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Abstract

We consider testing the null hypothesis of no spatial autocorrelation against the

alternative of first order spatial autoregression. A Wald test statistic has good first-

order asymptotic properties, but these may not be relevant in small or moderate-sized

samples, especially as (depending on properties of the spatial weight matrix) the usual

parametric rate of convergence may not be attained. We thus develop tests with more

accurate size properties, by means of Edgeworth expansions and the bootstrap. The

finite-sample performance of the tests is examined in Monte Carlo simulations.
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1 Introduction

The modelling and analysis of spatially correlated data can pose significant complica-

tions and difficulties. Correlation across spatial data is typically a possibility, due to

competition, spillovers, aggregation and other circumstances. Such correlation might

be anticipated in observable variables or in the unobserved disturbances in an econo-

metric model, or both. In, for example, a linear regression model with exogenous

regressors, if only the regressors are spatially correlated the usual rules for large sam-

ple inference (based on least squares) are unaffected. However, if also the disturbances

are spatially correlated then though least squares estimates of the regression coeffi-

cients are likely to retain their consistency property, their asymptotic variance matrix

reflects the correlation. This matrix needs to be consistently estimated in order to

carry out statistical inference, and its estimation (whether parametric or nonparamet-

ric) offers greater challenges than when time series data are involved, due to the lack

of ordering in spatial data, as well as possible irregular spacing or lack of reliable infor-

mation on locations. In addition least squares estimates are rendered asymptotically

inefficient by spatial correlation, and developing generalized least squares estimates is

similarly beset by ambiguities.

A sensible first step in data analysis is therefore to investigate whether or not

there is evidence of spatial correlation, by carrying out a statistical test of the null

hypothesis of no spatial correlation. Many such asymptotically valid tests are poten-

tially available, so one might focus on ones that are likely to have reasonable power

against anticipated alternatives. This requires specifying a parametric model for the

spatial correlation. A widely applicable and popular model is the (first-order) spatial

autoregression (SAR). For simplicity we stress the case of zero mean observable data;

we shall also allow in some of the paper for an unknown intercept but our work can

also be extended to test for lack of spatial correlation in unobservable disturbances

in more general models, such as regressions. Given the n × 1 vector of observations

y = (y1, ..., yn)′, the prime denoting transposition, the SAR model is

y = λWy + ε, (1.1)

where ε = (ε1, ..., εn)′ consists of unobservable, uncorrelated random variables with

zero mean and unknown variance σ2, λ is an unknown scalar, and W is an n × n

user-specified “weight” matrix, having (i, j)-th element wij , where wii = 0 for all

i and (in order to identify λ) normalization restrictions satisfied. Such restrictions

imply that in general each element wij changes with n as n increases, implying that

W, and thus y, form triangular arrays (i.e. W = Wn = (wijn), y = yn = (yin)) but we

suppress reference to the n subscript. The element wij can be regarded as a (scaled)

inverse economic distance between locations i and j, where symmetry of W is not

necessarily imposed. Thus knowledge of actual locations is not required, extending
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the applicability of the model beyond situations when they are known, and entailing

simpler modelling than is typically possible when one attempts to incorporate locations

of irregularly spaced geographical observations.

The null hypothesis of interest is

H0 : λ = 0, (1.2)

whence the yi are uncorrelated (and homoscedastic). An obvious statistic for testing

(1.2) is the Wald statistic based on the least squares estimate λ̂ of λ, which is given

by

λ̂ =
y′Wy

y′W ′Wy
. (1.3)

Due to the dependence between right-hand side observables and disturbances in (1.1),

λ̂ is inconsistent for λ, as discussed by Lee (2002). However, λ̂ does converge in

probability to zero when λ = 0, so a test statistic for (1.2) based on λ̂ might be

expected to be asymptotically valid. In particular, under (1.1), (1.2) and regularity

conditions a central limit theorem for independent non-identically distributed random

variables gives [
tr
(
WW ′

)
/
{
tr
(
W 2 +WW ′

)}1/2]
λ̂→d N(0, 1). (1.4)

Since the square-bracketed norming factor can be directly computed, asymptotically

valid Wald tests against one-sided (λ > 0 or λ < 0) or two-sided (λ 6= 0) hypotheses

are readily carried out.

The accuracy of such tests is dependent on the magnitude of n, and the normal

approximation might not be expected to be good for smallish n. Moreover, under

conditions described later and as shown by Lee (2004) for the Gaussian maximum

likelihood estimate of λ, the rate of convergence in (1.4) can be less than the usual

parametric rate n1/2, depending on the assumptions imposed on W as n increases.

In particular if wij = O (1/h) is imposed, where the positive sequence h = hn can

increase no faster than n, the rate is (n/h)1/2, which increases more slowly than n1/2

unless h remains bounded. This outcome renders the usefulness of the Wald test based

on (1.4) more dubious than in standard parametric situations.

The present paper attempts to remedy these concerns by developing refined tests,

which can be expected to perform better in moderate-sized samples. Formal Edge-

worth expansions are established in the following section for both λ̂ and also for the

least squares estimate of λ when (1.1) is extended to include an unknown intercept. In

Section 3 we deduce corrected critical values and as an alternative, corrected (asymp-

totically normal) test statistics. In each case the critical values are more accurate than

ones based on the first-order normal approximation implied by (1.4). Both one-sided

and two-sided tests are considered. Section 4 examines finite-sample performance of
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our tests in Monte Carlo simulations, comparing also with the simple uncorrected test

and tests based on the bootstrap, which (see e.g. Singh (1981) or Hall (1992a)) might

be expected to achieve our Edgeworth correction. Proofs are left to an appendix.

Our results are fairly straightforwardly extendable to situations in which y rep-

resents unobservable disturbances in regression models, and in which the intercept

model we consider is extended to include explanatory variables, but as the topic of

higher-order approximations in spatial econometrics is relatively new, we focus here

on the most basic, classical settings.

2 Edgeworth expansions for the least squares es-

timate

The present section develops a (third-order) formal Edgeworth expansion for λ̂ in

(1.3) under the null hypothesis of no spatial correlation (1.2). We introduce first some

further definitions and assumptions.

Assumption 1 The εi are independent normal random variables with mean zero

and unknown variance σ2.

Normality is an unnecessarily strong condition for the first-order result (1.4), but

it provides some motivation for stressing a quadratic form objective function and is

familiar in higher order asymptotic theory. Edgeworth expansions and resulting test

statistics are otherwise complicated by the presence of cumulants of εi. Assumption 1

implies that under (1.2) the yi are spatially independent.

For a real matrix A, let ||A|| be the spectral norm of A (i.e. the square root of the

largest eigenvalue of A′A) and let ||A||∞ be the maximum absolute row sums norm of

A (i.e. ||A||∞ = max
i

∑
j

|aij |, in which aij is the (i, j)th element of A and i and j vary

respectively across all rows and columns of A). Let K be a finite generic constant.

Assumption 2

(i) For all n, wii = 0, i = 1, ....., n.

(ii) For all sufficiently large n, W is uniformly bounded in row and column sums in

absolute value, i.e. ||W ||∞ + ||W ′||∞ ≤ K

(iii) For all sufficiently large n, uniformly in i, j = 1, ..., n, wij = O(1/h), where

h = hn is a positive sequence bounded away from zero for all n such that h/n→ 0

as n→∞.

Parts (i) and (ii) of Assumption 2 are standard conditions on W imposed in the

literature. In particular, part (ii) was introduced by Kelejian and Prucha (1998)
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to keep spatial correlation manageable. Commonly in practical applications W is

symmetric with non-negative elements and row normalized, such that Σnj=1wij = 1

for all i, in which case Assumption 2(ii) is automatically satisfied. Part (iii) covers

two cases which have rather different implications for our results: either h is bounded

(when in (1.4) λ̂ enjoys a parametric n1/2 rate of convergence), or h is divergent (when

λ̂ has a slower than parametric, (n/h)1/2, rate).

By way of illustration consider (see Case (1991)),

Wn = Ir ⊗Bm, Bm =
1

m− 1
(lml

′
m − Im), (2.1)

where Is is the s × s identity matrix, lm is the m × 1 vector of 1’s, and ⊗ denotes

Kronecher product. Here W is symmetric with non-negative elements and row nor-

malized, n = mr. Parts (i) and (ii) of Assumption 2 are satisfied, and h ∼ m, where

“∼” throughout indicates that the ratio of left and right sides converges to a finite,

nonzero constant. Thus in the bounded h case only r →∞ as n→∞, whereas in the

divergent h case m→∞ and r →∞.

Now define

tij =
h

n
tr(W iW

′j), i ≥ 0, j ≥ 0, i+ j ≥ 1, (2.2)

t =
h

n
tr((WW ′)2). (2.3)

Under Assumption 2 all tij in (2.2) and t are O(1) (because, for any real A such

that ||A||∞ ≤ K, we have tr(AW ) = O(n/h) ). To ensure the leading terms of the

expansion in the theorem below are well defined, we introduce

Assumption 3

lim
n→∞

h

n
(t20 + t11) > 0. (2.4)

By the Cauchy inequality, Assumption 3 implies limn→∞ht11/n > 0, and the

two conditions are equivalent when W is symmetric or when its elements are all

non-negative. Assumption 3 is automatically satisfied under (2.1). It follows from

Assumptions 2 and 3 that in (1.4) the norming factor

tr(WW ′)

(tr(W 2) +WW ′)1/2
=

t11
(t20 + t11)1/2

(n
h

)1/2
∼
(n
h

)1/2
. (2.5)

Now define

a =
t11

(t20 + t11)1/2
, b =

t21
(t20 + t11)1/2t11

, c =
2t30 + 6t21

(t20 + t11)3/2
, (2.6)

d =
t

t211
, e =

12(t31 + t22)

(t20 + t11)t11
, f =

6t40 + 24t31 + 6t22 + 12t

(t20 + t11)2
, g =

1

t20 + t11
(2.7)
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and

U(ζ) = 2bζ2 − c

6
H2(ζ), (2.8)

V (ζ) =
1

6
(e− 6bc)ζH2(ζ)− (d− 6b2)ζ3 − 1

24
fH3(ζ) +

1

3
bcζ2H3(ζ)− 2b2ζ5, (2.9)

where Hj(ζ) is the jth Hermite polynomial, such that

H2(ζ) = ζ2 − 1 H3(ζ) = ζ3 − 3ζ. (2.10)

Thus U(ζ) is an even, generally non-homogeneous, quadratic function of ζ, while V (ζ)

is an odd, generally non-homogeneous, polynomial in ζ of degree 5.

Write Φ(ζ) = Pr(Z ≤ ζ) for a standard normal random variable Z, and φ(ζ) for

the probability density function (pdf) of Z. Let F (ζ) = P
(

(n/h)1/2aλ̂ ≤ ζ
)
.

Theorem 1 Let (1.1) and Assumptions 1-3 hold. Under H0 in (1.2), for any real ζ,

F (ζ) admits the third order formal Edgeworth expansion

F (ζ) = Φ(ζ) + U(ζ)φ(ζ)

(
h

n

)1/2

+ V (ζ)φ(ζ)
h

n
+O

((
h

n

)3/2
)
, (2.11)

where

U(ζ) = O(1), V (ζ) = O(1), (2.12)

as n→∞.

Generally, U(ζ) and V (ζ) are non-zero, whence there are leading correction terms

of exact orders (h/n)1/2 and h/n, and both terms are known functions of ζ.

A corresponding result to Theorem 1 is available for the pure SAR model with

unknown intercept, i.e.

y = µl + λWy + ε, (2.13)

where µ is an unknown scalar and l = ln. The least squares estimate of λ in (2.13) is

λ̃ =
y′W ′Py

y′W ′PWy
, (2.14)

where P = In− l(l′l)−1l′. Under (1.2), the same kind of regularity conditions and the

additional

Assumption 4 For all n, Σnj=1wij = 1, i = 1, ..., n,

λ̃ has the same first-order limit distribution as λ̂, so (1.4) holds with λ̂ replaced by λ̃.

However the second- and higher-order limit distributions differ. In case Assump-

tion 4 is not satisfied also the first-order limit distribution of λ̃ under (1.2) differs from
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that of λ̂ and, in particular, λ̃ converges to the true value at the standard n1/2 rate

whether h is bounded or divergent as n→∞. Since the main goal of this paper is to

provide refined tests when the rate of convergence might be slower than the parametric

rate n1/2, the case of model (2.13) when W is not row-normalized is not considered

here.

Define

Ũ(ζ) = U(ζ) + g1/2 (2.15)

and

Ṽ (ζ) =V (ζ) +

{
g

2
(1 + p) + 2bg1/2 − g4

2

}
ζ − 2bg2ζ3 +

cg1/2

6
H3(ζ), (2.16)

where

p = l′WW ′l/n. (2.17)

(When W is symmetric Assumption 4 implies p = 1). Let F̃ (ζ) = P ((n/h)1/2aλ̃ ≤ ζ).

Theorem 2 Let (2.13) and Assumptions 1-4 hold. Under H0 in (1.2), for any real ζ,

F̃ (ζ) admits the third order formal Edgeworth expansion

F̃ (ζ) = Φ(ζ) + Ũ(ζ)φ(ζ)

(
h

n

)1/2

+ Ṽ (ζ)φ(ζ)
h

n
+O

((
h

n

)3/2
)
, (2.18)

where

Ũ(ζ) = O(1), Ṽ (ζ) = O(1), (2.19)

as n→∞.

The second- and third-order correction terms are again generally non-zero, and of

orders (h/n)1/2 and h/n respectively. Notice that Ũ(ζ) > U(ζ), so the second-order

approximate distribution function (df) of λ̃ is greater than that of λ̂. The Edgeworth

approximation in (2.18) is unaffected by µ (and the approximations in both (2.11) and

(2.18) are unaffected by σ2). Consequently results can be similarly obtained when

there is a more general linear regression component than in (2.13), at least when

regressors are non-stochastic or strictly exogenous. Indeed, similar techniques will

yield approximations with respect to the model y − µl = λW (y − µl) + ε, or more

general linear regression models with SAR disturbances.

Finally, it is worth stressing that Theorems 1 and 2 hold not only under Assump-

tion 1, but also for the class of spherically symmetric distributed disturbances (e.g.

Hillier (2001) or Forchini (2002)). Specifically, let w = ε(ε′ε)−1/2, where ε satisfies

Assumption 1. Thus, w is uniformly distributed on the unit sphere in <n. It can

be shown that the distributions of both ε′Wε/ε′W ′Wε and ε′W ′Pε/ε′W ′PWε are

the same as those of w′Ww/w′W ′Ww and w′W ′Pw/w′W ′PWw, respectively. Hence

Theorems 1 and 2 hold for scale-mixtures of normals and, more generally, under a
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spherically symmetric distribution for ε, since any random vector within such class

would imply w being uniformly distributed on the unit sphere in <n.

3 Improved tests for no spatial correlation

We consider first tests of the null hypothesis (1.2) against the alternative

H1 : λ > 0 (3.1)

in the no-intercept model (1.1).

For α ∈ (0, 1) (for example α = 0.05 or α = 0.01) define the normal critical value

zα such that 1− α = Φ(zα). Write q = (n/h)1/2aλ̂. On the basis of (1.4) a test that

rejects (1.2) against (3.1) when

q > zα (3.2)

has approximate size α. Theorem 1 readily yields more accurate tests that are simple

to calculate because the coefficients of U(ζ) and V (ζ) are known, W being chosen by

the practitioner.

Define the exact critical value wα such that 1− α = F (wα), so a test that rejects

when q > wα has exact size α. Also introduce the Edgeworth corrected critical value

uα = zα −
(
h

n

)1/2

U(zα). (3.3)

Corollary 1 Let (1.1) and Assumptions 1-3 hold. Under H0 in (1.2), as n→∞

wα =zα +O

((
h

n

)1/2
)

(3.4)

=uα +O

(
h

n

)
. (3.5)

Corollary 1 follows follows immediately from Theorem 1. From Corollary 1, the

test that rejects (1.2) against (3.1) when

q > uα (3.6)

is more accurate than (3.2). Of course when the alternative of interest is λ < 0, the

same conclusion can be drawn for the tests which reject when q < −zα, q < −uα,

respectively.

Instead of correcting critical values we can derive from Theorem 1 a corrected test
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statistic that can be compared with zα. Introduce the polynomial

G(ζ) = ζ +

(
h

n

)1/2

U(ζ) +
h

n

1

3

(
2b− c

6

)2
ζ3. (3.7)

which has known coefficients (see Yanagihara et al. (2005)). Since G(ζ) has derivative

(1 + ζ(2b− c/6)(h/n)1/2)2 > 0, it is monotonically increasing. Thus F (ζ) = P (G(q) ≤
G(ζ)) and we invert the expansion in Theorem 1 to obtain

Corollary 2 Let (1.1) and Assumptions 1-3 hold. Under H0, as n→∞

P (G(q) > zα) = α+O

(
h

n

)
. (3.8)

Thus the test that rejects when

G(q) > zα (3.9)

has size that differs from α by smaller order than the size of (3.2).

Still more accurate tests can be deduced from Theorem 1 by employing also the

third-order correction factor V (ζ), but the above tests have the advantage of simplicity.

The V term, however, is especially relevant in deriving improved tests against the two-

sided alternative hypothesis

H0 : λ 6= 0. (3.10)

Because U(ζ) is an even function it follows from Theorem 1 that

P (|q| ≤ ζ) = 2Φ(ζ)− 1 + 2
h

n
V (ζ) +O

((
h

n

)3/2
)
. (3.11)

Thence define the Edgeworth-corrected critical value for a two-sided test,

vα/2 = zα/2 −
n

h
V (zα/2), (3.12)

noting that the approximate size-α two-sided test based on (1.4) rejects H0 against

(3.10) when

|q| > zα/2. (3.13)

Also, define sα/2 such that P (|q| ≤ sα/2) = 1− α.
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Corollary 3 Let (1.1) and Assumptions 1-3 hold. Under H0, as n→∞

sα/2 = zα/2 +O

(
h

n

)
(3.14)

= vα/2 +O

((
h

n

)3/2
)
. (3.15)

Thus rejecting (1.2) against (3.10) when

|q| > vα/2 (3.16)

rather than (3.13) reduces the error to O((h/n)3/2). In fact, Theorem 1 can be estab-

lished to fourth-order, with fourth-order term that is even in ζ, and error O((h/n)2),

so the error in (3.15) can be improved to O((h/n)2).

As with the one-sided alternative (3.1), a corrected test statistic that can be com-

pared with zα/2 can be derived from Theorem 1. Define (Yanagihara et al. (2005))

L(ζ) = ζ +
h

n
V (ζ)

+

(
h

n

)2
1

4

(
L2

1ζ +
L2

2ζ
5

5
+
L2

3ζ
9

9
+

2

3
L1L2ζ

3 +
2

5
L1L3ζ

5 +
2

7
L2L3ζ

7

)
, (3.17)

where L1 = − 1
6
(e−6bc)+ 1

8
f , L2 = 1

2
(e−6bc)−3(d−6b2)− 1

8
f−3bc and L3 = 5

3
bc−10b2,

so L(ζ) is a degree-7 polynomial in ζ with known coefficients. It is readily checked

that V (ζ) has derivative L1 +L2ζ
2 +L3ζ

4, where L(ζ) has derivative (1 + (h/n)(L1 +

L2ζ
2 + L3ζ

4)/2)2 > 0 and is thus monotonically increasing. Therefore, from (3.11),

we obtain

Corollary 4 Let (1.1) and Assumptions 1-3 hold. Under H0, as n→∞

P (L(|q|) > zα/2) = α+O

((
h

n

)3/2
)
. (3.18)

The transformation in (3.17) and Corollary 4 follow from (3.11) using a minor

modification of Theorem 2 of Yanagihara et al. (2005). From the latter result, we

conclude that the test that rejects H0 against (3.10) when

L(|q|) > zα/2 (3.19)

has size which is closer to α than (3.13).

Improved tests can be similarly derived from Theorem 2 for the intercept model

in (2.13). We first consider tests of H0 in (1.2) against (3.1). Let q̃ = (n/h)1/2aλ̃.

A standard test based on first order asymptotic theory rejects (1.2) against (3.1) at
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approximate level α when

q̃ > zα. (3.20)

Define the exact and Edgeworth-corrected critical values w̃α, such that 1−α = F̃ (w̃α),

and ũα = zα − Ũ(zα)(h/n)1/2 = uα − g1/2(h/n)1/2, respectively.

Similarly to Corollaries 1 and 2, from Theorem 2 we deduce

Corollary 5 Let (2.13) and Assumptions 1-4 hold. Under H0 in (1.2), as n→∞

w̃α = zα +O

((
h

n

)1/2
)

(3.21)

= ũα +O

(
h

n

)
. (3.22)

Notice that ũα < uα for any α, so that the second-order corrected critical value is

lower for the intercept model.

Let

G̃(ζ) = ζ +

(
h

n

)1/2

Ũ(ζ) +
h

n

1

3

(
2b− c

6

)2
ζ3 = G(ζ) +

(
h

n

)1/2

g1/2. (3.23)

Corollary 6 Let (2.13) and Assumptions 1-4 hold. Under H0 in (1.2), as n→∞

P (G̃(q̃) > zα) = α+O

(
h

n

)
. (3.24)

Thus, tests that reject (1.2) against (3.1) when either

q̃ > ũα (3.25)

or

G̃(q̃) > zα, (3.26)

are more accurate than (3.20).

Also, from Theorem 2 improved tests of (1.2) against (3.10) can be deduced. From

(2.18), since Ũ(ζ) is an even function we obtain,

P (|q̃| ≤ ζ) = 2Φ(ζ)− 1 + 2
h

n
Ṽ (ζ) +O

((
h

n

)3/2
)
. (3.27)

Define s̃α/2 such that P (|q̃| ≤ s̃α/2) = 1 − α and ṽα/2 = zα/2 − (n/h)Ṽ (zα/2). A

standard, approximate size α, two-sided test rejects (1.2) against (3.10) when

|q̃| > zα/2. (3.28)
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From (3.27) we deduce

Corollary 7 Let (2.13) and Assumptions 1-4 hold. Under H0, as n→∞

s̃α/2 = zα/2 +O

(
h

n

)
(3.29)

= ṽα/2 +O

((
h

n

)3/2
)
. (3.30)

Finally, define

L̃(ζ) = ζ +
h

n
Ṽ (ζ)

+

(
h

n

)2
1

4

(
L̃2

1ζ +
L̃2

2ζ
5

5
+
L2

3ζ
9

9
+

2

3
L̃1L̃2ζ

3 +
2

5
L̃1L3ζ

5 +
2

7
L̃2L3ζ

7

)
, (3.31)

where L̃1 = L1 + g
2
(1 + p) + 2bg1/2 − g4

2
− cg1/2

2
, L̃2 = L2 − 6bg1/2 + cg1/2

2
.

Corollary 8 Let (2.13) and Assumptions 1-4 hold. Under H0, as n→∞

P (L̃(|q̃|) > zα/2) = α+O

((
h

n

)3/2
)
. (3.32)

From Corollaries 7 and 8, we conclude that the tests that reject H0 against (3.10)

when either

|q̃| > ṽα/2 (3.33)

or

L̃(|q̃|) > zα/2 (3.34)

have sizes closer to α than that obtained from (3.28).

Before concluding this section we should acknowledge that the distribution func-

tions under (1.2) and Assumption 1 of both q and q̃ can also be evaluated numerically

using the procedure introduced by Imhof (1961) (for implementation details see e.g. Lu

and King (2002)). Exact critical values can then be numerically calculated. However,

Imhof-type of implementations heavily rely on numerical solutions of highly non-linear

equations and therefore might not be not fully reliable.

4 Bootstrap correction and simulation results

In this section we report and discuss a Monte Carlo investigation of the finite sample

performance of the tests derived in Section 3 and of bootstrap tests, given that in many

circumstances the bootstrap is known to achieve a first-order Edgeworth correction (see
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e.g. Singh (1981)). For the no-intercept model (1.1) the bootstrap test is as follows

(e.g Paparoditis and Politis (2005)). We construct 199 n×1 vectors ε∗j , whose elements

are independently generated as N(0, σ̂2), j = 1, ...., 199. The bootstrap test statistic

is q∗j = (n/h)1/2aε∗
′
j W

′ε∗j/ε
∗′
j W

′Wε∗j , j = 1, ....., 199, its (1−α)th percentile being u∗α

which solves
∑199
j=1 1(q∗j ≤ u∗α)/199 ≤ 1−α, where 1(.) indicates the indicator function.

We reject (1.2) against the one-sided alternative (3.1) when

q > u∗α. (4.1)

Defining the (1−α)th percentile of |q∗j | as the value v∗α solving
∑199
j=1 1(|q∗j | ≤ v∗α)/199 ≤

1− α, we reject (1.2) against the two-sided alternative (3.10) if

|q| > v∗α. (4.2)

For the intercept model (2.13) we define q̃∗j = (n/h)1/2aε̃∗
′
j W

′P ε̃∗j/ε̃
∗′
j W

′PWε̃∗j ,

j = 1, ....., 199, where the components of each ε̃∗j are independently generated from

N(0, σ̃2) with σ̃2 = y′Py/n. The (1− α)th quantiles of q̃∗j and |q̃∗j |, ũ∗α and ṽ∗α, solve∑199
j=1 1(q̃∗j ≤ ũ∗α)/199 ≤ 1 − α, and

∑199
j=1 1(|q̃∗j | ≤ ṽ∗α)/199 ≤ 1 − α, respectively. We

reject (1.2) against (3.1) or (3.10) when

q̃ > ũ∗α (4.3)

or

|q̃| > ṽ∗α, (4.4)

respectively.

In the simulations we set σ2 = 1 in Assumption 1, µ = 2 in (2.13) and choose W

as in (2.1), for various m and r. Recalling that orders of magnitudes in Theorems 1

and 2 are affected by whether h diverges or remains bounded as n→∞, we represent

both cases by different choices of m ∼ h. We choose (m, r) = (8, 5), (12, 8), (18, 11),

(28, 14), i.e. n = 40, 96, 198, 392, to represent “divergent” h, and (m, r) = (5, 8),

(5, 20), (5, 40), (5, 80), i.e. n = 40, 100, 200, 400 to represent “bounded” h. For each

of these combinations we compute λ̂ and λ̃ from the same realization of ε across 1000

replications. In all tests α = 0.05.

Empirical sizes are displayed in Tables 1-8, in which “normal”, “Edgeworth”,

“transformation” and “bootstrap” refer respectively to tests using the standard normal

approximation, Edgeworth-corrected critical values, Edgeworth-corrected test statis-

tic and bootstrap critical values, and the respective abbreviations N, E, T, B will be

extensively used in the text.

(Tables 1 and 2 about here)

Tables 1 and 2 cover one-sided tests (3.2), (3.6), (3.9), (4.1) in the no-intercept
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model (1.1), when h is respectively “divergent” and “bounded”. Test N is drastically

under-sized for each n in both tables. The sizes for E are somewhat better, and improve

as n increases, in particular for “divergent” h the discrepancy between empirical and

nominal sizes is 18.2% lower relative to N, on average across sample size, while as n

increases this discrepancy decreases by about 0.7% for N, but by 9.5% for E. Both

T and B perform well for all n. Indeed, on average, when h is “divergent” empirical

sizes for T and B are 80.4% and 85.4%, respectively, closer to 0.05 than those for N,

with a similar pattern in Table 2. Tables 1 and 2 are consistent with Theorem 1 in

which F converges to Φ at rate n1/2 when h is bounded, but only at rate (n/h)1/2

when h is divergent. Indeed, when h is “bounded”, on average the difference between

empirical and nominal size decreases by 6.8% as n increases for N, while this difference

only decreases by 0.7% in case h is “divergent”. Also, from Table 2, the average

improvements offered by E, T and B over N are about 41%, 88% and 84%, respectively.

Overall, T and B perform best.

(Tables 3 and 4 about here)

Tables 3 and 4 cover two-sided tests for the no-intercept model (1.1), namely (3.13),

(3.16), (3.19) and (4.2). Again, N is very poor, though contrary to the one-sided test

case the problem is now over-sizing, and E, T and B all offer notable improvements.

Indeed, when h is “divergent” the difference between empirical and nominal sizes is

reduced respectively on average across sample sizes by 87.4%, 59% and 94% for E, T

and B relative to N, and by 86%, 59% and 95% when h is “bounded”. In the tables B

seems overall most accurate, followed by E.

(Tables 5 and 6 about here)

Tables 5 and 6 contain results for one-sided tests for the intercept model (2.13),

the N, E, T and B tests being given in (3.20), (3.25), (3.26) and (4.3). The pattern

is similar to that displayed in Tables 1 and 2. For “divergent” h, on average across

sample sizes, empirical sizes for E, T and B are 12%, 65% and 89% closer to 5%

than ones for N, with figures of 21.7%, 78.7% and 81% for “bounded” h. Overall, B

performs best for “divergent” h, but it is difficult to choose between B and T when h

is “bounded”.

(Tables 7 and 8 about here)

Tables 7 and 8 correspondingly describe two-sided tests given in (3.28), (3.33),

(3.34) and (4.4). The improvements on average across sample sizes offered by E, T

and B over N are 58%, 27% and 87%, respectively, when h is “divergent”, and 64%,

64% and 50%, respectively, when h is “bounded”. For “divergent” h B again comes

out top overall, followed by E, but for “bounded” h B is outperformed by both E and

T.
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(Figures 1 and 2 about here)

To illustrate the effect of the transformations G(.) and G̃(.) used in Section 3, in

Figures 1 and 2 we plot the histograms with 100 bins of q and G(q) (Figure 1) and

of q̃ and G̃(q̃) (Figure 2) obtained from 1000 replications when m = 28 and r = 14.

Both figures suggest that the densities of q and q̃ are very skewed to the left and that

most of the skewness is removed by the transformations, as in Hall (1992b).

(Tables 9-12 about here)

In Tables 9-12 we assess power against a fixed alternative, i.e.

H1 : λ = λ̄ > 0. (4.5)

Tables 9 and 10 display the empirical power of one-sided tests in the no-intercept

model (1.1) when h is “divergent” and “bounded” respectively, while Tables 11 and

12 correspondingly contain results for the intercept model (2.13). These are non-size-

corrected tests. Exept for the smallest sample size when h is “divergent”, even N

performs well for the largest λ̄ = 0.8, as do all other tests in all settings. N also does

comparably well to E, T and B when h is bounded and λ̄ = 0.5. But overall N is

outperformed by the other tests, with T and B offering the greatest power.

A remark on consistency of standard and corrected tests is desirable. As previously

mentioned, λ̂ and λ̃ are inconsistent when λ is non-zero. Therefore, in case plimλ̂ <

λ (> λ) as n → ∞ for λ > 0 (λ < 0), it might be that under H1, plimλ̂ = 0 as

n → ∞, with the same possibilities for λ̃. Then the standard and corrected tests

would be inconsistent. For the special case of W in (2.1), the following theorem shows

that the direction of inconsistency follows the sign of λ.

Theorem 3

(i) Let model (1.1) hold. Under Assumption 1 and (2.1), plim
n→∞

(λ̂−λ) is finite and

has the same sign as λ.

(ii) Let model (2.13) hold. Under Assumption 1 and (2.1), plim
n→∞

(λ̃ − λ) is finite

and has the same sign as λ.

The proof is in the Appendix. Assumption 1 could be relaxed here, but is retained

for algebraic simplicity. Under (1.1), as n → ∞ plimλ̂ > λ (< λ) as n → ∞ when

λ > 0 (λ < 0) and hence, P (q > zα|H1) → 1, P (q > uα|H1) → 1 and P (G(q) >

zα|H1) → 1. Similarly under (2.13), P (q̃ > zα|H1) → 1, P (q̃ > ũα|H1) → 1 and

P (G̃(q̃) > zα|H1) → 1 as n → ∞. The direction of inconsistency could be computed

similarly for other choices of W , although it might not always be possible to obtain

closed form expressions.
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Appendix

Proof of Theorem 1

Under H0, λ̂ = ε′W ′ε/ε′W ′Wε and thus P (λ̂ ≤ x) = P (ς ≤ 0), where ς =

ε′(C + C′)ε/2, C = W ′ − xW ′W and x is any real number. We proceed much as in,

e.g., Phillips (1977). Under Assumption 1, the characteristic function (cf) of ς is

E(e
it
2
ε′(C+C′)ε) =

1

(2π)n/2σn

∫
<n

e
it
2
ξ′(C+C′)ξe

− ξ′ξ
2σ2 dξ

=
1

(2π)n/2σn

∫
<n

e
− 1

2σ2
ξ′(I−itσ2(C+C′))ξ

dξ

= det(I − itσ2(C + C′))−1/2 =

n∏
j=1

(1− itσ2ηj)
−1/2, (A.1)

where the ηj are eigenvalues of C+C′ and det(A) denotes the determinant of a generic

square matrix A. From (A.1) the cumulant generating function (cgf) of ς is

ψ(t) = −1

2

n∑
j=1

ln(1− itσ2ηj) =
1

2

n∑
j=1

∞∑
s=1

(itσ2ηj)
s

s

=
1

2

∞∑
s=1

(itσ2)s

s

n∑
j=1

ηsj =
1

2

∞∑
s=1

(itσ2)s

s
tr((C + C′)s). (A.2)

Denoting by κs the s−th cumulant of ς, from (A.2)

κ1 = σ2tr(C), (A.3)

κ2 =
σ4

2
tr((C + C′)2), (A.4)

κs =
σ2ss!

2

tr((C + C′)s)

s
, s > 2. (A.5)

Let ςc = (ς − κ1)/κ
1/2
2 . The cgf of ςc is

ψc(t) = −1

2
t2 +

∞∑
s=3

κcs(it)
s

s!
, (A.6)

where

κcs =
κs

κ
s/2
2

, (A.7)
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so the cf of ςc is

E(eitς
c

) = e−
1
2
t2 exp{

∞∑
s=3

κcs(it)
s

s!
}

= e−
1
2
t2{1 +

∞∑
s=3

κcs(it)
s

s!
+

1

2!
(

∞∑
s=3

κcs(it)
s

s!
)2 +

1

3!
(

∞∑
s=3

κcs(it)
s

s!
)3 + .....}

= e−
1
2
t2{1 +

κc3(it)3

3!
+
κc4(it)4

4!
+
κc5(it)5

5!
+ {κ

c
6

6!
+

(κc3)2

(3!)2
}(it)6 + .....}.

(A.8)

Thus by Fourier inversion, formally

P (ςc ≤ z) =

z∫
−∞

φ(z)dz +
κc3
3!

z∫
−∞

H3(z)φ(z)dz +
κc4
4!

z∫
−∞

H4(z)φ(z)dz + .... . (A.9)

Collecting the above results,

P (λ̂ ≤ x) = P (ς ≤ 0) = P (ςcκ
1/2
2 + κ1 ≤ 0) = P (ςc ≤ −κc1)

= Φ(−κc1)− κc3
3!

Φ(3)(−κc1) +
κc4
4!

Φ(4)(−κ′1) + ... . (A.10)

From (A.3), (A.4) and (A.7),

κc1 =
tr(C)

( 1
2
tr((C + C′)2))1/2

. (A.11)

The numerator of κc1 is

tr(W )− xtr(WW ′) = −xtr(WW ′) = −n
h
xt11, (A.12)

while its denominator is

(
1

2
tr(C + C′)2)1/2 = (tr(W 2) + tr(WW ′)− 4xtr(W 2W ′) + 2x2tr((WW ′)2))1/2.

=
(n
h

)1/2 (
t20 + t11 − 4xt21 + 2x2t

)1/2
. (A.13)

Thus

κc1 =
−xt11(n/h)1/2

(t20 + t11 − 4xt21 + 2x2t)1/2
=

−xt11(n/h)1/2

(t20 + t11)1/2(1− 4xt21−2x2t
(t20+t11)

)1/2
. (A.14)

Choose

x =

(
h

n

)1/2
(t20 + t11)1/2

t11
ζ = (

h

n
)1/2a−1ζ, (A.15)
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where a was defined in (2.6). By Taylor expansion

κc1 = −ζ
(

1− 4xt21 − 2x2t

(t20 + t11)

)−1/2

= −ζ − 2

(
h

n

)1/2
t21

t11(t20 + t11)1/2
ζ2

+
h

n

t

t211
ζ3 − 6

h

n

(
t21

(t20 + t11)1/2t11

)2

ζ3 +O

((
h

n

)3/2
)

= −ζ − 2

(
h

n

)1/2

bζ2 +
h

n
dζ3 − 6

h

n
b2ζ3 +O

((
h

n

)3/2
)
, (A.16)

where b and d were defined in (2.6) and (2.7). Then by Taylor expansion and using

(−d/dx)jΦ(x) = −Hj−1(x)φ(x), (A.17)

we have

Φ(−κc1) = Φ

(
ζ + 2

(
h

n

)1/2

bζ2 − h

n
dζ3 + 6

h

n
b2ζ3 +O

((
h

n

)3/2
))

= Φ(ζ) +

(
2

(
h

n

)1/2

bζ2 − h

n
dζ3 + 6

h

n
b2ζ3

)
φ(ζ) + 2

h

n
b2ζ4Φ(2)(ζ) +O

((
h

n

)3/2
)

= Φ(ζ) + 2

(
h

n

)1/2

bζ2φ(ζ) +
h

n

(
−dζ3 + b2(6ζ3 − 2ζ4H1(ζ))

)
φ(ζ) +O

((
h

n

)3/2
)

= Φ(ζ) + 2

(
h

n

)1/2

bζ2φ(ζ) +
h

n

(
−dζ3 + b2(6ζ3 − 2ζ5)

)
φ(ζ) +O

((
h

n

)3/2
)
.

(A.18)

Similarly,

Φ(3)(−κc1) = Φ(3)(ζ) + 2

(
h

h

)1/2

bζ2Φ(4)(ζ) +O

(
h

n

)
=

(
H2(ζ)− 2

(
h

h

)1/2

bζ2H3(ζ)

)
φ(ζ) +O

(
h

n

)
. (A.19)

From (A.5), (A.7),

κc3 =
tr((C + C′)3)

( 1
2
tr((C + C′)2))3/2

.

By standard algebra, for x defined in (A.15),

1

2
tr((C + C′)2) =

n

h

(
t20 + t11 − 4

(
h

n

)1/2
(t20 + t11)1/2t21

t11
ζ +O

(
h

n

))

=
n

h
(t20 + t11)− 4

(n
h

)1/2 (t20 + t11)1/2t21
t11

ζ +O(1), (A.20)
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tr((C + C′)3) =
n

h

(
2t30 + 6t21 − 12

(
h

n

)1/2
(t20 + t11)1/2(t31 + t22)

t11
ζ +O

(
h

n

))

=
n

h
(2t30 + 6t21)− 12

(n
h

)1/2 (t20 + t11)1/2(t31 + t22)

t11
ζ +O(1)

(A.21)

and thus

κc3 =
n
h

(2t30 + 6t21)− 12
(
n
h

)1/2
(t20 + t11)1/2(t31 + t22)t−1

11 ζ +O(1)(
n
h

)3/2
(t20 + t11)3/2

(
1− 4

(
h
n

)1/2
t21t
−1
11 (t20 + t11)−1/2ζ +O

(
h
n

))3/2
=

((
h

n

)1/2
2t30 + 6t21

(t20 + t11)3/2
− 12

h

n

t31 + t22
t11(t20 + t11)

ζ +O

((
h

n

)3/2
))

×

(
1 + 6

(
h

n

)1/2
t21

t11(t20 + t11)1/2
ζ +O

(
h

n

))

=

(
h

n

)1/2
2t30 + 6t21

(t20 + t11)3/2
− 12

h

n

t31 + t22
t11(t20 + t11)

ζ +
h

n

6(2t30 + 6t21)t21
(t20 + t11)2t11

ζ +O

((
h

n

)3/2
)

=

(
h

n

)1/2

c− h

n
(e− 6bc)ζ +O

((
h

n

)3/2
)
, (A.22)

where b, c and e were defined in (2.6) and (2.7).

Similarly,

3tr((C + C′)4) =
n

h
(6t40 + 24t31 + 12t+ 6t22) +O

((n
h

)1/2)
(A.23)

and thus

κc4 =
h

n

6t40 + 24t31 + 12t+ 6t22
(t20 + t11)2

+O

((
h

n

)3/2
)

=
h

n
f +O

((
h

n

)3/2
)
, (A.24)

where f was defined in (2.7).

Substituting (A.15), (A.18), (A.19), (A.22) and (A.24) in (A.10) and rearranging

using (2.8) and (2.9) completes the proof.

Proof of Theorem 2

Under H0 and by Assumption 2(i), λ̂ = ε′W ′Pε/ε′W ′PWε. Proceeding as before,

P (λ̃ ≤ x) = P (ς ≤ 0), which can be written as the right side of (A.10), with ς =

ε′(C + C′)ε/2 and

C = W ′P (I − xW ). (A.25)

Derivation of the cumulants κj of ς is very similar to that in the proof of Theorem
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1, and so is not described in detail. From (A.25), (2.2) and (2.17),

κ1 = σ2tr(C) = −σ2
(

1 + xtr(W ′W )− x

n
(l′WW ′l)

)
= −σ2

(
1 + x

n

h
t11 − xp

)
.

(A.26)

Similarly, since

l′W iW
′j l = O(n) for all i ≥ 0, j ≥ 0, (A.27)

κ2 =
σ4

2
tr((C + C′)2)

= σ4

(
tr(W 2) + tr(W ′W )− 1− 1

n
l′W ′Wl − 4x(tr(WW ′W ) +O(1)) + 2x2(tr((W ′W )2) +O(1))

)
= σ4

(n
h

(t20 + t11)− 1− p− 4x
(n
h
t21 +O(1)

)
+ 2x2

(n
h
t+O(1)

))
. (A.28)

Proceeding as in the proof of Theorem 1, the first centred cumulant of ς is

κc1 =
−xn

h
t11 − 1 + xp(

n
h

(t20 + t11)
)1/2

(
1−

1 + p+ 4x
(
n
h
t21 +O(1)

)
− 2x2

(
n
h
t+O(1)

)
n
h

(t20 + t11)

)−1/2

.

(A.29)

Setting x as in (A.15) and by Taylor expansion,

κc1 = −
(
ζ +

(h/n)1/2

(t20 + t11)1/2
− h

n

p

t11
ζ

)
×

(
1 +

(
h

n

)1/2
2t21

t11(t20 + t11)1/2
ζ +

h

n

(
1

2(t20 + t11)
+

1

2

p

t20 + t11
− t

t211
ζ2 +

6t221
t211(t20 + t11)

ζ2
))

+O

((
h

n

)3/2
)

= −

(
ζ +

(
h

n

)1/2

g1/2 − h

n

p

t11
ζ

)(
1 +

(
h

n

)1/2

2bζ +
h

n

(g
2

+
g

2
p− dζ2 + 6b2ζ2

))

+O

((
h

n

)3/2
)

= −ζ −
(
h

n

)1/2

(2bζ2 + g1/2)− h

n

(g
2
ζ +

g

2
pζ − dζ3 + 6b2ζ3 + 2bg1/2ζ

)
+O

((
h

n

)3/2
)
,

(A.30)

with b, d, g and p defined in (2.6), (2.7) and (2.17). Similarly, by standard algebra

and using (A.27),

tr((C +C′)3) =
n

h
(2t30 + 6t21)− 12

(n
h

)1/2 (t20 + t11)1/2(t31 + t22)

t11
ζ +O(1), (A.31)
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agreeing with the corresponding formula in the proof of Theorem 1, so that the third

centred cumulant of ς, κc3, is (A.22), whereas the fourth centred cumulant of ς, κc4, is

again (A.24).

Next,

Φ(−κc1) = Φ(ζ) +

(
h

n

)1/2

(2bζ2 + g1/2)φ(ζ) +
h

n

(g
2
ζ +

g

2
pζ − dζ3 + 6b2ζ3 + 2bg1/2ζ

)
φ(ζ)

+
1

2
(2bζ2 + g1/2)2Φ(2)(ζ) +O

((
h

n

)3/2
)

= Φ(ζ) +

(
h

n

)1/2

(2bζ + g1/2)φ(ζ)

+
h

n

(
g

2
ζ +

g

2
pζ − dζ3 + 6b2ζ3 + 2bg1/2ζ − 1

2
(2bζ2 + g1/2)2H1(ζ)

)
φ(ζ)

+O

((
h

n

)3/2
)

(A.32)

and

Φ(3)(−κc1) = Φ(3)(ζ) +

(
h

h

)1/2

(2bζ2 + g1/2)Φ(4)(ζ) +O

(
h

n

)
=

(
H2(ζ)−

(
h

h

)1/2

(2bζ2 + g1/2)H3(ζ)

)
φ(ζ) +O

(
h

n

)
. (A.33)

Substituting (A.15), (A.22), (A.24), (A.32) and (A.33) in the right side of (A.10)

complete the proof.

Proof of Theorem 3

(i) From (1.1), y = S−1(λ)ε, where S(x) = In − xW . Under (2.1), S−1(λ) exists for

any λ ∈ (−1, 1) and

S−1(λ) =

∞∑
i=0

(λW )i. (A.34)

From (A.34) S−1(λ) is symmetric, S−1(λ)W = WS−1(λ) and ||S−1(λ)||∞ ≤ K.

For any λ ∈ (−1, 1),

λ̂− λ =
y′Wε

y′W 2y
=

hε′S−1(λ)Wε/n

hε′S−1(λ)W 2S−1(λ)ε/n
. (A.35)

As n→∞, the numerator of the RHS of (A.35) converges in probability to

lim(h/n)σ2tr(S−1(λ)W ) since (h/n)(ε′S−1(λ)Wε − σ2tr(S−1(λ)W )) → 0 in second

mean. Similarly, as n → ∞, the denominator of the RHS of (A.35) converges in
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probability to lim(h/n)σ2tr((S−1(λ)W )2). Thus

λ̂− λ p→
lim
n→∞

h
n
tr(S−1(λ)W )

lim
n→∞

h
n
tr((S−1(λ)W )2)

. (A.36)

First we show that the RHS of (A.36) is finite. Since ||S−1(λ)||∞ ≤ K,

(h/n)tr(S−1(λ)W ) = O(1). The denominator in the RHS of (A.36) is non-negative

and, by (A.34), (h/n)tr((S−1(λ)W )2) ∼ (h/n)tr(W 2), which is non-zero under (2.1).

Hence, the RHS of (A.36) is finite and its sign depends on its numerator.

From (2.1) and (A.34),

tr(S−1(λ)W ) = tr(

∞∑
i=0

λitr(W i+1)) = r

∞∑
i=0

λitr(Bi+1
m ). (A.37)

Since Bm has one eigenvalue equal to 1 and the other (m− 1) equal to −1/(m− 1),

tr(Bi+1
m ) = 1 + (m− 1)

(
−1

m− 1

)i+1

(A.38)

and hence, since |λ| < 1,

tr(S−1(λ)W ) = r

∞∑
i=0

λi
(

1−
(
−1

m− 1

)i)
=

r

1− λ −
r

1 + λ
m−1

=
λ

1− λ
rm

m− 1 + λ
.

(A.39)

By substituting h = m− 1 and n = mr into (A.39),

h

n
tr(S−1(λ)W ) =

m− 1

mr

λ

1− λ
rm

m− 1 + λ
=

λ

1− λ
m− 1

m− 1 + λ
, (A.40)

which, for all λ ∈ (−1, 1), has the same sign of λ, whether m is divergent or bounded,

for all m > 1.

(ii) Under (2.13),

λ̃− λ =
y′WPε

y′WPWy
=

hε′S−1(λ)WPε/n

hε′S−1(λ)WPWS−1(λ)ε/n
, (A.41)

where y = S−1(λ)(µl + ε) and since from (A.34) l′S−1(λ)WP = l′S−1(λ)′W ′P = 0.

Thus, similarly to (A.36),

λ̃− λ p→
lim
n→∞

h
n
tr(S−1(λ)WP )

lim
n→∞

h
n
tr((S−1(λ)W )2P )

. (A.42)

The result in (ii) follows from the proof of part (i), after observing that, as n → ∞,

lim(h/n)tr(S−1(λ)WP ) = lim(h/n)tr(S−1(λ)W )+o(1) and lim(h/n)tr((S−1(λ)W )2P )
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= lim(h/n)tr((S−1(λ)W )2) + o(1).
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m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0 0 0.001 0.001

Edgeworth 0.004 0.008 0.010 0.016

transformation 0.036 0.038 0.040 0.047

bootstrap 0.039 0.061 0.053 0.054

Table 1: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.1) in no-

intercept model (1.1) when h is “divergent”.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.001 0.001 0.001 0.011

Edgeworth 0.001 0.025 0.028 0.034

transformation 0.042 0.045 0.043 0.052

bootstrap 0.043 0.040 0.057 0.055

Table 2: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.1) in no-

intercept model (1.1) when h is “bounded”.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0.132 0.130 0.126 0.106

Edgeworth 0.062 0.058 0.060 0.057

transformation 0.105 0.088 0.073 0.060

bootstrap 0.048 0.044 0.045 0.047

Table 3: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.10) in

no-intercept model (1.1) when h is “divergent”.
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m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.096 0.078 0.068 0.061

Edgeworth 0.062 0.051 0.049 0.052

transformation 0.055 0.025 0.042 0.052

bootstrap 0.049 0.047 0.051 0.050

Table 4: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.10) in

no-intercept model (1.1) when h is “bounded”.

m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0 0 0.001 0.001

Edgeworth 0.003 0.005 0.007 0.010

transformation 0.076 0.068 0.064 0.061

bootstrap 0.040 0.048 0.047 0.046

Table 5: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.1) in intercept

model (2.13) when h is “divergent”.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.002 0.005 0.020 0.024

Edgeworth 0.007 0.022 0.027 0.028

transformation 0.062 0.064 0.053 0.055

bootstrap 0.061 0.039 0.054 0.053

Table 6: Empirical sizes (nominal α = 0.05) of tests of H0 (1.2) against H1 (3.1) in intercept

model (2.13) when h is “bounded”.
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m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal 0.281 0.187 0.170 0.148

Edgeworth 0.127 0.123 0.104 0.084

transformation 0.220 0.168 0.140 0.107

bootstrap 0.080 0.070 0.062 0.062

Table 7: Empirical sizes (nominal α = 0.05) of tests ofH0 (1.2) againstH1 (3.10) in intercept

model (2.13) when h is “divergent”.

m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal 0.156 0.082 0.063 0.062

Edgeworth 0.103 0.068 0.047 0.048

transformation 0.112 0.065 0.052 0.053

bootstrap 0.042 0.058 0.061 0.040

Table 8: Empirical sizes (nominal α = 0.05) of tests ofH0 (1.2) againstH1 (3.10) in intercept

model (2.13) when h is “bounded”.

λ̄
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal

0.1

0.5

0.8

0

0

0.257

0

0.335

0.994

0.005

0.673

1

0.009

0.854

1

Edgeworth

0.1

0.5

0.8

0.001

0.200

0.957

0.008

0.562

0.998

0.013

0.764

1

0.019

0.904

1

transformation

0.1

0.5

0.8

0.059

0.680

0.986

0.087

0.854

0.999

0.129

0.924

1

0.130

0.958

1

bootstrap

0.1

0.5

0.8

0.111

0.725

0.996

0.119

0.873

1

0.155

0.938

1

0.164

0.966

1

Table 9: Empirical powers of tests of H0 (1.2) against H1 (4.5), with nominal size α = 0.05

in no-intercept model (1.1) when h is “divergent”.
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λ̄
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal

0.1

0.5

0.8

0.010

0.551

0.999

0.083

0.988

1

0.187

1

1

0.363

1

1

Edgeworth

0.1

0.5

0.8

0.016

0.676

1

0.095

0.992

1

0.200

1

1

0.375

1

1

transformation

0.1

0.5

0.8

0.122

0.858

1

0.172

0.993

1

0.280

1

1

0.420

1

1

bootstrap

0.1

0.5

0.8

0.139

0.888

1

0.203

0.992

1

0.296

1

1

0.451

1

1

Table 10: Empirical powers of tests of H0 (1.2) against H1 (4.5), with nominal size α = 0.05

in no-intercept model (1.1) when h is “bounded”.

λ̄
m = 8

r = 5

m = 12

r = 8

m = 18

r = 11

m = 28

r = 14

normal

0.1

0.5

0.8

0

0

0.176

0

0.243

0.988

0.001

0.627

1

0.008

0.802

1

Edgeworth

0.1

0.5

0.8

0.002

0.231

0.924

0.004

0.493

0.991

0.006

0.699

1

0.013

0.852

1

transformation

0.1

0.5

0.8

0.146

0.727

0.991

0.147

0.863

1

0.172

0.950

1

0.169

0.967

1

bootstrap

0.1

0.5

0.8

0.095

0.670

0.988

0.121

0.836

0.999

0.133

0.924

1

0.167

0.960

1

Table 11: Empirical powers of tests of H0 (1.2) against H1 (4.5), with nominal size α = 0.05

in intercept model (2.13) when h is “divergent”.
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λ̄
m = 5

r = 8

m = 5

r = 20

m = 5

r = 40

m = 5

r = 80

normal

0.1

0.5

0.8

0.004

0.455

0.992

0.061

0.981

1

0.161

1

1

0.316

1

1

Edgeworth

0.1

0.5

0.8

0.016

0.597

0.995

0.055

0.981

1

0.155

1

1

0.343

1

1

transformation

0.1

0.5

0.8

0.151

0.869

1

0.225

0.998

1

0.313

1

1

0.465

1

1

bootstrap

0.1

0.5

0.8

0.101

0.858

0.998

0.175

0.995

1

0.302

1

1

0.437

1

1

Table 12: Empirical powers of tests of H0 (1.2) against H1 (4.5), with nominal size α = 0.05

in intercept model (2.13) when h is “bounded”.
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Figure 1: Histograms of q (left picture) and G(q) (right picture) for 1000 replications,

m = 28, r = 14
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Figure 2: Histograms of q̃ (left picture) and G̃(q̃) (right picture) for 1000 replications,

m = 28, r = 14
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