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Abstract

In semiparametric models it is a common approach to under-smooth the
nonparametric functions in order that estimators of the finite dimensional
parameters can achieve root-n consistency. The requirement of under-smoothing
may result as we show from inefficient estimation methods or technical difficulties.
Based on local linear kernel smoother, we propose an estimation method to
estimate the single-index model without under-smoothing. Under some conditions,
our estimator of the single-index is asymptotically normal and most efficient in the
semi-parametric sense. Moreover, we derive higher expansions for our estimator
and use them to define an optimal bandwidth for the purposes of index estimation.
As a result we obtain a practically more relevant method and we show its superior
performance in a variety of applications.
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1 Introduction

Single index models (SIMs) are widely used in the applied quantitative sciences. Although the context of
applications for SIMs almost never prescribes the functional or distributional form of the involved statistical
error, the SIM is commonly fitted with (low dimensional) likelihood principles. Both from a theoretical and
practical point of view such fitting approach has been criticized and has led to semiparametric modelling.
This approach involves high dimensional parameters (nonparametric functions) and a finite dimensional

index parameter. Consider the following single-index model,
Y =g(6) X) +e¢, (1)

where F(e|X) = 0 almost surely, g is an unknown link function, and 6y is a single-index parameter with
length one and first element positive for identification. In this model there is a single linear combination
of covariates X that can capture most information about the relation between response variable Y and
covariates X, thereby avoiding the “curse of dimensionality”. Estimation of the single-index model is very
attractive both in theory and in practice. In the last decade a series of papers has considered estimation
of the parametric index and the nonparametric part with focus on root-n estimability and efficiency issues,
see Carroll, Fan, Gijbels and Wand (1997) for an overview. There are numerous methods proposed or can
be used for the estimation of the model. Amongst them, the most popular ones are the average derivative
estimation (ADE) method investigated by Hérdle and Stoker (1989), the sliced inverse regression (SIR)
method proposed by Li (1989); the semiparametric least squares (SLS) method of Ichimura (1993) and the
simultaneous minimization method of Hérdle, Hall and Ichimura (1993).

The existing estimation methods are all subject to some or other of the following four critiques: (1)
Heavy computational burden: see, for example, Hardle, Hall and Ichimura (1993), Delecroix, Hardle and
Hristache (2003), Xia and Li (1999) and Xia et al. (1999). These methods include complicated optimization
techniques (iteration between bandwidth choice and parameter estimation) for which no simple and effective
algorithm is available up to now. (2) Strong restrictions on link functions or design of covariates X: Li
(1991) required the covariate to have a symmetric distribution; Hérdle and Stoker (1989) and Hristache
et al. (2001) needed a non-symmetric structure for the link function, i.e., |Eg’ () X)| is bounded away
from 0. If these conditions are violated, the corresponding methods are inconsistent. (3) Inefficiency: The
ADE method of Hérdle and Stoker (1989) or the improved ADE method of Hristache et al. (2001) is not

asymptotically efficient in the semi-parametric sense, Bickel et al. (1993). Nishiyama and Robinson (2000,



2005) considered the Edgeworth correction to the ADE methods. Hérdle and Tsybakov (1993) discussed the
sensitivity of the ADE. Since this method involves high dimensional smoothing and derivative estimation,
its higher order properties are poor. (4) Under-smoothing: Let hg’ " be the optimal bandwidth in the sense of
MISE for the estimation of link function g and let hy be the bandwidth used for the estimation of 6. Most
of the methods mentioned above require the bandwidth /g to be much smaller than the bandwidth A", i.e.
ho/hg’ " S 0asn— 00, in order that estimators of 8y can achieve root-n consistency, see, Hardle, and Stoker
(1989) and Hristache et al. (2002), Robinson (1988), Hall (1989) and Carroll et al. (1997) among others.
Due to technical complexities, there are few investigations about how to select the bandwidth hg for the
estimation of the single-index. Thus it could be the case that even if hy = hg" " allows for root-n consistent
estimation of 6, that hy?'/hg?" — 0 or hg?'/hgP" — 0, where hi?" is the optimal bandwidth for estimation
of §. This would mean that using a single bandwidth hg’ " would result in suboptimal performance for the
estimator of 6. Higher order properties of other semiparametric procedures have been studied in Linton
(1995) inter alia.

Because the estimation of 6 is based on the estimation of the link function g, we might expect that a
good bandwidth for the link function should be a good bandwidth for the single-index, i.e., under-smoothing
should be unnecessary. Unfortunately, most of the existing estimation methods involve for technical reason
“under-smoothing” the link function in order to obtain a root-n consistent estimator of fy. See, for example,
Hardle and Stoker (1989), Hristache et al. (2001, 2002), Carroll et al. (1997) and Xia and Li (1999). Hardle,
Hall and Ichimura (1993) investigated this problem for the first time and proved that the optimal bandwidth
for the estimation of the link function in the sense of MISE can be used for the estimation of the single-index
to achieve root-n consistency. As mentioned above, for its computational complexity the method of Héardle,
Hall and Ichimura (1993) is hard to implement in practice.

This paper presents a method of joint estimation of the parametric and nonparametric parts. It avoids
undersmoothing and the computational complexity of former procedures and achieves the semiparametric
efficiency bound. It is based on the MAVE method of Xia et al (2002), which we outline in the next section.
Using local linear approximation and global minimization, we give a very simple iterative algorithm. The
proposed method has the following advantages: (i) the algorithm only involves one-dimensional smoothing
and is proved to converge at a geometric rate; (i) with normal errors in the model, the estimator of 6y
is asymptotically normal and efficient in the semiparametric sense; (iii) the optimal bandwidth for the

estimation of the link function in the sense of MISE can be used to estimate 6y with root-n consistency;



(iv) by a second order expansion, we further show that the optimal bandwidth for the estimation of the
single-index 6o, hy” !, is of the same magnitude as hg"".

Therefore, the commonly used “under-smoothing” approach is inefficient in the sense of second order
approximation. Powell and Stoker (1996) investigated bandwidth selection for the ADE methods. We also
propose an automatic bandwidth selection method for our estimator of #. Xia (2006) has recently shown
the first order asymptotic properties of this method. Our theoretical results are proven under weak moment
conditions.

In section 3 we present our main results. We show the speed of convergence, give the asymptotic
estimation and derive a smoothing parameter selection procedure. In the following section we investigate

the proposed estimator in simulation and application. Technical details are deferred to the appendix.

2 The MAVE method

Suppose that {X;,Y; :i=1,2,...,n} is a random sample from model ({l). The basic idea of our estimation
method is to linearly approximate the smooth link function g and to estimate 6y by minimizing the overall
approximation errors. Xia et al (2002) proposed a procedure via the so called minimum average conditional
variance estimation (MAVE). The single index model () is a special case of what they considered, and we
can estimate it as follows. Assuming function g and parameter 6y are known, then the Taylor expansion of
960 X:) at g(0] ) is

9(0y X;) =~ a+dby (X; — ),

where a = g(0] z) and d = ¢’ (0] ). With fixed 6, the local estimator of the conditional variance is then
o3(216) = min{n o)) D1 — {a -+ 0T (X, ~ )} PKA 0T (X~ )},
® i=1

where fy(z) =n~' 3" K, {07 (X; —z)}, where K is a univariate density function, h is the bandwidth and
Kp,(u) = K(u/h)/h; see Fan et al (1996). The value o2(z|f) can also be understood as the local departure
of Y; with X; close to x from a local linear model with given 6. Obviously, the best approximation of

should minimize the overall departure at all z = X;,j = 1,--- ,n. Thus, our estimator of y is to minimize

Qn(6) = _on(X;16) (2)
j=1



with respect to 0 : |§] = 1. This is the so-called minimum average conditional variance estimation (MAVE)

in Xia et al (2002). In practice it is necessary to include some trimming in covariate regions where density

is low, so we weight o2(X,|0) by a sequence ,oj, where / pj = pn{fo(X;)}, that is discussed further below.
The corresponding algorithm can be stated as follows. Suppose #; is an initial estimate of 6y. Set the

number iteration 7 = 1 and bandwidth h;. We also set a final bandwidth h. Let X;; = X; — Xj.

Step 1: With bandwidth h,, calculate fg(Xj) =n"1Y" | K. (07 X;;) and the solutions of a; and d; to the

inner problem in (2]

<d9h ) {ZK’” Xij <9TXL/h ) <«9TXZ]/h ) } ZK}“ X <9TX1 /h, )Y

Step 2: Fix the weight Kp,_ (07 X;;), fo(X;), a and d9 Calculate the solution of 6 to (2)

0 ={>  Kn (07 Xij)pf{de(X;)}*Xi; X5 fo(07 X;)}~ 12& (07 X))o (X;) X5 (yi—af) / fo (07 X),

i,j=1 ,j=1
where p? = pu{fo(X;)}.

Step 3: Set 7 =7+ 1, 0 :=60/|0] and h, := max{h, h,;/\/2}, go to Step 1.

Repeat steps 1 and 2 until convergence.

The iteration can be stopped by the common rule. For example, if the calculated 6’s are stable at a
certain direction, we can stop the iteration. The final vector 6 := 6/|6| is the MAVE estimator of 6y, denoted
by 6. Note that these steps are an explicit algorithm of the Xia et al (2002) method for the single-index
model with some version of what the called ‘refined kernel weighting’ and boundary trimming. Similar to
the other direct estimation methods, the calculation above is easy to implement. See Horowitz and Héardle
(1996) for more discussions. After 6 is estimated, the link function can be then estimated by the local linear

smoother as gé(v), where
3’ (v) = [n{s3(v)s{ (v) — (8?(@)2}]_12{83(1}) — s1(0)(07 Xi — ) /1 } K, (07 X; — )Y, 3)

and s{(v) =n 130 K (07X — v){(07 X; —v)/h,}¥ for k = 0,1,2. Actually, g}é(v) is the final value of
a? in Step 1 with 87 X; replaced by v.
In the algorithm, p,(.) is a trimming function employed to handle the boundary points. There are many

choices for the estimator to achieve the root-n consistency; see e.g. Hérdle and Stocker (1989) and HHI



(1993). However, to achieve the efficiency bound, p,(v) must tend to 1 for all v. In this paper, we take
pn(v) as a bounded function with third order derivatives on R such that p,(v) =1 if v > 2¢on™°; pn(v) =0

if v < cogn™° for some constants ¢ > 0 and ¢y > 0. As an example, we can take

1, if v > 2¢on™*,
_ exp{(20n—5—0) "} o ~ 1
p"(v) - exp{(2con——v) =1 }+exp{(v—con=<)~1}> if 2con™ > v > con”*, ( )
0, if v < egn=c.

The choice of ¢ will be given below.

3 Main Results

We impose the following conditions to obtain the asymptotics of the estimators.

[(C1)] [Initial estimator| The initial estimator is in ©,, = {6 : |6 — 6| < n™} for some 0 < a < 1/2.

[(C2)] [Design] The density function fy(v) of 7 X and its derivatives up to 6th order are bounded on R
for all § € ©,, E|X|® < 0o and E|Y|* < co. Furthermore, sup,e g geo, |fo(v) — fo,(v)| < ¢ — o] for

some constant ¢ > 0.

nk function e conditional mean gyp(v) = =), =), =
(3)] [Link function] Th ditional E(Y|0TX B(X|0TX BE(XXT0TX

and their derivatives up to 6th order are bounded for all 6 : |§ — 6| < 6 where § > 0.
[(C4)] [Kernel function] K (v) is a symmetric density function with finite moments of all orders.

[(C5)] [Bandwidth and trimming parameter| Trimming parameter ¢ < 1/20 and bandwidth A oc n™" for

some p with 1/5 — € < p < 1/5 + € for some € > 0.

Assumption (C1) is feasible because such an initial estimate is obtainable using existing methods, such as
Hardle and Stoker (1989), Powell et al. (1989) and Horowitz and Hérdle (1996). Actually, Hérdle, Hall and
Ichimura (1993) even assumed that the initial value is in a root-n neighborhood of g, {6 : |#—6y| < Con~/?}.
Assumption (C2) means that X may have discrete components providing that ' X is continuous for # in a
small neighborhood of fy; see also Ichimura (1993). The moment requirement on X is not strong. Héardle,
Hall and Ichimura (1993) obtained their estimator in a bounded area of RP, which is equivalent to assume
that X is bounded; see also Hardle and Stoker (1989). We impose slightly higher order moment requirement

than second moment for ¥ to ensure the optimal bandwidth in (C5) can be used in applying Lemma [6.1] in



section 6. The smoothness requirements on the link function in (C3) can be relaxed to the existence of a
bounded second order derivative at the cost of more complicated proofs and smaller bandwidth. Assumption
(C4) includes the Gaussian kernel and the quadratic kernel. Assumption (C5) includes the commonly used
optimal bandwidth in both the estimation of the link function and the estimation of the index 6y. Actually,
imposing these constraints on the bandwidth is for ease of exposition in the proofs.

Let pg(x) = BE(X|0TX = 0"x), vg(z) = pg(x) — 2, wo(x) = B(XXT|0TX =0T x), Wo(z) = v, (2)vy, ().
Let AT denote the Moore-Penrose inverse of a symmetric matrix A. Recall that K is a symmetric density
function. Thus, [ K(v)dv = 1 and [vK(v)dv = 0. For ease of exposition, we further assume that py =
[v2K (v)dv = 1. Otherwise, we can redefine K (v) := u;/QK(,uéﬂv).

We have the following asymptotic results for the estimators.

Theorem 3.1 (Speed of algorithm) Let 0, be the value calculated in Step 3 after T iterations. Suppose
assumptions (C1)-(C5) hold. If hy — 0 and |6, — 0o|/h2 — 0, we have
1
N
almost surely, where N, = [E{g' (0] X)*Wo(X)Tn=1230" | ¢/ (0] Xi)ve,(Xi)ei = Op(n=1/2).

1
Ors1 — b0 = 5{(I - 000y ) + o(1)}(6, — 6p) + N, + O(n*hd)

Theorem [3.]] indicates that the algorithm converges at a geometric rate, i.e. after each iteration, the
estimation error reduces by half approximately. By Theorem [B] and the bandwidth requirement in the

algorithm, we have
1
(0r+1 = b0l = {5 +o(1)}0rs1 — b0l + O(n™ '/ 4 n*h}).

Starting with |6, —6y| = Cn~?, in order to achieve root-n consistency, say |0 —0g| < en~Y2ie 27kCn— <

en~ Y2, the number of iterations k can be calculated roughly by
1
k:{(§ —a)logn +log(C/c)}/ log 2. (5)
Based on Theorem [3.1] we immediately have the following limiting distribution.
Theorem 3.2 (Efficiency of estimator) Under the conditions (C1)-(C5), we have

V(0 — 65) 5 N(0, %),

where Yo = [E{g' (0 X)*Wo(X)}]* E{g'(0g X)*Wo(X)e* HE{g (6 X)*Wo(X)}T.



By choosing a similar trimming function, the estimators in Hardle, Hall and Ichimura (1993) and Ichimura
(1993) have the same asymptotic covariance matrix as Theorem[3.21 If we further assume that the conditional

distribution of Y given X belongs to a canonical exponential family

fyix lz) = exp{yn(z) — B(n(z)) +C(y)}

for some known functions B, C and 7, then Y is the lower information bound in the semiparametric sense
(Bickel, Klaassen, Ritov and Wellner, 1993). See also the proofs in Carroll, Fan, Gijbels and Wand (1997) and
Hardle, Hall and Ichimura (1993). In other words, our estimator is the most efficient in the semiparametric
sense.

For the estimation of the single-index model, it was generally believed that undersmoothing the link
function must be employed in order to allow the estimator of the parameters to achieve root-n consistency.
However, Hardle, Hall and Ichimura (1993) established that undersmoothing the link function is not neces-
sary. They derived an asymptotic expansion of the sum of squared residuals. We also derive an asymptotic
expansion but of the estimator 0 itself. This allows us to measure the higher order cost of estimating the
link function. We use the expansion to propose an automatic bandwidth selection procedure for the index.

Let fg,(.) be the density function of 6] X

Theorem 3.3 (Higher Order Expansion) Under conditions (C1)-(C5) and €; is independent of X;, we
have almost surely

0—0y=¢, +1—;Z+c2nh + Hp + O{n* 31,

where v, = h? + (nh/logn) /2,
an{feo }g (GS—X )V90 (90 i)Eis

with Wy, =17 3201 pud fao (X5)}(9 (00 X)) 2vae (X5)vg, (X;), Hn = O{n™ Y2, +n~ =2} with E{H,E,}
= o{(nh)=2 + h®} and

/ K2(0)o?dv® (V) zpn{fe DHV8, (X5) + F5(X5 v, (X5)/ foo (X)},

&, / K (o)otdo — 1) (W)™ an{fe DY 60 X,)g" (00 X)W (X)),



Because K (v) is a density function and we constrain that [ v2K (v) = 1, it follows that uy = [ K (v)vtdv >
1. In the expansion of 6 — Ao, the first term &, does not depend on h. The second and third terms are the
leading term among the remainders. The higher order properties of this estimator are better than those of
the AD method, see Nishiyama and Robinson (2000), and indeed do not reflect a curse of dimensionality.

To minimize the stochastic expansion, it is easy to see that the bandwidth should be proportional to

n~1/5. Moreover, by Theorem we consider the Mahalanobis distance
(6 — 00) "S5 (0 — 60) = T, + o{h® + (nh) 72},

where

Cln Cl,n
T, = (&, + —t conht +H,) 2T (&, + et conh® +H,)

is the leading term. We have by Theorem [3.3] that
ET, = BE(E]S¢&,) + (% + b TR ( 2 + cohd) + o B8 + (nh) 72},
where ¢; = [ K2(v)v*dvo? W5 E{vy(X) + f~1(X) f/(X)ro(X)}, Wo = E{(¢' (0] X))*ve,(X)vg (X)} and
= 1( / K()vtdv — 1YW E[d' (64 X)g" (60 X)vp (X)].
4 0 0)9 (Y 6o

Note that E(E, Zg &n) does not depend on h. By minimizing ET,, with respective to h, the optimal
bandwidth should be

1/5
hy — { (9r3 + 167;)1/2 _ 3r2} n-1/s,

where 7| = clTEar c1/ (C;Z(—)’— c2) and 1o = T 02 /02 Z+02 As a comparison, we consider the optimal

bandwidth for the estimation of the link function g. By Lemma [5.1] and Theorem [3.2] if fy,(v) > 0 we have

Z Ky (0] Xi —v)e; + Op(n~% + h2y,). (6)
=1

~ 1 "
) = o) + 50" (WP +

In other words, the link function can be estimated with the efficiency as if the index parameter vector is

known. A brief proof for (@) is given in section 5. It follows that
9(0) = g(W)* = Sn(v) + Op{(n™"2 + WP ) 7}

where the leading term is S, (v) = [2¢"(v)? +{nfo,(v)} 1 I, Kn(fg Xi—v)ei]*. Suppose we are interested

in constant bandwidth in region [a,b] with weight w(v). Minimizing f[a b ES,(v)w(v)dv with respect to h,



we have the optimal bandwidth for the estimation of the link function is

JE2()dv [, fo, (0)ag, (v)w(v)dv v 1
— n .

T 9" (0Pw(v)du

It is noticeable that the optimal bandwidth for the estimation of the parameter vector 8 is of the same

hg

order as that for the estimation of the link function. In other words, under-smoothing may lose efficiency for
the estimation of 6y in the higher order sense. These optimal bandwidth A" and hg” can be consistently
estimated by plug-in methods; see Ruppert et al (1995).

Although the optimal bandwidth for the estimation of # is different from that for the link function,
its estimation such as the plug-in method may be very unstable because of the estimation of second order
derivatives. Moreover, its estimation needs another pilot parameter which is again hard to choose. In
practice it is convenient to apply h§?" for hg?" directly, and since hg?* and hg?" have the same order, the loss
of efficiency in doing so should be small. For the former, there are a number of estimation methods such as
CV and GCV methods. If CV methods is used, in each iteration with the latest estimator 6, the bandwidth

is selected by minimizing

n
hy = argminn ™" Y {Y; - 57(07 X;)}”
h -
7j=1

where g?(v) is the delete-one-observation estimator of the link function, i.e. the estimator of ¢?(v) in (3]
using data {(X;,Y:),? # j}. Another advantage for this approach is that we can also obtain the estimator
for the link function.

4 Numerical Results

In the following calculation, the Gaussian kernel function and the trimming function () with ¢ = 1/20 and

co = 0.01 are used. A MATLAB code rMAVE.m for the calculations below is available at
http://www. stat.nus.edu.sq/% TEstaxyc

In the first example, we check the behavior of bandwidths h, and hg. We consider two sets of simulations
to investigate the finite performance of our estimation method, and to compare the bandwidths for the

estimation of the link function g and the single-index 6y. Our models are

model A: y = (6] X)? + 0.2, model B: y = cos(6] X) + 0.2,
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where 0y = (3,2,2,1,0,0,—1,-2,—-2,-3)T /6, X ~ Nio(0,1), and ¢ ~ N(0,1) is independent of X. The
ADE method was used to choose the initial value of §. With different sample size n and bandwidth h, we

estimate the model and calculate estimation errors

A 1 — A AT 4.aT
errg ={1—1000]}'/?,  erry = - > o0 XM O X;) — 965 X;)l,
j=1

where gé(@TXj) is defined in ([@). With 200 replications, we calculate the mean errors mean(erry) and
mean(erry). The results are shown in Figure [II

We have the following observations. (1) Notice that n'/?mean(errg) tends to decrease as n increases,
which means the estimation error errg enjoys a root-n consistency (and slightly faster for finite sample size).
(2) Notice that the U-shape curves of errg has a wider bottom than those of erry. Thus, the estimation
of 6y is more robust to the bandwidth than the estimation of g. (3) Let hy"* = argminy, mean(errg)
and hg?" = argminy, mean(erry). Then hi" and hg? represent the best bandwidths respectively for the
estimation of the link function g and the single-index 6y. Notice that hy’ "/hP" tends to increase as n
increases, which means the optimal bandwidth for the estimation of 8y tends to zero not faster than that
for the estimation of link function. Thus the under-smoothing bandwidth is not optimal.

Next, we compare our method with some of the existing estimation methods including ADE in Héardle
and Stocker (1993), MAVE, the method in Hristache et al (2001), called HJS hereafter, the SIR and pHd
methods in Li (1991, 1992) and SLS in Ichimura (1993). For SLS, we use the algorithm in Friedman (1984)
in the calculation. The algorithm has best performance among those proposed for the minimization of SLS,
such as Weisberg and Welsh (1994) and Fan and Yao (2003). We consider the following model used in
Hristache et al (2001),

Y = (04 X)? exp(ab] X) + oe, (7)

where X = (x1,--- ,%19) ", 0o = (1,2,0,...,0)T /v/5, x1,- -+ , X109, € are independent and € ~ N(0,1). For the
covariates X: (x; + 1)/2 ~ Beta(r,1) for k = 1,--- ,p. Parameter a is introduced to control the shape of
function. If a = 0, the structure is symmetric; the bigger it is, the more monotonic the function is.
Following Hristache et al (2001), we use the absolute deviation Z§:1 |9] — 6| to measure the estimation
errors. The calculation results for different ¢ and 7 based on 250 replications are shown in Table 1. We have
the following observations from Table 1. Our methods has much better performance than ADE and the

method of Hristache et al (2001). For each simulation, the better one of SIR and pHd is reported in Table

11



Figure 1: The wide solid lines are the values of log{n'/>mean(errg)} and the narrow lines are the values of

log{n'/?mean(err,)} (re-scaled for easier visualisation). The dotted vertical lines correspond to the bandwidths hg
and hg respectively.
o-model A, n=50  ,model A, n=100  , model A, n=200 4 model A, n=400 , model A, n=800
h /h =1.34 ‘h /h =1.62 ‘h /h =2.33 ‘h /h =2.33 ‘h /h =2.36
9 g 0 g 6 g S0 g 89
-2 ' -2 ' -2 : -2 : -2 :

0 hgé).S 1 0 hgh90.5 1 0 hgheO.S 1 O hgheO.S 1 O hgh90.5 1

0 model B, n=100 0 model B, n=200 0 model B, n=400 0 model B, n=800
:he/h =1.1 ‘h./h =1.26 ‘h./h =1.37 ‘h./h =1.64
: g S0 g B R S0 g
-2 : -2 : -2 : -2 :
~41\_ ~af\ -4 -4
-6| - -6 -6} - -6
0 hghe 0.5 1 0 hghe 0.5 1 0 hghe 0.5 1 0 hghe 0.5 1

Table 1. Average estimation errors Z§:1 |@] — 0]
and their standard deviations (in square bracket) for model ().
a=1 a=0
n o T ADE* HJS* SIR/pHd SLS MAVE | SIR/pHd SLS MAVE
200 0.1 1 0.6094 0.1397 0.6521 0.0645 0.0514 0.7500 0.6910 0.0936
(0.1569]  [0.0258] [0.0152] | [0.1524]  [1.2491]  [0.0255]
200 0.2 1 0.6729 0.2773 0.6976 0.1070  0.0934 0.7833 0.8937  0.1809
0.1759]  [0.0375] [0.0204] | [0.1666]  [1.3192]  [0.0483]
400 0.1 0.75 | 0.7670 0.1447 0.3778 0.1151  0.0701 0.6037 0.0742  0.0562
(0.0835]  [0.0410] [0.0197) | [0.1134]  [0.0193]  [0.0146]
400 0.1 1 0.4186 0.0822 0.4868 0.0384  0.0295 0.5820 0.5056  0.0613
(0.1149]  [0.0125] [0.0096] | [0.1084]  [1.0831] [0.0167]
400 0.1 1.5 | 0.2482 0.0412 0.5670 0.0208  0.0197 0.5760 0.0923  0.0669
(0.1524]  [0.0063] [0.0056] | [0.1215]  [0.0257] [0.0175]
400 0.2 1 0.4665 0.1659 0.5249 0.06564  0.0607 0.6084 0.7467  0.1229
0.1353]  [0.0207] [0.0178] | [0.1064]  [1.2655] [0.0357]
400 04 1 0.5016  0.3287 0.6328 0.1262  0.1120 0.6994 0.9977  0.2648
(0.1386]  [0.0406] [0.0339] | [0.1370]  [1.2991]  [0.1880]
* The values are adopted from Hristache et al (2001)
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1, suggesting that these methods are not so competitive. Actually the main application of SIR and pHd is
not in the estimation of single-index models. See Li (1991, 1992). For SLS, its performance depends much
on the data and the model. If the model is easy to estimate (such as monotone and having big signal /noise
ratio), it performance quite well. But overall SLS is still not so good as MAVE. The proposed method has

the best performance in all the simulations we have done.

5 Proof of Theorems

Let fp(v) be the density function of 87 X and A, = {z : |z| < n® fo(z) > n=*,0 € ©,} where ¢ > 1/3
and ¢ > 0 is defined in (C5). Suppose A, is a random matrix depending on z and 6. By A,, = O(a,,) (or
A, =o(ay)) we mean that all elements in A,, are O, 5. (a,) (or 04.5.(ay)) uniformly for 6 € ©,, and = € A,,.
Let 0, = (nh/logn)~12, 4, = h? + 6, and 6 = |6 — 6|. For any vector V (v) of functions of v, we define
(V(v)) =dV(v)/dv.

Suppose (X;, Z;),i = 1,2,...,n, are i.i.d. samples from (X, 7). Let X;; = X; — =

sp() =n" > Kn(0T Xi) {07 Xio /0, th(2) Z Kn(0" Xip) {0 X0 /Y X,
i=1 i=1

wi(z) =n""Y Ky(0T Xip) {0 Xia/D} X X[, el(x) =n" ) Kp(0 Xin) {07 Xin/B}re,

i=1 i=1
e = si(x) — Esg(x), & = t{(z) — Bty (), Dy \(v) = sh(@)si(z) — s§(z)sg (@), By = sf(x)sgq (@) —
s§(z)s{(z) for k =1,2,.... For any random variable Z and its random observations Z;,i = 1,...,n, let
Tek(Z’x) - 82 712Kh zx)(HTsz/h) - 81 712Kh zx)(eTsz/h)kJrlZia
i=1 i=1
n
Spr(Z)x) = s{(x) *1ZK;L Xio) (O Xia /W) Z; = s (@)n™ Y0 K(Xio) (0 Xia/ ) Z
i=1 i=1

By the Taylor expansion of g(f, X;) at 6] x, we have

5
9(605 X:) = 9(60g ) Z,} (89 2){0" Xiz + (60 — 0) " Xia}* + O({0 Xiz + (6 — 0) " Xia}°)
k=1
= (05 @) + A%, X;) + B (2, X;)(00 — 0) + O{(07 Xi)® + 55(1X[° + |2[)}, (8)

where A%(z, X;) = S0_, (K1) g™ (8 ) (8T X;,)* and

5
Z 'g(k (00 2) (0T Xi)F X, + 2g" (0] ) (0 — 00) T Xin XL
k:l
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For ease of exposition, we simplify the notation and abbreviate g for (6] z) and ¢', g", g" for ¢'(6, z),
g" (03 z), g" (64 ) respectively. Without causing confusion, we write fp(0' ) as fp, fo(07 X;) as fo(X;) and

Kh(HTXij) as Kz(Xij). Similar notations are used for the other functions.

Lemma 5.1 (Link function) Let

.
- 1 1
Z 07 Xz /h> <0TXW /h>

a@(x)_nexane‘ 1 4

Under assumptions (C2)-(C5), we have

and

ag(x) = g(8g @) + A7 (@) + By (x) (60 — 6) + V;) (2) + O(hy; + 65)(L + [2]°),

dg(x)h = g'(0) x)h + Al (x)h?® + By(x) (00 — O)h + Vil (z) + O(h*y7 + 63)(1 + [z[°),
where

1
f(z) = %g” + i{( pa = Vg" £ (fofy = 2(£)) + 5ypag I + HY , (x),

() = 50" (s — 0I5 foh o+ 29 pah+ 2" 7 (- &) + Ol)

Bj(2) = g'vog + O(1m + 89),  Bp(x) = ¢'(6g x) f5 { fove(x)} + O(3m),
where HY ,(x) = 39" (00 ©){f; (6§ — €0) + (2 — pa) f5 2 fohel — £y 2 fohel} + 515 9" hely and VI (x) = fy el —
fo 2 fohed + nafy 2 fyh2ed /2 + [y 2 (efed — fel) — pafy 2 fy B3] + {32 (F5)? — (ma + V) fy  fy H s ThPeh —
fy 2 Fapey =y b+ ety el — 1o 2 faely 4215 2 fohel fi el and VI () = fi e+ 572 i n2e /24 f5 2 (el —
eled) = [ 2 fahel + fy e l—(pa+ V) fy  fih% )2 — £ (ed + €]) + £33 (f5)2h?).

Lemma 5.2 (Summations) Let 1% (z)=n"13"" | KJ(X;s)Xize;. Under conditions (C1)-(C5), we have

de _ -
AL N o b2} (08 X)) (X)) /s9(X) = €4+ 12 06 — 60) + QL + O(n*D),
=1

B, (nh)~ an{SO X)) = B 4 Bl 4 O ),

def _
0wty (RO (X, = MO+ O,
j=1
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where £ = S0 p{ fo(X;)}g' (0T Xo)vp(8T Xo)es, 195 =0 (1),
— O{(n/logn)™2}, Q8 = Of(n/logn) 2.}, RS =O0[nY25,}, Mf=0{n2%,),

with E{€2Q%} = o(h® + (nh)™2), B{EJR0} = o(h® + (nh)=2), E{ESMI} = o(h® + (nh)~2), and &, =
[OFLK2(0)dvE py (fo(X)) f5 1 (X5) (ve(X;) fo(X;)) (X;)] if k is odd, 0 otherwise.

Lemma 5.3 (Denominator) Let DY = n~2 doiie Lon(SS(X)) A3 (XKD (X)X, /so( ;) in the algo-

rithm. Suppose (8, B) : p X p is an orthogonal matriz. Then under (C1)-(C5), we have almost surely
(DYt =00"dl h~% — 0d5,B"h"t — B(dS,)"0Th™! + Bd§,BT,

where

df; = (G2)™ +o(1), dfy =Hih+ O(v), dfy= (BTWgB)_l + O(m),

2

with Gy, = 1" Y201 pu(fo(X5)) f5 (X5)(9 (00X;))? and H}) = g0~ 320 pu(fo (X)) f5 (X {(fore) (X5)}T
(G~ (g (05 X))’ B(BTWB)™" and Wﬁzn_lzjzlpn{fa( Xj) Mg (07 X2))2ve(X;)vg (X5).

Proof of Lemma [5.3] Let (6, B) be an orthogonal matrix. It is easy to see that

’12Kh )0 Xin X[ 0 = s (2) ’12Kh )0 XinX] B = {t{(z) — s{(2)z} " Bh,

n~t ZKg(Xm)BTXmX;B = BT{wg(x) — tg(x)xT - x(tg( )) + xszg( )} B.
Thus

-1
DY 2 <Df2>TBh> 0.B)7

(Dp)~' = (0,B) (
B'DYh  BTDY,B

where

DYy =071 pa(s§ (X))’ (X;) ¥ s5(X;) /s6(X;),
=1
Dy =7 pa(s§(X){do (X)) Y11 (X;) — s1 (X)) X5} /s0(X5),
j=1

D3y =n" an $0(X;) (da(X5))* {wh (X;) — to(X;) X[ — Xt0(X;5) + XX, s§(X;)}/s6(X;).
J=1
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By the matrix inversion formula in blocks (Schott, 1997), we have the equation in Lemma (3] with
din = {Df, — (D},)"BBT(DS,) "' BB D{,}", diz = d{,(D},)" B(B'D3,B)™", d, = {BTDS,B} " +
d1{B"D§,B} BT DY,(DY,) " B{BT D, B}~!. By Lemma [6.I we have

DY, =G, +o(1), Dfy=H,h+O(1), Diy=2W,+O(y,).
Thus, Lemma [5.3] follows. n

Lemma 5.4 (Numerator) Let N =n=2 Y p,(s§(X;)) K (X)) Xij{Yi—ag(X;)—do(X;)00 Xij}/s8(X;).
i=1
Under assumptions (C1)-(C5), we have almost surely

NO = &by 2—5 +Eanht +RE + B0 — 00) + O{n™ (73 + 83)},

where RY = Of{n~'(logn/h)"/? + (logn/n)~/?h?}, TR = O{hn~"(logn/h)'/? + (logn/n)~*/2h*} and
E{RYESY = O{(nh)~2 + 18}, BY = WP +o(1) with W defined in Lemma (53, é1, and E§ are defined in
Lemma 5.2 and

Con = —(pa—1 an{fe )39 (60 X;)9" (89 X;)vg (X;)-
Proof of Theorem [B.1] By assumption (C2), we have

SP( X ¢ A} <D nP(Xi ¢ Ay) <Y nP(IXi| >n) <Y nn % E1X|0 < oo
n=1 =1 n=1 n=1 n=1
for any ¢ > 1/3. It follows from the Borel-Cantelli lemma that
P Utxi ¢ Aa}) =0 9)
n=1i=1
Let A, = {z : fo(f"x) > 2n~¢}. Similarly, we have
P(() JLxi ¢ Anp) = 0. (10)
n=11i=1
Thus, we can exchange summations over {X; : j =1,--- ,n}, {X; : X; € Ap,j=1,--- ,n}and {X;: X, €
An,j=1,---,n} in the sense of almost surely consistency. On the other hand, we have by (C2)

nt Y (14 1x5% = 0().

|Xj<ne
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By the notation in Lemmas (.3 and 541 after one iteration of Steps 1-3, the new 6 is
0 =60+ (DY)INE. (11)
Note that 7€) =0,07¢{ , =0,07c}, =0, 0TW! =0, WI(WE)T =1—-00" and dy/h? — 0. We have
0 =t +0[0" di,h{R}, + By (0 — 6) + O{n™ (v + 6)}} — diz BT A7\

— B(dY,) "0 TR [RY + BY(0 — 00) + O{n* (73 + 63)}] + BdS, BTN

=(1+ an)lo + {51 — 0007) + ba}(0 — 0o) + S{WIY* €0+ O(h),
where a,, =o(1) and b, =o(1).
By (3] below, we have s4(z) = f9(8"z) + O(y,). Thus by the smoothness of p,(.) and (IT), we have
pu(s0(2)) = pu(fo(672)) + O(nyn) = 1+ O(n*y). (12)
Since p,(.) is bounded, we have E{p,(f¢(8"x)) — 1} =o(1). By (C3) and Lemma .1} we have

g = ) g0 Xy, (X;)e +o(n”1?).
=1

Note that W, = Wy 4+0(dy). It is easy to check that || = 1 + a,, + b, + O(h*) =1 +0(1). Thus

1

/181 =0 + {1 — 0063 ) +o(1)}(6 — ) + &

nilw(;*—Zgl(‘g—(l]rXi)yoo (X’L)ez _|_o(h3 +n71/2)'
=1

Let 0%) be the value of 6 after k iteration. Because hi+1 = max{hy/cp, h}. Therefore,

|6x+1 — 0ol /hi sy — 0,

for all £ > 1. We have

1 1 =
g+ = gy + 50~ 0004 ) +o(1)}(0%) — 69) + 5n—lwo+ > g (05 Xi)v,, (Xi)ei +o(hif +n"/?).
=1
Recursing the above equation, we have

k k n
1 1 1, _
0+ = 6y + {{ - 6005 ) +o(1) D 5}(9(1) —60) + {D RO > 9 (0 Xi)v,, (Xi)ei
=1 =1 =1

k
1
+o(Y_ b, + ).
=1
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Thus as the number of iterations & — oo, Theorem B follows immediately from the above equation and
the central limit theorem. |

Proof of Theorem [3.3 Based on Theorem B2, we can assume 8y = (logn/n)'/2. Note that T {£% +
c1n(nh)~! + canh*} = 0. We consider the product of each term in (DY)~! with NY. We have

00T dS h 2N = 007 dS h 2R + BY(6 — 60) + O{n* (2 +03)}] = %8y + al (6 — 6y),

0disBTh NG = 0000 +0%(0 — 60), B(dly) "0 A}

(DY) "IN, = 0{S,] (8 — 6) + H,EL + O(n*~1)}
= 00{ S, (0 — 00) + HaE + O(n* i)} + e (6 — 6p),

where S, = O(1) and ¢, = O(v,/h). It is easy to see that ¢, =o(1) providing that |6 — 6g|/h? — 0. By
Lemma 5.3l and (£.4] we have

_ 1 A
0 =00{1+ S (0 —00) + H &l + O(n*~H)} + ng{gg + —;’h +ch bt +RE+ Q0
1
+ {Q(I —007) + ¢, }(0 — 0o) + O{n* (v + hlogn/n)}.

It is easy to see that 8] = 1+ S (0 — 0y) + H.E + O(n*~%). Thus

L. 1 A 1
0/16] = b0 + GWHES + —5 + ch it + R + EJH,IED} + {5 (T —007) + €, } (0 — 6o) + O{n™ (7 + hlogn/n)},

where ¢}, =o(1). Similar to the proof of Theorem BT}, we complete the proof with c¢i, = W, !¢}, and

— w1l
com =Wy co . [

6 Proofs of the Lemmas

In this section, we first give some results about the uniform consistency. Based on these results, the Lemmas

are proved.

Lemma 6.1 Suppose Gy, i(x) is a martingale with respect to F; = 0{Gpe(x),¢ < i} with x € X and X is a
compact region in a multidimensional space such that (I) |Gni(x)| < &, where & are IID and sup B < oo
for some r > 2; (II) EGi,k(X) < aps(x) with inf s(x) positive, and (II1) |Gy i(x) — Gn,i(X)| < n“|x — x| M,
where M;,i = 1,2, ... are IID with EM? < cc. If and a,, = en™® with 0 < 6 < 1 —2/r, then for any o) >0
we have

sup [n 15200 S G| = Of(n g logn) /%)

!/
x|<n®1 i=1
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almost surely. Suppose for any fived n and k, Gy, ; 1(0) is a martingale with respect to F; , = 0{Gp01(0),¢ <
i} such that (1) |G x(0)] < &, (II) EG? ; (0) < an and (III) |G 1(0) — G ik(0)] < n®2(0 — 6] M;, where
& an and M; are defined above. If Eleg|*" < 0o and E{eg|Gyij(0),i < j,j=1,...k —1} =0, then
n k—1
2161(;9) n=2 ;_2 { ; Gn,i,k(e)}&'k‘ = O{(an logn)*/?/n}

almost surely.

Proof of Lemma We give the details for the second part of the Lemma. The first part is easier
and can be proved similarly. Let A, (f) be the expression between the absolute symbols in the equation.
By (III) and the strong low of large numbers, it is easy to see that there are ny = n®3 balls centered at
6,: Bu={0:10—6,] <n *} with ay > as+2, such that [ J!; Bt D ©. By the strong law of large numbers,
we have

max sup |A,(0) — Ap(6)] <n*? max sup |6 —0,|n" Z ek ZMZ = O{(an, logn)l/Q/n}

1<t<nigeB, Isisni geBe k=1 i=1

almost surely. Let A, ;(0t) = Zf;ll Ghpik(0t). Next, we show that there is a constant ¢; such that

w P (ﬂ U{ max max [Ay, ;(00)| > c1(nan logn)m}) =0. (13)

1<k<n 1<:<nj
{=1n=¢

Let T,, = {nay, log(n )}1/2 Gm k(@b) = Gp,ik(00)I(|Gr,ik(0t)] <T),) and ng p(00) = Grip(6e) — Gm k(@b)

Write
k—1

TL/C 0[/ Z{ank Eank HL }+ Z{ank ) Eank(el’)} (14)

=1

Note that E|G?. (8:)] < T, "1 E|&|" = E|&1| {nay log(n)}~=D/2. 1f a, = en™% with 0 < 6 < 1 —2/r and

n,i,k

k < n, we have
|ZEank (1) < El&1]"(k = 1){nay log(n)} "~V < CE|& | {na, log(n)}"/*. (15)
Note that
Z |Gk (00)] < i &l 1(1&] > T) < T, i &l I(1&] > T)

=1 i=1 i=1

For fixed T, by the strong law of large numbers, we have

n=t Y 16 I(I&] > T) — B{la I I(16] > 1)}
1=1
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almost surely. The right hand side above is dominated by E{|{1]"} and — 0 as T — oo. Note that T,

increase to oo with n. For large n such that 7;, > T', we have
n”! Z &I I(1&] > To) <n7! Z &7 1(1&] > T) — 0
almost surely as T — oo. It follows
n
D 1GRik(00)] = o(nT; ™) = of(nay, logn)'/?} (16)

almost surely. Thus by (I5) and ([I8), if ¢} > CE|&|" we have

1<k<n 1<:<ni

k—1
o PV U e | 3G, 4(600) — BGS, (001} > ch(na Togn) /%))

{=1n=/¢

< p( AU kel = 1) > ¢\ (nay logn)'/2})

{=1n={ i=1
k-1
1/2 )
+P( p U g ma 13 PG00 > & (nan o) )
=0 (17)
By condition (II), if & < n we have
— def
pax Var Z{Gi’i’k(eb EGL . ik(00)} < cana, = Ny, (18)

where ¢y is a constant. By the condition on a,, and the definition of Gn i k(@L), we have constants c3 and cy4

such that

max ’{ank( ) Eank(eb)}’ < a1y

1<<n®

= c3{na,/log n}l/Q{a;T log™ ! n/nr—2}1/(2(r—1))

< cifnan/logn}V? % Ny, (19)
Let N3 = cs{na,logn}"/? with ¢z > 2(a3 + 3)(ca + csc5). By the Bernstein’s inequality (cf. DE LA Pena,
1999), we have from (I8) and (I39) that for any k£ < n,

—N32
< 3
|§ {ank Eank(eL)H >N3) - 26XP <2(N1+N2N3)>

2exp{—ctlogn/(2cs + 2c4c5)}

IN

—a3—3

IN

CgN
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Let ¢; > max{cs, ¢} }. We have

o k-1
ZP{ max max | [Gmk(ﬂb) EGmk(HL)H >cl(nanlogn)1/2}

1<k<n 1<:<ni

n k—1
<ZZZP{|Z (G o 1(00) = BGL 1 (00)]] > ex (nan logn)/*}
n=1 k=2 1=1 =1
< Zc6n_a3_3n1+o‘3 < 0. (20)

n=1

By (I4), (I7) and (20) and the Borel-Cantelli lemma, we have

1<k§n 1<t<ny
—1 n=¢ =

k-1
Pn < P{ ﬂ U max max |Z[G£2k(c9b Ean w(0V)]] > c1(nay, logn)l/Q} +p), = 0.
=1

Therefore (I3]) follows.
Let A{I?k(ﬁb) = Ak (0)T{|An 1(0,)| < c1(naylogn)/?} and Uy(6,) = Zk 5 A ( ,)ek. Write

Ay(0,) )+ Z A ek,
where Ag’k_(ﬁb) = A, x(0,) — Ai,k(ﬂb). It is easy to see from (I3]) that for the second part on the right hand
side above,
1/2
 max | Z AL (0,)e] = O{n(anlogn)/?} (21)

almost surely, since for any constant ¢ > 0,

o0

IN

P A 0
(jmax  max [An(6,)] > 0)

o0
P A9 1 1/2
Zl {12231!2 0.)ek| > en(an logn)'/?} )
n—= = n=

o0
S 2 Plmas s ns0)] > e logn) )

< 0Q.

Now consider the first term. Let T, /1/2

/logn,
ZA 0){er(lex] < Tp,) — Elex(lex] < T,)]}

and UP(0,) = Uy(0,) — UL(6,). Similar to the proof of (IF) and (I6), we have almost surely

|ZA 0,)E{er(lex] > T} = O{n(an logn)'/?}, (22)
l

1> AL (0)ek(|ek] > Ty)| = O{n(an logn)'/2}. (23)
k=2
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Note that
d
AL (0 ex(ler] < T)) — Elex(lex] < TY)]}H < 2c1(nay logn)/*T), = 2cin(an/ logn)*/? <IN,

and by (II), Var{U}(6.)} = Zayn = Ns, where ¢, is a constant. Let Ng = cyn(a,logn)¥/? with ¢4 >
2(ag + 3)(2¢1¢5 + ). By the Berenstein’s inequality, we have

2

N,
P(|UL,)| > Ng) < 2 -6

} < 2nmes 3,

Therefore

ZP{ max |UL(6,)| > Ng} < inlp{\U,{(eL)\ > N} < oo.

1<e<ny

n=1
By the Borel-Cantelli lemma, we have
max [U2(0,)] = O(No) (24)
almost surely. Lemma [6.1] follows from (21]), (22)), [23) and (24]). [

Proof of Lemma 5.1 Write s (z) = €/ (z) + Es{(x). By Taylor expansion, we have

Zusz@ 2)h7 + €l (x) + O(h*). (25)
Because Var{e}(z)} = O{(nh)~1}, it follows from Lemma .1 that € (z) = O(8,,). It is easy to check that
Dl o) = f3 -+ 5+ Dfofih® — (oW + (e + ) — 2fshel + O(22).
Dra(@) = f§ + palfofg — (f)")h* + 2foe — fohes — pafshel + O(37).
D} 5(x) = foes + O(hn), Dy a(x) = pafi +O(ym), Dy 5(x) = O(h).
Tno(X|2) = five(@) + O(m), S o(X|z) = O(h), T u(X]x)=0(1), S;,(X]x)=0(1), for k> 1,
Tio(10" XiaPle) = O, S10(10" XiaPlw) = O(RY), Tio(XXT[z) = O(1),  Spo(XXT|z) = O(h),

Epa(z) = (pa — D fofoh + f(€ =€) + O(hyn),  Epns(x) = pafi + O(m), Enalz) = O(h).

Note that
a’(z) = TF o(Y|2)/DE o(2),  d’(x)h =S5 (Y |z)/DE o (2).
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and

5 0 4
1 Dy, 1(2) 1 T i(X|z) — Dy ()
_ ~o®) T n,k pk—2 pgo _ = gk T n,k n,k Bk
(@)= 3 o B0 g 5 Bhw) =3 e ) ,

k=2 k
1 _
Cu(2,0) = 59" (09 {Tno(XX " |2) = Too(X]w)z" — 2T o(X ' |2) + " Dj o(x) {D) o ()}
4 0 4
. 1 Ey (@) - k Spi(X|2) — Ep (@)
Ap(@) = 59W (0 2) = h* 2 Bh(a) =) 9" (0] o) =" - n*,
,; D @) ,; A Dy ()
1 _
Cn(x,0) 59"(9§$){5n,0(XXTIx) = Spo(X|w)a" — xS, 0(X |a) + 22 B} o(x) D) o(2)}
Lemma [5.] follows from simple calculations based on the above equations. |

Proof of Lemma It follows from Lemma [61] that 7% (x) = O(6,)(1 + |z|) and s§ = fy + & where

& = e + (Es! — fo) = O(1,). Because |g/(.)| < n%, we have
pn(0(X5)) = pu(fo(X5)) + pr(fo(X;))E(X;5) + O(n* 7). (26)
Thus
AL = €0+ QN+ O(n*),

where &) = n=2 37, S0 pu(fo(X))) fy 1 (X;)d (07 X;5) KP(Xij) Xijei, and Q5 = n™' Y1, G ; with

- ‘IZ[ X0 F0(X5)) = pulFo (X)) 157 (X 4 {1 = pulFolX)) 57 (X)) Y (X))
x 3 1 (X5)g (07 X5) KR (Xij) Xijes.

Simple calculations lead to EEY = 0,E(£5)* = O(n™1), E(GY ;) = 0 and E(GY,)? = O{h* + (nh)~'}. By

the first part of Lemma [6.1], we have
= Of(logn/n)'?}, Q71 = O{h*(logn/n)"/? + 0~ (log n/h)"/*}.

By Taylor expansion, ¢’ (64 z) = ¢'(6"2) + ¢"(v*)(0 — ) "z, where v* is a value between §'x and 6] x
Write

g 59+Qn2+rn0(‘9_‘90)7

where Q2 = 1”2 S S {a(fo(X) 5 (X)) (07 X)) KD(Xi5) X5 — pulfol(X)g' (87 X)wa(Xo)}ei and
Tn,0 = O(yn/h). By Lemma [6.1] and that Va'r(Qfﬂ) = O{h* + (nh)~'}, we have

@2 = O{(n/logn)™" 3, }.
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Let Q% = Qfm + Qfm. It is easy to check that E{QY&%} = o(h® + (nh)~2). Therefore, the first part of
Lemma [5.2] follows.

Similarly, we have from (26]) that
Z{pn Fo(X7)) + 0 (Fo(X3))E0 (X)) el (X0 (X)) fo (X;) + O(n* /).
Let RY be the first term on the right hand side above. Then

Z{pn Fo(X5)) + pr(fo(XE(XG)} Y K (07 Xij) (07 X5 /1) Xije? | fo( X;)

i=1

- Z{pn Fo(X5)) + 0 (Fo(XG)EG(X))} D K0 Xij) (07 Xij /h) K (0 Xoj) Xejeiee/ fo(X;)
il
defR"1+R92+R93+R

If € is independent of X, then

2
de _ 1.
Ey(e) Y B{K} (07 Xi0)(0 Xij/h)* X102} = B! > Eﬂk-ﬁ-ﬁ{fe(x)VG(x)}thUQ +O0(h?),
=0 "

where fi, = [ K%(v)v¥dv. By Lemma[BG.I] we have

n'Y KR (07 Xin) (07 Xin /D) Xine] — Bp(z) = O(h™'4,,).
=1

Thus

def

RS, (n2h)~ an fo(X {n’lZKi(HTXij)wTXij/h)kXijﬁ — Ep(X )] O{(nh*)"'on}.  (27)

i=1

It is easy to check that E{SgR%O} = 0. Write
)Y pn(Fo(X9) E(X;) = (nh) ™ E{on(fo(X)) E(X;)} + Ry,
j=1

where E{R%ﬁg} =0 and

n

Ry = (0*h)™ ) [ou(fo(X) Ea(X)) — E{pu(fo(X)) Eo(X))}] = O{(nh?) " (n/logn) "} (28)

j=1

Note that E{p,(fo(X))rg(X)} = 0. We have

(nh)™ B pul (X)) Ep(X,)} = 2 4 R, (29)
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where R? 2=0(n" 1y and E{Rzzé’g} = 0. By @7)-29) and the fact that (n/logn)~/2 = o(y,), we have
R, = —h + R+ RS (30)
Similarly

Ry, 5 = O{(nh)" '}, (31)

Let GO, =n=' 30 pu(fo(X))Kn(0T Xij) (0T Xij /) Kn (07 Xej) Xej/ fo(X;). Write RS 4 as

n
~ _ 1
32,3:” 225( nzﬁ—'_GnZzeZEé_n 22{2 nz€+Gn€z) }Eé’

il (=1 i<t

By the second part of Lemma [6.1] we have

R = 0{n""%5,}. (32)
Similarly, we have

R = 0{n""%5,}. (33)

Thus the second part of Lemma [5.2] follows from (30]) and (31)).
The third part of Lemma can be proved similarly as the proof of the second part. |
Proof of Lemma [5.4] By (§)), Lemma 5.1 and 6y = 6 + (y — 0), simple calculations lead to

Y; — ag(x) — dg(x)0) Xip = & + {A%(x, X;) — A% (x)h?} + {B(z, X;) — B%(2)} " (60 — 6)
— V(z) + Of{h*7} + 63},

where A?(z, X;) = A%(z, X;) —dg(2)0" X;, and BY(x, X;) = B?(x, X;) —dg(2) Xi,. It follows from the Taylor

expansion that
0 () E nt ZKh (Xia) (0 Xia/D)FX. i} e () OB + &+ O(O),
=1 /=0
where EZ =n 1Y (K (Xi) (0" Xin /D) Xy — EKY(Xi2) (07 Xiw/R)F Xiz} = €0 — x€. We have
P S KX X A (2, X0) = {9/ (6 ) — () }Cos () + Z g® 07 )0 ()t
i=1 ’

= _lg”(M — 1) fofy  (vafo)n* + 19"(V9J‘9)'(6§ — )R>+ Vi {(vofo)'h + éﬂzl(l/efe)"h?’ +E

2 2
1 1 1 1 ~0 1 ~0
+ §gﬂh2{f91/9 + 5#4(f9V9)"h2} + ﬂg“)mfewh‘l + 59"h2§2 + ggmh?’f?, + O(h*72).
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Thus

n~t Y K (Xi) Xio{ A (2, Xi) — A (2)h%) = (M4 —1)g" fovy + Bp1(6 —60) + H3,, + O(R*77),  (34)
i=1

where Bz = {(vofo) h+ Fua(vefo)”h + %?}Bz(x)—r with BY(z) defined in Lemma 5.1} and

HY, =2 (e — DR wofo) + f el Cam)ht 5 F 254 Fro W6l + () el — efef)
PR N e + )f’ gh? f’l(eg + ) + f’Q(f’)QhQ}
b A+ A - f’2f’h685? SO RE + SR — g
= 59" O 2){fy (e = ) + (2 = pa) fy * fyhel = fg feheg}uefefﬂ - é "eGvgh?.
By the expansions of dy(x) in Lemma [B1}, p,,(sf(z)) in Z6), and (34), we have
n? zn; Pu(80(X;))do (X;) zn; Kp(Xia) Xij {A° (X, Xi) — AR (X;)R*}/sG(X;)
pm =

= Goph® + (B 5) T (0 — 00) + RE | + O{n® (h?*42 + 55h + 63) },

where BY , = n~ ' 3271 pu(s0(X;))do(X;) BY (X )/50( j)and By =n"" 300 pu(sh(X;))do(X;) HY,, (X;)
/s8(X;). Again by the expansion of dp and that § 1 = O(d,), we have Bn 9 =0O(h+6,). It is easy to check
that Hgn = O(hé,, + 62). We have

By =n 1an FoX3)) + A Fo X)L X5 + 575 (X + ) 0 0 X5) + 5 (O X )02

+ V‘g( J)/RYHS  (X5) fo (X {1 — %fg’l(Xj)fé'(Xj)h2 — f3 (X))eb(X5)} + O(n*7)

d
ifRnJ + O(anfyg)

Next, we need to consider the terms in R, ; one by one. Write

def _

11 =n 12% fo(X ( ) (fo(X;)ve( j))/e?h
_hn_2Z{ZKh ii)on (fo(X)) f37( j)(fG(Xj)VG(Xj))/}Ei-
=1 J=1

Note that E{p,(fo(X))f; (X)(fo(X)re(X))'|0T X} = 0. We have by Lemma [G.1]
Rn 11= = O{hn~ (h " logn)~"/?}
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and

n n

BAESRS 11} = hn B S {37 KUKy pu (oK) fy (X0) o (Ko (X)) bon(fo (X))o (07 Xy (X)e?
i=1 j=1
= i B " KLO)alfo(X0)) 57 (X5) o (X1)00(X,)Y o Fo(X1))g (67 X (X )3}
7j=1
=0(n?).
Applying similar approach to all the terms in Rn 1, we have
R | = O{n"'(logn/h)"/? + (logn/n)"/?h*} and E{EIRY |} = of(nh)™2 + h®}. (35)
By Lemmas (. and [6.1] we have
By n? Z pls X)) Y KX Xii{ B (X, X2) — BUX)} T /s§(X;) = WY + O{ (7 + 89) /D).
i=1
By Lemma IBEL we have
n~? ZP(S(G)( ZKh 1J)XZ]51/80( i) = 50 + Cl—;z + B 4(bo —0) + Rzz +O0(n*,),

=1

where €1, is defined in the lemma, and

Bf, = ’12{,% Fo(X5)) + P (fo(X))€d(X;) Y (X5) (B (X)) T /h

and
RSo = n Y [eon(Fo(X00)g" (60 Xo)W2 + oy Fa (X Q) ! (6 X5) + T206) I ().
j=1

Noting that n? = 0(4,), we have Bgn = O(d,/h). Similarly, we have

n~? Z pn(sg(Xj)) Z Kh ij) z]/so( i) = 3 + O(n2g7?z)
j=1
where
Ry s=n"" an (s0(X;))da (X;)V,y (X;)[va(X;) + %fa_l{(fGVG)H — fy e (X)) P+ 60(X;) — e(X))-

By the same arguments leading to ([B3]), we have

Ry, 5= Ofn""(logn/h)'/? + (logn/n)'/?h?} and  E{E]R] 5} = of(nh)~> + 1%}, (36)

RY 4= O{n" (logn/h)*'* + (logn/n)"/?h*} and E{EIRY 5} = o{(nh)™% + A®}. (37)
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Lemma follows from the above equations with R = Rﬁyl —i—RfL’Q +RZ73 and B? = thZ —i—szg —i—Bfi4 =
WO + O{n*(y,, + 6¢)/h}. [ |
Acknowledgements The first author is most grateful to Professor V. Spokoiny for helpful discussions
and NUS FRG R-155-000-048-112 and the Alexander von Humboldt Foundation for financial support. The
second author thanks the Deutsche Forschungsgemeinschaft SFB 649 “Okouomisches Risiko" for financial
support. This paper was partly written while the third author was a Universidad Carlos III de Madrid-Banco

Santander Chair of Excellence, and he thanks them for financial support.

References

[1] Bickel, P., Klaassen, A. J., Ritov, Y. and Wellner, J. A. (1993) Efficient and Adaptive Inference in

Semiparametric Models, Baltimore: Johns Hopkins University Press.

[2] Carroll, R.J., Fan. J. Gijbels, I. and Wand, M.P. (1997) Generalized partially linear single-index models.
J. Am. Statist. Ass., 92, 477-489.

[3] Delecroix, M., Hristache, M. and Patilea, V. (2004) On semiparametric M-estimation in single-index

regression. J. Statist. Plann. and Infer. (to appear).
[4] Fan, J. and Gijbels, 1. (1996) Local Polynomial Modeling and Its Applications. Chapman & Hall, London.

[5] Fan, J. and Yao, Q. (2003) Nonlinear Time Series : nonparametric and parametric methods. New York

: Springer Verlag.

[6] Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics, Stanford Uni-

versity Technical Report No. 1.

[7] Hérdle, W., Hall, P. and Ichimura, H. (1993) Optimal smoothing in single-index models. Ann. Statist.,
21, 157-178.

[8] Hérdle, W. and Stoker, T. M. (1989) Investigating smooth multiple regression by method of average
derivatives. J. Amer. Stat. Ass. 84 986-995.

[9] Hardle, W. and A.B. Tsybakov (1993). How sensitive are average derivatives? Journal of Econometrics

58 31-48.

[10] Horowitz, J.L. & Hirdle, W. (1996) Direct semiparametric estimation of single-index models with
discrete covariates. J Amer. Stat. Assoc., 91 1632-1640.



Hristache, M., Juditsky, A. and Spokoiny, V. (2001) Direct estimation of the single-index coefficients

in single-index models. Ann. Statist.

Ichimura, H. (1993) Semiparametric least squares (SLS) and weighted SLS estimation of single-index
models. J. Econometrics 58 71-120.

Ichimura, H. and Lee, L. (1991) Semiparametric least squares estimation of multiple index models:
Single equation estimation. Nonparametric and Semiparametric Methods in Econometrics and Statistics,

edited by Barnett, W., Powell, J. and Tauchen, G.. Cambridge University Press.

Li, K. C. (1991) Sliced inverse regression for dimension reduction (with discussion). Amer. Statist. Ass.,

86, 316-342.

Linton, O. (1995) Second order approximation in the partially linear regression model. Econometrica,

63, 1079-1112.

Nishiyama, Y., and P. M. Robinson (2000). Edgeworth expansions for semiparametric average deriva-

tives. Econometrica 68, 931-980.

Nishiyama, Y., and P. M. Robinson (2005). The Bootstrap and the Edgeworth Correction for semi-

parametric average derivatives. Econometrica 73, 903-948.
Penrose, R. (1955) A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51, 406-413.

Powell, J.L., J.H. Stock, and T.M. Stoker (1989). Semiparametric estimation of index coefficients.
FEconometrica 57, 1403-1430.

Powell, J.L. and T.M. Stoker (1996). Optimal bandwidth choice for density weighted averages. Journal
of Econometrics 755, 291-316.

Ruppert, D., Sheather, J., and Wand, P. M. (1995) An effective bandwidth selector for local least
squares regression. J. Am. Statist. Ass., 90, 1257-1270.

Schott, J.R. (1997) Matriz Analysis for Statistics. John Wiley & Sons. New York.

Weisberg, S. and Welsh, A. H. (1994) Estimating the missing link functions, Ann. of Statist. 22, 1674-
1700.

29



Xia, Y., Tong, H., Li, W. K. and Zhu, L. (2002) An adaptive estimation of dimension reduction space
(with discussions). J. Roy. Statist. Soc. B., 64, 363-410.

Xia, Y. (2006). Asymptotic distributions for two estimators of the single-index model. FEconometric

Theory (to appear)

Xia, Y. and Li, W. K. (1999) On single-index coefficient regression models. Journal of the American
Statistical Association, 94, 1275-1285.

Yin, X. & Cook, R. D. (2005). Direction estimation in single-index regressions. Biometrika, 92, 371-384.

30



	Introduction
	The MAVE method
	Main Results
	Numerical Results
	Proof of Theorems
	Proofs of the Lemmas
	XHL12Feb07.pdf
	Introduction
	The MAVE method
	Main Results
	Numerical Results
	Proof of Theorems
	Proofs of the Lemmas




