w = O(h
q
w ), (79)

and by Lemma 4 (i), again with w = 1 + ς,

Eru,t,s|f−1r LrKruUirŪAu|
1

1−γ ≤ (E|Uir|
2p
1−γE|ŪAu|

2p
1−γ )1/2p(Eru,t,s|f−1r LrKru|

w
1−γ )1/w

= O(h
2q
w ) = O

(
h2q−

2qς
1+ς

)
.

For (Wt,Wr, W̃s, W̃u),

Esu,t,r

[∣∣f−1t Ltf
−1
r LrUitUir

∣∣ 1
1−γ Esu,t,r

[∣∣KtsŪAs
∣∣ 1
1−γ |Zt

]
Esu,t,r

[∣∣KruŪAu
∣∣ 1
1−γ |Zr

]]
= O

(
h2q−

2qς
1+ς

)
×O

(
hq−

qς
1+ς × hq−

qς
1+ς

)
= O

(
h4q−

4qς
1+ς

)
,

because

Esu,t,r

[∣∣KtsŪAs
∣∣ 1
1−γ |Zt

]
≤ (E|ŪAs|

p
1−γ )1/p(E

[
|Kts|

w
1−γ |Zt

]
)1/w ≤ Chq−

qς
1+ς ,

by Lemma 1 and Assumption 9′, setting w = 1 − ς for a small ς > 0. Noting the independence
between W̃t and W̃r, by (64),

Esu,t,r

(∣∣f−1t Ltf
−1
r LrUitUir

∣∣ 1
1−γ
)

= E
(∣∣f−1t LrUit

∣∣ 1
1−γ
)
E
(∣∣f−1r LrUir

∣∣ 1
1−γ
)

= O(h
2q
w ) = O

(
h2q−

2qς
1+ς

)
.

For (Ws,Wu, W̃r, W̃t), similarly to (66) and (79),

Etr,s,u

[
|f−1r LrUir|

1
1−γ

[
E
∣∣f−1t LtUitKruŪAu

∣∣ 1
1−γ E

[∣∣KtsŪAs
∣∣ 1
1−γ |Zt

]
|Zr
]]

= O
(
h4q−

4qς
1+ς

)
,
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since uniformly over z

E
(∣∣KtsŪAs

∣∣ 1
1−γ |Zt = z

)
≤ [E

(
|Kts|

p
1−γ |Zt = z

)
]1/p[E|ŪAs|

r
1−γ ]1/r = O

(
hq−

qς
1+ς

)
,

E|f−1r LrUir|
1

1−γ ≤ [E
∣∣f−1r Lr

∣∣ p
1−γ ]1/p[E|Uir|

r
1−γ ]1/r = O

(
hq−

qς
1+ς

)
,

by Lemma 1 and Assumption 9′, setting r = 1+ς and E
∣∣f−1t LtKruUitŪAu

∣∣ = O(h2q−
2qς
1+ς ) by similar

argument as in the proof of (66). This proves (78).

To prove (77), one finds the upper bound that holds for all relevant combinations of dependence:

E
[∣∣f−1t LtUitŪAuKtsŪAsf

−1
r LrUirKru

∣∣ 1
1−γ
]

≤ C
[
E
∣∣f−1t Ltf

−1
r LrKts

∣∣ r
1−γ
] 1
r
[
E|UitŪAu|

2p
1−γ

] 1
2p
[
E|UirŪAs|

2p
1−γ

] 1
2p

≤ C
[
E
∣∣f−1t Ltf

−1
r LrKts

∣∣ w
1−γ
] 1
w

[(
E|Uit|

4p
1−γ

)1/2 (
E|ŪAu|

4p
1−γ

)1/4] 1p
= O

(
h3q−

3qς
1+ς

)
,

setting w = 1 + ς and by Lemma 4 (vi) and Assumption 9′.

Upper bound on ET+ FT . By Lemma 3, (Thq)
−1

T∑
t=1

|Lt| = Op(1), so by Holder’s inequality,

ET + FT ≤ (
1

Thq

T∑
t=1

|Lt|)1/2{(
1

Thq

T∑
t=1

|Lt|
(
nt

f̃t

)2
)1/2

+(
1

Thq

T∑
t=1

|Lt|
(
lt

f̃t

)2
)1/2} = Op(A

1/2
T +B

1/2
T ).

Thus, by (22)

T−1/2(ET + FT ) = OP (T−1/2(A
1/2
T +B

1/2
T )) = Op

(√RTh
T

)
= Op

(
RTh

√
1

TRTh

)
= Op(RTh),

since Assumption 17 implies TRTh →∞. This completes the proof of (23).

We have shown that

AT +BT + CT +DT + T−1/2( ET + FT ) ≤ C
( log T

Thq+ε
+ h2s−ε + r1T + r2T + r3T + r4T

)
. (80)

The proof of Theorem 7 is completed by showing that (80) is O(RTh).

First, by Assumption 17 (ii),(
Thq+ε

)−1
log T = log T

(
Thq+ε

)−1/2 × (Thq+ε)−1/2 = o(
(
Thq+ε

)−1/2
) = O(RTh).

Second,

r1T =
(
Thq+ε

)−1
+
(
Th3γq+ε

)−1
= O(

(
Thq+ε

)−1
) = o(

(
Thq+ε

)−1/2
) = O(RTh),

since Thq+ε →∞ by (26) and ε < ε0 from (27) and 3γq ≤ q, which holds because γ < min{1/4, 1/q}+
ε ≤ 1/4 + ε by (27) and Assumption 13 (i). Similarly,

r2T = O
(
h2s−ε + r1T

)
= O(h2s−ε +

(
Thq+ε

)−1
) = O(RTh).
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Third, since q/2− 2qγ > −ε and 1− γq > −ε by Assumption 13 (i) and (27),

r3T =
(
Thq+ε−2

)−1/2
+ (Thq)

−1/2
h
q
2−2qγ+1−ε +

(
Thq+γq+ε−1

)−1
= o(

(
Thq+ε

)−1/2
) = O(RTh).

since Thq+3ε →∞ from (26) and (27). Finally,

r4T =
(
Thq+ε

)−1/2
+
(
Th

q
2+ε
)−1

=
(
Thq+ε

)−1/2 (
1 + T−1/2

)
= O(RTh). �

Proof of Theorem 8 The proof is straightforward given Theorem 7 and Assumptions 18-20. �

Proof of Theorem 9 For the same reason as in Robinson (2012, pp.28-29), it suffi ces to show
that

NRTh = o
(
as + (Taq)

−1/2
)
,

which follows by Assumption 21. �

Appendix B. Lemmas 1-6

Consider K(u) =

q∏
j=1

k(uj). The first lemma is standard and no proof is required.

Lemma 1. Let
∫
|k(u)|(1 + |u|a)du <∞, for some a > 0. Then uniformly in z,∫

‖w − z‖a
∣∣∣∣K (w − zh

)∣∣∣∣ dw ≤ hq+aqa ∫ |uak(u)|du
(∫
|k(u)|du

)q−1
= O(hq+a).

If m has continuous partial derivatives of order r on Rq which are uniformly bounded,

m(z)−m(w) =

r−1∑
`=1

1

`!

q∑
i1=1

· · ·
q∑

i`=1

∂`m(t1, · · · , tq)
∂ti1 · · · ∂ti`

∣∣∣
t=z

∏̀
j=1

(zij − wij )

+
1

r!

q∑
i1=1

· · ·
q∑

ir=1

∂rm(t1, · · · , tq)
∂ti1 · · · ∂tir

∣∣∣
t=x

r∏
j=1

(zij − wij ), (81)

where x lies on the line segment joining z and w.

Lemma 2. Suppose m and f have bounded derivatives of total order up to s, k ∈ Ks and
supu f(u) <∞.

(i) (Lemma 5 of Robinson (1988)) If Z1 and Z2 are independent, then, uniformly over z,∣∣∣∣E ({m(Z1)−m(Z2)}K
(
Z1 − Z2

h

)
|Z1 = z

)∣∣∣∣ = O
(
hq+s

)
.

(ii) If
∫
|usk(u)|adu <∞ for some a > 0 and Z1 and Z2 are independent, then uniformly over

z,

E

(∣∣∣∣{m(Z1)−m(Z2)}K
(
Z1 − Z2

h

)∣∣∣∣a |Z1 = z

)
= O(hq+a). (82)
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(iii) If have joint pdf f(u, v) satisfying supδ
∫
f(u, u+ δ)du <∞, then,

E

(∣∣∣∣{m(Z1)−m(Z2)}K
(
Z1 − Z2

h

)∣∣∣∣a) = O(hq+a). (83)

Proof. (ii) Notice that (81) implies |m(u) −m(v)|a ≤ C‖u − v‖a. Then the left hand side of (82)
is bounded by

C

∫
‖z − u‖a|K

(z − u
h

)
|af(u)du = O(hq+a).

(iii) The left hand side of (83) is bounded by

Chq+a
∫
‖u‖a

∣∣K (u)
∣∣a(∫ f(v, v − hu)dv

)
du = O(hq+a).

Lemma 3. Let k be a kernel function with compact support and such that
∫
|k(u)|adu < ∞ for

some a > 0. Suppose that Z has continuous pdf f and z ∈ Rq is such that f(z) > 0. Then, for all
b > 1,

E

[
|K((Z − z)/h)|a

f(Z)b

]
= O(hq).

Proof. Since f is continuous and positive at z, there exist δ > 0, ε > 0 such that f(z +w) ≥ δ, for
|w| ≤ ε. Then |hu| < ε, ∀|u| < 1, for T large enough. Thus as T →∞,

E(
|K((Z − z)/h)|a

f(Z)b
) =

∫ |K((u− z)/h)|a
f(u)b−1

du = hq
∫ 1

−1

|K(u)|a
f(z + hu)b−1

du

≤ hqδ1−b
∫ 1

−1
|K(u)|adu = O(hq).

Lemma 4. Let Z1, Z2, Z3 ∈ Rq have joint densities f(·, ·, ·), f(·, ·) and marginal density f(·) such
that sup

u,v
f(u, v) <∞, sup

u,v,w
f(u, v, w) <∞ and f(z) > 0, for a given z. Let k be a univariate kernel

function with compact support, ` be a univariate kernel function, and let
∫
{|`(u)|a+ |k(u)|b}du <∞

for some a, b > 0. Let c ≥ 0. Then for the product kernels L(u) =

q∏
j=1

`(uj),K(u) =

q∏
j=1

k(uj):

(i) E

[∣∣∣∣K(Z1 − zh

)∣∣∣∣b ∣∣∣∣L(Z1 − Z2h

)∣∣∣∣a 1

f(Z1)c

]
= O(h2q),

(ii) E

∣∣∣∣K((Z1 − z)/h)

f(Z1)

K((Z2 − z)/h)

f(Z2)

∣∣∣∣a = O(h2q),

(iii) E

[∣∣∣∣K(Z1 − zh

)∣∣∣∣b ∣∣∣∣{m(Z1)−m(Z2)}L
(Z1 − Z2

h

)∣∣∣∣a 1

f(Z1)c

]
= O(h2q+a),

(iv)E
[ ∣∣∣∣K(Z1 − zh

)∣∣∣∣b ∣∣∣∣{m(Z1)−m(Z2)}{m(Z1)−m(Z3)}L
(Z1 − Z2

h

)
L
(Z1 − Z3

h

)∣∣∣∣a 1

f(Z1)c

]
= O(h3q+2a),

(v) E

[∣∣∣∣K(Z1 − zh

)∣∣∣∣b ∣∣∣∣L(Z1 − Z2h

)
L
(Z1 − Z3

h

)∣∣∣∣a 1

f(Z1)c

]
= O(h3q),

(vi) E

[∣∣∣∣K(Z1 − zh

)
K
(Z3 − z

h

)
L
(Z1 − Z2

h

)∣∣∣∣a 1

f(Z1)a
1

f(Z3)a

]
= O(h3q).
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Proof. (i) Since sup
u,v

f(u, v) <∞ and f(z) > 0, for |z − u| ≤ ch as h→ 0,

∫ ∣∣∣∣K(u− zh )∣∣∣∣b ∣∣∣∣L(u− vh )∣∣∣∣a f(u, v)

f(u)c
dzdw ≤ Ch2q

∫
|K(u)|b|L(u− v)|adudv

≤ Ch2q
∫
|K(u)|bdu

∫
|L(u)|adu = O(h2q).

(ii) Similarly, since f(.) > 0 in a neighbourhood of z,∫ ∣∣∣∣K((u− z)/h)

f(u)

K((v − z)/h)

f(v)

∣∣∣∣a f(u, v)dudv

≤ C
(∫ ∣∣∣∣K((u− z)/h)

f(u)

∣∣∣∣a du)2 ≤ Ch2q(∫ |K(u)|a du)2 = O(h2q).

(iii) As above, ∫ ∣∣K(u− z
h

)∣∣b|{m(u)−m(v)}L
(u− v

h

)
|a f(u, v)

f(u)c
dudv

≤ Ch2q+a
∫
|K(u)|bdu

∫
‖u‖a|L

(
u
)
|adu = O(h2q+a).

The proof of (iv) follows by the same argument as in (iii), that of (v) is analogous to that of (i), and
that of of (vi) is similar to that of (i) and (ii). �

The next three lemmas offer convenient tools in dealing with asymptotic behaviour of U-statistics
of β-mixing processes.

Lemma 5. (Yoshihara’s Inequality) Suppose {Wt} is a strictly stationary β-mixing process
with mixing coeffi cient βW (j), taking values in Rq with marginal distribution function F . Let
1 ≤ t1 < · · · < tk, k ≥ 2 be integers and Ft1,··· ,tk the joint distribution function of (Wt1 , · · · ,Wtk).
Denote by {φT (w1, · · · , wk), T ≥ 1}a sequence of functions on (Rq)k. Then for 0 < γ < 1,∣∣∣∣∫ φT (w)dFt1,··· ,tk −

∫
φT (w)dFt1,··· ,tjdFtj+1,··· ,tk

∣∣∣∣
≤ 4

(∫
|φT (w)|1/(1−γ)d{Ft1,··· ,tk + Ft1,··· ,tjFtj+1,··· ,tk}

)1−γ
× βW (tj+1 − tj)γ ,

provided the right hand side exists.

The proof is in Yoshihara (1976) (who had the T− free function φ instead of φT , the extension
being mentioned in Robinson (1991)).

Before stating the next lemma, we need the following notation. By (π(1), · · · , π(k)) denote a per-
mutation of the set (1, · · · , k). For example, for k = 3, (π(1), · · · , π(3)) ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),

(3, 2, 1), (3, 1, 2)}. Define

φ̃T (w1, · · · , wk) =
∑

π(1),··· ,π(k)

φT (wπ(1), · · · , wπ(k)), (84)

where the sum
∑

π(1),··· ,π(k)

is taken over all permutations of the set {1, · · · , k}. Note that φ̃T is a sym-

metric function. For brevity, we write Ft1,t2,t3 = Ft1,t2,t3(w1, w2, w3), Ft1Ft2,t3 = Ft1(w1)Ft2,t3(w2, w3),
and so on.
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Define

MT2 = max
1≤t1<t2≤T

∫
R2q
|φ̃T (w1, w2)|1/(1−γ)d{Ft1,t2 + Ft1Ft2},

MT3 = max
1≤t1<t2<t3≤T

∫
R3q
|φ̃T (w1, w2, w3)|1/(1−γ)d{Ft1,t2,t3 + Ft1Ft2,t3 + Ft1,t2Ft3},

MT12 = max
1≤t1<t2<t3≤T

∫
R3q
|φ̃T (w1, w2, w3)|1/(1−γ)d{Ft1Ft2,t3 + Ft1,t2Ft3 + Ft1Ft2Ft3},

MT4 = max
1≤t1<t2<t3<t4≤T

∫
R4q
|φ̃T (w1, w2, w3, w4)|1/(1−γ)d{Ft1,t2,t3,t4 + Ft1Ft2,t3,t4

+Ft1,t2Ft3,t4 + Ft1,t2,t3Ft4},

MT13 = max
1≤t1<t2<t3<t4≤T

∫
R4q
|φ̃T (w1, w2, w3, w4)|1/(1−γ)d{Ft1Ft2,t3,t4 + Ft1,t2Ft3,t4

+Ft1,t2,t3Ft4 + Ft1,t2Ft3Ft4 + Ft1Ft2,t3Ft4 + Ft1Ft2Ft3,t4},

MT112 = max
1≤t1<t2<t3<t4≤T

∫
R4q
|φ̃T (w1, w2, w3, w4)|1/(1−γ)d{Ft1,t2Ft3Ft4 + Ft1Ft2,t3Ft4

+Ft1Ft2Ft3,t4 + Ft1Ft2Ft3Ft4}.

Let {W̃t} denote a serially independent process with the marginal distribution function F , and∑
t1,··· ,tk

′ denote summation over non-overlapping indices (t1, · · · , tk).

Lemma 6. In addition to the assumptions in Lemma 5, assume that for some θ > 2, βW (j) ≤ Cj−θ
as j →∞. Then, for γ satisfying γ ∈ ((2 + ε)/θ, 1) with arbitrarily small ε > 0,

(i)

∣∣∣∣∣∑
t1,t2

′
E (φT (Wt1 ,Wt2))− T (T − 1)E

(
φT (W̃1, W̃2)

)∣∣∣∣∣ ≤ CTM1−γ
T2 .

(ii)

∣∣∣∣∣ ∑
t1,t2,t3

′
EφT (Wt1 ,Wt2 ,Wt3)− T (T − 1)(T − 2)E

(
φT (W̃1, W̃2, W̃3)

)∣∣∣∣∣
≤ CT 2M1−γ

T12 + CTM1−γ
T3 .

(iii)

∣∣∣∣∣ ∑
t1,t2,t3,t4

′
E (φT (Wt1 ,Wt2 ,Wt3 ,Wt4))− T (T − 1)(T − 2)(T − 3)E

(
φT (W̃1, W̃2, W̃3, W̃4)

)∣∣∣∣∣
≤ CT 3M1−γ

T112 + CT 2M1−γ
T13 + CT 2M1−γ

T4 .

Proof. (i) One can write∑
1≤t1,t2≤T

′
E (φT (Wt1 ,Wt2)) =

∑
1≤t1<t2≤T

E (φT (Wt1 ,Wt2) + φT (Wt2 ,Wt1)) .

For all 1 ≤ t1 < t2 ≤ T , Yoshihara’s inequality yields:∣∣∣E[φT (Wt1 ,Wt2)− φT (W̃1, W̃2)]
∣∣∣ ≤ CM1−γ

T2 βγW (t2 − t1),∣∣∣E[φT (Wt2 ,Wt1)− φT (W̃1, W̃2)]
∣∣∣ ≤ CM1−γ

T2 βγW (t2 − t1).

Therefore, ∣∣∣∣∣∣
∑

1≤t1,t2≤T

′
E[(φT (Wt1 ,Wt2))− φT (W̃1, W̃2)]

∣∣∣∣∣∣ ≤ CM1−γ
T2

∑
1≤t1<t2≤T

βγW (t2 − t1)

≤ CTM1−γ
T2

T−1∑
j=1

βγW (j) ≤ CTM1−γ
T2 ,
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because the conditions of the Lemma on βW (j) and γ imply βγW (j) = O(j−(2+ε)) and EφT (W̃s, W̃t) =

EφT (W̃1, W̃2) for t 6= s.

(ii) One has ∑
t1,t2,t3

′
E[φT (Wt1 ,Wt2 ,Wt3)]

=
∑

1≤t1<t2<t3≤T
E [φT (Wt1 ,Wt2 ,Wt3) + · · ·+ φT (Wt3 ,Wt2 ,Wt1)]

=
∑

1≤t1<t2<t3≤T
Eφ̃(Wt1 ,Wt2 ,Wt3),

where φ̃T is as in (84). For any 1 ≤ t1 < t2 < t3 ≤ T , define t∗ := max{t3 − t2, t2 − t1} and
t∗ := min{t3 − t2, t2 − t1}. Then by stationarity and Yoshihara’s inequality,∣∣∣E[φ̃T (Wt1 ,Wt2 ,Wt3)]− dT (t1, t2, t3)

∣∣∣ ≤ CM1−γ
T3 βγW (t∗),

dT (t1, t2, t3) =

∫ ∫
φ̃T (w1, w2, w3)dF0,t∗(w1, w2)F (w3),

|dT (t1, t2, t3)−
∫
φ̃T (w1, w2, w3)dF (w1)F (w2)F (w3)| ≤ 4M1−γ

T12 β
γ
W (t∗).

Therefore , ∣∣∣∣Eφ̃T (Wti ,Wtj ,Wtk)−
∫
φT (w1, w2, w3)dF (w1)dF (w2)dF (w3)

∣∣∣∣
≤ CM1−γ

T3 βγW (t∗) + CM1−γ
T12 β

γ
W (t∗).

This leads to ∣∣∣∣∣ ∑
t1,t2,t3

′
E (φT (Wt1 ,Wt2 ,Wt3))− T (T − 1)(T − 2)E(φT (W̃1, W̃2, W̃3))

∣∣∣∣∣
≤ CM1−γ

T3

∑
1≤t1<t2<t3≤T

βγW (t∗) + CM1−γ
T12

∑
1≤t1<t2<t3≤T

βγW (t∗)

≤ C[TM1−γ
T3 + T 2M1−γ

T12 ]. (85)

To verify (85), note that from definition of t∗ and t∗, and βW (j)γ ≤ Cj−(2+ε),

βW (t∗) ≤ C|t3 − t2|−(1+ε/2)|t2 − t1|−(1+ε/2),
βW (t∗) ≤ C(|t3 − t2|−(2+ε) + |t2 − t1|−(2+ε)).

Thus,

∑
1≤t1<t2<t3≤T

βγW (t∗) ≤ C
(

T∑
t1=1

1

)(
T∑
s=1

s−(1+ε/2)

)2
≤ CT,

∑
1≤t1<t2<t3≤T

βγW (t∗) ≤ C
∑

1≤t1<t2≤T
|t2 − t1|−(2+ε)

(
T∑

t3=1

1

)
≤ C

(
T∑
s=1

s−(2+ε)

)
T 2 ≤ CT 2.

(iii) For any 1 ≤ t1 < t2 < t3 < t4 ≤ T , define t∗ = max{t4 − t3, t3 − t2, t2 − t1}, t∗ =

35



min{t4 − t3, t3 − t2, t2 − t1} and tm = {t4 − t3, t3 − t2, t2 − t1}\{t∗, t∗}. By similar steps to (ii),∣∣∣∣∣ ∑
t1,t2,t3,t4

′
E (φT (Wt1 ,Wt2 ,Wt3 ,Wt4))− T (T − 1)(T − 2)(T − 3)E

(
φT (W̃1, W̃2, W̃3, W̃4)

)∣∣∣∣∣
≤ CM1−γ

T112

∑
1≤t1<t2<t3<t4≤T

βγW (t∗) + CM1−γ
T13

∑
1≤t1<t2<t3<t4≤T

βγW (tm)

+CM1−γ
T4

∑
1≤t1<t2<t3<t4≤T

βγW (t∗)

≤ C
(
M1−γ
T112T

3 +M1−γ
T13 T

2 +M1−γ
T4 T 2

)
. (86)

The last bounds in (86) follows noting that βW (j)γ ≤ Cj−(2+ε), and therefore

βγW (t∗) ≤ C|t3 − t2|−(1+ε/2)|t2 − t1|−(1+ε/2),
βγW (tm) ≤ C|t3 − t2|−(1+ε/2)|t2 − t1|−(1+ε/2),
βγW (t∗) ≤ C(|t4 − t3|−(2+ε) + |t3 − t2|−(2+ε) + |t2 − t1|−(2+ε)).

Hence

∑
1≤t1<t2<t3<t4≤T

|βγW (t∗) + βγW (tm)| ≤ C
(

T∑
t1,t4=1

1

)(
T∑
s=1

s−(1+ε/2)

)2
≤ CT 2,

∑
1≤t1<t2<t3<t4≤T

βγW (t∗) ≤ C
∑

1≤t1<t2≤T
|t2 − t1|−(2+ε)

(
T∑

t1,t4=1

1

)

≤ CT 3
(

T∑
s=1

s−(2+ε)

)
≤ CT 3,

which proves (86) and completes the proof of (iii). �

References

Hansen, B. E., (2008). Uniform convergence rates for kernel estimation with dependent data.
Econometric Theory 24, 726-748.

Henderson, D. J., Carroll, R. J., Li, Q., 2008. Nonparametric estimation and testing of fixed effects
panel data models. Journal of Econometrics 144, 257 - 275.

Hsiao, C., 1986. Analysis of Panel Data, Cambridge University Press.

Robinson, P. M., 1983. Nonparametric estimators for time series. Journal of Time Series Analysis
4, 185-207.

Robinson, P.M., 1988. Root-n-consistent semiparametric regression. Econometrica 56, 931-954.

Robinson, P. M., 1991. Hypothesis testing in semiparametric and nonparametric models for econo-
metric time series. Review of Economic Studies 56, 511-534.

Robinson, P. M., 2012. Nonparametric trending regression with cross-sectional dependence. Jour-
nal of Econometrics 169, 4-14.

36



Ruckstuhl, A.F., Welsh, A. H. Carroll, R. J., 2000. Nonparametric function estimation of the
relationship between two repeatedly measured variables. Statistica Sinica 10, 51-71.

Yoshihara, K., 1976. Limiting behavior of U-statistics for stationary, absolutely regular processes.
Probability Theory and Related Fields 35, 237-252.

37


