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Abstract. Consider the following problem: For given graphs G and
F1, . . . , Fk, find a coloring of the edges of G with k colors such that
G does not contain Fi in color i. For example, if every Fi is the path
P3 on 3 vertices, then we are looking for a proper k-edge-coloring of G,
i.e., a coloring of the edges of G with no pair of edges of the same color
incident to the same vertex.
Rödl and Ruciński studied this problem for the random graph Gn,p in
the symmetric case when k is fixed and F1 = · · · = Fk = F . They proved
that such a coloring exists asymptotically almost surely (a.a.s.) provided
that p ≤ bn−β for some constants b = b(F, k) and β = β(F ). Their proof
was, however, non-constructive. This result is essentially best possible
because for p ≥ Bn−β , where B = B(F, k) is a large constant, such
an edge-coloring does not exist. For this reason we refer to n−β as a
threshold function.
In this paper we address the case when F1, . . . , Fk are cliques of different
sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring
of Gn,p with p ≤ bn−β for some constants b = b(F1, . . . , Fk, k) and β =
β(F1, . . . , Fk). Kohayakawa and Kreuter conjectured that n−β(F1,...,Fk)

is a threshold function in this case. This algorithm can be also adjusted
to produce a valid k-coloring in the symmetric case.

1 Introduction

The edge-chromatic number χ′(G) is one of the classical and well studied graph
parameters. It is defined as the minimum number of colors k such that G allows
for a k-edge-coloring with no pair of adjacent edges of the same color. Viewed
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from a slightly different perspective, one can equivalently define χ′(G) as the
minimum number of colors k such that G admits a k-edge-coloring avoiding
monochromatic paths of length 2. This definition has led to a fruitful and well-
studied area in deterministic graph theory. For given graphs G and F , is there
an edge-coloring with k colors of G that avoids a monochromatic copy of F?

It follows from Ramsey’s celebrated result [1] that every k-coloring of the
edges of the complete graph on n vertices contains a monochromatic copy of F
if n is sufficiently large. While this seems to rely on the fact that Kn is a very
dense graph, Folkman [2] and, in a more general setting, Nešetřil and Rödl [3]
showed that there also exist locally sparse graphs G = G(F ) with the property
that every k-coloring of the edges of G contains a monochromatic copy of F . By
transferring the problem into a random setting, Rödl and Ruciński [4] showed
that in fact such graphs G are quite frequent. More precisely, they proved the
following result. Let

G → (F )e
k

denote the property that every edge-coloring of G with k colors contains a
monochromatic copy of F . Recall that in the binomial random graph Gn,p on n
vertices, every edge is present with probability 0 ≤ p = p(n) ≤ 1 independently
of all other edges. Then the theorem of Rödl and Ruciński reads as follows.

Theorem 1 ([4], [5], [6]). Let k ≥ 2 and F be a non-empty graph that is not
a forest. Then there exist constants b, B > 0 such that

lim
n→∞

P [Gn,p → (F )e
k] =

{
0 if p ≤ bn−1/m2(F )

1 if p ≥ Bn−1/m2(F )
,

where

m2(F ) := max
{
|E(H)| − 1
|V (H)| − 2

: H ⊆ F ∧ |V (H)| ≥ 3
}

.

A function p0 = p0(n) like the function n−1/m2(F ) in Theorem 1 is called thresh-
old or threshold function. In Theorem 1, this function can be motivated as fol-
lows. For the sake of simplicity, suppose that m2(F ) = (|E(F )|−1)/(|V (F )|−2).
Then, for p = cn−1/m2(F ), the expected number of copies of F containing a given
edge of Gn,p is a constant depending on c. If this constant is close to zero, the
copies of F in Gn,p are loosely scattered and a valid coloring should thus ex-
ist. On the other hand, if this constant is large, the copies of F in Gn,p highly
intersect with each other, and the existence of a valid coloring becomes unlikely.

In Theorem 1 the same graph F is forbidden in every color class. We can
generalize this setup by allowing for k different forbidden graphs, one per color.
Within classical Ramsey theory the study of these so-called asymmetric Ram-
sey properties led to many interesting questions (see e.g. [7]) and results, most
notably the celebrated paper of Kim [8] where he established an asymptotically
sharp bound on the Ramsey number R(3, t), that is, the minimum number n
such that every 2-edge-coloring of the complete graph on n vertices contains
either a red triangle or a blue clique of size t.
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Within the random setting only very little is known about asymmetric Ram-
sey properties. Let

G → (F1, . . . , Fk)e

denote the property that in every edge-coloring of G with k colors, there exists
a color i such that Fi is contained in the subgraph of G spanned by the edges
which are assigned to i. In [9] Kohayakawa and Kreuter proved the following
result for cycles C` of fixed length `.

Theorem 2 ([9]). Let k ≥ 2 and 3 ≤ `1 ≤ · · · ≤ `k be integers. Then there
exist constants b, B > 0 such that

lim
n→∞

P [Gn,p → (C`1 , . . . , C`k
)e] =

{
0 if p ≤ bn−1/m2(C`2 ,C`1 )

1 if p ≥ Bn−1/m2(C`2 ,C`1 )
,

where
m2(C`2 , C`1) :=

`1
`1 − 2 + 1/m2(C`2)

.

On the basis of their results in [9], Kohayakawa and Kreuter formulated the
following conjecture.

Conjecture 3 ([9]). Let F1, F2 be graphs with 1 < m2(F1) ≤ m2(F2). Then there
exists a constant b > 0 such that for all ε > 0, we have

lim
n→∞

P [Gn,p → (F1, F2)e] =

{
0 if p ≤ (1− ε)bn−1/m2(F1,F2)

1 if p ≥ (1 + ε)bn−1/m2(F1,F2)
,

where

m2(F1, F2) := max
{

|E(H)|
|V (H)| − 2 + 1/m2(F1)

: H ⊆ F2 ∧ |V (H)| ≥ 2
}

.

The threshold function from Conjecture 3 is supported by the following obser-
vation. The expected number of copies of F2 in Gn,p with p = Θ

(
n−1/m2(F1,F2)

)
is

Θ
(
n|V (F2)|p|E(F2)|

)
= Ω

(
n2−1/m2(F1)

)
.

Since every edge-coloring of Gn,p must avoid monochromatic copies of F2 in
color 2, there is at least one edge of color 1 in every subgraph of Gn,p isomorphic
to F2. Select one such edge from each copy of F2 arbitrarily. It is plausible
that these edges span a graph G′ with edge density Ω

(
n−1/m2(F1)

)
that satisfies

certain pseudo-random properties. As it turns out, that seems just about the
right density in order to embed a copy of F1 into G′, no matter which edges
were selected from the original graph.

In this paper, we consider the threshold function p0 for cliques K`1 , . . . ,K`k
.

A threshold phenomenon consists of two separate statements, the so-called 0-
statement and the 1-statement, which are usually proved in entirely different
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ways. In our setting, the two statements are as follows. For the 1-statement
one has to show that if p ≥ Bp0, a random graph Gn,p asymptotically almost
surely (a.a.s.) satisfies Gn,p → (K`1 , . . . ,K`k

)e, i.e., every k-edge-coloring of Gn,p

contains at least one of the forbidden monochromatic cliques. For the 0-statement
we suppose that p ≤ bp0 for some sufficiently small constant b > 0 and need to
provide a k-edge-coloring of a random graph Gn,p that avoids every forbidden
clique K`i

, 1 ≤ i ≤ k, in the corresponding color class i.
A standard way of attacking the 1-statement, which was also pursued in [9],

is via the sparse version of Szemerédi’s regularity lemma, which was indepen-
dently developed by Kohayakawa [10] and Rödl (unpublished). Using properties
of regularity, one can find a monochromatic copy of a forbidden subgraph in
the colored graph Gn,p. Unfortunately, generalizing this argument from cycles
to cliques requires a proof of Conjecture 23 in [11] of Kohayakawa,  Luczak, and
Rödl. This so-called K LR-Conjecture formulates a probabilistic version of the
classical embedding lemma for dense graphs. It implies many interesting ex-
tremal results for random graphs. In their monograph on random graphs [12],
Janson,  Luczak, and Ruciński consider the verification of this conjecture one
of the most important open questions in the theory of random graphs. Despite
recent progress [13], the conjecture is, in its full generality, still wide open. How-
ever, assuming that it is true, a proof of the 1-statement is routinely obtained.
We omit the proof in this extended abstract due to space restrictions.

From an algorithmic or constructive point of view, the 0-statement is much
more interesting. The way of proving it that was pursued in [5] and [9] is by
contradiction. This approach shows the existence of a coloring, but provides no
efficient way of obtaining the coloring from the proof. Our approach is construc-
tive. We provide a (polynomial-time) algorithm that computes a valid coloring
for graphs that satisfy certain properties. We employ techniques similar to those
in [5] and [9] in order to prove that these properties a.a.s. hold in Gn,p with p
sufficiently small. Indeed, the results in [5] yield that our algorithm also com-
putes valid colorings of Gn,p in the symmetric case, unless the forbidden graph is
one of a few special cases, e.g., a triangle. In fact, the symmetric case of triangles
was solved in [6] by different methods.

We prove the threshold from Conjecture 3 for cliques. As in Theorems 1
and 2, the threshold function is slightly weaker than conjectured, allowing for
distinct constants in the 0- and the 1-statement.

Theorem 4 (Main Result). Let k ≥ 2 and `1 ≥ · · · ≥ `k ≥ 3 be integers.
Then there exist constants b, B > 0 such that

lim
n→∞

P [Gn,p → (K`1 , . . . ,K`k
)e] =

{
0 if p ≤ bn−1/m2(K`2 ,K`1 )

1 if p ≥ Bn−1/m2(K`2 ,K`1 )
,

where

m2(K`2 ,K`1) :=

(
`1
2

)
`1 − 2 + 1/m2(K`2)

,

and the 1-statement holds provided Conjecture 23 in [11] is true for K`2 .
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In this extended abstract, we will outline the proof of the 0-statement of
Theorem 4 under the additional assumption that `2 > 3. For `2 = 3, we face
additional difficulties. Due to space restrictions, we focus on the main case and
sketch how to deal with triangles in Section 3.

1.1 Notation

Our notation is mostly adopted from [12]. All graphs are simple and undirected.
We abbreviate the number of vertices |V (G)| of a graph G by v(G) and similarly
the number of edges |E(G)| by e(G). We say that a property P holds in Gn,p

asymptotically almost surely (a.a.s.) if we have

lim
n→∞

P [Gn,p satisfies P] = 1 .

2 An algorithm for computing valid edge colorings

Suppose G = Gn,p with p ≤ bn−1/m2(K`2 ,K`1 ) is given. In order to provide a
valid coloring of G, it suffices to compute a 2-coloring of E(G) such that there
is no copy of K`1 in color 1 and no copy of K`2 in color 2. That implies the
0-statement of Theorem 4 also for k-colorings. Hence, we focus on 2-colorings
and abbreviate `1 by r and `2 by ` in the following. For the rest of this section,
r > ` > 3 shall remain fixed.

We describe an algorithm that finds a valid edge-coloring of G a.a.s. The
basic idea of the algorithm is to remove edges from the graph successively. An
edge e is deleted from G if there are no two cliques of size ` and r respectively
that intersect exactly on e. Assuming that all edges of G can be removed in this
way, it is easy to create a valid coloring by inserting them in the reverse order
one by one, always assigning a valid color instantly. The actual algorithm is more
complex since sometimes one has to forget about the existence of certain small
cliques in order to remove really all edges from G. As we shall see, we can easily
deal with those cliques later.

In order to simplify notation, we define, for any graph G, the families

LG := {L ⊆ G : L ∼= K`} and RG := {R ⊆ G : R ∼= Kr}

of all `-cliques and r-cliques in G respectively. Furthermore, we introduce the
family

L∗G :=
{
L ∈ LG : ∀e ∈ E(L) ∃R ∈ RG s.t. E(L) ∩ E(R) = {e}

}
⊆ LG .

The algorithm is given in Figure 1. Note that edges are removed from and
inserted into a working copy G′ = (V,E′) of G. The local variable L contains
the same elements as LG′ up to the first execution of lines 12-13. In general, we
have L ⊆ LG′ .

Lemma 5. If algorithm Asym-Edge-Col terminates without error, then it has
indeed found a valid coloring of G.
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Asym-Edge-Col(G = (V, E))
1 s← empty-stack()
2 E′ ← E
3 L ← LG

4 while E′ 6= ∅
5 do if ∃ e ∈ E′ s.t. @(L, R) ∈ L ×RG′=(V,E′) : E(L) ∩ E(R) = {e}
6 then for each L ∈ L : e ∈ E(L)
7 do s.push(L)
8 L.remove(L)
9 s.push(e)

10 E′.remove(e)
11 else if ∃L ∈ L \ L∗G′=(V,E′)

12 then s.push(L)
13 L.remove(L)
14 else error “stuck”
15 while s 6= ∅
16 do if s.top() is an edge
17 then e← s.pop()
18 e.set-color( blue )
19 E′.add(e)
20 else L← s.pop()
21 if L is entirely blue
22 then f ← any e ∈ E(L) s.t. @R ∈ RG′=(V,E′) : E(L) ∩ E(R) = {e}
23 f.set-color( red )

Fig. 1. The implementation of algorithm Asym-Edge-Col.

Proof. First, we argue that the algorithm never creates a blue copy of K`. Ob-
serve that every copy of K` that exists in G′ is pushed on the stack in the first
loop. Therefore, in the execution of the second loop, the algorithm must check
the coloring of every such copy. Due to the order of the elements on the stack,
each check is performed only after all edges of the corresponding clique were
inserted and colored. For every blue copy of K`, one particular edge is recolored
to red. Since red edges are never flipped back to blue, no blue copy of K` can
occur in the coloring found by the algorithm.

It remains to prove that the assignment of color red to some edge by the
algorithm can never create an entirely red copy of Kr. By the condition on f in
line 22 of the algorithm, at the very moment there exists no copy of Kr in G′

that intersects with L exactly in f . So there is either no Kr containing f at all,
or every such copy contains also another edge from L. In the latter case, those
copies cannot become entirely red since L is entirely blue.

Our last step is to show that the edge f in line 22 always exists. Since the
second loop inserts edges into G′ in the reverse order in which they were deleted
during the first loop, when we select f in line 22, G′ has the same structure as at
the moment when L was pushed on the stack. This could have happened either
in line 7, when there exists no r-clique in G′ that intersects with L on some
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particular edge e ∈ E(L), or in line 12, when L satisfies the condition of the
if-clause in line 11. In both cases we have L /∈ L∗G′ , and, therefore, there exists
an edge e ∈ E(L) such that all currently existing copies of Kr do not intersect
with L exactly in e. ut

It remains to prove the following lemma.

Lemma 6. There exists a positive constant b = b(`, r) such that the algo-
rithm Asym-Edge-Col a.a.s. terminates on Gn,p with p ≤ bn−1/m2(K`,Kr)

without error.

2.1 Proof of Lemma 6

We prove Lemma 6 by providing an algorithm Grow that, if Asym-Edge-Col
fails on an arbitrary graph G, explicitly computes a subgraph F ⊆ G which
is either too large or too dense to appear in Gn,p with p as in the lemma.
More precisely, we shall show that for any graph F that Grow may return,
the probability that F appears in Gn,p is small compared to the size of F , the
class of all graphs that Grow may return. It follows that Gn,p a.a.s. does not
contain any of these graphs, which implies Lemma 6 by contradiction. Note that
we employ algorithm Grow only for proving the lemma. It does not contribute
to the running time of algorithm Asym-Edge-Col.

In order to formulate algorithm Grow, we need some definitions. Let

γ = γ(`, r) := 1/m2(K`,Kr)− 2/ (` + r − 3) .

Note that for r > ` > 3, we have

γ(`, r) =
2
(
(`2 − 3`− 2)r − 2`(`− 3)

)
r(r − 1)(` + 1)(` + r − 3)

> 0 .

Remark 7. Observe that γ(3, r) is negative for r ≥ 3. This is why we have to
modify our proof for the case ` = 3, see Section 3. The proof we present here
also covers the symmetric case for ` = r ≥ 5 since then γ(`, `) > 0.

For any graph F , let

λ(F ) := v(F )− e(F )/m2(K`,Kr) .

The definition of λ(F ) is motivated by the fact that the number of copies of F
in Gn,p with p = bn−1/m2(K`,Kr) has order of magnitude

nv(F )pe(F ) = be(F )nλ(F ) .

For any graph F , we call an edge e ∈ E(F ) eligible for extension if it satisfies

@(L,R) ∈ LF ×RF s.t. E(F ) ∩ E(F ) = {e} .
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Grow(G′ = (V, E))
1 i← 0
2 F0 ← any R ∈ RG′

3 while i < log(n) ∧ λ(Fi) > −γ
4 do if ∃R ∈ RG′ \ RFi s.t. |V (R) ∩ V (Fi)| ≥ 2
5 then Fi+1 ← Fi ∪R
6 else e← Eligible-Edge(Fi)
7 Fi+1 ← Extend-L(Fi, e, G

′)
8 i← i + 1
9 return Fi

Extend-L(F, e, G′)
1 L← any L ∈ L∗G′ : e ∈ E(L)
2 F ′ ← F ∪ L
3 for each e′ in E(L) \ E(F )
4 do Re′ ← any R ∈ RG′ : E(L) ∩ E(R) = {e′}
5 F ′ ← F ′ ∪Re′

6 return F ′

Fig. 2. The implementation of algorithm Grow.

The implementation of algorithm Grow is shown in Figure 2. The intended
input is the graph G′ ⊆ G after Asym-Edge-Col got stuck. It proceeds as
follows: the seed F0 is any copy of Kr in G′. In every iteration i, it extends Fi

to Fi+1 by adding new vertices and edges to it. As long as there are copies of Kr

in G′ that intersect with Fi in at least two vertices but not in all edges, it greedily
adds those to Fi. If there are no such copies, it calls a subroutine Eligible-Edge
that takes Fi as input and returns an edge e ∈ E(Fi) eligible for extension that
is unique up to isomorphism of Fi, i.e., in such a way that for any two isomorphic
graphs F and F ′, there exists an isomorphism ϕ with ϕ(F ) = F ′ such that

Eligible-Edge(F ′) = ϕ(Eligible-Edge(F )) .

Note that this implies in particular that e depends only on the graph Fi and
not on the surrounding graph G′. Clearly, one way to implement this procedure
would be keeping a large table of representatives for all isomorphism classes of
graphs with up to n vertices that maps to each entry one particular edge eligible
for extension. Since we only want to show the existence of a certain structure
in G′ and do not care about complexity issues here, the actual implementation
of that procedure is irrelevant. Procedure Extend-L then adds a graph L ∈ L∗G′

that contains the edge e returned by Eligible-Edge to Fi. It glues to each new
edge e′ ∈ E(L) \E(Fi) a graph Re′ ∈ RG′ that intersects with L only in e′. The
algorithm stops and returns Fi ⊆ G′ ⊆ G as soon as λ(Fi) ≤ −γ or i ≥ log(n).

We argue that Grow terminates without error, i.e., that Eligible-Edge
always finds an edge eligible for extension, and that Extend-L always finds
suitable graphs L and Re′ , e′ ∈ E(L). Let us consider the properties of G′ when
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Asym-Edge-Col gets stuck. As the condition in line 5 of Asym-Edge-Col
fails, G′ is in the family

C(`, r) :=
{
G = (V,E) : ∀e ∈ E(G) ∃(L,R) ∈ LG×RG s.t. E(L)∩E(R) = {e}

}
.

In fact, every edge of G′ is contained in a copy L ∈ L, and as the condition in
line 11 fails as well, G′ is even in the smaller family

C∗(`, r) :=
{
G = (V,E) : ∀e ∈ E(G) ∃L ∈ L∗G s.t. e ∈ E(L)

}
⊆ C(`, r) .

Claim 8. Algorithm Grow terminates without error on any nonempty input
graph G′ ∈ C∗(`, r). Moreover, every iteration of the while-loop adds at least one
edge to F .

Proof. Suppose there is no edge in Fi that is eligible for extension. Then we have
Fi ∈ C(`, r) by definition. This implies that every vertex v ∈ V (Fi) has degree
at least (` − 1) + (r − 1) − 1 = ` + r − 3, i.e., e(Fi)/v(Fi) ≥ (` + r − 3) /2. It
follows that

λ(Fi) ≤ e(Fi)
(

2
` + r − 3

− 1
m2(K`,Kr)

)
= −e(Fi)γ ≤ −γ ,

where we used that γ = γ(`, r) is positive. Consequently, Grow terminates in
line 3 without calling Eligible-Edge. Hence, Eligible-Edge always returns
an edge eligible for extension when called from Grow.

Property C∗(`, r) of G′ guarantees the existence of suitable graphs L and
Re′ , e′ ∈ E(L), when Extend-L is called. Moreover, by definition of L∗G′ , there
exists, in particular, Re ∈ RG′ such that e is the intersection of Re and L. When
Extend-L(F, e,G′) is called, Re has already been added to F during a previous
iteration in lines 4 and 5 of Grow. Hence, the L returned in line 1 of Extend-L
is not contained in F , as otherwise e would not be eligible for extension. On the
other hand, it is clear that an R found in line 4 adds at least one new edge to
F . Together this proves that every iteration adds at least one edge to F . ut

Now, we will consider the evolution of F in more detail. We say that iteration
i of the while-loop in procedure Grow is non-degenerate if we have the following
assertions:

– The condition in line 4 evaluates to false and, hence, Extend-L is called.
– In line 2 of Extend-L, we have V (F ) ∩ V (L) = e.
– In every execution of line 5 of Extend-L, we have V (F ′) ∩ V (Re′) = e′.

Otherwise, we call iteration i degenerate. In non-degenerate iterations, Fi+1 is
uniquely defined up to isomorphism for a given Fi, depending only on the imple-
mentation of subroutine Eligible-Edge, which determines the position where
to attach the next K`. An easy calculation yields the next claim.

Claim 9. If iteration i of the while-loop in procedure Grow is non-degenerate,
we have

λ(Fi+1) = λ(Fi) .
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In a degenerate iteration i, the structure of Fi+1 does not only depend on Fi,
but varies with the structure of G′. Suppose that Fi is extended with an r-
clique in line 5. This R can intersect with Fi in virtually every possible way.
Moreover, there may be several copies of Kr which satisfy the condition in line 4.
The same is true for the graphs added in lines 2 and 5 of Extend-L. Thus,
degenerate iterations cause difficulties since they enlarge the family of graphs
that algorithm Grow may potentially return. However, we will show that at
most a constant number of degenerate iterations can occur before the algorithm
terminates. This allows us to control the number of non-isomorphic graphs that
can be the output of Grow. The key to proving this is the next claim.

Claim 10. There exists a constant κ = κ(`, r) > 0 such that if iteration i of the
while-loop in procedure Grow is degenerate, we have

λ(Fi+1) ≤ λ(Fi)− κ .

The proof of Claim 10 is the main technical part of our work and beyond the
scope of this extended abstract. In combination with Claim 9, it yields Claim 11,
which in turn leads to a polylogarithmic bound on the number of non-isomorphic
graphs that Grow can return. The proof of Claim 11 is omitted due to space
restrictions.

Claim 11. There exists a constant m0 = m0(`, r) such that algorithm Grow
performs at most m0 degenerate iterations before it terminates, regardless of the
input instance G′.

Let F(`, r, n) denote a family of representatives for the isomorphism classes
of all graphs that can be the output of Grow with parameters n and γ(`, r) on
any input instance G′.

Claim 12. There exists C = C(`, r) such that |F(`, r, n)| ≤ log(n)C .

Proof. For t ≥ d ≥ 0, let F(t, d) denote a family of representatives for the
isomorphism classes of all graphs Ft that algorithm Grow can generate after
exactly t iterations if it performs exactly d degenerate iterations along the way,
and let f(t, d) := |F(t, d)| denote its cardinality.

Observe that in every iteration, we add at most

K := `− 2 +
(

`

2

)
(r − 2)

new vertices to F , which is exactly the number of vertices added in a non-
degenerate iteration. Hence, we have v(Ft) ≤ r + Kt. It also follows that in
every iteration, the new edges E(Ft+1)\E(Ft) span a graph from GK , where GK

denotes the set of all graphs on at most K vertices. Ft+1 is uniquely defined if
one specifies G ∈ GK , the number y of vertices in which G intersects Ft, and two
ordered lists of vertices from G and Ft respectively of length y, which specify
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the mapping of the intersection vertices from G into Ft. Thus, the number of
ways to extend Ft is bounded from above by

∑
G∈GK

v(G)∑
y=2

v(G)y(v(Ft))y ≤ C1(r + Kt)K ≤ tC2 ≤ log(n)C2 ,

where the constants C1 and C2 depend only on ` and r.
As the selection of the edge to be extended is unique up to isomorphism of

F , the evolution of F is uniquely defined if there are no degenerate iterations
along the way, regardless of the input instance G′. This implies in particular
that f(t, 0) = 1 for all t, and more generally that for t ≥ d ≥ 0

f(t, d) ≤
(

t

d

)(
log(n)C2

)d ≤ log(n)(C2+1)d .

Here the binomial coefficient corresponds to the choice of the d degenerate iter-
ations. We conclude from Claim 11 that there exists a constant C = C(`, r) > 0
such that

|F(`, r, n)| ≤
log(n)∑
t=0

m0∑
d=0

f(t, d) ≤ (log(n) + 1)(m0 + 1) log(n)(C2+1)m0 ≤ log(n)C

for n sufficiently large. ut

Claim 13. There exists a constant b > 0 such that for p ≤ bn−1/m2(K`,Kr),
Gn,p does not contain any graph from F(`, r, n) a.a.s.

Proof. Let F1 and F2 denote the classes of graphs that algorithm Grow can
output if it terminates due to the first or the second condition in line 3, respec-
tively. Owing to Claim 12 we have a polylogarithmic bound on the cardinality
of F = F(`, r, n) = F1 ∪ F2, and Claims 9 and 10 imply that λ(Fi) is non-
increasing. It follows that for b := e−λ(F0)−γ , the expected number of copies of
graphs from F in Gn,p with p ≤ bn−1/m2(K`,Kr) is bounded by∑

F∈F
nv(F )pe(F ) =

∑
F∈F

be(F )nλ(F ) ≤
∑

F∈F1

e(−λ(F0)−γ) log(n)nλ(F ) +
∑

F∈F2

n−γ

≤ (log(n))Cn−γ = o(1) ,

which implies the claim due to Markov’s inequality. Here we used again that γ
is positive. Note that crucially, for all F ∈ F1, we have e(F ) ≥ log(n) since F
was generated in dlog(n)e iterations, each of which introduces at least one new
edge. ut

Suppose now that algorithm Asym-Edge-Col applied to Gn,p with p as
claimed gets stuck, and consider G′ ⊆ G at this moment. The call to Grow(G′)
returns a copy of a graph F ∈ F(`, r, n) that is contained in G′. But we
just proved that a.a.s. we have F 6⊆ Gn,p, which contradicts our assumption.
This proves that Asym-Edge-Col finds a valid coloring of Gn,p with p ≤
bn−1/m2(K`,Kr) a.a.s.
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3 Triangles

As stated in Remark 7, the proof presented in Section 2 does not cover the
case ` = 3 since γ(3, r) = −1/(r2 − r) < 0. In particular, this implies that,
for any b > 0, Gn,p with p = bn−1/m2(K3,Kr) may contain copies of Kr+1.
Since Kr+1 is a member of the family C∗(3, r), Asym-Edge-Col will terminate
with an error. Some rather technical work is required to show that, for r ≥ 6,
Kr+1 is essentially the only graph in C∗(3, r) that is sparse enough to appear in
Gn,p and cause problems. Once this is established, it is not hard to prove that
when Asym-Edge-Col gets stuck, G′ is a.a.s. the union of edge-disjoint copies
of Kr+1 and can be colored easily. Some further complications arise in the cases
r = 4 and r = 5, but the main line of argument is the same.
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erties. In: Combinatorics, Paul Erdős is eighty, Vol. 1. Bolyai Soc. Math. Stud.
János Bolyai Math. Soc., Budapest (1993) 317–346
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