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Abstract

We develop non-nested tests in a general spatial, spatio-temporal or panel

data context. The spatial aspect can be interpreted quite generally, in either

a geographical sense, or employing notions of economic distance, or even when

parametric modelling arises in part from a common factor or other structure.

In the former case, observations may be regularly-spaced across one or more

dimensions, as is typical with much spatio-temporal data, or irregularly-spaced

across all dimensions; both isotropic models and non-isotropic models can

be considered, and a wide variety of correlation structures. In the second

case, models involving spatial weight matrices are covered, such as "spatial au-

toregressive models". The setting is suffi ciently general to potentially cover

other parametric structures such as certain factor models, and vector-valued

observations, and here our preliminary asymptotic theory for parameter esti-

mates is of some independent value. The test statistic is based on a Gaussian

pseudo-likelihood ratio, and is shown to have an asymptotic standard normal

distribution under the null hypothesis that one of the two models is correct. A

small Monte Carlo study of finite-sample performance is included.
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1. INTRODUCTION

Spatial and spatio-temporal data are liable to exhibit dependence, which will likely

depend on locations of observations or distances between them. Knowledge of lo-

cations or distances can improve precision and is desirably employed in modelling

and statistical inference. Regular spacing across a temporal dimension is likely, but

intervals between observations across geographical space can be regular or irregular,

while geographic distances between observations can be unavailable or less relevant

than "economic distances ", say. Models for regularly-spaced "lattice" data in two

or more dimensions (see e.g. Whittle (1954)) can relatively straightforwardly extend

time series ones, but statistical inference for irregularly spaced data is not well de-

veloped. For example, for irregularly spaced observations on a continuous Gaussian

process, despite such work as Dunsmuir (1983), Matsuda and Yajima (2009) and

Robinson (1977), there appear to exist no satisfactory set of regularity conditions for

the central limit theorem for parametric maximum likelihood estimates which sepa-

rate out the process generating the observations from that generating the locations,

and this is the case even in the single dimension irregularly-spaced time series setting,

which has attracted attention over the years. Partly as a result, models of "spatial

autoregressive" type, first developed by Cliff and Ord (1972), have proved popular,

especially in economics; these model correlations in terms of spatial weight matrices,

often linearly in observations and unknown parameters, and possibly also in weights,

and are relatively convenient computationally. The elements of the weight matrices

are pairwise inverse measures of distance, either economic distances or geographic

ones, where the latter might not be Euclidean, allowing for example for natural bar-

riers such as rivers. The philosophy of such models is quite different from that of

spatial statistics models for observations whose argument is location.

The diversity of possible dependence models highlights the lack of a "generic" spa-
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tial data set, and motivates development of statistical inference that potentially covers

a variety of the settings mentioned above, rather than being limited to a single model

class. In the present paper we focus on justifying tests of non-nested hypotheses for

spatial or spatio-temporal correlation. The rival models could be two members of

the same general class, for example two different models of autoregressive moving av-

erage type in case of regularly-spaced "lattice" data, or a Matern and Markov model

when irregularly-spaced locations are known, or two weight matrix type models such

as a "spatial autoregressive" versus "spatial moving average" model, or they could

be from different classes, given that the weight matrix models can in principle be

employed in all these data settings. Nonparametric methods for estimating spatial

correlation have been developed but in general are more problematic than in the time

series setting where stationarity and regular spacing allow consistent estimation of

autocovariances or spectral densities despite lack of replication. We thus focus on

parametric models. Moreover the testing scenario is between models of covariances

between observations, or much more likely, between unobservable disturbances, rather

than between full statistical models.

In particular, for random variables uj, j = 1, 2, ..., we consider the rival models

Hi : Cov (uj, uk) = σ2
i0ωijk (θi0) , j, k = 1, 2, ...; i = 1, 2, (1)

where, for i = 1, 2, θi0 is an unknown pi × 1 vector, σ2
i0 is an unknown positive

scalar, variation-free of θi0, and ωijk (.) is a known function of its pi−dimensional

argument. Because inference will be based on implicitly-defined extremum estimates

of parameters, the zero subscript is as usual used to denote true value. Though

observable uj are covered, we motivate our focus on (1) in the context of a parametric

model for the sequence of observations yj:

fj(yj; β0) = uj, j = 1, 2, ..., (2)

where the fj are known functions of their arguments and possibly of observable ex-
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planatory variables varying with j, β0 is an unknown q×1 parameter vector assumed

variation-free of the θi0, and uj is, thus, unobservable, but assumed to be a random

variable with mean zero. For example, fj(yj; β0) may represent the deviation of yj

from a linear or nonlinear regression function,

fj(yj; β0) = yj − g(zj; β0), (3)

where g is a known linear, partly linear or wholly nonlinear function of its arguments

and zj is a vector of observable stochastic (but independent of the uj) or nonstochastic

explanatory variables, including time trends in a spatio-temporal setting, or dummy

variables. More generally, fj might be nonlinear in yj, for example a parametric

Box-Cox or arcsinh transformation. Correlation and heteroscedasticity in yj are thus

supposed not to be fully accounted for by zj.

Given n observations on yj in (2), and writing u = (u1, ..., un)′ , there is interest in

estimating the covariance matrix E(uu′), which has (j, k) th element Cov (uj, uk) , for

the sake of robust and/or effi cient inference on β0. For example, given observations

y1..., yn, the linear or nonlinear least squares estimate of β0 in (3) is
√
n− consistent

as n→∞ with a centred limiting normal distribution under regularity conditions on

g and the zj, as well as conditions which suitably limit the extent of the correlation

in the uj, but the variance matrix in the limit distribution depends on the covariance

structure of the uj, and information on this is needed to consistently estimate this

variance matrix and thereby provide robust inference on β0, that is, asymptotically

valid hypothesis tests and consistent interval estimates. Further, in the presence

of dependence in the uj the least squares estimate of β0 is generally asymptotically

ineffi cient; effi cient estimation via generalized linear or nonlinear least squares, and

thence locally most powerful testing, will again require information on the covariance

structure of uj. The correlation in the uj is described in terms of the n× 1 vector u

even though n is regarded as increasing in asymptotic theory because, as mentioned
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previously, some spatial models are expressed in terms of one or more specified n×n

spatial weight matrices: a generic such matrix W has zero diagonal elements and

typically satisfies some normalisation restriction, e.g. that each of its rows sums to

unity (though it need not necessarily be symmetric and it may have some negative

elements). Consequently the ωijk (.) , and thence the elements of u and thus y, can

be n-dependent, but we suppress this feature in the notation. Of course since the uj

are unobservable we would estimate the θi0 in (1) after replacing each uj by its proxy

ûj = fj(yj; β̂), where β̂ is a
√
n− consistent estimate of β0, such as described above,

and we suppose that, for i = 1, 2, θi0, σ
2
i0 are variation-free of β0 in (2). Given a

√
n-consistent estimate β̂ of β0 in (2) we can proxy the uj by the ûj = fj(yj; β̂) in

estimating the ωijk (θi0) , in the usual way.

We test between the hypotheses in (1) by tests of Cox (1961, 1962) type. Non-

nested tests between structures of "spatial autoregressive" form have been developed

by several authors, see e.g. Burridge (2012), Burridge and Fingleton (2010), Han

and Lee (2013), Jin and Lee (2013), Kelejian (2008), Kelejian and Piras (2011), Piras

and Lozano-Garcia (2012), but mainly J-tests, though Jin an Lee (2011) also develop

Cox-type tests. As indicated previously, our framework is designed to cover such

models, but also others, which do not involve weight matrices, as well as models

for panel and spatio-temporal data which may or may not employ weight matrices;

parametric modelling of heteroscedasticity can also be embraced. Cox-type tests may

be more suitable than J-tests when only covariance structure is at issue. Formally,

our methodology can also cover tests of nested hypotheses. An ancillary contribution

of the paper is the justification of Gaussian pseudo-likelihood parameter estimates in

a quite general setting. Our conditions do not assume stationarity of uj but are

motivated by approximate stability. Inevitably, in view of the diversity of settings

covered and the intrinsic issues with some of them, our conditions are high level,

and some can be hard or imposssible to satisfactorily check, but we provide some
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discussion. It would be possible to extend our work also to test between non-nested

models for yj of type (2), for example between two regression models alongside non-

nested models for E(uu′).

The following section describes a number of models that might feature as non-

nested hypotheses. Our non-nested test is presented in Section 3, including versions

that are robust with respect to departures from normality, and Section 4 contains a

small Monte Carlo study of finite-sample performance, with Section 5 offering some

concluding comments. Theoretical, large-sample, justification of the test is left to

Appendices. Appendix 1 lists and discusses regularity conditions. Appendix 2

presents and proves several theorems: our test statistic is a function of Gaussian

pseudo-maximum likelihood estimates of the parameter vectors θ10 and θ20 in (1),

and the null (taken to be the hypothesis H1) asymptotic distribution of the test

statistic depends on the null asymptotic distribution of the parameter estimates, so

for these we provide consistency and asymptotic normality results which are needed

in our proof of the null limit distribution of the test statistic (and which have some

novelty in our general setting and represent by far the main theoretical contribution

of the paper).

2. SPATIAL CORRELATION MODELS

We consider first observations recorded on d−dimensional Euclidean space Rd. For

this purpose we introduce the location t ∈ Rd. We proceed as if we have observations

uj, j = 1, ..., n, though as discussed above the uj are likely unobservable and replaced

in estimation by observable proxies. Given observations at n distinct locations t1, ..., tn

on a scalar zero-mean process U (t) , we make the identification U (tj) = uj, j =

1, ..., n, where unlike in the time series situation there is no natural ordering. It is

natural to consider the case that U (t) is covariance stationary, so EU (t)U (t+ s) =

σ2
0γ (s) for some function γ (s) and unknown positive scalar σ2

0, and all t, s ∈ Rd.
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Consider a parameterization γ (s;φ), φ ∈ Rm, such that γ (s;φ0) = γ (s) for some

φ0 ∈ Rm. Here φ0 generically represents either θ01 or θ02 of the previous section. We

thus take ωjk (φ) = γ (tj − tk;φ) , which generically represents ω1jk (θ1) or ω2jk (θ2)

above, θi ∈ Rpi , i = 1, 2.

When t has integer-valued components, i.e. t ∈ Zd , there is an extension of the

regularly-spaced time series setting, and thus extensions of typical time series mod-

els can be considered, for example, autoregressive moving averages, following Whit-

tle (1954) . To define these, introduce L = (L1, ..., Ld) such that Πd
h=1L

lh
h U (t) =

U (t− l) , l = (l1, ..., ld) ∈ Zd, and a (L;φ) =
∑qU1

l1=−qL1 ...
∑qUd

l1=−qLd al(φ)Πd
h=1L

lh
h ,

b (L;φ) =
∑rU1

l1=−rL1 ...
∑rUd

l1=−rLd bl(φ)Πd
h=1L

lh
h for given non-negative integers qLh ,

qUh, rLh, rUh, h = 1, ..., d, and given functions al(φ), bl(φ). Letting ε (t) , t ∈ Zd,

be independent and identically distributed (iid) random variables with zero mean

and variance σ2
0, under suitable conditions on a (L;φ) and b (L;φ) , the process U (t)

generated by

a (L;φ0)U (t) = b (L;φ0) ε (t) , t ∈ Zd, (4)

not only generalizes the time series stationary and invertible autoregressive moving

average process to a general dimension d, but also allows for leads as well as lags,

recognizing the lack of chronological ordering of spatial data. The γ (s;θ) and thus

ωjk (θ) can be determined from (4). The model (4) potentially suffers seriously from

the curse of dimensionality. This might be alleviated by, for example, replacing

a (L;φ) , b (L;φ) by the product forms Πd
h=1

∑qUh
lh=−qLh, alh(φ), Πd

h=1

∑rUh
lh=−rLh, blh(φ),

respectively. A parsimonious case of (4) d = 2 with m = 1 treated in the geography

literature (see e.g. Hepple (1976)) is the first-order quadrilateral autoregression

1− φ
(
L−1

1 + L−1
2 + L1 + L2

)
U (t) = ε (t) . (5)

On the other hand Haining (1978) considered the corresponding moving average model

U (t) =
(
1 + φ

(
L−1

1 + L−1
2 + L1 + L2

))
ε (t) . (6)
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Isotropy is another assumption that can produce parsimonious models. To define

this we return to the previous more general setting of t ∈ Rd.We say U (t) is isometric

if for some function on R, γ (s) = δ (|s|) , where |s| is the Euclidean distance of s from

the origin. Thus we consider parametric functions δ (|s| ;φ) . One important class

is the model of Matern (1986), which has various parameterizations (see Stein (1999,

pp. 48-51), one of which is

δ (|s| ;φ) =
1

2φ1−1Γ (φ1)

(
(2φ1)1/2 |s|

φ2

)φ1

Kφ1

(
(2φ1)1/2 |s|

φ2

)
, (7)

for m = 2, φ = (φ1, φ2)′ with φj > 0, j = 1, 2, and where Kφ1 is the modified Bessel

function of the second kind (see e.g. Gradshteyn and Ryzhik (1994)). Another

parsimonious isotropic model with m = 2 has

δ (|s| ;φ) = exp
(
− |s/φ2|

φ1
)
, (8)

where φ1 ∈ (0, 2], φ2 > 0, (see e.g. Diggle, Tawn and Moyeed (1998), De Oliveira,

Kedem and Short (1997), Stein (1999)). When φ1 = 0.5, (7) reduces to the expo-

nential covariance function exp (− |s/φ2|) , which is identical to (8) with φ1 = 1,while

as φ1 →∞, (7) converges to exp
(
− (s/φ2)2 /2

)
, but non-nested tests can choose be-

tween (7) and (8). A number of other models, and their fitting to irregularly-spaced

data, have been considered by, e.g., Vecchia (1988) , Jones and Vecchia (1993) , Hand-

cock and Wallis (1994) , Stein, Chi and Welty (2004) , Fuentes (2007) .

Other examples entail one or more of the spatial weight matrices described in the

previous section. Similarly to (4) , these are most commonly expressed as a linear

transformation of unobservable iid zero-mean random variables. Denoting by ε an

n× 1 vector of these, we write

S (φ0)u = ε. (9)

suppressing reference to weight matrices. Thus Ω (φ) , the n× n matrix with (j, k) th
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element ωjk (φ) , is given by

Ω (φ) = S (φ)−1 S (φ)−1′ . (10)

Models of this type can be natural in, for example, a network setting. Consider first

the mth order spatial autoregression (SAR(m)), for m ≥ 1, where

S (φ) = In −
m∑
j=1

φjWj, (11)

where Ir is the r×r identity matrix and theWj are n×n weight matrices. By far the

most frequently treated case of (11) in the theoretical and empirical literature is the

SAR(1) (see e.g. Cliff and Ord (1972), Arbia (2006)). Here, W1 is sometimes chosen

to be row-normalized such that the elements of each row sum to 1. The SAR(m)

might be compared in non-nested testing with the spatial moving average SMA(m),

where

S (φ) =

(
In +

m∑
j=1

φjWj

)−1

. (12)

Both (11) and (12) are nested in

S (φ) =

(
In +

ma+mb∑
j=ma+1

φjWj

)−1(
In −

ma∑
j=1

φjWj

)
, (13)

denoting the spatial autoregressive moving average (SARMA(ma,mb)), for ma ≥

1, mb ≥ 1, ma + mb = m. In non-nested testing, the SARMA(ma,mb) might be

compared with the SARMA(mb,ma), where either ma > mb or ma < mb, or with the

SAR(m) or SMA(m). An alternative type of model is the matrix exponential spatial

model MESS(m), where

S (φ) = exp

(
−

m∑
j=1

φjWj

)
(14)

and exp(.) is the matrix exponential function, exp(A) =
∞∑
j=0

Aj/j!; this model was

proposed for m = 1 by LeSage and Pace (2009). The MESS(m) might naturally be
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compared in non-nested testing with the SAR(m) as in Han and Lee (2013) or with

the SMA(m) . Other S (φ) that are non-linear functions of weight matrices might

also be considered.

Advantages of the class (9) include the guaranteed non-negative definiteness ofΩ (φ)

(10) , the "lag" interpretation of (11), (12) and (13) , somewhat analogous to time

series models, and the possibilty of choosing weight matrices to be non-symmetric

and to have some negative elements (though often they are symmetric with non-

negative elements). However, given that the (j, k) th element wjk of a weight matrix

can represent the inverse "distance" between agents j and k, it is noticable that for all

of the cases of (9) presented in the previous paragraph ωjk (φ) does not depend only

on wjk. For example, for the SMA(1), ωjk (φ) depends on wjl, wlk, all l = 1, ..., n,

while for the SAR(1) and MESS(1) it depends on the whole weight matrix. Such

outcomes can be rationalised, but there is also a case for using a weight matrix in

a simpler and more direct way in modelling Ω (φ) , which is arguably the most basic

quantity of interest, indeed under Gaussianity it uniquely describes the distribution

of u, apart from a scale factor. If we consider a weight matrix V with rather different

properties from before, being positive definite (and thus having positive elements on

the diagonal), we might consider

ωjk (φ) = ωjk (vjk;φ) ,

the notation stressing the dependence of ωjk (φ) on only the (j, k) th element vjk of

V. As very simple examples, with m = 1 and vjk ≥ 0,

ωjk (φ) = vφjk, φ > 0,

or

ωjk (φ) = φ1/vjk , φ ∈ (0, 1) .

In both cases, ωjk (φ)→ 0 as vjk → 0.

11



The setup in (1) is suffi ciently general to cover also multivariate data (e.g. where

n = NK, and we have N observations on a K−dimensional vector, for fixed K and

N → ∞) and panel data (where n = NT, and either or both the cross−sectional

dimension N and the time dimension T are regarded as diverging in asymptotic

theory); in each case a variety of dependence structures is possible.

3. NON-NESTED TESTS

Cox (1961,1962) developed log-likelihood ratio type tests between non-nested prob-

ability densities for iid observations; White (1981) provided asymptotic justification in

that setting. Our concern is to test between rival spatial correlation structures, with

precise distributional structure not of interest. Our tests are based on a Gaussian

pseudo-log-likelihood ratio and thus share the robustness to non-Gaussianity property

of the parameter estimates studied in the previous section. For a known, non-normal,

parametric density for the εj more effi cient tests would be based on the appropriate

maximum likelihood estimates. Indeed, the same effi ciency could be achieved using

adaptive estimates when the εj have density of unknown, nonparametric form (as

studied in a spatial autoregressive context by Robinson (2010)).

Our non-nested tests are based on parameter estimates of both models in (1). For

i = 1, 2, denote by θi, σ2
i respectively a pi × 1 vector and a scalar, representing any

admissible values of θi0, σ2
i0 respectively, let Ωi (θi) be the n× n matrix with (j, k) th

element ωijk (θi) , and define

Li
(
θi, σ

2
i

)
=

1

2
log σ2

i +
1

2n
log |Ωi (θi)|+

1

2nσ2
i

u′Ω−1
i (θi)u, (15)

which is minus the normalized Gaussian pseudo-maximum-likelihood based on (1),

up to a constant. We do not assume normality, but base our parameter estimates

and non-nested tests on (15). Our estimates of θi0, σ2
i0 minimize Li (θi, σ

2
i ). For given
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θi, Li (θi, σ2
i ) has a minimum

Qi (θi) = Li
(
θi, σ

2
i (θi)

)
=

1

2
log σ2

i (θi) +
1

2n
log |Ωi (θi)|+

1

2
, (16)

where

σ2
i (θi) =

1

n
u′Ω−1

i (θi)u =
1

n
u′Ω−1

i u, (17)

writing Ωi = Ωi (θi). For i = 1, 2, define Ri to be a given compact subset of Rpi and

θ̂i = arg
θi∈Ri

minQi (θi) , (18)

σ̂2
i = σ2

i

(
θ̂i

)
, (19)

the Gaussian pseudo-maximum-likelihood estimates of θi0, σ2
i0.

From (15), (16), the Gaussian pseudo log-likelihood-ratio statistic for testing the

models in (1) is

2
(
Q2

(
θ̂2

)
−Q1

(
θ̂1

))
= log

σ2
2

(
θ̂2

)
σ2

1

(
θ̂1

) +
1

n
log
∣∣∣Ω2

(
θ̂2

)∣∣∣− 1

n
log
∣∣∣Ω1

(
θ̂1

)∣∣∣ .
This converges in probability to a non-zero limit under H1. Defining, for i = 1, 2,

σ̃2
i = σ̃2

i (θi) = E1σ
2
i (θi) = σ2

10n
−1tr

(
Ω−1
i Ω10

)
(20)

and

Q̃i = Q̃i (θi) =
1

2
log
{
σ̃2
i (θi)

}
+

1

2n
log |Ωi (θi)|

=
1

2
log
{
σ̃2
i

}
+

1

2n
log |Ωi| , (21)

a centred statistic is

2
(
Q2

(
θ̂2

)
−Q1

(
θ̂1

))
− 2

(
Q̃2

(
θ̂2

)
− Q̃1

(
θ̂1

))
= log

σ2
2

(
θ̂2

)
σ2

1

(
θ̂1

) − log
σ̃2

2

(
θ̂2

)
σ̃2

2

(
θ̂1

) .
13



This can be written, using (20), as

log
σ2

2

(
θ̂2

)
σ2

1

(
θ̂1

) − log
tr
(

Ω−1
2

(
θ̂2

)
Ω10

)
tr
(

Ω−1
1

(
θ̂1

)
Ω10

) ,
which can be estimated by

log
σ2

2

(
θ̂2

)
σ2

1

(
θ̂1

) − log
1

n
tr
(

Ω−1
2

(
θ̂2

)
Ω1

(
θ̂1

))
,

which we write as

LR = log
σ2

2

(
θ̂2

)
σ2

2(θ̂1, θ̂2)
,

where

σ2
2(θ1, θ2) = σ2

1 (θ1)u (θ1, θ2) ,

with

u (θ1, θ2) =
1

n
tr
(
Ω−1

2 (θ2) Ω1 (θ1)
)
.

Under H1 and conditions in Appendix 1, σ2
2

(
θ̂2

)
− σ2

2(θ̂1, θ̂2) = op (1) , but under H2

LR will generally have a non-zero probability limit, indicating that LR is a basis for

testing H1. After studentization, it will be found to have a limiting standard normal

distribution. The studentization depends directly on an estimate of the covariance

matrix in the normal approximation to the distribution of our parameter estimates.

To discuss this, first denote, for i = 1, 2 and j, k, l = 1, ..., pi,

Ωij = Ωij (θi) = (∂/∂θij) Ωi, Ωijk = Ωijk (θi) = (∂/∂θik) Ωij, (22)

Ωijkl = Ωijkl (θi) = (∂/∂θil) Ωijk,

where the existence of the derivatives is assured by Assumption 8 in Appendix 2.

Write τ i = (θ′i, σ
2
i )
′
, τ̂ i =

(
θ̂
′
i, σ̂

2
i

)′
, i = 1, 2, τ = (τ ′1, τ

′
2)′ , τ̂ =

(
τ̂ ′1, τ̂

′
2

)′
. The large
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sample covariance matrix of τ̂ under H1 is approximately p lim ∂2L1
∂τ1∂τ ′1

0

0 p lim ∂2L2
∂τ2∂τ ′2

−1

E1


 ∂L1

∂τ1

∂L2
∂τ2

 ∂L1
∂τ1

∂L2
∂τ2

′
 p lim ∂2L1

∂τ1∂τ ′1
0

0 p lim ∂2L2
∂τ2∂τ ′2

−1

,

(23)

evaluated at τ̂ , E1 denoting expectation under H1. We can approximate (23) by one

of n−1M̂−1N̂iM̂
−1, for i = 1, 2, 3, 4 with the following definitions.

Write

M̂ =

 M̂1 0

0 M̂2

 ,

where for i = 1, 2, M̂i = Mi (τ̂), Mi = Mi (τ) being the (pi + 1)× (pi + 1) symmetric

matrix with (j, k)th element Mijk given by

Mijk =
σ2

1

2σ2
in
tr
(
Ω−1
i ΩijΩ

−1
i ΩikΩ

−1
i Ω1

)
+

1

2n
tr

(
Ω−1
i

(
ΩijΩ

−1
i Ωik − Ωijk

)(σ2
1

σ2
i

Ω−1
i Ω1 − In

))
,

j, k = 1, .., pi; (24)

Mi,j,pi+1 =
σ2

1

2nσ4
i

tr
(
Ω−1
i ΩijΩ

−1
i Ω1

)
, j = 1, .., pi; Mi,p2+1,p2+1 =

σ2
1

nσ6
i

tr
(
Ω−1
i Ω1

)
− 1

2σ4
i

.

The second derivative terms, involving Ω2jk, are present in someM2jk due to imposing

H1 on the H2 model, but the second trace in (24) vanishes for i = 1.

Our proposed N̂1 is based on taking the expectation in (23) under the assumption

that the ui are Gaussian and then evaluating at τ̂ . Take N̂ = N(τ̂), where N = N (τ)

is the (p+ 2)× (p+ 2) matrix

N (τ) =

 N11 N12

N ′12 N22

 ,

where, for h, i = 1, 2, Nhi = Nhi (τ) is the (ph + 1) × (pi + 1) matrix with (j, k)th
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element Nhijk given by

Nhijk =
σ4

1

2nσ2
hσ

2
i

tr
(
Ω−1
h ΩhjΩ

−1
h Ω1Ω−1

i ΩikΩ
−1
i Ω1

)
, j = 1, .., ph, k = 1, .., pi;

Nhij,pi+1 =
σ4

1

2nσ2
hσ

4
i

tr
(
Ω−1
h ΩhjΩ

−1
h Ω1Ω−1

i Ω1

)
, j = 1, .., ph,

Nhi,j,ph+1,k =
σ4

1

2nσ4
hσ

2
i

tr
(
Ω−1
i ΩikΩ

−1
i Ω1Ω−1

h Ω1

)
, k = 1, .., pi,

Nhi,ph+1,pi+1 =
σ4

1

2nσ4
hσ

4
i

tr
(
Ω−1
h Ω1Ω−1

i Ω1

)
.

Note that N11 = M1.

Our proposed N̂2, N̂3 and N̂4 are robust to departures from Gaussianity, and are

thus potentially less precise than N̂1 when u is actually Gaussian. We need to proxy

the iid innovations εs appearing in the linear process representation for uj described

further in Assumption 7 of Appendix 1, which is discussed there and employed in

Theorems 2-4 (on the limit distribution of τ̂ and the null limit distribution of our test

statistic),

uj =
∞∑
s=1

bjsεs, j = 1, 2, ...n, n = 1, 2, .... (25)

Such a representation follows naturally if we commence from an H1 model of form

S (θ10)u = ε (cf. (9)), with εs the sth element of ε, or a model of form (4),

but if we start from a model for Ω1 we have in effect to postulate a parameter-

ization bjs (θ1) in (25) , such that bjs = bjs (θ10) , to lead to an approximate fac-

torisation, Ω1 (θ1) ' B (θ1)B (θ1)′ , where the n × n matrix B (θ1) has (j, s) th

element bjs (θ1) and the approximation refers to the truncation, after n terms, of

the series in (25) when it is non-trivially infinite or otherwise contains more than n

terms. Denoting by bs (θ1) the n × 1 vector with kth element bks (θ1) , for i = 1, 2

and k, l = 1, ..., n let aist (τ) be the (p1 + 1) × 1 vector with jth element aijst (τ) =

− (2nσ2
i )
−1
b′s (θ1) Ω−1

i ΩijΩ
−1
i bt (θ1) for j = 1, ..., pi, and − (2nσ4

i )
−1
b′s (θ1) Ω−1

i bt (θ1)

for j = pi + 1, and put ast (τ) = (a1st (τ)′ , a2st (τ)′)′ ; note that ast (τ) = ats (τ). De-
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fine the n× 1 vector ε̂ = B
(
θ̂1

)−1

u, and denote its sth element by ε̂s; the ε̂s might

also be used in bootstrap versions of our tests. One alternative robust estimate is

N̂2 = n
n∑
s=1

ass (τ̂) a′ss (τ̂)
(
ε̂2
s − σ̂2

1

)2
+ 2n

n∑
s,t=1;s 6=t

ast (τ̂) a′st (τ̂) ε̂2
sε̂

2
t . (26)

Slightly simpler ones are

N̂3 = n
n∑
s=1

ass (τ̂) a′ss (τ̂)
(
ε̂2
s − σ̂2

1

)2
+ 2σ̂4

1n
n∑

s,t=1;s 6=t
ast (τ̂) a′st (τ̂) , (27)

N̂4 =
n∑
s=1

(
ε̂2
s − σ̂2

1

)2 n∑
s=1

ass (τ̂) a′ss (τ̂) + 2σ̂4
1n

n∑
s,t=1;s 6=t

ast (τ̂) a′st (τ̂) . (28)

For Gaussian εs we have E(ε2
s−σ2

10)2 = 2σ4
10, and on replacing

(
ε̂2
s − σ̂2

1

)2
by 2σ̂4

1, N̂3

is seen to reduce to N̂1. Since each can be represented as a positively-weighted sum

of non-negative definite matrices, N̂1, N̂2, N̂3 and N̂4 are desirably guaranteed non-

negative definite. Note that unlike N̂1 and N̂4 , N̂2 and N̂3 are also consistency-robust

to variation in the fourth moment of εs.

Now define

cj (τ) = −σ
2
1

n
tr
(
Ω−1

2 Ω1j

)
, j = 1, ..., p1; dj (τ) =

σ2
1

n
tr
(
Ω−1

2 Ω2jΩ
−1
2 Ω1

)
, j = 1, ..., p2,

and

e (τ) = (c1 (τ) , ..., cp1 (τ) ,−u (θ1, θ2) , d1 (τ) , ..., dp2 (τ) , 1)′ /σ2
2, ê = e (τ̂) .

We have the following choice of large sample approximate null distributions (see

Theorem 4 of Appendix 2):

LR ' N
(

0, n−1ê′M̂−1N̂iM̂
−1ê
)
, i = 1, 2, 3, 4. (29)

where Gaussianity of εs is assumed when i = 1. With level α ∈ (0, 1) , and zα such

that the probability that a standard normal variate exceeds zα is α, it is proposed to

reject H1 in the direction of H2 if |LR| ≥
(
n−1ê′M̂−1N̂iM̂

−1ê
)1/2

zα/2. In that event,

as is common practice in non-nested testing, one can switch H1 and H2 and if there

is a further rejection the test is deemed inconclusive. At the end of Appendix 2 we

mention test statistics that are slightly simpler but valid less generally.
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4. MONTE CARLO STUDY OF FINITE-SAMPLE PERFORMANCE

We generate designs as follows. First, we generate a random set of 2000 pairs (r1, r2)

iid as (R1, R2), where R1 and R2 are two independent random variables uniformly

distributed in the interval [0, 100] . Each pair (r1, r2) is a coordinate of the square

lattice [0, 100]× [0, 100] . We then generate samples of size n (n < 2000), consisting

of the n-nearest-neighbours to the centre of the square lattice (i.e. the point (50,50)).

The same coordinates are used in each Monte Carlo simulation.

We compare four alternative covariance specifications. On the one hand, we con-

sider SAR (1), SMA(1) and MESS(1) specifications, i.e (11), (12) and (14) respec-

tively, with m = 1, all of which involve weight matrices. We also consider an

isotropic covariance function (8) with φ1 = 1, or equivalently (7) with φ1 = 0.5,

i.e. the exponential covariance function exp (− |s|/φ2). In Tables I, II and IV,

we use the same parameter values for the different models when generating spa-

tial data according to the different designs. On the other hand, we consider the

same weight matrix W1 for the non-isotropic specifications. The weights are con-

structed by the function "makeneighbours" taken from J. LeSage’s MATLAB code

(http://www.spatial-econometrics.com), which has been used before by Han and Lee

(2013) in the context of non-nested testing of SAR vs MESS models. This function

generates a row-normalized weight matrix W1 = [wij]
n
i,j=1 based on k nearest neigh-

bors, i.e. wij = w∗ij
/∑n

j=1 w
∗
ij where w

∗
ij = 1 if the location j is one of the k nearest

neighbors of the location i, i 6= j, and w∗ij = 0 otherwise. The maximum eigenvalue

of W1 is 1. We have chosen k = 5; the same choice in Han and Lee (2013). These

weights produce covariance matrices satisfying Assumptions 2, 3 and 8 of Appendix

1 for the models and parameter values chosen. We compare results for alternative

parameter values and weight functions in Table III. These Monte Carlo experiments

are based on 2000 simulations.
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Table I provides a comparison of the level accuracy under different kurtosis scenarios

using the alternative estimates N̂i. We provide the proportion of rejections under H1

for SAR(1) and SMA(1) specifications with parameter φ1 = 0.5 and nearest neighbour

weights with k = 5, generating innovations {εj}nj=1 with mean zero, variance one and

varying kurtoses 0, 3 and 6, resulting from standardized versions of normal, centred

Gamma with shape parameter 2 and scale parameter 1, and Student’s t with 5 degrees

of freedom, respectively. Tests based on alternative N̂i behave very similarly under

normality, though sometimes there is a cost to using the robust N̂2, N̂3 and N̂4 when

they are not needed, and more surprisingly, the test based on N̂1 still works fairly

well under serious leptokurtosis, and generally is best under leptokurtic innovations.

This outcome may be explainable by the imprecision of 4th moment estimates under

leptokurtosis, in particular the 8th moment of a Gamma with shape parameter 2

is 9! and the 8th moment of a Student’s t with 5 degrees of freedom doesn’t exist,

contradicting Assumption 7 of Appendix 1. Amongst the three robust estimators, N̂4

is easiest to compute and behaves slightly better, possibly because it uses the most

information.

TABLE I ABOUT HERE

Table II provides size and power comparisons of tests for tests with the SAR, SMA,

MESS and EXP specifications under H1 (horizontal) in the direction of SAR , SMA

and MESS under H2 (vertical) using Gaussian εj and tests based on N̂4 for sample

sizes of 100, 200, 500 and 1000. We consider the SAR(1) and SMA(1) models with

φ1 = 0.5 and the MESS(1) model with φ1 = 1 − exp(0.5). These models are quite

similar for these parameter values: ‖In − φW1‖r = 1−φ and ‖exp(φW1)‖r = exp(φ),

where ‖·‖r is the maximum sum row norm, and the the smaller is φ1, the closer are

the SAR(1) and SMA(1). See LeSage and Pace (2007, pp 193). The exponential

isotropic model (EXP) given by (8) with φ1 = 1, is simulated with φ2 = 1 condi-
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tional on the fixed location points, using the lower-upper triangular decomposition

of the covariance matrix, as suggested by Davis (1987) and implemented with the

MATLAB routine (http://www.mathworks.com/matlabcentral/fileexchange/27613-

random-field-simulation). The normal approximation of the test statistic is fairly

good for the larger sample sizes (500 and 1000) except when testing SAR, SMA or

MESS in the direction of EXP. The EXP likelihood under mispecification is badly

behaved and the parameter estimates often fall on boundaries in many experiments.

This is the case for various φ1 values we have tried. Performance under H1 is very

good when testing EXP in the direction of the other models. The EXP model is quite

different from the others and it is is not diffi cult to reject this specification in the di-

rection of non-isotropic covariance specifications. However, it is hard to discriminate

between SAR, SMA and MESS for the smaller sample sizes, and MESS is diffi cult to

reject in the direction of SMA even for large n. Of course, the discriminating ability

of the tests depends greatly on the distance between the competing models. This is

illustrated in the following Monte Carlo experiments.

TABLE II ABOUT HERE

Table III demonstrates how power depends on the underlying processes. We focus

on testing the MESS(1) specification in the direction of a SMA(1), which performs

comparatively worse than the other tests in Table II. We investigate behaviour under

H2, i.e. for SMA(1), with φ1 = 0.5, 0.6, 0.7, 0.8 and 0.9. We also consider tests using

W1 computed with different numbers k of nearest neighbors. We also use symmetrized

nearest neighbour weights based on J. LeSage’s MATLAB routine "fsym_neighbors2"

for different φ1; it usesW1 = ACkA with Ck =
[
C

(i,j)
k

]n
i,j=1

, C(i,j)
k =

∑k
i=1 ρ

iS(i), where

ρ is a parameter and S(i), i = 1, ..., k, are k individual binary weight matrices with 0

and 1 indicating whether the observations are one of the i′s nearest neighbours, and

A = diag
{∑n

i=1C
(1,i)
k , ...,

∑n
i=1C

(n,i)
k

}
. The maximum eigenvalue of thisW1 is 1, and
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the corresponding covariance matrices satisfy Assumptions 2, 3 and 8 of Appendix

1. We took ρ = 0.8 and k = 5. The symmetrized nearest neighbors are denoted as

SNN and the asymmetric ones, used in Tables I and II, are denoted as ANN. Power

very much depends on W1 and φ1.

TABLE III ABOUT HERE

Table IV provides size and power for tests comparing the same models as in Table

I but where the uj are unobserved and tests are based on least squares residuals ûj

for (3) with g (zj; β0) = β10 + β20zj, β
′
0 = (β10, β20) = (1, 1). There is some effect of

estimating the nuisance parameters β10 and β20, but it seems to dissapear as sample

size increases.

TABLE IV ABOUT HERE

As in many other circumstances a bootstrap can improve finite sample accuracy.

A residual naive bootstrap resampling mimics the behaviour of the test under the

null hypothesis. A random sample with replacement
{
ε̂∗j
}n
j=1

from {ε̂j}nj=1, with

ε̂ = B(θ̂1)−1û, forms a basis for a bootstrap resample û∗ = B(θ̂1)ε̂∗, j = 1, ..., n,

which imposes the restriction under the null H1. Critical values of the asymptoti-

cally pivotal test statistic η̂ =
√
n LR/

(
ê′M̂−1N̂4M̂

−1ê
)
are approximated by its

bootstrap analogs, which are expected to be more accurate than the standard nor-

mal counterparts. Bootstrap critical values are approximated by Monte Carlo. That

is, we generate m bootstrap resamples
{
û
∗(l)
j

}m
l=1

and the corresponding test statis-

tics
{
η̂∗(l)

}m
l=1
. Then H1 is rejected at the α100% level in the direction of H2 when

η̂ ≥ c∗α/2 or η̂ ≤ c∗1−α/2, where c
∗
α = inf

{
c ∈ R+ : m−1

∑m
l=1 1{η̂∗(lsize≥c} ≤ α

}
. Table

IV provides sizes with SAR(1)H1 in the direction of SMA(1)H2 with innovations gen-

erated as a standard normal and as leptokurtic Student t with 5 degrees of freedoom.

Here, we use only 1000 Monte Carlo experiments and 500 resamples to approximate
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the bootstrap critical values. The bootstrap tests exhibit excellent accuracy even

for n as small as 50, and even in the leptokurtic case. One can save the trouble of

computing the scale ê′M̂−1N̂4M̂
−1ê, at the price of worse accuracy, by implementing

the bootstrap test directly on
√
nLR.

TABLE V ABOUT HERE

5. FINAL COMMENTS

In line with Table IV of the previous section, under regularity conditions our tests

remain valid when the uj are unobservable disturbances in a parametric model such

as (2) and estimates of the correlation and scale parameters of the uj for the Hi

are based instead on residuals, as discussed in Section 1. In (2) , the preliminary

estimate of β0, likely one motivated by uncorrelated and homoscedastic uj, would

need to be shown to be
√
n−consistent in the presence of possible correlation and

heteroscedasticity, and this is relatively straightforward to establish, especially in (3),

compared to the asymptotic theory for kernel nonparametric regression estimates

under (25) in Robinson (2011). The rest of the verification that the uj can be replaced

by residuals is lengthy but straightforward, under standard additional conditions.

Table V of the previous section suggested that improved level accuracy can be achieved

by bootstrapping, and theoretical justification could be sought. It may be of value

to extend our focus on correlation to test between models that also entail different

parameterization of the means of observations, for example different choices of g in

(3), such as testing between a linear and a nonlinear model or between linear models

involving non-nested selections of explanatory variables.

APPENDIX 1 : Regularity Conditions and Discussion

The first five assumptions are imposed for consistency of our parameter estimates

(Theorem 1 in Appendix 2).
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Assumption 1: Under H1, for all suffi ciently large n, the uj have uniformly

bounded fourth moment, and, denoting by κ1jklm the fourth cumulant of uj, uk, ul, um,

lim
n→∞

n−2
n∑

j,k,l,m=1

κ2
1jklm = 0.

This is condition of weak dependence with respect to fourth moments, which would

hold trivially on the one hand if uj is Gaussian, and on the other if the uj are

independent. It will also hold under the linear process assumption imposed later for

the central limit theorem, indeed there
n∑

j,k,l,m=1

κ2
1jklm = O (n) .

For a matrix A, denote by ‖A‖ the spectral norm of A, i.e. the square root of the

largest eigenvalue of A′A. In view of the Gaussian pseudo-likelihood employed, the

Euclidean norm ‖A‖2 = (tr(A′A))1/2 arises naturally, and as well as the standard

norm inequality ‖AB‖ ≤ ‖A‖ ‖B‖ our proofs use the inequality

‖AB‖2 ≤ ‖A‖2 ‖B‖ . (30)

Assumption 2: For i = 1, 2

lim
n→∞

sup
θi∈Ri

(
‖Ωi (θi)‖+

∥∥Ω−1
i (θi)

∥∥) <∞.
Assumption 3: For i = 1, 2, for any θ†i ∈ Ri and any η > 0, there exists ε > 0

such that

lim
n→∞

sup
θi:‖θi−θ†i‖<ε; θi∈Ri

∥∥∥Ωi (θi)− Ωi

(
θ†i

)∥∥∥ < η. (31)

Notice that Assumptions 2 and 3 imply that (31) holds with Ωi (θi) − Ωi

(
θ†i

)
re-

placed by Ω−1
i (θi) − Ω−1

i

(
θ†i

)
. There is interest in checking Assumptions 2 and 3

under more primitive conditions, given the specifications of the Ωi. To place the

assumptions in perspective, for equally-spaced time series, when Hi implies station-

arity Ωi is a Toeplitz matrix and Assumption 2 is satisfied if the (spectral density)

function f (λ; θi) = (2π)−1 ∑
j,k:|j−k|=l

ωijk (θi) cos lλ is bounded and bounded away from
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zero on λ ∈ (−π, π], uniformly in θi ∈ Ri, while Assumption 3 is satisfied by con-

tinuity of f (λ; θi) in θi. These observations are straightforwardly extended in case

of regular spatial or spatio-temporal lattices. For irregularly-spaced data, there is

less scope for finding comprehensible suffi cient conditions for Assumptions 2 and 3,

because the properties of both the underlying process (denoted U in the previous

section) and the regime generating the observation points are generally entwined in a

complicated way. However, a combination of stationary weak dependence in U and

a degree of regularity (lack of trending in the degree of sparseness of observations)

would be expected to suffi ce. An advantage of Assumptions 2 and 3 is their relative

simplicity. When the Hi model can be naturally factored as Ωi = BiB
′
i , where Bi is

a known matrix function of θi, Assumptions 2 and 3 (and subsequent assumptions)

can be written in terms of Bi. This is the case in (4), where in each case a particular

inversion must generally be selected from several possibilities, as well as in models of

form (9) and (10) , where Bi = S−1
i . However, such models are readily covered also by

our assumptions on Ωi, whereas for some other models (e.g. (7) and (8)), though of

course Ωi admits a factorisation for any θi, the factors need not have a simple closed

form representation as functions of θi.

With Q̃10 = Q̃1 (θ10) ,

Q̃1 − Q̃10 =
1

2
log

{
1

n
tr
(
Ω−1

1 Ω10

)
/
∣∣Ω−1

1 Ω10

∣∣1/n} , (32)

which is guaranteed to be non-negative by the inequality between arithmetic and

geometric means. An identifiability condition for θ10 is:

Assumption 4: θ10 ∈ R1 and for all θ1 ∈ R1\θ10,

lim
n→∞

1

n
tr
(
Ω−1

1 Ω10

)
/
∣∣Ω−1

1 Ω10

∣∣1/n > 1,

where the limit is assumed to exist.
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Denote by θ2∗ = θ2∗n a sequence of pseudo-true values under H1 :

θ2∗ = arg
θ2∈R2

min Q̃2 (θ2) ,

and write Q̃2∗ = Q̃2 (θ2∗) . Define also

σ2
2∗ = σ̃2

2 (θ2∗) = σ2
10n
−1tr

(
Ω−1

2∗ Ω10

)
. (33)

Define, for all n and ε > 0, the neighbourhoods N2ε = {θ2 : ‖θ2 − θ2∗‖ < ε} , and let

N̄2ε = R2\N2ε. We have

Q̃2 − Q̃2∗ =
1

2
log

{
tr
(
Ω−1

2 Ω10

)
tr
(
Ω−1

2∗ Ω10

) ∣∣Ω−1
2∗ Ω2

∣∣1/n} . (34)

where Ω2∗ = Ω2 (θ2∗) . Because θ2∗ need not be constant over n, we identify it by the

condition:

Assumption 5: For all suffi ciently large n and any η > 0, θ2∗ ∈ R2 and there

exists ε > 0 such that

lim
n→∞

inf
θ2∈N̄2ε

{
tr
(
Ω−1

2 Ω10

)
tr
(
Ω−1

2∗ Ω10

) ∣∣Ω−1
2∗ Ω2

∣∣1/n} > 1.

Our remaining assumptions are needed in asymptotic normality results for the

parameter estimates (Theorems 2 and 3 in Appendix 2) and for the non-nested test

statistics.

Assumption 6: θ10 is an interior point of R1 and, for all suffi ciently large n, θ2∗

is an interior point of R2.

Assumption 7: The representation (25) holds, where εs is a sequence of iid

random variables with zero mean, variance σ2
10, and finite eighth moment, bjs can

depend on n, bjs = bjsn, and, defining

cjs = cjsn = bjs/ω
1/2
1jj0, j = 1, ..., n; n = 1, 2, , , , ; s = 1, 2, ...,

we have

lim
n→∞

sup
1≤j≤n

∞∑
s=1

|cjs|+ lim
n→∞

sup
s≥1

n∑
j=1

|cjs| <∞. (35)
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The representation (25) was previously used in a spatial context by Robinson

(2011) , where its relevance is discussed. It implies that

ω1jk0 =
∞∑
s=1

bjsbks, j, k = 1, 2, ...n, (36)

where Assumption 2 implies the ω1jj∗ are uniformly bounded and bounded away from

zero, and thus
∞∑
s=1

c2
js = 1, j = 1, 2, ...n. (37)

The normalized cjs can be compared with moving average weights in the stationary

time series setting where cjs = cj−s, when (35) reduces to a standard weak depen-

dence summability condition; the eighth moment conditiom automatically holds un-

der Gaussianity and is needed only to check a Lyapounov condition, otherwise finite

fourth moments suffi ce. Note that in models of the form (9) we can choose bjs to

be the (j, s) th element of S (θ10)−1 , s = 1, 2, ...n, and bjs = cjs = 0, j ≥ n + 1.

More generally, the latter equality can be satisfied if the uj are Gaussian, since they

can be represented as a linear transformation of n iid normal variables, implying in-

deed that such a representation holds quite generally in Gaussian settings, including

with irregularly−spaced observations, as noted by Robinson (2011). If the uj are

non−Gaussian the infinite series representation is generally required to cover models

such as (4) , (7) and (8).

In much asymptotic theory for estimation of spatial weight matrix models (9) (see

e.g. Lee (2004)), two other norms are used: the absolute row sum norm ‖A‖r =

maxi
∑
j

|aij| and the l∞ or maximum element norm ‖A‖e = maxi,j |aij| , for a matrix

A = (aij) . Noting that for symmetric A, ‖A‖ ≤ ‖A‖r and ‖A‖ ≤ ‖A‖e , it was

desirable for Theorem 1 to rely only on spectral norm assumptions, but our central

limit theorem needs ‖.‖r and ‖.‖e . Using the definitions (22) , introduce:

Assumption 8: For i = 1, 2 and all suffi ciently large n, on an arbitrarily small
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neighbourhood Ni of θi∗, the elements of Ωi are thrice boundedly differentiable,

lim
n→∞

sup
θi∈Ni

(∥∥Ω−1
i

∥∥
r

+ ‖Ωij‖r + ‖Ωijk‖r + ‖Ωijkl‖r
)
<∞, (38)

and for a positive sequence h = hn such that either

h ≤ C (39)

or

h−1 + h/n→ 0 as n→∞, (40)

we have

lim
n→∞

sup
θi∈Ni

h
(
‖Ωij‖e + ‖Ωijk‖e + ‖Ωijkl‖e

)
<∞, (41)

In spatial statistics models such as (4), (7) and 98), the h bounded case (39)

is appropriate, when (41) is implied by (38). The allowance for (slower-than-

n) divergent h (40) is motivated by spatial weight matrix models such as (9) and

(10) , where, as in Lee (2004) , weight matrices are assumed to have all elements

that uniformly converge to zero as n → ∞. For example in the SMA(1) , see

(11) , Ωi = (In − θi1W ) (In − θi1W )′ , where it is sometimes assumed that h ‖W‖e +

‖W‖r + ‖W ′‖r ≤ C. Thus Ωi1 = 2θi1WW ′ −W −W ′ satisfies (38) and (41), and

also ‖Ωij‖2
2 ≤ n ‖Ωij‖e ‖Ωij‖r implies that supθi∈Ri ‖Ωi1‖2 = O

(
(n/h)1/2

)
. Notice

that divergent h is tantamount to a form of persistence, and will be reflected in

slower−than−
√
n convergence rates for the θ̂i.

Denote Mi∗ = Mi (τ ∗) , i = 1, 2 and

M∗ =

 M1∗ 0

0 M2∗

 ,

N∗ = N (θ∗) = n
n∑
s=1

ass∗a
′
ss∗E

(
ε2
s−
)2

+ 2σ4
10n

n∑
s,t=1;k 6=l

ast∗a
′
st∗,
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where ast∗ = ast∗ (τ ∗) and the first expectation depends also on the 4th cumulant of

εj, reference to which is suppressed. Write

Di =

 Ipih
1/2 0

0 1

 , i = 1, 2, D =

 D1 0

0 D2

 .

Assumption 9: The matrices

Φ = lim
n→∞

DM∗D,

Ψ = lim
n→∞

DN∗D

exist and are positive definite.

APPENDIX 2: Theorems and Proofs

Theorem 1: Under Assumptions 1-5 and H1, as n→∞

τ̂ 1 →p τ
′
10, τ̂ 2 − τ 2∗ →p 0.

Proof of Theorem 1: Write Q̃1∗ = Q10 for ease of notation. The following

arguments apply for i = 1, 2 except where otherwise specified. For ε > 0 define

the neighbourhood Niε = {θi : ‖θi − θi∗‖ < ε} , and let N̄iε = Ri\Niε. Denoting P1

probability under H1

P1

(
θ̂i ∈ N̄iε

)
≤ P1

(
inf
N̄iε
Qi ≤ Qi∗

)
≤ P1

(
sup
Ri

∣∣∣Qi − Q̃i

∣∣∣ ≥ inf
N̄iε

(
Q̃i − Q̃i∗

))
.

The result follows if

inf
N̄iε

(
Q̃i − Q̃i∗

)
> η, all suffi ciently large n and any η > 0, (42)

and if

sup
Ri

∣∣∣Qi − Q̃i

∣∣∣→p 0, as n→∞. (43)
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The left side of (43) is bounded by

1

2
sup
Ri

log σ2
i /σ̃

2
i ≤

1

2
sup
Ri

∣∣σ2
i − σ̃2

i

∣∣ /inf
Ri
σ̃2
i .

By the inequality (30) ,

σ̃2
i =

1

n
tr
(
Ω−1
i Ω10

)
=

1

n

∥∥∥Ω
−1/2
i Ω

1/2
10

∥∥∥2

2

≥
∥∥∥Ω

1/2
i

∥∥∥−2 1

n

∥∥∥Ω
1/2
10

∥∥∥2

2
≥ ‖Ωi‖−1

∥∥Ω−1
10

∥∥−1
,

so by Assumption 2,

lim
n→∞

inf
Ri
σ̃2
i > 0. (44)

On the other hand, for given θi, σ2
i − σ̃2

i has variance under H1

2

n2

∥∥Ω−1
i Ω10

∥∥2

2
+

1

n2

n∑
j,k,l,m=1

ωjki ω
lm
i κ1jklm

≤ 2

n2

∥∥Ω−1
i

∥∥2

2
‖Ω10‖2 +

1

n2

(∥∥Ω−1
i

∥∥4

2

n∑
j,k,l,m=1

κ2
1jklm

)1/2

≤ 2

n

‖Ω10‖2 +

(
1

n2

n∑
j,k,l,m=1

κ2
1jklm

)1/2
→ 0 as n→∞

by Assumptions 1 and 2, establishing pointwise convergence in probability of σ2
i − σ̃2

i

to zero. Uniform convergence follows from compactness of Ri and noting that for

any θ†i ∈ Ri and small enough η > 0, we can choose ε > 0 such that for Ni†η ={
θi :

∥∥∥θi − θ†i∥∥∥ < ε
}

E1 sup
θi:‖θi−θ†i‖<ε;θi∈Ri

∣∣∣∣tr((Ωi (θi)
−1 − Ωi

(
θ†i

)−1
)

(uu′ − Ω10)

∣∣∣∣
≤

(
E1 ‖u‖2 + tr (Ω10)

)
sup

θi:‖θi−θ†i‖<ε

∥∥∥∥Ωi (θi)
−1 − Ωi

(
θ†i

)−1
∥∥∥∥ = O(ηn),

by (30) and Assumptions 2 and 3. This proves (43) . Next, for i = 2, (42) is

Assumption 5 in view of (34) . For i = 1, by compactness Ri has a finite subcover and
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fixing θ†1 ∈ R1�θ10, and for any ε > 0

inf
θ1:‖θ1−θ†1‖<ε;θ1∈R1

(
Q̃1 − Q̃1∗

)
≥
(
Q̃1† − Q̃1∗

)
− sup

θ1:‖θ1−θ†1‖<ε;θ1∈R1

∣∣∣Q̃1 − Q̃1†

∣∣∣ , (45)

where

Q̃1 − Q̃1† =
1

2
log
{
tr
(
Ω−1

1 Ω10

)
/
∣∣Ω−1

1

∣∣1/n}− 1

2
log
{
tr
(
Ω−1

1† Ω10

)
/
∣∣Ω−1

1†
∣∣1/n}

=
1

2
log
{
tr
(
Ω−1

1 Ω10

)
/tr
(
Ω−1

1† Ω10

)}
+

1

2n
log
∣∣Ω−1

1 Ω1†
∣∣

=
1

2
log

(
1 +

tr
((

Ω−1
1 − Ω−1

1†
)

Ω10

)
tr
(
Ω−1

1† Ω10

) )
+

1

2n
log
∣∣I +

(
Ω−1

1 − Ω−1
1†
)

Ω1†
∣∣ .

Denoting by λj and νj the jth eigenvalues of
(
Ω−1

1 − Ω−1
1†
)

Ω10 and
(
Ω−1

1 − Ω−1
1†
)

Ω1†

respectively, by Assumption 2 the last expression is bounded by

1

2

∣∣∣∣∣ n∑j=1

λj

∣∣∣∣∣ /tr (Ω−1
1† Ω10

)
+

1

2n

n∑
j=1

|νj| ≤ Cn−1/2


(

n∑
j=1

λ2
j

)1/2

+

(
n∑
j=1

ν2
j

)1/2


≤ Cn−1/2
∥∥Ω−1

1 − Ω−1
1†
∥∥

2

≤ C ‖Ω1 − Ω1†‖ ,

where C denotes a positive generic constant and we use Assumption 2 and (30) . By

Assumption 3, for any η > 0 we can choose ε such that for all suffi ciently large n the

last displayed expression is bounded by Cη, uniformly on
∥∥∥θ1 − θ†1

∥∥∥ < ε, as therefore

is
∣∣∣Q̃1 − Q̃1†

∣∣∣ . In view of (45) the proof of (42) for i = 1 is completed by noting that

(32) and Assumption 4 imply that for some c† > 0, Q̃1† − Q̃1∗ → c† as n→∞.

Theorem 2: Under Assumptions 1-9 and H1 , as n→∞,

n1/2D−1 (τ̂ − τ ∗)→d N
(
0,Φ−1ΨΦ−1

)
.

Proof of Theorem 2: We record some preliminary calculations. For i = 1, 2 write

Li =
1

2
log σ2

i +
1

2n
log |Ωi|+

1

2nσ2
i

u′Ω−1
i u.
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For j = 1, ..., pi,

∂

∂θij
log |Ωi| = tr

(
Ω−1
i Ωij

)
,

∂

∂θij
Ω−1
i = −Ω−1

i ΩijΩ
−1
i .

Thus

∂Li
∂θij

= − 1

2nσ2
i

tr
{

Ω−1
i ΩijΩ

−1
i

(
uu′ − σ2

iΩi

)}
,

∂Li
∂σ2

i

=
1

2σ2
i

− u′Ω−1
i u

2nσ4
i

.

For i = 1, evaluating at θ1 = θ10, σ2
1 = σ2

10 and under H1,
′

∂L10

∂θ1j

= − 1

2nσ2
10

tr
{

Ω−1
10 Ω1j0Ω−1

10

(
uu′ − σ2

10Ω10

)}
∂L10

∂σ2
1

= − 1

2nσ4
10

tr
{

Ω−1
10

(
uu′ − σ2

10Ω10

)}
.

For i = 2, evaluating at θ2 = θ2∗, σ2
2 = σ2

2∗ and under H1,

∂L2∗

∂θ2j

= − 1

2nσ2
2∗
tr
{

Ω−1
2∗ Ω2j∗Ω

−1
2∗
(
uu′ − σ2

2∗Ω2∗
)}

= − 1

2nσ2
2∗
tr
{

Ω−1
2∗ Ω2j∗Ω

−1
2∗
(
uu′ − σ2

10Ω10

)}
∂L2∗

∂σ2
2

= − 1

2nσ4
2∗
tr
{

Ω−1
2∗
(
uu′ − σ2

2∗Ω2∗
)}

= − 1

2nσ4
2∗
tr
{

Ω−1
2∗
(
uu′ − σ2

10Ω10

)}
,

since

0 = E1
∂L2∗

∂θ2j

= − σ2
10

2nσ2
2∗
tr
{

Ω−1
2∗ Ω2j∗Ω

−1
2∗ Ω10

}
+

1

2n
tr
{

Ω−1
2∗ Ω2j∗

}
,

0 = E1
∂L2∗

∂σ2
2

= − σ2
10

2nσ4
2∗
tr
{

Ω−1
2∗ Ω10

}
+

1

2σ2
2∗
,

that is,

tr
{

Ω−1
2∗ Ω2j∗

}
=

σ2
10

σ2
2∗
tr
{

Ω−1
2∗ Ω2j∗Ω

−1
2∗ Ω10

}
,

σ2
2∗ =

σ2
10

n
tr
{

Ω−1
2∗ Ω10

}
.
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We thus have, denoting d∗ = (∂L10/∂τ
′
1, ∂L2∗/∂τ

′
2)′ ,

d∗ =
∞∑

s,t=1

ast∗
(
εsεt − σ2

10δst
)
,

where ast∗ = ast (τ ∗) . Now n1/2d∗ has mean zero and variance matrix N∗, and we

wish to show that

n1/2Dd∗ →d N (0,Ψ) , as n→∞. (46)

The proof begins similarly to that of Theorem 4 of Robinson (2011), but there a linear

rather than quadratic function of the εi was involved. Since ast∗ = ats∗, we rewrite

d∗ as

d∗ =
∞∑
s=1

ass∗
(
ε2
s − σ2

10

)
+ 2

∞∑
s=1

1 (s ≥ 2)
s−1∑
t=1

ast∗εsεt =
∞∑
s=1

vs, (47)

where 1 (.) is the indicator function and

vs =
(
ε2
s − σ2

10

)
ass∗ + 21 (s ≥ 2) εs

s−1∑
t=1

ast∗εt.

For a positive integer sequence J = Jn, increasing with n, write

d∗a =
J∑
s=1

vs, d∗b = d∗ − d∗a.

On proving that, for some J sequence,

n1/2Dd∗b →p 0, (48)

it suffi ces to focus on d∗a, leading to consideration of

T = nE (Dd∗ad
′
∗aD) = n

J∑
s=1

DE (vsv
′
s)D.

Introduce a square matrix Z such that T = ZZ ′. For large enough J, T is positive

definite under our conditions (see (50)). For a vector ζ such that ‖ζ‖ = 1, write

r∗ = n1/2ζ ′Z−1Dd∗a = n1/2
J∑
s=1

ζ ′Z−1Dvs.
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Now r∗ has zero mean and unit variance for all n, and the property

r∗ →d N (0, 1) , as n→∞, (49)

will follow by checking the conditions of a martingale central limit theorem, because

the elements of the vk, and thus the summands of r∗, are martingale differences. If

also

T → N∗ as J →∞, (50)

the proof of (46) is completed; we omit proof of (50) as it is straightforward given

our other proofs.

The details for checking (48) and (49) differ considerably from those of Robinson

(2011) , mainly because our vk is quadratic in the εi. First, (48) follows on showing

that as J →∞,

E
∥∥n1/2Dd∗b

∥∥2 → 0. (51)

From Assumption 7 the vs are uncorrelated and the left side of (51) is bounded by

Cn
∞∑

s=J+1

E ‖Dvs‖2 , (52)

where, from (47)

E ‖Dvs‖2 ≤ C ‖Dass∗‖2 + C1 (s ≥ 2)
s−1∑
t=1

‖Dast∗‖2 ≤ C
s∑
t=1

‖Dast∗‖2 .

The (p1 + p2 + 2) × 1 vector Dast∗ has mth element of form b′sRmbt/n, where bs =

bs (θ10) . Now (52) is bounded by

Cn
∞∑

s=J+1

s∑
t=1

‖Dast∗‖2 ≤ C

n

p1+p2+2∑
m=1

∞∑
s=J+1

b′sRm

s∑
t=1

btb
′
tR
′
mbs

≤ C

n

p1+p2+2∑
m=1

( ∞∑
s=J+1

b′sRmR
′
mbs

)
, (53)

since (25) implies

∥∥∥∥ s∑
t=1

btb
′
t

∥∥∥∥ ≤ ‖Ω1‖ ≤ C by Assumption 2. Denote by rmjk the

(j, k)th element of Rm. We deduce from Assumption 8 that for 1 ≤ m ≤ p1 and
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p1 + 2 ≤ m ≤ p1 + p2 + 1,

|rmjk| ≤
C

h1/2
,
∑
k

|rmjk| ≤ Ch1/2,

while for m = p1 + 1 and m = p1 + 1 + 2

|rmjk|+
∑
k

|rmjk| ≤ C.

The bracketed term in (53) is
∞∑

s=J+1

n∑
j=1

n∑
k=1

n∑
l=1

bjsrmjkrmlkbls ≤ C
∞∑

s=J+1

n∑
j=1

n∑
k=1

n∑
l=1

|cjs| |rmjk| |rmlk| |cls|

≤ C
∞∑

s=J+1

n∑
j=1

n∑
l=1

(
max
k
|rmjk|

)
|cjs|

(
n∑
k=1

|rmlk|
)
|cls|

≤ C
n∑
j=1

∞∑
s=J+1

|cjs|
n∑
l=1

|cls|

≤ Cnmax
j

∞∑
s=J+1

|cjs| (54)

from Assumption 7. Also that assumption implies that, for j = 1, ..., n, for any

sequence ηn ↓ 0 as n → ∞ we may choose Jjn such that
∞∑

s=Jjn+1

|cjs| < ηn. Thus

taking J = Jn = max(J1n, ..., Jnn), (54)≤ Cnηn = o (n) as n → ∞. This completes

the proof of (51).

The proof of (49) follows (see e.g. Scott (1973)) on checking a Lyapounov type

condition
J∑
s=1

E
∥∥n1/2Z−1Dvs

∥∥4 → 0 (55)

and

n
J∑
s=1

(E (Dvsv
′
sD |εt, t ≤ s− 1)− E (Dvsv

′
sD))→p 0. (56)

To check (55) note first that

E
∥∥Z−1Dvs

∥∥4 ≤ C ‖Dass∗‖4 + CE

∥∥∥∥s−1∑
t=1

Dast∗εt

∥∥∥∥4

≤ C
s∑
t=1

‖Dast∗‖4 + C

(
s−1∑
t=1

‖Dast∗‖2

)2

≤ C

(
s∑
t=1

‖Dast∗‖2

)2

.
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Now

s∑
t=1

‖Dast∗‖2 ≤ C

n2

p1+p2+2∑
m=1

(
b′sRm

s∑
t=1

btbtR
′
mbs

)
≤ C

n2
‖bs‖2 .

Thus the left side of (55) is bounded by

C

n2

J∑
s=1

‖bs‖4 ≤ C

n2

J∑
s=1

(
n∑
j=1

c2
js

)2

≤ C

n2

J∑
s=1

(
n∑
j=1

|cjs|
)4

≤ C

n2

n∑
j=1

(
J∑
s=1

|cjs|
)
≤ C

n

on applying both parts of (35) of Assumption 7, to prove (55).

To prove (56), note first that E (vsv
′
s |εt, t ≤ s− 1) is

(
2σ4

10 + κ∗
)
ass∗a

′
ss∗ + E

(
ε3
s

)
1 (s ≥ 2)

s−1∑
t=1

(ast∗a
′
ss∗ + ass∗a

′
st∗) εt

+σ2
101 (s ≥ 2)

(
s−1∑
t=1

ast∗εt

)(
s−1∑
t=1

ast∗εt

)′
,

and its expectation E (vsv
′
s) is(

2σ4
10 + κ∗

)
ass∗a

′
ss∗ + σ4

101 (s ≥ 2)
s−1∑
t=1

ast∗a
′
st∗.

Thus the Euclidean norm of the left side of (56) is bounded by

n
∣∣E (ε3

s

)∣∣ ∥∥∥∥ J∑
s=2

s−1∑
t=1

(Ast + A′st) εt

∥∥∥∥
2

(57)

+nσ2
10

∥∥∥∥∥ J∑
s=2

{(
s−1∑
t=1

ast∗εt

)(
s−1∑
t=1

ast∗εt

)′
− σ2

10

s−1∑
t=1

ast∗a
′
st∗

}∥∥∥∥∥
2

, (58)

writing Ast = ast∗a
′
ss∗. Since

∑J
s=2

∑s−1
t=1 Astεt =

∑J−1
t=1

∑J
s=t+1Astεt, the square of

(57) has expectation bounded by

Cn2E

∥∥∥∥J−1∑
t=1

(
J∑

s=t+1

Ast

)
εt

∥∥∥∥2

2

≤ Cn2
J−1∑
t=1

∥∥∥∥ J∑
s=t+1

Ast

∥∥∥∥2

2

,
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where ∥∥∥∥ J∑
s=t+1

Ast

∥∥∥∥2

2

=
1

n4

p1+p2+2∑
j,k=1

J∑
r=t+1

J∑
s=t+1

b′rRjbrb
′
rR
′
kbtb

′
sRjbsb

′
sR
′
kbt

≤ C

n4

p1+p2+2∑
k=1

(
J∑

r=t+1

|b′tRkbr|
)2

≤ C

n4

p1+p2+2∑
k=1

(
J∑

r=t+1

n∑
l=1

n∑
m=1

|clt| |rklm| |cmr|
)2

.

Now for 1 ≤ m ≤ p1 and p1 + 2 ≤ m ≤ p1 + p2 + 1, on the one hand

J∑
r=t+1

n∑
l=1

n∑
m=1

|clt| |rklm| |cmr| ≤ C
n∑
l=1

n∑
m=1

|clt| |rklm| ≤ Ch1/2
n∑
l=1

|clt| ,

while on the other,

J∑
r=t+1

n∑
l=1

n∑
m=1

|clt| |rklm| |cmr| ≤ C
n∑
l=1

|clt|
n∑

m=1

|rklm| ≤ Ch−1/2
n∑
l=1

|clt| ≤ Ch−1/2.

while for m = p1 + 1 and m = p1 + 1 + 2, these bounds hold without the respective

h1/2 and h−1/2 factors. Thus (57)= Op

(
n−1/2

)
.

To deal with (58), note that

J∑
s=2

s−1∑
t=1

ast∗a
′
st∗
(
ε2
t − σ2

10

)
+

J∑
s=2

s−1∑
t=1

t−1∑
u=1

(ast∗a
′
su∗ + asu∗a

′
st∗) εtεu.

=
J−1∑
t=1

J∑
s=t+1

ast∗a
′
st∗
(
ε2
t − σ2

10

)
+ .

J−1∑
t=1

t−1∑
u=1

{
J∑

s=t+1

(ast∗a
′
su∗ + asu∗a

′
st∗)

}
εtεu. (59)
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Now

n2E

∥∥∥∥.J−1∑
t=1

t−1∑
u=1

{
J∑

s=t+1

(ast∗a
′
su∗ + asu∗a

′
st∗)

}
εtεu

∥∥∥∥2

2

≤ Cn2.
J−1∑
t=1

t−1∑
u=1

∥∥∥∥ J∑
s=t+1

ast∗a
′
su∗

∥∥∥∥2

2

≤ C

n2
.
J−1∑
t=1

t−1∑
u=1

J∑
s=t+1

J∑
r=t+1

b′sRjbtb
′
sRkbub

′
rRjbtb

′
rRkbu

≤ C

n2
.
J∑
t=1

J∑
s=1

J∑
r=1

J∑
u=1

∑
j

∑
k

∑
l

∑
m

|cls| |rjlm| |cmt|
∑
l

∑
m

|cls| |rklm| |cmu|

×
∑
l

∑
m

|clr| |rjlm| |cmt|
∑
l

∑
m

|clr| |rjlm| |cmu|

≤ C

n2
.
J∑
t=1

J∑
s=1

J∑
r=1

∑
j

∑
k

(∑
l

∑
m

|cls| |rjlm| |cmt|
)(∑

l

∑
m

|cls| |rklm|
∣∣∣∣ J∑
u=1

cmu

∣∣∣∣)
×
(∑

l

∑
m

|clr| |rjlm| |cmt|
)(∑

l

∑
m

|clr| |cmu|h−1/2

)
≤ Ch−1/2

n2
.
J∑
t=1

J∑
s=1

∑
j

(∑
l

∑
m

|cls| |rjlm| |cmt|
)∑

l

|cls|h1/2

(∑
l

∑
m

J∑
r=1

|clr| |rjlm| |cmt|
)

≤ C

n2
.
∑
j

∑
l

∑
m

(
J∑
s=1

|cls|
)
|rjlm|

(
J∑
t=1

|cmt|
)∑

m

(∑
l

|rjml|
)
|cmt|

≤ Ch

n
,

for ≤ m ≤ p1 and p1 + 2 ≤ m ≤ p1 + p2 + 1, the penultimate step using symmetry

of Rk. Clearly for m = p1 + 1 and m = p1 + 1 + 2 the bound is C/n.

Finally, for the second part of (59),

n2E

∥∥∥∥J−1∑
t=1

J∑
s=t+1

ast∗a
′
st∗
(
ε2
t − σ2

10

)∥∥∥∥2

2

≤ Cn2
J−1∑
t=1

∥∥∥∥ J∑
s=t+1

ast∗a
′
st∗

∥∥∥∥2

2

.

The (j.k) th element of ast∗a′st∗ is b
′
sRjbtb

′
sRkbt/n

2 so, since

J∑
s=t+1

|b′sRjbt| ≤ C
J∑

s=t+1

n∑
l=1

n∑
m=1

|cls| |rjlm| |cmt|

≤ C
n∑
l=1

n∑
m=1

|rjlm| |cmt| ≤ Ch1/2
n∑

m=1

|cmt| ,
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we have

n2
J−1∑
t=1

∥∥∥∥ J∑
s=t+1

ast∗a
′
st∗

∥∥∥∥2

2

≤ Ch

n2

J−1∑
t=1

(
n∑

m=1

|cmt|
)2

≤ Ch

n2

n∑
m=1

J−1∑
t=1

|cmt| ≤
Ch

n
.

This completes the proof of (46)

Next consider

∂2

∂θij∂θik
log |Ωi| = tr

(
Ω−1
i Ωijk

)
− tr

(
Ω−1
i ΩikΩ

−1
i Ωij

)
,

∂2

∂θij∂θik
Ω−1
i = Ω−1

i ΩikΩ
−1
i ΩijΩ

−1
i − Ω−1

i ΩijkΩ
−1
i + Ω−1

i ΩijΩ
−1
i ΩikΩ

−1
i .

so

∂2Li
∂θij∂θik

= − 1

2nσ2
i

tr
{(

Ω−1
i ΩijkΩ

−1
i − 2Ω−1

i ΩijΩ
−1
i ΩikΩ

−1
i

)
uu′
}

+
1

2n
tr
{

Ω−1
i Ωijk − Ω−1

i ΩijΩ
−1
i Ωik

}
,

j, k = 1, .., pi,

∂2Li
∂θij∂σ2

i

=
1

2nσ4
i

tr
{

Ω−1
i ΩijΩ

−1
i uu′

}
, j = 1, .., pi

∂2Li
∂σ4

i

=
1

nσ6
i

tr
{

Ω−1
i uu′

}
− 1

2σ4
i

.

It is then readily seen that

E1
∂2L10

∂τ 1∂∂τ ′1
= M10, E1

∂2L2∗

∂τ 2∂∂τ ′2
= M2∗. (60)

Now denote

F = F (τ) =

 ∂2L1
∂τ1∂∂τ ′1

0

0 ∂2L2
∂τ2∂∂τ ′2

 .

We have

n1/2N−1/2
∗ M∗ (τ̂ − τ ∗) = n1/2N−1/2

∗ D−1 (DM∗D)D−1 (τ̂ − τ ∗)→d N (0, Ip+2) ,
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where, for a positive definite matrix A, A1/2 denotes the unique positive definite

matrix such that A1/2A1/2 = A. By the mean value theorem,

0 = d∗ + F̃ (τ̂ − τ ∗) ,

where F̃ is derived from the matrix F (τ) by evaluating each row at a possibly different

τ such that ‖τ − τ ∗‖ ≤ ‖τ̂ − τ ∗‖ . Thus

0 = Dd∗ +DF̃DD−1 (τ̂ − τ ∗) ,

and so

n1/2D−1 (τ̂ − τ ∗) = −n1/2
(
DF̃D

)−1

Dd∗.

It may be readily verified that

D
(
F̃ − F (τ ∗)

)
D →p 0, D (F (τ ∗)−M∗)D →p 0,

where the first step uses consistency of τ̂ and the implied regularity of F (τ), and the

second entails a law of large numbers in view of (60). Because of (46) the result

readily follows.

Our next theorem justifies the feasible large sample approximations to the distrib-

ution of τ̂ :

τ̂ − τ ∗ ' N
(

0, n−1M̂−1N̂iM̂
−1
)
, i = 1, 2, 3.

Theorem 3: Under Assumptions 1-9 and H1, and with the εs asssumed Gaussian

for i = 1, as n→∞,

M̂M−1
∗ →p Ip+2, N̂iN

−1
∗ →p Ip+2,

n1/2N̂
−1/2
i M̂ (τ̂ − τ ∗)→d N (0, Ip+2) ,

for i = 1, 2, 3.

The proof is lengthy but straightforward given previous results and is thus omitted.
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Theorem 4: Under Assumptions 1-9 and H1, and with the εs asssumed Gaussian

for i = 1, as n→∞,

LR(
n−1ê′M̂−1N̂iM̂−1ê

)1/2
→d N (0, 1) , i = 1, 2, 3, 4. (61)

Proof of Theorem 4: Writing, as in (19), σ̂2
2 = σ2

2

(
θ̂i

)
, i = 1, 2, we have

LR = log
σ̂2

2

σ2
2∗
− log

σ2
2(θ̂1, θ̂2)

σ2
2∗

= log

(
1 +

σ̂2
2 − σ2

2∗
σ2

2∗

)
− log

(
1 +

σ2
2(θ̂1, θ̂2)− σ2

2∗
σ2

2∗

)

=
σ̂2

2 − σ2
2∗

σ2
2∗

+
σ2

2(θ̂1, θ̂2)− σ2
2∗

σ2
2∗

+Op

((
σ̂2

2 − σ2
2∗
)2

+
(
σ2

2(θ̂1, θ̂2)− σ2
2∗

)2
)
. (62)

From calculations below and since limn→∞σ
2
2∗ > 0, the remainder term in (62) can

be neglected. Now

σ2
2(θ̂1, θ̂2)− σ2

2∗ = σ̂2
1u
(
θ̂1, θ̂2

)
− σ2

10u (θ10, θ2∗) ,

which may be written

(
σ̂2

1 − σ2
10

)
u (θ10, θ2∗)+σ

2
10

(
u
(
θ̂1, θ̂2

)
− u (θ10, θ2∗)

)
+
(
σ̂2

1 − σ2
10

) (
u
(
θ̂1, θ̂2

)
− u (θ10, θ2∗)

)
,

where, by the mean value theorem,

u
(
θ̂1, θ̂2

)
− u (θ10, θ2∗) =

p1∑
j=1

cj
(
θ
) (
θ̂1j − θ1j0

)
+

p2∑
j=1

dj
(
θ
) (
θ̂2j − θ2j∗

)
,

where
∥∥θ − θ∗∥∥ ≤ ∥∥∥θ̂ − θ∥∥∥. Thus as n→∞,

n1/2LR− n1/2e′∗ (τ̂ − τ ∗)→p 0,
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where e′∗ = e (τ ∗) . But by Assumption 8 and Theorem 2.

n1/2e′∗ (τ̂ − τ ∗) = e′∗M
−1
∗ N1/2

∗ n1/2N−1/2
∗ M∗ (τ̂ − τ ∗)

= e′∗D (DM∗D)−1DN1/2
∗ n1/2N−1/2

∗ M∗ (τ̂ − τ ∗)

→ d N
(
0, ζ ′Φ−1Ψ Φ−1ζ

)
,

where

ζ = lim
n→∞

De∗

and using N−1/2
∗ M∗n

1/2 (τ̂ − τ ∗)→d N (0, Ip+2) . Equivalently

n1/2e′∗ (τ̂ − τ ∗)(
e′∗M

−1
∗ N∗M

−1
∗ e∗

)1/2
→d N (0, 1) ,

and since it is straightforwardly verified that

D (ê− e∗)→p 0,

the result follows from Theorem 3.

Note that all elements of M∗ and N∗ are O(h−1) except for the (p1 + 1, p1 + 1) th

and (p+ 2, p+ 2) th, which are O(1), explaining the normalisations in Assumption 9

and indicating that when h diverges the (j, p1 + 1)th, j = 1, ..., p1, and (j+p1 + 1, p+

2)th, j = 1, ..., p2, elements of Φ and Ψ are zero. Thus on the assumption of divergent

h a somewhat simpler test statistic can be justified. We have cj (τ̂) = Op(h
−1),

dj (τ̂) = Op(h
−1), for all j, so taking account of the normalisations involved it is

relevant that h1/2cj (τ̂)→p 0, h1/2dj (τ̂)→p 0, for all j. Thus, defining

e− (τ) =
(
0′p1 ,−u (θ1, θ2) , 0′p2 , 1

)′
/σ2

2, ê− = e− (τ̂) ,

where 0k is the k × 1 vector of zeros, we have

LR(
nê′−M̂

−1N̂iM̂−1ê−

)1/2
→d N (0, 1) , i = 1, 2, 3, 4 as n→∞

41



when h→∞. However, the statistic in (61) is valid for both bounded and divergent

h.
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TABLE I

Size comparisons for alternative hypotheses and N̂i

Percentage of rejections with nominal 5% level

εj ∼ N(0, 1), Kurtosis Excess = 0

H1/H2 SAR/SMA SAR/MESS SMA/SAR SMA/MESS

N̂i

∖
n 100 500 1000 100 500 1000 100 500 1000 100 500 1000

N̂1 0.60 4.80 5.00 1.30 3.35 4.75 1.40 4.15 4.55 3.35 4.60 4.75

N̂2 1.00 4.90 4.95 1.60 3.25 4.75 1.35 3.70 4.30 3.40 4.50 4.50

N̂3 0.65 4.85 4.95 1.65 3.30 4.65 1.40 4.05 4.55 3.20 4.70 4.75

N̂4 0.70 4.85 4.95 1.75 3.40 4.75 1.45 4.25 4.50 3.20 4.55 4.75

εj ∼ (Γ(2, 1)− 2)/
√

2, Kurtosis Excess = 3

H1/H2 SAR/SMA SAR/MESS SMA/SAR SMA/MESS

N̂i

∖
n 100 500 1000 100 500 1000 100 500 1000 100 500 1000

N̂1 1.05 5.25 6.35 2.10 5.90 6.70 2.55 4.35 4.40 3.55 4.60 4.70

N̂2 0.45 3.15 4.00 0.95 4.10 4.70 0.85 2.35 3.20 3.25 3.30 3.45

N̂3 0.30 3.25 4.35 0.95 4.05 4.90 0.85 2.80 3.30 3.30 3.05 3.45

N̂4 0.35 3.85 4.60 0.95 4.60 5.15 0.85 3.10 3.30 3.45 3.15 3.60

εj ∼ t5/
√

5/3, Kurtosis Excess = 6

H1/H2 SAR/SMA SAR/MESS SMA/SAR SMA/MESS

N̂i

∖
n 100 500 1000 100 500 1000 100 500 1000 100 500 1000

N̂1 1.05 6.10 5.60 2.30 6.40 5.10 1.85 5.25 5.60 3.20 4.50 6.30

N̂2 0.40 3.70 3.25 1.20 3.85 3.35 0.70 3.10 2.85 2.60 2.35 3.65

N̂3 0.25 3.95 3.50 1.10 3.75 3.55 0.85 3.20 3.05 2.75 2.60 3.90

N̂4 0.25 4.20 3.55 1.15 4.05 3.65 0.90 3.65 3.20 2.60 2.50 4.15
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TABLE II

Size and power comparison using Gaussian uj and N̂4

Size Power

n % Rejections under H1 % Rejections under H2

H2 \H1 SAR SMA MESS EXP SAR SMA MESS EXP

100 1.45 1.40 0.90 1.12 2.70 86.15

SAR 200 2.75 2.95 3.20 23.60 8.00 99.15

500 4.25 3.65 4.70 52.80 15.65 100

1000 4.50 4.60 5.15 82.45 31.05 100

100 0.70 1.20 2.05 1.20 1.10 39.70

SMA 200 2.75 2.55 3.65 6.40 3.00 89.30

500 4.85 3.90 4.65 19.25 7.35 100

1000 4.95 4.55 5.10 35.70 13.45 100

100 2.50 3.20 1.40 3.80 5.65 6.40

MESS 200 3.80 3.10 3.60 7.85 9.15 98.55

500 4.70 4.55 4.65 19.60 21.10 100

1000 5.40 4.75 5.30 37.35 38.55 100

TABLE III

Power: % rejections under H2

H1 : MESS vs H2 : SMA

Tests using Gaussian uj and N̂4

NN , k = 5 ANN

ANN SNN φ1 = 0.5

φ1\n 500 1000 500 1000 k\n 500 1000

0.5 7.35 13.45 6.95 13.45 4 7.85 14.70

0.6 9.70 18.90 9.05 16.50 5 7.35 13.45

0.7 12.9 28.15 12.05 25.95 6 9.25 11.65

0.8 19.0 40.75 15.45 31.10 10 6.65 7.60

0.9 23.5 52.80 17.55 36.80 20 4.75 5.30



TABLE IV

Size and power using Gaussian uj and N̂4

Tests based on residuals of simple linear regression

Size Power

n % Rejections under H1 % Rejections under H2

H2 \H1 SAR SMA MESS EXP SAR SMA MESS EXP

100 1.80 1.35 1.80 6.60 4.20 80.00

SAR 200 2.50 2.80 3.60 20.55 8.40 98.00

500 4.00 4.05 4.35 47.75 18.60 100

1000 4.45 4.10 4.80 61.15 33.70 100

100 1.15 0.90 1.20 3.35 1.60 35.25

SMA 200 2.80 2.70 3.15 8.00 4.05 87.60

500 4.70 3.95 3.80 17.85 7.80 99.90

1000 4.75 4.55 4.65 32.15 12.70 100

100 3.45 2.50 1.40 5.70 4.15 8.95

MESS 200 3,75 2.65 3.15 10.20 8.25 97.50

500 3.80 3.85 3.85 20.40 18.15 100

1000 4.05 5.55 4.70 36.20 37.20 100

TABLE V

H1 : SAR vs H2 : SMA

Bootstrap and asymptotic tests

Size: % Rejections under H1

εj ∼ N(0, 1) εj ∼ t5

Bootstrap Asymptotic Bootstrap Asymptotic

n\ 100α% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

50 1.00 5.10 8.00 0.00 0.20 1.50 0.70 5.70 11.40 0.00 0.00 0.90

100 0.90 5.50 10.20 0.00 0.50 4.20 0.70 5.60 11.20 0.00 0.50 3.20

200 1.30 6.70 13.40 0.10 2.50 7.60 1.60 6.10 11.00 0.10 0.80 5.00


