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Abstract 

 
 

Local linear fitting is a popular nonparametric method in nonlinear statistical and 
econometric modelling. Lu and Linton (2007) established the point wise asymptotic 
distribution (central limit theorem) for the local linear estimator of nonparametric 
regression function under the condition of near epoch dependence. We further 
investigate the uniform consistency of this estimator. The uniformly strong and 
weak consistencies with convergence rates for the local linear fitting are 
established under mild conditions. Furthermore, general results of uniform 
convergence rates for nonparametric kernel-based estimators are provided. 
Applications of our results to conditional variance function estimation and some 
economic time series models are also discussed. The results of this paper will be 
of widely potential interest in time series semiparametric modelling. 
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1. Introduction

Local linear �tting is a popular nonparametric method in nonlinear statistical and econo-

metric modelling. See, for example, Fan and Gijbels (1996), Fan and Yao (2003) and Li

and Racine (2007). Lu and Linton (2007) recently established the pointwise asymptotic

distribution (central limit theorem) for the local linear estimator of a nonparametric regres-

sion function under the weak assumption of near epoch dependence, which cover a wide

range of popular time series econometric models. In this paper, we further investigate the

uniform consistency of this nonparametric estimator for near epoch dependent processes.

The results of this paper will be of widely potential interest in time series semiparametric

modelling (c.f., Andrews, 1995).

Uniform consistency results of nonparametric kernel�based estimators have been studied

by many authors, as they are useful in many applications such as the speci�cation testing

issue based on the nonparametric kernel method and semiparametric estimator with �rst�

stage nonparametric estimator. For recent development, the reader is referred to Liebscher

(1996), Masry (1996), Bosq (1998), Fan and Yao (2003), Hansen (2008), Kristensen (2009)

and the references therein. A rather obvious feature of the above literature is that the

observed time series are assumed to be ��mixing (i.e., strongly mixing). It is well�known

that ��mixing dependence has been one of the most popular dependence conditions in

statistic and econometric literature. Indeed, the stationary solutions of many linear and

nonlinear time series models are ��mixing under some suitable conditions; see Tjøstheim

(1990), Tong (1990), Masry and Tjøstheim (1995), Lu (1998), Cline and Pu (1999) for

example.

However, from a practical point of view, the ��mixing dependence su¤ers from many

undesirable features. As pointed out by Davidson (1994) and Lu (2001), ��mixing condition

is di¢ cult to verify in practice, especially in the cases of compound processes. For example,

the ARCH models and its generalized version GARCH models have been proved to be ��

mixing under some mild conditions (Bollerslev 1986, Lu 1996a, b, Carrasco and Chen 2002).

But for the compound processes such as ARMA process with ARCH or GARCH errors, it

is still di¢ cult to establish whether they are ��mixing or not except in some very special

cases. In fact, even very simple autoregressive processes may not be ��mixing for some
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cases. Andrews (1984) showed that the stationary solution to a simple linear AR(1) model

of the form

Xt = 1=2Xt�1 + et; (1.1)

with et�s being independent symmetric Bernoulli random variables taking values �1 and 1,
is not ��mixing. Hence, it is natural to consider a more generalized version of stochastic

processes beyond ��mixing process in both linear and nonlinear time series analysis.

In this paper, we consider the stationary near epoch dependent (NED) or stable process,

which includes the ��mixing process as a particularly special case. One can allow some

types of nonstationarity, but this complicates the notation considerably, so we don�t formally

consider this but we discuss below some special cases. Let both fYtg and fXtg be stationary
processes of R1�and Rd�valued, respectively. Based on a stationary process f"tg, fYtg and
fXtg are de�ned by

Yt = 	Y ("t; "t�1; "t�2; : : :);

Xt = (Xt1; � � � ; Xtd)� = 	X("t; "t�1; "t�2; : : :);
(1.2)

where X� denotes the transpose of X, 	Y : R1 �! R1 and 	X : R1 �! Rd are two

Borel measurable functions and f"tg may be vector�valued. The de�nition of NED process
is provided as follows.

De�nition 1. The stationary process f(Yt; Xt)g is said to be near epoch dependent in L�
norm (NED in L�) with respect to a stationary ��mixing process f"tg, if

v�(m) = EjYt � Y (m)t j� + EkXt �X(m)t k� ! 0; � > 0; (1.3)

as m!1, where j � j and k � k are the absolute value and the Euclidean norm of Rd, respec-

tively, Y (m)t = 	Y;m("t; : : : ; "t�m+1), X
(m)
t = (X

(m)
t1 ; � � � ; X(m)

td )� = 	X;m("t; : : : ; "t�m+1),

and 	Y;m and 	X;m are R1�and Rd�valued Borel measurable functions with m arguments,

respectively. We will call v�(m) the stability coe¢ cients of order � of the process f(Yt; Xt)g.

The above concept of NED process dated back to Ibragimov (1962) and was further

developed by Billingsley (1968), McLeish (1975a,1975b,1977) and Lin (2004). Basically,

most of them assumed that f"tg is martingale di¤erence or '�mixing. It has been used in

2



econometrics following Bierens (1981); see, for example, Gallant (1987), Gallant and White

(1988), and Andrews (1995). In this paper, we are concerned with NED process with

respect to the stationary ��mixing process f"tg. The NED process can easily cover some

important compounded econometric processes and many nonlinear non���mixing processes;

see Section 4 for example.

There has been some literature on estimation and testing issues under NED processes.

Andrews (1995) established uniform convergence with rates for nonparametric density and

regression estimators based on the local constant paradigm under NED conditions. Lu

(2001) established asymptotic normality for kernel density estimators for NED processes.

Ling (2007) developed a strong law of large numbers and a strong invariance principle for

NED sequences when f"tg is independent and used the results to test for change points.
Lu and Linton (2007) established the pointwise asymptotic distribution of local linear esti-

mators for NED process. In this paper, we further establish the uniform strong and weak

convergence rates of the local linear estimators. Furthermore, we develop some general re-

sults on uniform convergence rates of nonparametric kernel�based estimators, which could

be seen as an extension of Hansen (2008) from �-mixing to NED processes. In particular,

we obtain the uniform rate over expanding subsets of the covariate support. The rate we

obtain is constrained by the amount of dependence but does not explicitly depend on it,

as it does in Andrews (1995). This means that in some special cases our rate is optimal,

Stone (1980). We then discuss the application of the obtained results to establish the uni-

form convergence rate of local linear estimator of conditional variance function. We also

apply the uniform consistency results with convergence rates to some interesting time series

models as well as some compounded processes.

We also provide new results on estimation of a countable number of regression functions,

for example mj(x) = E(YtjXt�j = x); j = 1; 2; : : :. This application occurs naturally in

a number of time series settings (Hong (2000) and Linton and Mammen (2005)) but does

not appear to have been formally treated before at this level of generality. We establish the

uniform rate of convergence of the local linear estimators uniformly over j as well.

Before the end of this section, we remark that some alternative extension of dependence

beyond mixing can also be found in Nze, Bühlmann, and Doukhan (2002) and Nze and
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Doukhan (2004) who investigated a class of dependent processes they call �weak depen-

dent", the de�nition of which is quite involved. They established the asymptotic normality

and uniform convergence of local constant nonparametric regression estimators under their

conditions. Di¤erently from their work of uniform consistency over a �nite compact set for

local constant estimators, we are concerned with more desirable local linear �tting with the

uniform convergence under NED, over a compact set depending on sample size T , which

approaches to an in�nite set as T !1.
The rest of the paper is organized as follows. The local linear �tting and the uniform

convergence rates of the local linear estimators are presented in Section 2. The general

results of uniform convergence rates for nonparametric kernel-based estimators are provided

in Section 3. Some applications are given in Section 4. The technical lemmas and the proofs

of the main results are collected in an Appendix.

2. Uniform convergence rate of local linear �tting

In this section, we study the local linear estimator of the regression function

g(x) := E (YtjXt = x) : (2.1)

Local linear �tting is a widely�used nonparametric estimation method and it has advantages

over the popular Nadaraya�Watson kernel method, in terms of the ability of design adaption

and high asymptotic e¢ ciency (e.g., the Best Linear Minimax property). The local linear

estimation method can adapt to almost all regression settings and cope well with the edge

e¤ects. See Fan and Gijbels (1996) for detailed account on this subject.

The main idea of local linear �tting consists in approximating, in a neighborhood of x,

the unknown regression function g(�) by a linear function. Under the condition that g(�)
has continuous derivatives up to the second order, we have

g(z) � g(x) + (g0(x))� (z� x) =: a0 + a�1(z� x):

Locally, this suggests estimating (a0; a�1) = (g(x); (g
0(x))� ) by0B@ ba0

ba1
1CA := arg min

(a0;a1)2Rd+1

TX
t=1

(Yt � a0 � a�1(Xt � x))2K
�
Xt � x
h

�
; (2.2)
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where h := hT is a sequence of bandwidths tending to zero at appropriate rate as T tends to

in�nity, and K(�) is a kernel function with values in R+. Denote the local linear estimators
of (g(x); (g0(x))� ) by (bg(x); (bg0(x))� ), where ba0 = bg(x) and ba1 = bg0(x).

There has been rich literature on the uniform convergence rate for the local linear

estimators under mixing dependent condition, see Masry (1995), Fan and Yao (2003) and

Hansen (2008) for example. Lu and Linton (2007) established the pointwise asymptotic

distribution for the local linear estimators under the NED condition. In this section, we

will provide the uniform convergence rate for bg(x) over the set
fx : kxk � CT g; (2.3)

where CT = (log T )1=dT 1=�0 , for some �0 > 0.

We �rst introduce some regularity conditions to establish the uniform convergence rate

for the proposed estimators.

A1 The kernel function K(�) is positive, bounded and Lipschitz continuous such that

jK(x1)�K(x2)j � CK kx1 � x2k ;

where CK is some positive constant. Furthermore,
R
Rd kukjK(u)du <1 for j = 0; 1; 2.

A2 (i) f(�) is continuous and aT (f) := inf
kxk�CT

f(x) > 0, where f(�) is the density function
of the stationary process fXtg. Furthermore, the joint density function fij(�; �) of
(Xi;Xj) satis�es fij(x1;x2) < Cf for all i 6= j and (x1;x2) 2 R2d, Cf <1.

(ii) The regression function g(�) has continuous derivatives up to the second order.

A3 (i) fYt;Xtg is stationary NED in Lp0 norm with respect to a stationary ��mixing

f"tg, EjYtjp0 <1 and EkXtkp0 <1, p0 = 2 + "�, "� > 0.

(ii) The mixing coe¢ cient �t of the stationary ��mixing f"tg satis�es �t � C�t
��0 ,

C� <1, �0 > �1, �1 =
�
3p0+6
4p0

+ (12 +
1
�0
)d
�
=
�
1
2 �

1
p0

�
, where �0 is de�ned in CT of

(2.3).

A4 (i) Let mT =

�q
T 1�2=p0hd
log T

�
. The bandwidth h and the stability coe¢ cient de�ned in

(1.3) satisfy:

h�(d+1)v1(mT )�
�1
T = O(1); h�4(1+d+d=(p0�2))v2(mT ) = O(1) (2.4)
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h�(2d+p0+2d=(p0�2))vp0(mT ) = O(1);

where

�T =

s
log T

Thd
:

(ii) The bandwidth h satis�es h! 0,

T 1�2=p0hd

log T
!1; (log T )

�0
2
+�3h�

�0d

2
��2T

(�1��0)( 12�
1
p0
)
= o(1); (2.5)

where �2 =
7(2+d)d

4 and �3 =
5�2d
4 .

Remark 2.1. A1 is mild and some commonly�used kernel functions such as the standard

normal kernel function can be shown to satisfy A1. By contrast, Masry (1996) requires

kernels that have compact support. A2 (i) and (ii) are some conditions on the density

functions and the regression function and they are similar to the corresponding assumptions

in Lu and Linton (2007); if the regression function g is less smooth than assumed here, one

obtains a di¤erent magnitude of the bias terms but otherwise the argument goes through.

A3 provides the moment conditions on fYt;Xtg and the mixing coe¢ cient condition for
f"tg. A4 (i) is on the stability coe¢ cient de�ned by (1.3) in Section 1. As A4 (i) looks
complex, we will give some speci�c examples in Section 4 to show that it holds under mild

conditions on the bandwidth. Note that

h�(d+1)v1(mT )�
�1
T = (h�2(d+1)v2(mT )�

�2
T )

1=2

=
�
h�4(1+d+d=(p0�2))v2(mT )h

2(d+1)+4d=(p0�2)��2T

�1=2
:

If h2(d+1)+4d=(p0�2)��2T = O(1), we can show that the �rst term in (2.4) is a particular case

of the second term of (2.4). A4 (ii) is the regularity condition to establish the uniform

convergence rate for nonparametric kernel�based estimators under ��mixing dependent

assumption. Meanwhile, A4 (ii) can be simpli�ed for some particular cases. For example,

if �0 ! 1 (��mixing process decays with the exponential rate), the second term in (2.5)

can be re�written as

T
1
2
� 1
p0 h

d
2

(log T )
1
2

�
(log T )��3=�0h�2=�0T

��1( 12�
1
p0
)=�0

�
!1:

6



As �1, �2 and �3 are some constant, it means that

�1(
1

2
� 1

p0
)=�0 ! 0; �2=�0 ! 0; �3=�0 ! 0; as �0 !1:

Hence, for the case of �0 ! 1, the second term in (2.5) is just slightly stronger than the

�rst term in (2.5). Similarly, as p0 !1, the �rst term in (2.5) is slightly stronger than the

condition Thd= log T !1.

Finally, we discuss the case where one of the covariates is rescaled time, i.e., Xt = t=T

(or some stochastic perturbation thereof). In this case, the covariate is nonstationary and

compactly supported, and although the above conditions are not satis�ed, the subsequent

results go through as stated.

We �rst give the uniform convergence rate of local linear estimator bg(x) in probability.
Theorem 2.1. Suppose that the conditions A1�A4 are satis�ed. Then, we have

sup
kxk�CT

jbg(x)� g(x)j = OP

 
�T

aT (f)
+
bT (g)h

2

aT (f)

!
; (2.6)

where bT (g) = sup
kxk�CT

kg00(x)k, aT (f) and �T are de�ned in A2 (i) and A4 (i), respectively.

Remark 2.2. The above theorem can be regarded as an extension of Theorem 10 in Hansen

(2008) from ��mixing process to NED process. If the second order derivatives of g(x) are

uniformly bounded as in Masry (1996), bT (g) < Cg for some 0 < Cg < 1. Then (2.6)
becomes

sup
kxk�CT

jbg(x)� g(x)j = OP

 
�T + h

2

aT (f)

!
: (2.7)

Furthermore, if we let CT = C� and aT (f) > c0 > 0, (2.7) becomes

sup
kxk�C�

jbg(x)� g(x)j = OP
�
�T + h

2
�
: (2.8)

Taking h / (log T=T )1=(4+d); the right hand side becomes (log T=T )2=(4+d); which is the

optimal rate in the compactly supported i.i.d. case, Stone (1980). This bandwidth is

consistent with A4 under restrictions on p0; d; �0, and the stability coe¢ cients vj ; j =

1; 2; : : : ; p0. For example, we require that 1 � 2=p0 � d=(4 + d) > 0: (2.8) can be regarded
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as the extension of some existing results under the mixing dependence assumption such as

Theorem 6.5 in Fan and Yao (2003).

We next establish the uniform strong convergence rate of local linear estimator bg(x).
Theorem 2.2. Suppose that the conditions in Theorem 2.1 are satis�ed, EjYtjs < 1 and

EkXtks <1, s > 2p0,

Th�(d+1)v1(mT )�
�1
T = O

�
(log T )�(1+&)

�
; & > 0; (2.9)

and

(log T )
�0
2
+�3h�

�0d

2
��2T

1+(�1��0)( 12�
1
p0
)
= O

�
(log T )�(1+&)

�
: (2.10)

Then, we have

sup
kxk�CT

jbg(x)� g(x)j = O

 
�T

aT (f)
+
bT (g)h

2

aT (f)

!
a:s: (2.11)

3. General uniform convergence

Before we prove the above theorems, in this section we provide some general uniform

convergence for the following WT under our NED assumption, from which we can derive

the above theorems conveniently. Let fYt;Xtg be a stationary NED sequence de�ned in

Section 1. We next consider the weighted average form

WT (x) =
1

Thd

TX
t=1

	(Yt)KT

�
Xt � x
h

�
; (3.1)

where h is the bandwidth and KT (�) : Rd ! R is a kernel�based weight function. By

suitable choice of KT (�) and 	(�), many kernel�based nonparametric estimators such as the
kernel density estimator, Nadaraya�Watson estimator and local polynomial estimator can

be written as the form of (3.1). When 	(y) � y, Hansen (2008) established the weak and

strong uniform convergence rate of WT (�) for stationary ��mixing process. We will provide
the uniform convergence rate for WT (�) de�ned by (3.1) when ��mixing dependence is

replaced by NED condition, which is a generalized version of ��mixing dependence.

To establish the uniform convergence rate of WT (x), we provide the following regularity

conditions.
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A5 (i) The function 	(�) has continuous derivatives up to the q0�th order and

E
���	(k)(Yt)���s <1; 0 � k < q0; s > p0 = 2 + "

�; "� > 0; sup
y2R

���	(q0)(y)��� <1:
(ii) KT (�) is integrable, bounded and Lipschitz continuous satisfying

sup
T�1

jKT (x1)�KT (x2)j � C�K kx1 � x2k ;

where C�K is some positive constant.

A6 A4 (i) and (ii) are satis�ed, and

h�d��1T

0@q0�1X
k=1

v
1=�p
k�p

(mT ) + vq0(mT )

1A = O(1);

where �p = p0=(p0 � 1).

The uniform convergence rate results for WT (x) are provided in the following two the-

orems.

Theorem 3.1. Suppose that the conditions A5�A6 are satis�ed. Then, we have

sup
kxk�CT

jWT (x)� E [WT (x)]j = OP (�T ) : (3.2)

Theorem 3.2. Suppose that the conditions in Theorem 3.1 and (2.10) are satis�ed and

s > 2p0 in A5 (i),

Th�d��1T

0@q0�1X
k=1

v
1=�p
k�p

(mT ) + vq0(mT )

1A = O
�
(log T )�(1+&)

�
; & > 0; (3.3)

Then, we have

sup
kxk�CT

jWT (x)� E [WT (x)]j = O (�T ) a:s: (3.4)

Remark 3.1. The above theorems established the weak and strong convergences forWT (x).

We remark that under some suitable conditions, an LQ0 convergence of WT (x), for some
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Q0 > 1, can also be established. For example, let Q1 > Q0 > 1. Suppose that the function

	(�) has continuous derivatives up to the q0�th order and

E
���	(k)(Yt)���Q1 <1; 0 � k < q0; sup

y2R

���	(q0)(y)��� <1;
and the mixing coe¢ cient

�t � C��t
���0 ; ��0 > (Q1Q0)=2(Q1 �Q0):

Then, applying Theorem 4.1 in Shao and Yu (1996) and following the proof of Lemma A.2,

we can show that if f(Xt; Yt)g is NED in L�q0�1_�� ,

sup
kxk�CT

�
E jWT (x)� E [WT (x)]jQ0

�1=Q0
= O

0@T� 1
2h

(1�Q1)d
Q1 +

q0�1X
k=1

v�0�k(mT ) + v
1
Q0
�� (mT )

1A ;
(3.5)

where �0 =
Q1�Q0
Q1Q0

, �k =
kQ1

Q1�Q0 and �
� = q0Q0. When the stable coe¢ cient decays at a

geometric rate as in Sections 4.3 and 4.4, O(T�
1
2h

(1�Q1)d
Q1 ) is the leading term for convergence

rate on the right hand side of (3.5).

Remark 3.2. In (3.1), 	 is only a function of Yt. Sometimes, it might be useful to allow

	 to depend on some other parameter like y, say 	(Yt; y) = IfYt�yg, which may not be

di¤erentiable as a function of Yt, where IA is an indicator function of set A. In this way

we can handle conditional cumulative distribution function estimation and so things like

conditional quantiles and expected shortfall. The outcomes of the above theorems can still

apply to this case under some suitably modi�ed conditions, with the proof going through

as done in Appendices A and B by replacing (A.9) in Appendix A below with

EjIfYt�yg � IfY (m)t �ygj = EjIfy<Ytg � Ify<Y (m)t gj � EIfjy�Ytj�jYt�Y (m)t jg

� Pfjy � Ytj � jYt � Y (m)t jg � O(v
1=3
2 (m));

where the �nal inequality follows by noticing

Pfjy � Ytj � jYt � Y (m)t jg � Pfjy � Ytj � v
1=3
2 (m)g+ Pfv1=32 (m) � jYt � Y (m)t jg;

which is controlled by 2fY (y)O(v
1=3
2 (m))+v

�2=3
2 (m)EjYt�Y (m)t j2 = O(v

1=3
2 (m)) if we assume

the probability density function of Yt, fY (y), is bounded away from the in�nity.
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4. Applications

In this section, we provide some applications of the main results established in Sections

2 and 3. We not only study the uniform convergence rate for local linear estimator of

the conditional variance function under NED assumption, but also establish the uniform

convergence rate results for some interesting time series models.

4.1. Estimation of conditional variance function

De�ne �2(x) := Var(YtjXt = x). There exists an extensive literature on estimating

�2(x) in stationary time series, where Xt contains lagged values of Yt; see Pagan and Hong

(1991), Fan and Yao (1998), Yu and Jones (2004), and Chen et. al. (2009) for example. We

next use the local linear method to estimate �2(x) under NED assumption, and establish

the uniform convergence rate for the resulting estimator.

Let et = Yt � g(Xt) and bet = Yt � bg(Xt), where bg(Xt) is the local linear estimator of
g(Xt) de�ned by (2.2). It is easy to check that �2(x) = Var(YtjXt = x) = E(e2t jXt = x).

We then estimate �2(x) by b�2(x) = ba�0, where0B@ ba�0ba�1
1CA = arg min

(a0;a1)2Rd+1

TX
t=1

�be2t � a0 � a�1 (Xt � x)�2W �
Xt � x
h�

�
; (4.1)

whereW (�) is a kernel function and h� is a bandwidth. The following condition is necessary
to obtain the uniform convergence rate for �2(x).

A7 (i) The kernel function W (�) is positive, bounded and Lipschitz continuous. Further-
more,

R
Rd kukjW (u)du <1 for j = 0; 1; 2.

(ii) EjYtj2p0 <1 and EkXtk2p0 <1, 2p0 > d.

(iii) The conditional variance function �2(�) has continuous derivatives up to the
second order and bT (�2) � bT (g), where bT (�2) = sup

kxk�CT

�����2(x)�00��� and aT � bT

means that aT =bT ! 1 as T !1.

(iv) h � h� and A4 holds if h is replaced by h�.

We next give the uniform weak and strong convergence rate of local linear estimatorb�2(x) in the following two propositions.
11



Proposition 4.1. Suppose that the conditions A1�A4 and A7 are satis�ed. Then, we have

sup
kxk�CT

���b�2(x)� �2(x)��� = OP

 
�T

aT (f)
+
bT (�

2)h2

aT (f)

!
: (4.2)

Proposition 4.2. Suppose that the conditions in Proposition 4.1 and (2.10) are satis�ed

and

Th�d��1T

�
v
1=�p
�p

(mT ) + v2(mT )
�
= O

�
(log T )�(1+&)

�
; & > 0:

Then, we have

sup
kxk�CT

���b�2(x)� �2(x)��� = O

 
�T

aT (f)
+
bT (�

2)h2

aT (f)

!
a:s: (4.3)

4.2. Estimation of a countable number of conditional expectations

De�ne the quantities mj(x) = E(YtjXt�j = x); j = 1; 2; : : : : There are many cases of

interest that require estimation of this whole family of regression functions. For example,

consider the quantity

m(x) =
1X
j=1

wjmj(x); (4.4)

where we assume that this sum is well de�ned. This quantity is of interest in a number

of applications. For example, Hong (2000) proposed a test of serial independence of an

observed scalar series Xt: In practice checking the independence of Xt from Xt�1; Xt�2; : : :

is very di¢ cult due to the curse of dimensionality. He proposed to check all pairwise joint

relationships (Xt; Xt�j) for departures from the null. An alternative approach is to check

all pairwise conditional relationships XtjXt�j : For example, to check whether all functions
mj(x) = E(	(Xt)jXt�j = x) are constant. This can be done by evaluating an empirical

version of the weighted sum
1P
j=1

wj jmj(x)�mj; where wj are summable weights and mj are

average values: Linton and Mammen (2005) considered the semiparametric volatility model

for observed returns Xt = �t"t with "t and "2t � 1 martingale di¤erence sequences and

�2t =
1X
j=1

 j(�)g(Xt�j);

where g is an unknown function and the parametric family f j(�); � 2 �g1j=1 satisfy some
regularity conditions. This model includes the GARCH(1,1) as a special case. They assumed

12



that fXtg is stationary and geometrically mixing. They obtained a characterization of the
function g that involves a weighted sum of the form (4.4). They proposed an estimation

strategy for the unknown quantities, which requires as input the estimation of mj(x) =

E(X2
t jXt�j = x) for j = 1; 2; : : : ; J(T ); where J(T ) = c log T for some c > 0: They required

to bound the estimation error of mj(x) uniformly over x and over j = 1; 2; : : : ; J(T ): They

provided only a sketch proof of this result in the case where the process is assumed to

have compact support and to be strong mixing with geometric decay. Here we give more

de�nitive results under weaker conditions. As a �nal motivation, consider the nonparametric

prediction of a future value XT+1 given a sample fX1; : : : ; XT g. Linton and Sancetta (2009)
establish consistency of estimators of E(XT+1jXT ; : : : ; X1) under weak conditions but rates
of convergence are not available and practical performance is likely to be poor. Instead, it

makes sense to use lower dimensional predictors, but which one? Consider the following

model averaging approach, which makes use of a large number of low dimensional predictors.

Let

b	T+1jT = J(T )X
j=1

wT;j bmj(XT�j);

where wT;j are weights such that
J(T )P
j=1

wT;j = 1; while bmj(:) are the nonparametric regres-

sion �ts described above, and J(T ) is an increasing sequence. Let m(x1; x2; : : :) denote

E(	(Xt)jXt�1 = x1; Xt�2 = x2; : : :) the best prediction function. Then mw(x1; x2; : : :) =
J(T )P
j=1

wT;jmj(xj) can be considered an approximation to m(x1; x2; : : :): One can choose the

weights according to several criteria, which we do not go into here. In this case, to show the

rate of uniform convergence of bmw(x1; x2; : : :) to mw(x1; x2; : : :); where bmw(x1; x2; : : :) =
J(T )P
j=1

wT;j bmj(xj); it su¢ ces to control the rate for each bmj(xj) uniformly over j = 1; : : : ; J(T ):

We next give a result that establishes the same rate of convergence as in Theorem 2.1

but uniformly over j as well: We just need some restriction on the rate at which J(T ) can

increase to in�nity. Our result allows J(T ) to grow at a polynomial rate in some cases.

Proposition 4.3. Suppose that the conditions in Theorem 2.1 are satis�ed and

J(T )h�(d+1)v1(mT )�
�1
T = O(1);

J(T )(log T )
�0
2
+�3h�

�0d

2
��2T

(�1��0)( 12�
1
p0
)
= o(1):

13



Then, we have

max
1�j�J(T )

sup
kxk�CT

j bmj(x)�mj(x)j = OP

 
�T

aT (f)
+

bTh
2

aT (f)

!
;

where f is the density function of Xt and bT = max1�j�J(T ) bT (mj):

4.3. AR(1)�NARCH(1,1) model

We next consider the compound model which is commonly�used in �nancial economet-

rics

Xt = b0 + b1Xt�1 + "t;

"t = �("t�1) + �("t�1)et;
(4.5)

where Xt is the daily return of some equity on day t, modelled by an AR(1) model and the

error is modelled by a nonlinear ARCH (NARCH) model with fetg being independent and
identically distributed (i.i.d.) random sequence with E[et] = 0 and E[e2t ] = 1.

If jb1j < 1, it is well�known that the AR (1) model in (4.5) can be expressed as

Xt = b0=(1� b1) + "t +
1X
j=1

bj1"t�j : (4.6)

On the other hand, under some suitably regular conditions on �(�) and �(�), the "t in the
NARCH(1,1) model is ��mixing with a geometrically decaying mixing coe¢ cient, see, for

example, Masry and Tjøstheim (1995) and Lu (1998). To the best of our knowledge, it is

di¢ cult to show that fXtg is ��mixing under some mild conditions. However, it can be
shown that fXtg is NED of order p0 with respect to a ��mixing process, if Ej"tjp0 < 1
(p0 > 2), with stable coe¢ cients (owing to the convex property of j � jp0)

vp0(m) = E
���Xt �X(m)

t

���p0 = wp0mE

������
1X

j=m+1

bj1
wm

"t�j

������
p0

� wp0mE

24 1X
j=m+1

bjp01
wp0m

j"t�j jp0
35 = O (jb1jmp0) ;

decaying at a geometric rate, where:

X
(m)
t = "t +

mX
j=1

bj1"t�j

14



wm =
1X

j=m+1

bj1 = O(bm1 ):

We are concerned with estimation of the autoregression function g(x) = E(XtjXt�1 = x)

and the conditional variance function �2(x) = Var(XtjXt�1 = x): As the stable coe¢ cient

decays at a geometric rate, it is easy to check that the condition A4 (i) is satis�ed if A4 (ii)

holds. Hence, by Theorems 2.1, 2.2 and Propositions 4.1, 4.2, we can obtain the uniform

strong and weak convergence rate of local linear �tting in AR(1)�NARCH(1,1) model (4.5).

4.4. GARCH(1,1) model with ��mixing innovations

Consider the GARCH(1,1) process de�ned by

Xt = �tet; �2t = �0 + �1X
2
t�1 + �1�

2
t�1: (4.7)

When fetg is i.i.d. random sequence with E[et] = 0 and E[e2t ] = 1, under �1 + �1 < 1 with

some suitably regular conditions, fXtg in the GARCH (1,1) model (4.7) is ��mixing with
a geometrically decaying mixing coe¢ cient, see Carrasco and Chen (2002) for example.

We next relax the i.i.d. condition on fetg by allowing it to be stationary and ��mixing
with E[etjFt�1] = 0 and E[e2t jFt�1] = 1, where Ft = �(es; s � t) is the �-�eld generated

as usual. Then the GARCH(1,1) model (4.7) is a semi-strong GARCH model, which is

of central importance in the theory of estimation, Drost and Nijman (1993) and Lee and

Hansen (1994). We show that fXtg is NED as in De�nition 1. By elementary calculation,
we have

Xt = et

vuut�0 + �0 1X
j=1

Zt(j); (4.8)

where Zt(j) =
Qj
k=1(�1e

2
t�k + �1). Let

X
(m)
t = et

vuut�0 + �0 mX
j=1

Zt(j): (4.9)

Assuming that E[jetj2p0 ] <1 and

E
h
j�1e2t + �1j2p0 jFt�1

i
� �� < 1; (4.10)

15



then, by Minkowski inequality and Cauchy�Schwarz inequality, we have

�
E
���Xt �X(m)

t

���p0�1=p0 =
0@E

24������et
0@vuut�0 + �0 1X

j=1

Zt(j)�

vuut�0 + �0 mX
j=1

Zt(j)

1A������
p0351A1=p0

�
�
E[jetj2p0 ]

�1=(2p0)
O

0@ 1X
j=m+1

�
EjZt(j)j2p0

�1=(2p0)1A
= O

�
j��jm=(2p0)

�
:

Hence, fXtg is NED with respect to the ��mixing process fetg and the stable coe¢ cient
decays at a geometric rate. Analogously, f�2t g is also NED with stable coe¢ cient decaying
at a geometric rate. This result is similar to that obtained by Hansen (1991).

It is interesting in practice to estimate the functions mj(x) = E(X2
t jXt�j = x) for

j = 1; 2; : : : as this gives some diagnostic about the shape of the conditional variance. It

is not known what is the functional form of mj(x) and it may not be quadratic, see Tong

(1990, p13). However, the functions mj exist and are likely to be smooth under some

conditions. As the stable coe¢ cient decays at a geometric rate, it is easy to check that the

condition A4 (i) is satis�ed if A4 (ii) holds. Hence, by Propositions 4.1 and 4.2, we can

obtain the uniform strong and weak convergence rate of local linear �tting for conditional

variance functions mj(x)�s in the GARCH(1,1) model (4.7).

4.5. Linear process

We next study the case that both fXtg and fYtg are generated by the linear processes

Xt =
1X
s=0

As"t�s; Yt =
1X
s=0

Bs"t�s; (4.11)

where As = (aij(s))d�q, Bs = (b1(s); � � � ; bq(s))� , f"t := ("t1; � � � ; "tq)�g is q�dimensional
sequence of stationary ��mixing random vectors. If

maxfkAtk; kBtkg = O(t��); � > 0;

where kAtk =
 

dP
i=1

qP
j=1

a2ij(t)

!1=2
, we can show that both fXtg and fYtg are NED with

respect to f"tg and the stable coe¢ cient decays with a polynomial rate.
To derive the uniform convergence rate of the local linear �tting for the conditional

regression function g(x), we need to check whether A4 (i) holds under some mild conditions
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on the bandwidth h. For the simple case of d = 1, we take the pointwise optimal bandwidth

with h = O(T�1=5). Then, if

� >
2p0(2p0 � 3)

(p0 � 2)(2p0 � 5)
+ 1; p0 > 5=2;

we can show that A4 (i) is satis�ed.

4.6. Semiparametric ARCH(1) model
As mentioned in Section 4.2, Linton and Mammen (2005) considered the model Xt =

�t"t with "t and "2t � 1 being martingale di¤erence sequences and

�2t =
1X
j=1

 j(�)g(Xt�j);

where g(�) is an unknown function and f j(�); � 2 �g1j=1 satis�es some regularity con-
ditions. The above model includes GARCH(1,1) as a special case. Linton and Mammen

(2005) assumed that fXtg is stationary and geometrically mixing but they did not give
primitive conditions. We next will show that f�2t g is NED with respect to f"tg under some
mild conditions on g(�) and the weights.

Suppose that there exists a Borel measurable function F such that Xt can be rewritten

as Xt = F("t; "t�1; � � � ) and g(�) is Lipschitz continuous. Let

Mt;s = �("t; "t�1; � � � ; "s); t � s:

Furthermore, assume that Ej�tjp0 <1, p0 � 1, 0 < inf
x
g(x) < sup

x
g(x) <1, sup

�2�

1P
j=1

��� j(�)��� <
1, and

E jXt � E (XtjMt;t�m)jp0 ! 0; m!1:

De�ne

�2t (m) =
mX
j=1

 j(�)g
�
X
(m)
t�j

�
; X

(m)
t = E (XtjMt;t�m) :

As g(�) is bounded and the weighs are summable, it is easy to check that0@E
������

1X
j=m

2
+1

 j(�)g(Xt�j)�
1X

j=m
2
+1

 j(�)g
�
X
(m)
t�j

�������
p01A1=p0

= O

0@ 1X
j=m

2
+1

j j(�)j

1A = o(1) m!1:
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On the other hand, by the Lipschitz continuity of g(�), we have

E
���g(Xt�j)� g �X(m)

t�j

����p0
= O

�
E
���Xt�j �X(m)

t�j

���p0�
= O

�
E
���Xt�j � E �Xt�j jMt�j; t�j�(m�j)

����p0�
= o(1); m� j ! 0:

Hence, we can show that f�2t g is NED with respect to f"tg.
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Appendix A: Some useful lemmas

We next provide some critical lemmas, which are necessary for the proofs of the main

results. The �rst one is the Bernstein inequality for ��mixing process, which can be found

in several books such as Fan and Yao (2003).

Lemma A.1 Let fZtg be a zero�mean real�valued ��mixing process satisfying

P(jZtj � B) = 1

for all t � 1. Then for each integer q 2 [1; T2 ] and each � > 0, we have

P

 �����
TX
t=1

Zt

����� > T�

!
� 4 exp

 
� �2q

8v2(q)

!
+ 22

�
1 +

4B

�

�1=2
q�

��
T

2q

��
; (A.1)

where v2(q) = 2�2(q)=p2 +B�=2 with p = T
2q and

�2(q) = max
1�j�2q�1

E
�
([jp] + 1� jp)Z[jp]+1 + Z[jp]+2 + � � �+ Z[(j+1)p]

+((j + 1)p� [(j + 1)p])Z[(j+1)p]+1
�2
:

Let Y (m)t be de�ned as in De�nition 1. We establish the result on the moment of 	(Y (m)t )

in the following lemma.

Lemma A.2 Suppose that EjYtjs <1, s � 1, the function 	(�) has continuous derivatives
up to the q0�th order and

E
���	(k)(Yt)���s <1; 1 < k < q0; sup

y2R

���	(q0)(y)��� <1:
Then, if fYtg is NED in L�� (�� = (q0 � 1)s=(s� r) _ q0r), for each m � 1,

E
���	(Y (m)t )

���r <1; 1 � r < s: (A.2)

Proof. Note that 	(Y (m)t ) = 	(Yt) +	(Y
(m)
t )�	(Yt). By applying the Cr�inequality, it

is easy to check that for r � 1,

E
���	(Y (m)t )

���r � 2r�1 �E j	(Yt)jr + E ���	(Y (m)t )�	(Yt)
���r� : (A.3)
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By Taylor expansion,

	(Y
(m)
t ) = 	(Yt) +

q0�1X
k=1

	(k)(Yt)(Y
(m)
t � Yt)k=k! + 	(q0)(Y �t )(Y

(m)
t � Yt)q0=q0!; (A.4)

where Y �t = Yt+ �
�(Y

(m)
t �Yt), 0 < �� < 1. By the Cr�inequality and the Cauchy�Schwarz

inequality, we have

E
���	(Y (m)t )�	(Yt)

���r � C0

0@q0�1X
k=1

v
(s�r)=s
ks=(s�r)(m) + vq0r(m)

1A <1; (A.5)

where C0 is some positive constant. Then, by (A.3), (A.5) and EjYtjr < 1, we can show
that (A.2) holds.

De�ne

W
(m)
T (x) =

1

Thd

TX
t=1

	(Y
(m)
t )KT

 
X
(m)
t � x
h

!
: (A.6)

The next lemma shows that WT (x) can be approximated by W
(m)
T (x) in probability as

m!1, which is critical for uniform weak convergence rate of WT (x).

Lemma A.3 Suppose that the conditions A5�A6 are satis�ed. Then, we have

sup
kxk�CT

���WT (x)�W (m)
T (x)

��� = OP

0@h�d�1v1(m) + h�d
0@q0�1X
k=1

v
1=�p
k�p

(m) + vq0(m)

1A1A ; (A.7)
where �p = p0=(p0 � 1).

Proof. Observe that

WT (x)�W (m)
T (x) = 1

Thd

TP
t=1

�
	(Yt)KT

�
Xt�x
h

�
�	(Y (m)t )KT

�
X
(m)
t �x
h

��
= 1

Thd

TP
t=1

�
	(Yt)�	(Y (m)t )

�
KT

�
Xt�xt
h

�
+ 1
Thd

TP
t=1
	(Y

(m)
t )

�
KT

�
Xt�x
h

�
�KT

�
X
(m)
t �x
h

��
=: IT;1(x) + IT;2(x):

(A.8)

We �rst consider IT;1(x). By Taylor expansion (A.4) and similar to the proof of (A.5),
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we have

E
���	(Y (m)t )�	(Yt)

��� � C

 
q0�1P
k=1

E
���	(k)(Yt)(Y (m)t � Yt)k

��� =k! + E ���	(q0)(Y �t )(Y (m)t � Yt)q0
��� =q0!

!

� C

 
q0�1P
k=1

�
E
���	(k)(Yt)���p0�1=p0 v(p0�1)=p0p0k=(p0�1)(m) + vq0(m)

!

= O

 
q0�1P
k=1

v
1=�p
�pk

(m) + vq0(m)

!
:

(A.9)

By the boundness condition on KT (�) (see A5 in Section 3) and (A.9), we have

sup
kxk�CT

jIT;1(x)j � h�d sup
kxk�CT

���KT (
Xt�x
h )

��� ���	(Y (m)t )�	(Yt)
���

= OP

 
h�d

 
q0�1P
k=1

v
1=�p
�pk

(m) + vq0(m)

!!
:

(A.10)

For IT;2(x), note that

IT;2(x) = 1
Thd

TP
t=1
	(Yt)

�
KT

�
Xt�x
h

�
�KT

�
X
(m)
t �x
h

��
+ 1
Thd

TP
t=1

�
	(Y

(m)
t )�	(Yt)

��
KT

�
Xt�x
h

�
�KT

�
X
(m)
t �x
h

��
=: IT;3(x) + IT;4(x):

(A.11)

By the Lipschitz continuity of KT (�), we have�����KT

�
Xt � x
h

�
�KT

 
X
(m)
t � x
h

!����� = OP (v1(m)=h): (A.12)

By (A.12), we have

sup
kxk�CT

jIT;3(x)j = OP
�
h�d�1v1(m)

�
: (A.13)

On the other hand, by (A.9) and (A.12), we have

sup
kxk�CT

jIT;4(x)j = OP

 
h�d�1v1(m)

 
q0�1P
k=1

v
1=�p
�pk

(m) + vq0(m)

!!
= OP

�
h�d�1v1(m)

�
:

(A.14)

In view of (A.8), (A.10), (A.11), (A.13) and (A.14), we can show that (A.7) holds.

Lemma A.4 Suppose that the conditions of Theorem 3.2 are satis�ed. Then, we have

sup
kxk�CT

���WT (x)�W (mT )
T (x)

��� = O (�T ) ; a:s:; (A.15)

24



where mT is de�ned in A4 (i).

Proof. Let IT;1(x) and IT;2(x) be de�ned as in (A.8). By (3.3) and (A.9), we have

1P
T=1

P
����	(Y (m)t )�	(Yt)

��� > �Th
d
�

�
1P
T=1

��1T h�dE
���	(Y (m)t )�	(Yt)

���
� C

1P
T=1

��1T h�d
 
q0�1P
k=1

v
1=�p
�pk

(m) + vq0(m)

!
= C

1P
T=1

1
T log1+& T

<1:

(A.16)

By the boundness condition on KT (�) and (A.16), we have

sup
kxk�CT

jIT;1(x)j � h�d sup
kxk�CT

���KT (
Xt�x
h )

��� ���	(Y (m)t )�	(Yt)
���

= O(�T ) a:s:

(A.17)

Analogously, we can show that

sup
kxk�CT

jIT;2(x)j = O(�T ) a:s: (A.18)

In view of (A.17) and (A.18), we can show that (A.15) holds.

Appendix B: Proofs of the main results

We �rst prove Theorems 3.1 and 3.2 and then provide the proofs of the uniform con-

vergence rate results in Sections 2 and 4. In fact, the results in Sections 2 and 4 can be

obtained as applications of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Note that

sup
kxk�CT

jWT (x)� E[WT (x)]j � sup
kxk�CT

���W (m)
T (x)� E[W (m)

T (x)]
���

+ sup
kxk�CT

���WT (x)�W (m)
T (x)

���
+ sup
kxk�CT

���E[WT (x)]� E[W (m)
T (x)]

���
=: �T;1 +�T;2 +�T;3:

(B.1)
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By Lemma A.3, we have

�T;2 = OP

0@h�d�1v1(m) + h�d
0@q0�1X
k=1

v
1=�p
k�p

(mT ) + vq0(mT )

1A1A
by taking m = mT , where mT is de�ned in A4 (i). Furthermore, by A6, we have

�T;2 = OP (�T ): (B.2)

Analogously,

�T;3 = O(�T ): (B.3)

By (B.1)�(B.3), to prove (3.2), we need only to show that

�T;1 = OP (�T ): (B.4)

It is easy to check that fY (m)t ;X
(m)
t g is an ��mixing process with mixing coe¢ cient

�m(t) �

8><>: �t�m; t � m+ 1;

1; t � m:

We next cover the set fx : kxk � CT g by a �nite number of subsets Sk, k = 1; � � � ; NT ,
which are centered at sk with radius rT = �Th

d+1. Observe that

�T;1 � max
1�k�NT

sup
kxk2Sk

���W (m)
T (x)�W (m)

T (sk)
���

+ max
1�k�NT

sup
kxk2Sk

���E[W (m)
T (x)]� E[W (m)

T (sk)]
���

+ max
1�k�NT

���W (m)
T (sk)� E[W (m)

T (sk)]
���

=: �T;4 +�T;5 +�T;6:

(B.5)

By the Lipschitz continuity of KT (�) in A5, we have

max
T�1

max
1�k�NT

sup
x2Sk

����KT

�
Xt � x
h

�
�KT

�
Xt � sk

h

����� � max
1�k�NT

sup
x2Sk





x� skh





 = O

�
rT
h

�
:

(B.6)

By (B.6) and noting that E
���	(Y (m)t )

��� <1 by Lemma A.2, we have

�T;4 = OP

�
rT
hd+1

�
= OP (�T ): (B.7)
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Similarly,

�T;5 = O(�T ): (B.8)

By (B.5), (B.7) and (B.8), to prove (B.4), we need only to show that

�T;6 = OP (�T ): (B.9)

Let �T = T 1=p0 ,

	(Y
(m)
t ) = 	(Y

(m)
t )I

�
j	(Y (m)t )j � �T

�
; e	(Y (m)t ) = 	(Y

(m)
t )I

�
j	(Y (m)t )j > �T

�
;

W
(m)
T (x) =

1

Thd

TX
t=1

	(Y
(m)
t )KT

 
X
(m)
t � x
h

!
;

fW (m)
T (x) =

1

Thd

TX
t=1

e	(Y (m)t )KT

 
X
(m)
t � x
h

!
:

It is easy to check that

�T;6 � max
1�k�NT

���W (m)
T (sk)� E[W

(m)
T (sk)]

���
+ max
1�k�NT

���fW (m)
T (sk)� E[fW (m)

T (sk)]
���

=: �T;7 +�T;8:

(B.10)

By the Markov inequality and Lemma A.2, for any � > 0,

P (�T;8 > ��T ) �
TX
t=1

E
���	(Y (m)t )

����0
��0T

� CT���0T = O(T 1��0=p0) = o(1);

where p0 < �0 < s. Hence, we have

�T;8 = OP (�T ): (B.11)

Letting

B = �Th
�d = T 1=p0h�d; � = ��T ; q = T 1+1=p0�T

in Lemma A.1, we have

P (�T;7 > ��T ) �
NTX
k=1

P
����W (m)

T (sk)� E[W
(m)
T (sk)]

��� > ��T

�
� NT exp

(
�c�

2�2TTh
d

16

)
+ cNT (log T )

(2�0+1)=4h�(3+2�0)d=4T (3p0+6)=4p0+�0(1=p0�1=2)
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for some positive constant c. Noting that

NT = O

 
CdT

�dTh
d2+d

!
;

by the bandwidth condition in A4 (ii), we have for � large enough

P (�T;7 > ��T ) = o(1);

which implies that

�T;7 = OP (�T ): (B.12)

By (B.10)�(B.12), we can show that (B.9) holds. Then, the proof of Theorem 3.1 is

completed.

Proof of Theorem 3.2. By Lemma A.4 and following the proof of Theorem 3.1, we need

only to show that

�T;6 = O(�T ) a:s:; (B.13)

where �T;6 is de�ned in (B.5)

Let �T = T 1=p0 , 	(Y (m)t ), e	(Y (m)t ), W
(m)
T (x), fW (m)

T (x), �T;7 and �T;8 be de�ned as in

the proof of Theorem 3.1. By the Markov inequality and Lemma A.2, for any � > 0,

1X
T=1

P (�T;8 > ��T ) �
1X
T=1

TX
t=1

E
���	(Y (m)t )

���s
�sT

� C
1X
T=1

T 1�s=p0 <1;

as s > 2p0. Hence, we have

�T;8 = O(�T ) a:s: (B.14)

Letting B = �Th�d = T 1=p0h�d; � = ��T ; q = T 1+1=p0�T in Lemma A.1, by (2.5) and

(2.10) we have

1X
T=1

P (�T;7 > ��T ) �
1X
T=1

NTX
k=1

P
����W (m)

T (sk)� E[W
(m)
T (sk)]

��� > ��T

�
�

1X
T=1

NT

 
exp

(
��

2�2TTh
d

16

)
+ (log T )(2�0+1)=4h�(3+2�0)d=4T (3p0+6)=4p0+�0(1=p0�1=2)

!

� C
1X
T=1

1

T log1+& T
<1:
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Hence

�T;7 = O(�T ) a:s: (B.15)

By (B.10), (B.14) and (B.15), we can show that (B.13) holds. Then, the proof of

Theorem 3.2 is completed.

Proof of Theorem 2.1. We only consider the case of d = 1 as the extension to the case of

d � 2 is similar. Then Xt and x become Xt and x, respectively. By the standard argument
of local linear estimator as in Fan and Gijbels (1996).

bg(x) = TX
t=1

wT;t(x)Yt;

where

wT;t(x) = fK �
Xt � x
h

�
=
TX
t=1

fK �
Xt � x
h

�
;

fK �
Xt � x
h

�
= K

�
Xt � x
h

��
ST;2(x)�

�
Xt � x
h

�
ST;1(x)

�
;

ST;j(x) =
1

Th

TX
t=1

�
Xt � x
h

�j
K

�
Xt � x
h

�
:

Then,

bg(x)� g(x) =

 
TP
t=1

wT;t(x)g(Xt)� g(x)
!
+

TP
t=1

wT;t(x)et

=: ��T;1(x) + �
�
T;2(x);

(B.16)

where et = Yt � g(Xt).
Applying Theorem 3.1 with 	(y) � 1, for any j � 1,

sup
jxj�CT

���ST;j(x)� �jf(x)��� = oP (1); (B.17)

where �j =
R
R u

jK(u)du. By (B.17) and standard calculation, we have

sup
jxj�CT

�����T;1(x)��� = OP

 
bT (g)h

2

aT (f)

!
: (B.18)

Hence, to prove (2.6), we need only to show that

sup
jxj�CT

�����T;2(x)��� = OP

�
�T

aT (f)

�
: (B.19)
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By (B.17) and the de�nition of wT;t(�), to prove (B.19), we need only to show that

sup
jxj�CT

����� 1Th
TX
t=1

K

�
Xt � x
h

�
et

����� = OP (�T ) : (B.20)

By Theorem 3.1, we can show that (B.20) holds. Then, the proof of Theorem 2.1 is

completed.

Proof of Theorem 2.2. Following the proofs of Theorems 2.1 and 3.2, we can show that

(2.11) holds. The details are omitted here.

Proof of Proposition 4.1. As in the proof of Theorem 3.1, we only consider the case

of d = 1. Noting that bet = Yt � g(Xt) + g(Xt) � bg(Xt) = et + g(Xt) � bg(Xt), b�(x) can be
rewritten as

b�2(x) =
TX
t=1

w�T;t(x)be2t ;
=

TX
t=1

w�T;t(x)e
2
t + 2

TX
t=1

w�T;t(x)et(g(Xt)� bg(Xt)) + TX
t=1

w�T;t(x)(g(Xt)� bg(Xt))2;
=: �T;1(x) + �T;2(x) + �T;3(x);

where

w�T;t(x) = fW �
Xt � x
h�

�
=
TX
t=1

fW �
Xt � x
h�

�
;

fW �
Xt � x
h�

�
= W

�
Xt � x
h

��
S�T;2(x)�

�
Xt � x
h�

�
S�T;1(x)

�
;

S�T;j(x) =
1

Th

TX
t=1

�
Xt � x
h�

�j
W

�
Xt � x
h�

�
:

By Theorem 3.1 and following the proof of Theorem 2.1, we have

sup
jxj�CT

����T;1(x)� �2(x)��� = OP

 
�T

aT (f)
+
bT (�

2)h2

aT (f)

!
: (B.21)

On the other hand, observe that

�T;3(x) =
TX
t=1

w�T;t(x)(g(Xt)� bg(Xt))2I � max
1�t�T

jXT j � CT

�

+
TX
t=1

w�T;t(x)(g(Xt)� bg(Xt))2I � max
1�t�T

jXT j > CT

�
=: �T;4(x) + �T;5(x):
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By Theorem 2.1, we have

sup
jxj�CT

j�T;4(x)j = OP

0@ �T
aT (f)

+
bT (g)h

2

aT (f)

!21A : (B.22)

For �T;5(x), we have for any small � > 0

P

0@ sup
jxj�CT

j�T;5(x)j > �

 
�T

aT (f)
+
bT (g)h

2

aT (f)

!21A = P

�
max
1�t�T

jXT j > CT

�

�
TX
t=1

EjXtj2p0

C2p0T

= O(T 1�2p0=d)

= o(1)

as 2p0 > d. Hence, we have

sup
jxj�CT

j�T;5(x)j = OP

0@ �T
aT (f)

+
bT (g)h

2

aT (f)

!21A : (B.23)

By (B.22) and (B.23), we have

sup
jxj�CT

j�T;3(x)j = OP

0@ �T
aT (f)

+
bT (g)h

2

aT (f)

!21A = oP

 
�T

aT (f)
+
bT (�

2)h2

aT (f)

!
: (B.24)

By the Cauchy�Schwarz inequality, we have

�T;2(x) = 2

 
TX
t=1

w�T;t(x)e
2
t

!1=2 TX
t=1

w�T;t(x)(g(Xt)� bg(Xt))2
!1=2

:

Then, by (B.21) and (B.24), we have

sup
jxj�CT

j�T;2(x)j = OP

 
�T

aT (f)
+
bT (�

2)h2

aT (f)

!
: (B.25)

By (B.21), (B.24) and (B.25), we can show that (4.2) holds.

Proof of Proposition 4.2. From the proof of Proposition 4.1, and by Theorems 2.2 and

3.2, we can show that (4.3) holds. Details are omitted here.
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Proof of Proposition 4.3. The detailed proof is similar to the proof of Theorem 2.1.

By the de�nition of the local linear estimators bmj(x), j = 1; � � � ; J(T ), we have

bmj(x) =
TX

t=j+1

wT;j;t(x)Yt;

where

wT;j;t(x) = fK �
Xt�j � x

h

�
=

TX
t=j+1

fK �
Xt�j � x

h

�
;

fK �
Xt�j � x

h

�
= K

�
Xt�j � x

h

��
ST;j;2(x)�

�
Xt�j � x

h

�
ST;j;1(x)

�
;

ST;j;k(x) =
1

(T � j)h

TX
t=j+1

�
Xt�j � x

h

�k
K

�
Xt�j � x

h

�
:

Then,

bmj(x)�m(x) =

 
TP

t=j+1
wT;j;t(x)mj(Xt)�mj(x)

!
+

TP
t=j+1

wT;j;t(x)eet;j
=: �T;j;1(x) + �T;j;2(x);

(B.26)

where eet;j = Yt �mj(Xt).

Following the proof of Theorem 3.1 with some modi�cation, we can show that

max
1�j�J(T )

sup
jxj�CT

jST;j;k(x)� �kf(x)j = oP (1); k � 1: (B.27)

By (B.27), to prove

max
1�j�J(T )

sup
jxj�CT

�T;j;2(x) = OP

�
�T

aT (f)

�
; (B.28)

we need only to show

max
1�j�J(T )

sup
jxj�CT

������ 1

(T � j)h

TX
t=j+1

K

�
Xt�j � x

h

� eet;j
������ = OP

�
�T

aT (f)

�
; (B.29)

Let


T;j(x) =
1

(T � j)h

TX
t=j+1

K

�
Xt�j � x

h

� eet;j ;


(m)
T;j (x) =

1

(T � j)h

TX
t=j+1

K

0@X(m)
t�j � x
h

1A ee(m)t;j ; m = mT ;
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where X(m)
t�j and ee(m)t;j are de�ned as in De�nition 1. Note that E [
T;j(x)] = 0 for all

j = 1; � � � ; J(T ). Then, we have

max
1�j�J(T )

sup
jxj�CT

j
T;j(x)j

� max
1�j�J(T )

sup
jxj�CT

���
(m)T;j (x)� E
h


(m)
T;j (x)

i���
+ max
1�j�J(T )

sup
jxj�CT

���
T;j(x)� 
(m)T;j (x)
���

+ max
1�j�J(T )

sup
jxj�CT

���E h
(m)T;j (x)
i
� E [
T;j(x)]

���
=: 
T (1) + 
T (2) + 
T (3):

(B.30)

Following the argument in the proof of Lemma A.3, we have


T (2) + 
T (3) = OP (�T ) (B.31)

as J(T )h�(d+1)v1(mT )�
�1
T = O(1). On the other hand, following the proof of Theorem 3.1,

we can show that


T (1) = OP (�T ) (B.32)

By (B.30)�(B.32), we can show that (B.28) holds.

By (B.27), Taylor expansion and the proof of (B.18), we can show that

max
1�j�J(T )

sup
jxj�CT

�T;j;1(x) = OP

 
bTh

2

aT (f)

!
: (B.33)

Then, by (B.26), (B.28) and (B.33), we can prove Proposition 4.3.
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