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Abstract 

 
 

Bajari, Benkard and Levin (2007) propose an estimation methodology for a broad 
class of dynamic optimization problems. To carry out their procedure, one needs to 
select a set of alternative policy functions and compare the implied expected 
payoffs with that from the data.  We show that this can generally lead to objective 
functions that are not capable of consistently estimating an identified model. 
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Bajari, Benkard and Levin (2007), henceforth BBL, propose a methodology to estimate a broad

class of structural dynamic models. The motivation behind the construction of their estimator is

conceptually appealing as it relies directly on necessary conditions of an economic equilibrium. They

also propose a set estimator to estimate partially identi�ed models.

The idea behind BBL�s estimator relies on the notion of an economic equilibrium so that the

optimal policy will lead to higher values in expectation than those based on alternative policies. In

practice, only a strict subclass of alternative policies can be considered. This may lead to the loss

of identi�cation since we do not make use of all the relevant constraints implied by the equilibrium

behavior.1

We use a simple optimization example, which belongs to the class of models considered in BBL,

to show that the moment inequality approach of BBL can lead to criterion functions that are not

capable of consistently estimate an identi�ed model. In what follows we use the same notation in

BBL wherever possible.

Example: Leaving out the observable state variables, we specify the payo¤ function to be

� (a; �; �) = �a2 + 2�a�;

where a and � take values from the support of the control and state variables, A and V, respectively.2

We assume the researcher observes a sequence of fatgTt=1, which is the maximizer of the payo¤function
above when � = �0, whilst f�tgTt=1 are not observed. We are interested in estimating �0. Let G be

any known distribution for �t with zero mean. It is easy to see that the optimal policy function

� (�; �) satis�es
� (�; �) = �� for all � 2 �; � 2 V :

Let � be any subset of R+, this ensures that the policy function will be increasing in the state
variable, satisfying the monotone choice assumption which is essential to BBL�s simulation method.

Notice that if � 6= �0 then � (�t; �) 6= � (�t; �0) a:s:, therefore this parametric model is identi�ed since
any � 2 � implies a unique corresponding policy function � (�; �). Then given the data, along with
some standard regularity conditions, one can construct a consistent estimator for �0 by maximum

likelihood or other minimum distance methods.

BBL Methodology: Let x 2 X denote a particular inequality, see BBL (p. 1347). In a single

agent problem without other state variables, x simply corresponds to an alternative policy �0 2 �,
1Since BBL assumes the model is de�ned through a set of conditional moment restrictions, identi�cation here

means that there is a unique parameter value in the parameter space that satis�es all the moment restrictions; hence

the loss of identi�cation here refers to the situation when an implied submodel loses this uniqueness property.
2Including the observable state variables, st, will not change our general conclusion even if we allow st and �t to

be correlated.
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where � is a set of functions mapping V to A. For any � 2 �, the di¤erence in the implied expected
payo¤s from using the true policy relative to an alternative policy �0 is de�ned by

g (x; �) = E� [� (� (�t; �0) ; �t; �)]� E� [� (�0 (�t) ; �t; �)] :

The set of optimality conditions from the equilibrium, represented by inequalities, leads to the

following type of criterion functions

Q (�) =

Z
X
(min fg (x; �) ; 0g)2 dH (x) ;

where H is some distribution on X . By de�nition of an optimal policy, Q (�0) must be zero since

� (� (�t; �0) ; �t; �0)� � (�0 (�t) ; �t; �0) � 0 a:s:;

for any function �0 2 �, and this must also hold in expectation, i.e. g (x; �0) � 0 for all x 2 X .3

BBL�s minimum distance estimator is de�ned to minimize the sample analogue of Q (�). However, it

is generally infeasible to construct the empirical counterpart of Q (�) to incoperate all the inequality

constraints implied by the equilibrium behavior. Since this set is uncountably large, ad hoc exclusions

of alternative policies are required for implementation. In what follows, we explicitly use the subscript

E on (X ; H) to denote the subset of all alternative policies and its corresponding underlying measure.
Additive Perturbation (I): Additive perturbation is �rst suggested in BBL, and it is the most

widely used method to construct alternative policies in practice.4 In fact, we present two versions

of such sets of inequalities. Intuitively, one simply perturbs the true policy by an additive random

shock and compare the implied expected payo¤s with that from the true. More formally, for some

user-chosen distribution �, typically N (0; 1), de�ne

XE1 = f�0 (�) : �0 (�) = � (�; �0) + � for � 2 Support (�) � Rg :

The measure HE1 denotes the measure that generates the random variable � from �, independent of

�t, for convenience we denote this by F�. Therefore we can construct a criterion function indexed

by (XE1 ; HE1)
QE1 (�) =

Z
XE1
(min fg (x; �) ; 0g)2 dHE1 (x) ;

3If the parametric model is identi�ed, it is easy to provide primitive conditions on � (at; �t; �) and G (d�t) to ensure

the implied conditional moment inequality restriction is uniquely satisfy only at � = �0. As satis�ed by our example,

it will be su¢ cient if (i) � (a; �; �) is concave on a convex set A and has a unique maximizer in the interior of A for

all (�; �); (ii) � (a; �; �) is once continuously di¤erentiable on A for all (�; �); (iii) The distribution of �t has �nite �rst

moment.
4The dynamic version of this class of alternatives is informally described in BBL (p. 1348). It is easy to �nd papers

which randomly perturbed their policies in this way, for example see the Monte Carlo experiments in BBL, and the

empirical studies in Norton (2009), Ryan (2009), Santos (2009).
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The empirical analogue ofQE1 (�) can be constructed in practice by simulation, as outlined in BBL, by

taking random samples drawn from HE1. Then one can construct an estimator based on minimizing

QE1 (�). In our example, it is easy to check that the di¤erence between payo¤s obtained from the

true and an alternative policy in XE1 is

� (� (�t; �0) ; �t; �)� � (� (�t; �0) + �; �t; �) = �2 + 2��t (�0 � �) : (1)

To obtain g (x; �) we integrate out �t. Since �t has zero mean, we have

QE1 (�) =

Z �
min

�
�2; 0

	�2
dF� (�) :

Clearly, QE1 (�) = 0 for all � 2 � and any distribution � that is not degenerate at zero (which would
then not represent alternative policies). That is, in this example, this class of alternative policies has

no identifying power for �0.

The additive perturbation method is motivated by the fact that we decompose the true policy

function into the sum of an alternative policy �0 and a residual function, � (�), de�ned on V so that

� (�t; �0) = �
0 (�t) + � (�t) a:s:

Note that the criterion function constructed from XE1 ignores the dependence on �t.5 So XE1 is
exactly the set of functions that are translation shifts from the true policy. However, it remains

unclear how to construct a subset of X to depend on �t appropriately. We now describe the other

method of additive perturbation, which is often seen as an adequate improvement on XE1 to ensure
consistency, that has been implemented in practice. It is motivated by the following condition

span f� (�) + � : � 2 Rg = R for all � 2 V :

Additive Perturbation (II): An alternative policy in this class can be constructed from adding

a continuum of i.i.d. shocks indexed by � 2 V, with some distribution � that is independent of �t,

to the true policy function pointwise on V.6 To compare the di¤erence between payo¤s, �rst note
that the analogous expression to (1) in this case is

� (� (�t; �0) ; �t; �)� � (� (�t; �0) + �t; �t; �) = �2t + 2�t�t (�0 � �) ;
5Some readers might have been misled by the notation in BBL (p. 1348), and consider this type of perturbation,

since � is not explicitly written to depend on the state variables.
6More formally,

XE2 = f�0 (�) : �0 (�) = � (�; �0) + � (�) for � 2 E (V;�)g ;

where E (V;�) is a set of functions mapping V to Support (�). Here HE2 is the underlying measure that de�nes

a stochastic process (R� (�))�2V , which is independent of �t, such that R� (�) is independent of R�0 (�) whenever

� 6= �0, and R� (�) has distribution � for all � 2 V.
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where �t has distribution � and is independent of �t. In expectation, which is often obtained by

simulation, for a generic x 2 XE2 we have

g (x; �) = E
�
�2t
�
+ 2E [�t�t] (�0 � �) :

Assume that the second moment of �t exist. Since �t and �t are independent and �t has zero mean,

once again we have g (x; �) � 0 for all � 2 �. So this class of alternative policies cannot be used to
consistently estimate �0; notice that g (x; �) takes the same value, E�2t , for every x in XE2 .
Multiplicative Scale: We consider another natural class of policies, based on a multiplicative

scale of the true policy, which has also been used in practice.7 Formally, for some user-chosen

distribution �, de�ne

XE3 = f�0 (�) : �0 (�) = �� (�; �0) for � 2 Support (�)g :

The measureHE3 then denotes the measure that generates the random variable � from�, independent

of �t. To be more speci�c, suppose that � is the uniform distribution on a unit interval, the non-

negative support is chosen to ensure that the alternative policies are also monotone on V. For each
� 2 �, the di¤erence between payo¤s from the true and an alternative x in XE3 are

� (� (�t; �0) ; �t; �)� � (�� (�t; �0) ; �t; �) = ��0 (1� �) ((1 + �) �0 � 2�) �2t ;

g (x; �) = ��0 (1� �) ((1 + �) �0 � 2�)E�
�
�2t
�
:

Assuming E� [�2t ] <1, from examining g (x; �) we see that if � � �0, then it follows that g (x; �) � 0.
So any � 2 [�0;1) will imply that QE2 (�) = 0. On the other hand it is easy to show that any

� 2 (0; �0) will imply QE2 (�) > 0. The criterion function based on this class of alternative policies
can at best consistently estimate the set �n (0; �0). We now show that the class of multiplicative
scale can lead to criterion functions that has a unique minimizer at �0 when � has larger support.

Without any exclusions, X is the set of measurable functions � 2 �. For a generic x 2 X , it
follows from simple algebra that

g (x; �) = � (� � �0)2 E�
�
�2t
�
+ E�

�
(��t � � (�t))2

�
for any � 2 �.

In this case, the class of alternative policies which is a multiplicative scale from the truth can ensures

that we can construct criterion functions with a unique minimizer at �0 so long as the support of �

is su¢ ciently large. To see this, note that we require g (x; �) < 0 to hold with positive measure (on

some XE) whenever � 6= �0; this inequality is equivalent to

E�
�
(��t � � (�t))2

�
< E�

�
�2t
�
(� � �0)2 :

7Jeziorski (2009) applies uniformly distributed multiplicative shocks to his choice probabilities in implementing

BBL�s methodology.
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For any � = �0 + �, note that, by letting � (�t) = (� � �) �t, the inequality above holds whenever
j�j < j�j. This means that when � is a compact subset of R+ containing �0, setting XE = XE3 and
letting HE be any continuous distribution with full support on the positive half-line will be su¢ cient

to ensure that QE (�) has a well separated minimum at �0.

Conclusion: We show that applications of the moment inequality approach of BBL can lead to

objective functions that cannot be used to consistently estimate an identi�ed model. The practical

implication is potentially serious as there is generally no economic prior nor statistical theory to

help us select the set of inequalities to ensure that the corresponding objective function has a unique

minimum in the limit. Since most applications of BBL use their point estimation method, in �nite

sample, various optimization routines will produce point estimates that may not be informative at all.

Although we have not explicitly shown analogous identi�cation problems in a set identi�ed model,

we also expect such examples to exist.

The intuition behind our �ndings is related to the identi�cation issue studied in Domínguez and

Lobato (2004). They show one can lose identi�cation in an identi�ed conditional moment restriction

model by only relying on a �nite number of unconditional moment conditions. They also show

how to obtain an informationally equivalent unconditional model, that can be used for consistent

estimation, from conditional moment equality restrictions. Khan and Tamer (2009) applies a similar

idea to preserve the informational content under the moment inequality framework. However, the

inequality restrictions considered in BBL is complicated by the fact that their conditional model is

indexed by the set of alternative policy functions.8 As our example shows, even if we begin with

an identi�ed unconditional model, we can lose identi�cation by only considering a subset of all

alternative policies. The issue of how we can generally preserve the information implied by the set

of alternative policies remains an open problem.

However, it is clear that this identi�cation problem can be alleviated by integrating over larger

classes of policies. It is important to note that considering more alternative policies in the same class

may not be informative. It is more crucial to consider broader classes of policies. We show that,

even when the class of alternative policy functions spans A pointwise on V, it does not necessarily
grow dense in the set of all alternative policies. We illustrate this point with the most widely used

method to construct alternatives, by adding random noise to the policy, where we exploit the fact

that these alternatives do not use any information on the state variable. The intuition behind this is

that the spanning property only implies we cover the same range as the set of all alternative policies.

However, this is not su¢ cient, as the set of alternative policies are not determined by their range,

but by how the state variable is transformed into an action. Randomly perturbing the true policy at

8Unlike Rn, a set of functions has no obvious ordering property so we cannot simply extend the techniques used in
Domínguez and Lobato (2004) and Khan and Tamer (2009).
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each state does not allow the perturbation shock to depend stochastically on the state, it merely uses

V as an index set. So it is not surprising that the set of randomly perturbed alternatives is not dense
in the set of all alternatives. Therefore, the perturbations which are correlated to the states will

contain valuable information for identifying the parameter of interest and these should be exploited

in practice.

Lastly, we comment that most applications of BBL methodology focus on alternative policies

which do not depend on the model. In the other extreme, one can construct inequalities from model

implied policies. The advantage of using the model is that we can write down an interpretable

identi�cation condition, if this holds then we can consistently estimate the true parameter of interest

under some standard regularity conditions. However, implementing this in the forward simulation

framework may likely limit the computational advantages described in BBL.
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