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Abstract

A dynamic panel data model is considered that contains possibly stochastic individual com-
ponents and a common fractional stochastic time trend. We propose four different ways of
coping with the individual effects so as to estimate the fractional parameter. Like models with
autoregressive dynamics, ours nests a unit root, but unlike the nonstandard asymptotics in
the autoregressive case, estimates of the fractional parameter can be asymptotically normal.
Establishing this property is made difficult due to bias caused by the individual effects, or by
the consequences of eliminating them, and requires the number of time series observations T’
to increase, while the cross-sectional size, N, can either remain fixed or increase with T. The
biases in the central limit theorem are asymptotically negligible only under stringent conditions
on the growth of N relative to T, but these can be relaxed by bias correction. For three of the
estimates the biases depend only on the fractional parameter. In hypothesis testing, bias correc-
tion of the estimates is readily carried out. We evaluate the biases numerically for a range of T’
and parameter values, develop and justify feasible bias-corrected estimates, and briefly discuss
simplified but less effective corrections. A Monte Carlo study of finite-sample performance is
included.

JEL Classifications: C12, C13, C23

Keywords: Panel data, Fractional time series, Estimation, Testing, Bias correction

* Corresponding author. Tel. 44 20 7955 7516. fax 44 20 7955 6592

E-mail address: p.m.robinson Qlse.ac.uk

TResearch supported by a Cétedra de Excelencia at Universidad Carlos IIT de Madrid, Span-
ish Plan Nacional de I+d+I Grant SEJ2007-62908/ECON, and ESRC Grant ES/J007242/1

tResearch supported by Spanish Ministerio de Economia y Competitividad Grant ECO2012-
31748.



1. Introduction

Consider the following unobserved components panel data model for an observable array {y;;} :
Yit = Q; + At_ﬁf&'t, (1)

for ¢ =1,...,N, t = 0,1,...,7. Here, the unobserved individual effects {«;,7 > 1} are ran-
dom variables that are subject to little, if any, more detailed specification in the sequel; the array
{€it,© > 1,t > 0} consists of random variables that are throughout assumed to be independent and
identically distributed (iid) and to satisfy Ee;; = 0, Ee}, < 00; dp is an unknown positive number;
for any positive integer s and any real d,

N DD ()~ LG =)
Ag—;m(d)L,ﬂ](d)—m,

with L the lag operator, I'(d) = (—1)% 0o for d = 0, —1,..., and the convention I'(0)/I'(0) = 1. The
A4 notation is due to the usual definition of the difference operator A = 1 — L, and A? is obtained
by truncating the fractional operator which is given (at least formally) by

A= "m;(d) L7
§=0
We thus have
A__gleit =A {Eitl (t > 0)} )
where 1{.}is the indicator function.

We can write (1) as
t
it =a; + Y7 (—do)gi1—j.
=0

A special case of (1) is heavily featured in the dynamic panel data literature: dy = 1, whence
t
Yir = 0y + Z Eit—j- (2)
j=0

In that literature, however, the unit root model (2) is nested in the autoregressive scheme

t

Yit = a; + Z pEit—j. (3)
=0

The typical alternatives to p = 1 covered by (3) are the stationary ones p € (—1,1) or the explosive
ones p > 1. Other versions of the autoregressive panel data model are

Yit = @ + pYit—1 + &it, £ >0, (4)

and
Yit = @ + Uie, Uit = pu; ¢—1 + &, >0, (5)

with p € (—1,1]; note that (5) implies that

Vit = (L = p) o + pyize—1 + i, t >0,



so that «; is eliminated when p = 1. The usual aim in (3), (4) or (5) is estimating p or unit root
testing. As one recent reference, Han and Phillips (2010) develop inference based on generalized
method-of-moment estimates.

In the fractional model (1), the moving average weights have decay or growth that is, unlike in
(3), not exponential but algebraic, since, for any d,

5 (d) = gyl 06 as - e, (©)
As is well known from the time series literature the fractional class has a smoothness at the unit root
(and elsewhere) that the autoregressive class lacks. A consequence established in that literature is
that large sample inference based on an approximate Gaussian pseudo likelihood can be expected to
entail standard limit distribution theory; in particular, Lagrange multiplier tests on dy are asymp-
totically x? distributed with classical local power properties, and estimates of dy are asymptotically
normally distributed with the usual parametric rate (see Robinson (1995), Beran (1994), Velasco and
Robinson (2000), Hualde and Robinson (2011)). This is the case whether dj lies in the stationary
region (0,1/2) or the nonstationary one [1/2,00) (or, also, the negative dependent region (—o0,0)).

If N is regarded as fixed while T — oo, (1) is just a multivariate fractional model, with a
vector, possibly stochastic, location. But in many practical applications IV is large, and even when
smaller than 7T, is more reasonably treated as diverging in asymptotic theory if T is. In that case
inference on dy is considerably complicated by an incidental parameters problem. In this paper we
present and justify several approaches that resolve this question. In (1) the interest is in estimating
dy (efficiently, perhaps with some a priori knowledge on the range of allowed values) and testing
hypotheses such as the unit root, dg = 1. It would be possible to incorporate exogenous variables
that vary with ¢, or with ¢ and ¢, perhaps in a linear regression framework, but here we stay with
the simple model (1) to focus on the incidental parameters problem. In order to cope with this
we throughout employ asymptotic theory with respect to T diverging, where either N increases
with T or stays fixed, and both cases are covered by indexing with respect to T only. We allow
for cross-sectional dependence and heteroscedasticity in the y;; via the «;. However, conditional
on the «; the y;; are cross-sectionally iid. It would be straightforward to relax this requirement
in case of fixed N, such as by allowing (e1¢,...,en¢) to have an unrestricted covariance matrix.
For increasing N the issues are more challenging, and there is a choice between on the one hand
leaving the variance and covariance structure unrestricted, and on the other adopting a parametric
form, such as a factor model or, when there is knowledge of spatial locations or differences, a spatial
model. Such cross-sectional dependence raises questions of robust inference and efficient estimation,
but we focus here on the bias issues prompted by (1), which would remain the same under cross-
sectional dependence. It would be more straightforward to relax our assumptions on temporal
dependence. The iid requirement over ¢ of the ;; could be weakened to martingale difference and
mild homogeneity assumptions as in Hualde and Robinson (2011), but for aesthetic reasons we keep
the conditions simple by matching the iid assumption across i. The dynamics in (1), like that in (3),
(4) and (5), is extremely simple, and could be straightforwardly generalized to allow for parametric
short memory dependence in ¢;; (see again the previous reference), but we prefer to keep the setting
simple in order to focus on the main ideas. Hassler, Demetrescu and Tarcolea (2011) have recently
developed tests in a panel with a more general temporal dependence structure which is allowed
to vary across units, and with allowance for cross-sectional dependence, but without allowing for
individual effects and keeping N fixed as T' — oo.

The following section introduces four rival estimates of dy. Section 3 contains consistency theo-



rems. In Section 4 the estimates are shown to be asymptotically normal. Unless the restriction on
the growth of N relative to T is very stringent, asymptotic biases are present here. In Section 5 we
describe the implications of our results for hypothesis testing and interval estimation, numerically
compare biases of our estimates, justify feasible bias correction, and present also corrections that
are simpler, albeit less effective. Section 6 consists of a Monte Carlo study of finite—sample per-
formance of our methods. Theorem proofs appear in Appendix A. These depend in part on two
Propositions, stated in Sections 3 and 4 but proved in Appendix B. Our proofs also use technical
lemmas on properties of the 7; (d), stated and proved in Appendix C; we draw attention here to
Lemma 3, which is the main new technical tool, and is used in the consistency proofs.

2. Estimation of d

We consider four different, but asymptotically equivalent and efficient, methods of estimating dy in
(1). All these estimates are implicitly-defined and entail optimization over a compact set D = [d, d],
where

1
d > max (O,do—),dOGD, (7)

2

which implies that dy > 0 and d > dy — % for d € D. The choice of D thus implies some prior
belief about the whereabouts of dj, for example to cover the unit root possibility dy = 1, D can only
include nonstationary d-values, d > % On the other hand there is no upper limit on d. As seen
in our proofs, all estimates can be seen as approximating panel data extensions of conditional-sum-
of-squares (CSS) estimates, recently treated in a general fractionally integrated setting by Hualde
and Robinson (2011), where D is effectively unrestricted. There may accordingly be scope for
relaxing our restrictions on D, though these restrictions appear to play a role in ensuring that
the approximation errors stemming from the presence of the individual effects «;, or from the
measures we take to eliminate them, are small enough to enable our estimates to be consistent and
asymptotically normally distributed. All our estimates optimize objective functions that cross-
sectionally aggregate time series objective functions.

2.1 Uncorrected Estimation

Our first approach is essentially CSS estimation which ignores the «;. Define
1 ;| NI
Ly ﬁ ; ; t+1 yzt
and

c/l\(T] = arg géig LY (d).

Introduce the notation
’Tt(d) :Wt(d—l).
Notice that

Aitlyit = A?.Hd Ezt+A?+104i
= Afﬂ it + 71 (d) i, (8)



since
11—Z7Tg =7 (d), (9)
as proved in Lemma 1. The term 7 (d) «; in (8) contributes a bias; in view of (6) this term is

O, (t_d) and thus decays to zero for d > 0, but only slowly, and its presence explains the need for
asymptotic theory with T — oo, in order to achieve consistent estimation of dj.

2.2 Fixed Effects Estimation

Instead of ignoring the «; we now start from a CSS-type objective function that is based on frac-
tionally differencing the y;; — «;, and then concentrates out the «;. Define

1 L& 2
LT(d,Oéh..., WZZ t+1 yzt_ai)) .
i=1 t=0

Differentiating gives

0
80éi

Mﬂ

Ly (d,aq,...,an t+1yzt t+105z') (Af+11), i1=1,...,N,

and thence ’
6[ZT(d): TTT 12 ,L+1yzt Tt d) izl,...7N7
=0
using (9) and defining

STTT(d) = 1+ TIT (d) TT (d) )
77 (d) (r1(d),...,7r(d),

the prime denoting transposition. Thence introduce

N T
. . 1 . 2
L; (d) =Lt (d,OqT (d),...,aNT = ﬁzz t+1 yzt — o451 (d))) ,
i=1 t=0

and

&T arg mlB LY (d).

The summands in LE (d) are squared fractional residuals after regression on the fractional final end
effect (A¢ 1) =74(d).

Define . ,
air(d) = 7 (d) D> mj(d—do) i (10)
t=0 =0
Then (@)re (d)
AL (i — &y (d)) = Adfog, — ZDTLD 11
t+1 (yit — & (d)) = t+1 Eit S (d) ) (11)

and by comparison with dAUT there is again a term contributing bias. We show that nevertheless &?ﬁ

is consistent though a bias correction may be desirable for statistical inference.



2.3 Difference Estimation

A standard approach to eliminating the «; from (1) is first-differencing:
AyitZA%_Ildoé‘it, tzl,,T
We might then attempt to fully whiten the data by taking (d — 1) th differences of the Ay,
zir (d) = AT (Ayar)

Define

;NI

= 572D #r(d)
i=1 t=1

and
c%) = arg 5%13 LY (d).

Notice that

zit (d) Ad ! (A%H gtt)
d—1 d—1 d—1 1
= A (At+1 Ezt) +{Aaf - Af (At+1 Ezt)
= At+1 Eit — (d) €i0, (12)

so there is a bias contribution similar to that in the uncorrected estimate [ig

It may be worth noting that if a possibly nonparametric time trend of the form f (¢/T) is added
to the left hand side of (1), where f is a Lipschitz-continuous function on [0, 1], the first-differencing
also eliminates this, to order O(T~1). Thus c/l\? may enjoy some robustness to the unanticipated
presence of such a trend, though we do not explore this possibility here.

2.4 Pseudo Maximum Likelihood Estimation

The previous estimates all employ versions of the CSS principal, where the Gaussian pseudo-
likelihood is approximated by ignoring potential dependence and heteroscedasticity in the approxi-
mately whitened data. Here we modify the previous, Difference, estimate by employing a pseudo
likelihood for the z;; (d). From (12),

CO’U (Zis (do) y Zit (do)) = Wgt (do) 0’2,

where
Wst (d) =1 (S = t) + Ts (d) Tt (d) .
Note however that Cov (z;s (d) , zit (d)) differs from wy; (d) 02 for d # dy. Introduce the T x T matrix
Qr (d) = (wst (d)) = It + 77 (d) 77 (d)
and the T' x 1 vectors z;r (d) = (zi1 (d),...,zir(d)), i = 1,...,N. Define the Gaussian pseudo
log-likelihood

Qr ( ) = g: { log(27) + glog 0%+ %log |Q7 (d) | + %ZQT (d)Qr (d)f1 ZiT (d)} )

i=1



Differentiating,

O or(do?)=-5 4L — L (@)@ ar (d
ﬁQT( aU) —Z; ﬁ—ﬁzn( )Qr (d) " zir (d) ¢,
leading to

~2 1 N /

or(d) = NTZ;ZZ'T (d)Qr (d) " zi7 (d)
and the concentrated function

~ NT NT N NT
Qr (d, JQT(d)> = - {2 log(27) + - logo (d) + 5 log |Qr (d) | + 2}
NT NT N
= —7(1 + log(2m)) — 7105’;02T (d) — Elong (d) |-
Thus define
LE(d) = exp)—=QF (4.5%() — (1 +log(2m)
T NT T )

= Q7 (d)|757 (d),

and
TP : P
dp = arg min L7 (d).

For computations, note the formulae

_ Tr(d) T} (d

Qp(d) ™ =1Ip — r(d) 77 ), Q7 (d) | = Syrr(d). (13)
STTT(d)

3. Consistency

Consistency proofs are facilitated by noting that all four of the objective functions introduced in the
previous section are approximately equal, and are of the form

Lt (d) = Ar(d) + Br(d),
where

1 & 1S/ aar \2
Ar(d) = + > Air(d), Ag(d) = T > (Athogit)
i=1 t=0

and Br(d) is a measurable function of €;;, 1 < ¢ < N, 0 <t < T, of smaller order of magnitude.
Hualde and Robinson (2011) showed under conditions on 14, t = 1,2,..., that are implied by ours,
that the statistic
dh = arg m[i)n Arr(d)
is consistent for dy. They were thus concerned with the single time series case, but due to the
identity of distribution across ¢, and model constancy across %, their results easily extend to establish
consistency of

dp = arg mDin Ar(d).

We state first the following Proposition which is used to prove consistency of each of our estimates,
along with Theorem 1 of Hualde and Robinson (2011). Define

c/i\T = arg mgn Lr(d).



Proposition 1 Let
sup |Br(d)] —, 0, as T — . (14)
D

Then as T — oo
dT Hp do.

Theorem 3.1 If a; = O,(1) uniformly in i, as T — oo,

&g —p do-
Theorem 3.2 As T — oo,

&\JE —p do.
Theorem 3.3 As T — o0,

gl? —p do-
Theorem 3.4 As T — oo,

dﬁ;‘ —p do-

4. Asymptotic Normality

The following Proposition is not new when N = 1, but we include it to demonstrate that N may

t
T (L) ==Y 117
j=1

increase with 7. Define

Proposition 2. As T — oo,

N T
ZZ Jt+1 E’Lt Eit —>d./\/‘(0 6/71' ) (15)
0

=1 t=

wh-t

Theorem 4.1 Let a; = O,(1) uniformly in i and doy € Int (D). When dy > 1 7> as T — oo,
(NT)? (E(Tf - do) —a N (0,6/72) (16)
if, as T — oo, NT* ™4 1log? T — 0 when dy € (1,1), NT7'log" T — 0 when dy = %, and
NT~1 — 0 when dy > 3.

Note that Theorem 4.1, like Theorems 3.1-3.4, allows N to grow, but a slower rate than 7', and
arbitrarily slowly for dy close enough to i from above, and no central limit theorem is available
when dy < %.

Define 7r; (d) = (9/0d) 7+ (d) , T+(d) = 71+ (d — 1) and

r(d) = (F1(d),...,7r(d),
Soor(d) = T (d)Fr(d).



Theorem 4.2 Let dy € Int (D). Then as T — oo,

(NT)% (@ — do — T (do)) —a N (0,6/7%), (17)
where 65.(d
0=
with bF (d) = O (logT1(d < 1)+ 1(d > 1)) . Thus
(NT)? (JF 0) —a N (0,6/72) (18)

if, as T — 0o, NT~'1og” T — 0 when do < L, and if NT~! — 0 otherwise.

When dy > %, the restrictions on N for (18) are the same as those for (16) for c/ig but when
dy < 1 they are weaker, and do not strengthen with decreasing dp, indeed (18), unlike (16), holds
for dy € (0, %] Moreover, whereas Theorem 4.1, like Theorem 3.1, imposes some restriction on the
@, this is avoided in Theorem 4.2. The recentering in (17) avoids any restrictions on N. Note that
bL (d) is a known function of d. For d < 1, m;(d—1) > 0 for all ¢ > 0, whence Lemma 4 in Appendix
C implies that S.+7(d) < 0, and thus bZ (d) < 0.

Define the T x 1 vector mp = (1, %, ..

Srmr(d) = 74 (d) mr.

.,%)’, and

Theorem 4.3 Let dy € Int (D). Then as T — oo,

ol

(NT) (CPT? do — T~1b2 (do)) —a N (0,6/72) (19)

where

and b2 (d) = O(T* 2 1og T1(d < 3) +1og® T1(d = ) + 1(d > L)). Thus, when do > 1,

(NT)? (Jg - do) 4 N (0,6/72) (20)

if, as T — oo, NT'"*01og? T — 0 when dy € (3,3), NT'log*T — 0 when dy = 3, and
NT—' — 0 when dy > %

The result (20) is the same as (16) for C/ZT% , except that it imposes no restrictions on the «;. As
with (17) for dE, (19) avoids any restrictions on N. The bias term b2 (d) lacks the deﬂating factor
S=1(d) < 1 of c/iiT?, making it of larger order of magnitude than b% (d) when dy < 1,
involves the additional term S;,,7(d). This is O(1) for all d (see Lemma 1) and is thus dominated
asymptotically by S-;r(d) when dg < % For d < 1, m¢(d — 1) > 0 for all ¢, and thus S.,,7(d) > 0,
and since S-;+7(d) < 0 as previously observed, there is some cancelation in the bias. For d > 1,
ooy mi(d—1) = —1, and it is readily seen that S;,,7(d) < 0 for all large enough T.

and it also

Theorem 4.4 Let dy € Int (D). Then as T — oo,

Nl

(NT) (dF — do — T7'0F.(do) ) —a N (0,6/7%), (21)

where 6 Sovr(d) + Somr(d)
P _ 9 77T + mT
bT (d) - 2 STTT(d)




and b% (d) = O (logT1(d < 1)+ 1(d > 3)) . Thus,
(NT)"/? (dT - do) —a N (0,6/7%) (22)

if, as T — oo, NT'log® T — 0 when dy < %, and if NT=* — 0 otherwise.

The result (22) is identical to (18) for é?,f, while (21) differs from (17) for c%f only in that
bE (d) = bE (d)—(672)Srimr(d) S (d), where Sy, (d) S, (d) = O (1) at most, for all d. Comparing

to (19) for c%’, we find that b4 (d) = bR (d) S }(d); for all d, b7 (d)| < |bR (d)] since Srrr(d) > 1.

5. Statistical Inference

In the present section we discuss and develop the results of the previous section for statistical
inference on dy. We focus on the estimates C/ﬂ;’? c/i\% and c?;, since Theorems 4.1-4.3 indicate potential
for bias correction of these, and thereby relaxing the restrictions on the rate of increase of N relative
to T, whereas (as the proof of Theorem 4.1 indicates) the leading term in the bias of E[f depends on
the «;, as well as dy. We should also bear in mind our discussion in the previous section which suggests
that, on theoretical grounds, there is little to choose between the estimates when dy > %, whereas
overall 6/17; and &7; dominate when dy < 1 in respect of their entailing the weakest restrictions on N
in central limit theorems centered at dy, of their biases being of smaller order, and of admitting a

central limit theorem when dy < i. We will assume the form 6/7% appearing as asymptotic variance

-1
in the theorems of the previous section is used, but it is the limit of (23:1 t_2) and could be

replaced by the latter, which might perform better in finite samples.

We first discuss Wald hypothesis testing on dy. The leading case, mentioned in the Introduction,
of testing the unit root null dy = 1, turns out to be the most favourable. Since 7,(1) =0,1 <t < T,
it follows that b¥ (1) = b2 (1) = b% (1) = 0. Thus the results (18), (20) and (22) are respectively
identical to (17), (19), and (21), and so (NT)"/2 (d; - 1) L (NT)'/? (&iT’ - 1) and (NT)"/? (517; - 1)
are asymptotically A/ (07 6/ 772) with no restrictions on V. Another case that is sometimes of interest
is the I(2) hypothesis dy = 2. It is easy to see that S;.7(2) = S;+7(2) = 1, S;mr(2) = —1, so
bE(2) = —6/7%, bR (2) = bE (2) =0, and c/lgf is simply bias-corrected, while no correction of C/Z\qu or
dﬁTg is needed. In general, for other null hypotheses, for example dy = % (the boundary between the
stationary and nonstationary regions), we can carry out the bias correction by evaluating bk (do),
b2 (do) and bE (dp) at the null, which is straightforward given Lemma 4, and applying (17), (19),
and (21).

Some numerical comparisons of the biases are of interest. Tables 1 and 2 present the scaled
biases of C/ij; and cﬁT) for selected values of T and d. We find that bl (d) decreases monotonically
in d and in T, sharing the sign of d, whereas b2 (d) is positive and increasing in |d — 1| (though not
symmetrically) and is mostly decreasing in T' (note that scaling with respect to T has already been
carried out). Table 3 presents the ratio of biases of c/quf and c/l\g, namely the quantity ST_TlT(d); it
decreases in both |d — 1| and T.

For interval estimation bZ (dy), b2 (dy) and b% (dy) need to be estimated, and it is natural to

10



consider b ((iAfT?) , bR (c/i\%) and bf (dZZ) . Thus we define

T = &1 ().
@R = B-176 ().
B d g (3).

The following theorems indicate that these feasibly mean-corrected estimates entail stronger re-

strictions on N (and in some cases on dy) than the infeasibly mean-corrected ones, but milder

restrictions than the uncorrected ones. In particular, cE? and (Ez require dy > é and all estimates

require N to increase slower than T3, though as with E[% , the rates for J$ and Ji the rate are heavily
1

do—dependent, such that N must increase slower than 7" when dy = ; and arbitrarily slowly as dg

1
approaches g from above.

We give a single theorem to cover J; and J; because the regularity conditions in Theorems 4.1
and 4.3 are identical, only the bias differs.

Theorem 5.1 Let dy € Int (D). Then as T — oo,

W=

(NT)? (df, — do) —a N (0,6/7%), j € {F, P}

if, as T — 0o, NT~31og® T — 0 when dy < 3 or NT=3 — 0 when do > 1.

Theorem 5.2 Let dy € Int (D). Then when do > 5, as T — oo,

(NT)* (B —do) —a N (0,6/7%),
if NT =80 1og® T — 0 when dy € (%, %) ,orif NT—310g'T — 0 when dy = %, orif NT=3 — 0
when dy > %

It is of some interest to note that simplified corrections are possible that improve on our original
F, D and F estimates, but by less than our feasible bias-corrected ones. From Lemma 2,

6logT 1
i) = ———5— +0(1), d< g,
3logT 1
= 2% 40 d=3

6 1 B

= 2 (sen-v@- ) o T, a>

67124 log T 1

D = 1-2d 1

brld) = Sasara—ae T ) d<3
3log T 1
= 3 +O(logT),d:§,

(2d —1) B (d,d)
1 _ d—1

+/‘Clsw1>m}+mwﬂﬂ%T+T4Ld>;
0

2
_6{¢(2d)—w(d)—2d11
7-[-2
X

11



6logT 1
br(d) = —5—+0(), d<3,
_ 3logT 1
- 2n2 O(l)’d_2’
6 1
_ —H{wzd)—w(d)—m_l

' (1- x)d_l -1 1-2d —d 1
+(2d—1)B(d,d)/O <m>dx}+O(T logT +T ),d>§

The leading terms here could be used in simpler bias corrections. For example a simple bias-
corrected Fixed effects estimate is c/l}Tr —6logT/ (nT) for dy < 1, where the correction is free of c/l?
But which correction to use requires knowledge of whether or not we are in the stationary region,
and the theoretical improvements over the original bias-uncorrected estimates are small, noting the
approximation errors above and bearing in and that the effect of inserting estimates of dy in most
of the corrections needs to be taken into account. Tables 4 and 5 illustrate the approximation for
the bias of the Fixed effects and Differenced estimates, and are directly comparable with those of
Tables 1 and 2, respectively. The approximations work reasonably well when dj is close to 1, but
otherwise are less precise.

6. Simulations

In this section we conduct a simulation study of the finite sample properties of our estimates of dyg.
We concentrate on the Fixed Effects, Difference and the PML estimates, in both original and feasible
bias-corrected forms. We do not report results for Eg , since this heavily depends on the magnitude
of the fixed effects a; relative to the idiosyncratic errors ¢;;, whereas the others are invariant to the
specification of a;. We generate the €;; as standard normal, noting that the estimates are invariant to
the variance of €;;. We focus on different specifications of NV, T" and dy. In particular we set T' = 5,10
and 100 as in Tables 1-5, and to consider the effect of increasing the overall sample size, we used when
T = 5,10 three combinations of N7 (100, 200 and 400) so the range of values of N oscillates from
N =20 to 80 for T'=5 and from N = 10 to 40 for 7' = 10, while when 7" = 100 we took only NT =
200 and 400, i.e. N =2 and 4 (thus omitting the case NT = T = 100 since we cannot remove fixed
effects with a single time series). The values of dy include a stationary one (dg = 0.3), which is the
most problematic from the point of view of bias, a moderately non-stationary one (dy = 0.6), values
around the unit root (dy = 0.9, 1.0, 1.1), and a more nonstationary one (dy = 1.4). Optimizations
were carried out using the Matlab function fminbnd with D = [0.1,1.5], and the results are based
on 10,000 independent replications.

We first explore the accuracy of the asymptotic approximations for the biases in Theorems 4.2-
4.4, and whether feasible bias correction produces better centering properties. In Table 6 we observe
that the uncorrected Fixed Effects estimate c/i}T? has a bias in line with that predicted in Table 1
when dy = 0.3 and T' = 5, but in general it has larger bias (in absolute value) than predicted by the
magnitude of b (dy) /T for large T and small dy. For dy > 1.0 the bias is small, as predicted, and
the accuracy of the approximation improves with increasing N. The right panel of Table 6 shows
that feasible bias correction removes a large fraction of the bias of c’i'YT’j when dg = 0.3, but for all the
smallish dy the biases, while reduced, are still substantial. In some cases the biases of C/l%f and élvf
do not change monotonically with dy and T'. For the Difference estimate C/l\qu we observe that Table 7

shows more the monotonic properties of b2 (dy) /T found in Table 2, even for the smaller NT, and

12



that bias correction works in g? quite well when dg > 0.6. Table 8 illustrates the far superior bias
properties of the uncorrected PML estimate c?; , which, surprisingly, are much better than those of
Table 3 in comparison with c/i? , and much better than those of the previous bias-corrected estimates,
with bias correction in this case actually worsening finite sample properties.

Tables 9-11 report (scaled) Monte Carlo square error across simulations for the three estimates in
both uncorrected and feasible bias-corrected versions. For all estimates, performance improves with
increasing dy, T and NT, predominately monotonically, and with bias correction (in this last respect
with the exception of givg and low values of dy). The asymptotic standard error, (6/7%) /(NT'), which
gives 0.61, 0.30 and 0.15 for NT = 100, 200 and 400, respectively, are poorly approximated for low
dy, but in a number of cases quite well approximated for larger d.

Tables 12-14 report empirical coverage of 95% confidence intervals for dy based on our central
limit theorems. The uncorrected dﬁ; estimate achieves much the most accurate coverage, although
the results leave something to be desired when dy = 0.3 and 0.6, but the bias-corrected Jg and El?
also generally perform reasonably, at least for the larger dy, especially by comparison with intervals
based on uncorrected estimates.

Appendix A: Proofs of Theorems

Proof of Theorem 3.1 .

From (8),
1 d 2
U — } :} : d—do .. ,
Lr(@) = NT — —~ (AHlOE” +7(d) 042)
N N
2 STTT(d) 2
= L — E i —_— o
T (d) + NT v O[za/LT(d) + NT £ «;
We check Proposition 1. From (7),
1

Thus, using Lemma 3,

s%p % ZEJ_V:I aair(d)] = O, max v ] s%meb"‘(dO_‘7l’0)+m"""(%_d’o)_1 log? T
= 0, (T “4log’T) = 0,(1), (24)
choosing d < 1/2. From Lemma 2
Sprr(d) < KT?M2x(5=d0) 100 T (25)
Thus
s%pST]TViTJSd) Z o =0, <mlax ozfst]:l)pT*24 log T) = 0,(1), (26)

to complete verification of (14), and thus the proof. [
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Proof of Theorem 3.2

From (11) and (10),

1
NT

aiT(d)

>

i=1 t=0

L% (d) (Aiﬂf‘“eit -

N
Ir (@) - g7 >ty (d)

We again check Proposition 1. From Lemma 2,
STTT(d) > T]T2 max(%fd,o).

for some 1 > 0. Thus from Lemma 3

. 1 > 2d
SUPW;%()

S‘I‘TT(d)

y

Op <supT2 max(dop—d,0)—1 10g4 T)
D

D S‘I’TT
= 0,(T"*1g'T) -, 0. O
Proof of Theorem 3.3
From (12),
1 d 2
D _ d—do . .
Ly (d) = ~NT ; ; (At+1051t 7¢ (d) 510)
1 & 2 L 1 =
_ 2 N d—do
= Lp (d) “NT i:ZIEZ'Q N i:ZlEzOT ;Tt (d) At—i—l Eit
N
STTT(d) -1 2
TTNT ;51‘0
2 STTT(d) 1 al 2 -1
= Lp(d)— NT ZﬁmaiT(d) + NT Zfio + Op (T )
i=1 1=1
uniformly in d. Then as in (24) and (25)
5 N
SUp | —— oar(d)| = 1),
61[1)1) NTEsOaT() op (1)
S‘I’TT(d) -1 o 2
SUp——i—— £; op (1),
DP NT ; 0 p (1)
to check Proposition 1. [
Proof of Theorem 3.4
We have
~ 1 ~
LE(d) = &)+ (2 @) -1)57 ()
1
— @+ {oh @ -7 @)+ (@1 -1) 53 @.



In view of Theorem 3.3, checking Proposition 1 entails verifying that

sup| LR (1) =53 (d)| = o,(1), (27)
D

suplior@1F 1) = o), (28)

since (27), and supp, L (d) = O,(1) from Theorem 1 of Hualde and Robinson (2011), imply that
supp o4 (d) = Op(1). From (13),

2 -3 = -4 (d){] —Q (d)_l}z- (d)
T NTi:l iT T T T
1
= mzmu r(d)}’. (29)

Now

z;T (d) TT(d) Z Tt ( t+1 Ezt (d) 52’())
= aiT(d) —€i0Sr-r7(d).
Lemmas 2 and 3 imply that this is uniformly
O (Tmax(f—d ,0) (Tmax(do—d,o) + Tmax(%—d,o)) 10g2 T) .
so (29) is

T2 max(3—d,0) (T2 max(do—d,0) + T2 max(%—d,O)) 10g4 T

142 max( +—d,0)

Op

_ Op ((T2 max(do—d,0) + T2 max(%fd,(])) 71 10g4 T)

= 0, ((T"* +T %) 1og"T) = 0, (1)

uniformly, to check (27). Finally, from (13), with K denoting a generic finite constant,

1
Qr (@[T =1 = Ser(d)” —1

B Srrr(d) — 1

_ 0 (T

< KT2 max(—d,0)—1 IOgT

< KT XlogT — 0,
uniformly, to check (28). O
Proof of Theorem 4.1

By the mean value theorem
8 6 8 N
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where |d* — dg| < ‘quJ - do‘ . We have

9 9 N T
adLT (d) = ~NT Z Z (Jeg1 (L) AL yie) Ay
i=1 t=0
9 N T
- NT Z Z (JtJrl (L) Aiﬁdai + iy (L) Alt+1d%%t) (At+1az + At;{iofzt)
=1 t=0
Thus
9 N T
(NT) 8dLT (d()) = ( % Z Z (Jt+1 t+1az + Jt+1 ( )Eit> (Afil% + git)
1712 t=0 i
= 2wrp+ T Z Z (JtJrl t+1al> Eit
( 2 i=1 t=0
N T
% ZZ Jt+1 511‘ ( t+1az)
i=1 t=0
N T
% > a?> (S (D) AR 1) 7, (31)
i=1 t=0

writing 79 = 7 (do) and wz for the left side of (15). By Proposition 2, wr —4 N(0,0%72/6). The

next two terms are

1
(NT)® =1 t=0
N T t 0 T—-1 T—t 0
2 T T
= = I Q Z&it Z t. 1 4 Eit ]
2 J J
(NT)" i=1 t=1  j=1 t=0 j=1

¢ o\ Tt [T o\
e gfeer)))

Now for d > 0,
t N —d
t_
Z% = Ot Mogt+t71), ¢t >0,
=17
T—t d
' _
C+9) " o+ 1) g (t+ 1)), £ >0,
=
so (32) is
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1

2

N 3 T
(T O, {Z(t‘2d0 log2t+t_2)}

t=1

1 1 1
T%—do long(do < 2) + log% Tl(do = 5) + 1(d0 > 5))

|
5 N—— ~~
Nl=
o)
S
N

|T?|§t: i J')
%
N _ Cdo—

N 3 1 1 1
() Op (T1_2d0 lOng(dO < 5) —|— 10g2 Tl(do = 5) + 1(d0 > 2)) .

which is

T
Thus the last three terms in (31) are 0,(1) under the stated conditions on N and T

Next we have

o? 2 L&
BYE —— Ly (d) = NT Z Z (Jt+1 t+1yit) ALY+ (Jear (D) AL yie) (Jrn (D) A wie)
=1 t=0
5 N T
- NT Z Z { (Jt+1 Ao+ T (L) At;ldoglt) (At+1az + A 51t>
i=1 t=0
+ (Jt+1 (L) A i + Jiga (L )Afﬁ“fit> (Jt+1 (L) A i+ Jiga (L) Afﬁi"ﬁit)} :
Thus
82
@W (do) = NT ZZ (Jt+1 A% + Ji (L ) Eit) (Atdiloti + Eit)

i=1 t=0
+ (Jt+1 (L) A o + Jiga (L) 5z't) (Jt+1 (L) A% o + Jiga (L) €it> :
By arguments similar to those previously used this differs by o0,(1) from

2 S B Gens (@2 + 0, (| (s WP 2) 8] + (s (0 7D)7) )

t=0

!

’ﬂ\w

t=0 j=1

t 2
{02 2:]'72 + 0, (fzdo log? t)} — 202%, as T — oo,
while, in view also of Theorem 3.1 and the proof of Theorem 2 of Hualde and Robinson (2011),

O*LY (d*) Jod* — 82LY (dy) /0d* —, 0. The proof is completed. [

Proof of Theorem 4.2 . By the mean value theorem

0 = gt (@) =p{rF |+ | i - B{ Gk @}
+%L§ (d*) (EF - do) . (33)
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Now

8 2 7",5 d a;T d ~
ad-r @ = 57 ; ; (Jt“ (1) Ao - é’riT(d())> B ld)

using the orthogonality, across ¢t = 0,1,...,T, of &y (d) = AL, (yix — éur (d)) to 7¢(d). Thus,
writing 77 = 7 (do) , S2.p = Srrr(do), afy = azT(do)

30 2(NT)~

N T
(NT)* 5 dLT (do) = 2wr—=g—— SN Hadren
77T ;

0:0 02

JFSTZZTNM% (34)

T =1 t=0

since Zi (do) = € — 7@ (dp). In view of Proposition 2 and (33) we need to show that the

remaining three terms on the right of (34) differ by 0,(1) from their expectations, which we also
: 0 T o

need to evaluate. Since a;; = tho TiEit,

_F N T
2(NT)™° ,
7507 Z Z T(t)a?T€it (35)
T =1 t=1
has expectation
1 1
20 (NTY2 = 0,0 2 ’ ETT
— 5 ZZTtTf = —20 5
STTT i=1 t=1 T STTT
The variance of (35)
4 T T T T N
WSE;I% Z Z 7-?7-2 Z Z 7-0 9 Z E ELrszssztezu E (51,5511‘) E (527 5zu))
t=1 u=1 r=0 s=0 =1
40* r T 40* T ’
_ 20 q0-2 . 02 02 4 0—2 1
- sy ey s (n) vour
40t 4
= S0 St + isﬁﬁs&% +0(T7") =o(1)
as T — oo.
Next consider the term
T 3 N t T
2(NT) €i,t—j o 0
—c0 Z‘%TZ Ji1 (L) €ir) :7222 = TtZTSEiS.
STTT i=1 t=0 S20,1 (do) i1 =1 =1 J 5=0
This has expectation
3 T T ¢ N 3 T i1
-2 ( > SSTTl Z Z Z] (€i4—j€is) 7'?7'2 = 9202 <T) SET_Tl ZT? (t— s)_l 72
t=1 s=0 j=1 t=1 s=0
NN 2 T
~202 () Y edt
t=1
%
(MY 8
T S'(F)TT7
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by Lemma 4. Its variance is

t u

4 T T
T 5 95 35 35 9 9 WAISEAES
t=1 s=1 j=1 u=07r=0 k=1
N

Z (€it—j€is€iu—tkEir) — E(€i1—j€is) E (€iu—kir)}
-1

T t T
= —SET%ZZZ] i+t —au 1970 +—S£T%ZZZ G JTtOTg 5o +O(T_1

t=1 j=1u=0
= O(T %logT+T 'log’T) =0(1).

~
-
.
I
-
IS
Il
-
-
I
-

Finally the expectation of the remaining term is

1 1
2 2
N S(T)z
202 <> TT% g T,Tf =252 (> SET;.

Its variance is
4504 N ) T T
NT%T |7 (a%) = {E (a3)}7] oD r#ir = 0(1), as T o,
i=1 t=1 s=1
since, as is readily shown, E (a%) = O (S%,) .
Overall, we deduce that

1

1
2

o) N\~
(VT)' L o) +20% () S2ha/S%r —a N(0.0"5/6).

Using similar techniques as before, the probability limit of the second derivative term in (33) is
20272 /6, and the result follows. [

Proof of Theorem 4.3. We start with an analogous development to (33). Recalling z;; (d) =
Af_dosit — 7t (d — 1) €50 and using Lemma 4,

9 s N T /5
it @ = WZZW“W@

s
Il
_
o~
Il
—

Thus

N T
(NT)2 %Lg (dO) = 2 Z Z (Jt+1 (L) Eit — 7.'?51‘0) (Eit — T?Eio) . (36)

Expanding (36) reveals the same asymptotically N(0,472/6) term wr, while, noting that
t—1

Eit—i Ei
Jit1 (L)Eit:*Z#*fo

= 7 t
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and employing similar arguments to before it is readily seen that the remainder of (36) differs by
0p(1) from its expectation, which is

N\ 2T
20° <T) Sl (1t +7Y).
t=1

The probability limit of the second derivative term is obtained much as before. [

Proof of Theorem 4.4. Again we start as in (33). Then,

0 R 0 1 1 0
%Lﬁ(dbo%(d)%lﬂﬂdw + Q7 (d)|T %U%(d),
where
0 1/T l %2
0 @[T = Zlor (@)1 log[0r (d)|
1 1 1 -
- T|QT(d)|Ttrace{QT(d) 1QT(d)}
and
952 = =3 i=1V {94l (a) 2 (@) 2er (d)
od" T - NT - i r i

i (d) ()7 O (d) Qr () 7 (d)]

where we introduce Qg (d) = (8/0d) Qr (d) , zir (d) = (8/9d) z7 (d) . Suppressing some d argu-
ments and using (13) and
QT(d) :7-'TT{F+TT7.'£F,

we have
!
trace {QT (d)" Qr (d)} = trace { <IT - TTTT) (7r7l + TT‘I"/T)}
S’TTT
284
B STTT '
and
—1¢ - TTT! . . T
() Qr () Qr (@) = (Ir— L) (Frrh+ 1oty (Ir - G-
STTT S-,—TT
TrTh + TrThp B TrTTTTh
STTT SZTT

Writing e, T = (5i1; I 75iT)/ s JT (L) = diag {J2 (L) geeey JT+1 (L)} s ’T% = TT(do), 7'81 = +T(d0)7
and from the proof of Theorem 4.3

Z;T (do) = &iT — TOTEio, ZiT (do) =Jr (L) EiT — 7"0T€i0~

Thus, with SO . = S, (do),

N
2 <! -1
—=> e (do) Qr (do) ™" zir (do)
NT pt
N
2 / 7979
= — Jr (L) gir — Teio (IT— L T) €ir — TEi0
NT Z ( T ) SSTT ( T )

Il
-
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has expectation

202 . / 97y 202 (S0 + 52,
S (#heme) (1 - T ) 74 = T(SOTT)
Next
1 . _
TN - 7 (do) Qr (do) ™! Qr (do) Qr (do) ™" Zir (do)

Z‘H

0 02
STTT STTT

N
/
zN (Girn) e
(eir — 7%€i0) — 21T (eir — Tpei0)
has expectation

-0 __0/ 0.0
L0/ 0 0 0/~ \2 (TT+TT> 0
1 ( E (Treirer ) 2STTT (tYeir) ) 702l7_0, ( Ty + T7rTT S 0 T9TY

T Ster S Tt S S%r
sy,

T SSTT

Thus
8 1 1/T ~2 —1 ~ a
BooLf (do) = Z|%r (do) 7S E (aT (d0)> tmce{QT (do) "' p (do)} + 5507 (do)
2 0. 2 SO. SO
— i‘QT (dO) ‘I/T 2‘5;7—TT - Q%TTT + ( TTT0+ TmT)
STTT STTT STTT

20° Stir + S0,
= Zelon (a1 (Pt
o? SY
= —=bh(do) (14+0(—=L) ).
~ o (140320
By similar means to before it may be shown that

(V) { (L (o) = B LE o) b = wr + 0,(01) 4 N(0.47/0),
We again omit the details of the convergence of the second derivative term. [J
Proof of Theorem 5.1
We give the proof for J; only, that for 675 is almost identical. We have
(NT)? (dF —do) = (NT)* (df — do — T'0f (do) )
— (N/T)* (bf (dF) ~ bF (do) )
It suffices to show that the second term on the right is 0,(1). By the mean value theorem,
b8 () — 0F (do) = 68 (") (2 — do).
We have

0 6 0 0 _
S @) = =5 (Seer@) 3Srs0(@) — ,12(d) 3 Se2(@)) 5754

od
i 1 1
O(log“T1 d§§ +1 d>§ )

21
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from Lemma 2. Since c/le?—do = O, (|bk (do)| /T+(NT)_%), where bf: (d) = O(log T1(d < 3)+1(d >
1
E))v

(N/T)%(bg (Jg)fbg(do)) - 0, ((N/T)%1og2T(1ogT/T+(NT)*%)
0

)

N R N——

, (N%T—% log® T+ log? T/T) L do <

)

57

W=

(N/T)% (vF (@) = b5 (do)) = O ((N/T)* (T + (NT)~
= 0, (MITTH4TY), do >

and these are o(1) under the stated conditions. O

Proof of Theorem 5.2

As in the previous proof

(NT)? (@R —do) = (NT)* (dR —do — T~ 0P (do))
—(N/T)% (b2 (dR) — b (do))
with 5
by (%) b7 (do) = %sz? (d*) (C’l? - do)
and
.p, N 9
= O(T'"*10g’T), d < %
= O(log’T), d= %

applying Lemma 2 again. Since &?fdo = Op([b2 (do)| /T+(NT)7%), where b2 (d) = O(T* 2% 1og T1(d <
1) +1og’T1(d = 1) +1(d > 1)),

(N/T)? (bé’ (d?) — by (do)) = 0O, ((N/T)% T1-2%0 log® T (T—2do logT + (NT)’%))
O

1
, (N%T%*‘*do log® T + T~2d0 og? T) Ldo < 3,

N|=

(N/T) (bg (‘@) - b7 (d°)> = Op (UV/T)%log?’T(log2 T/T+(NT)—1/2))

1
= 0, (N%T—% log® T + log® T/T), do = 3

(N/T)* (0 (@) — b2 (do)) = O, ((V/T)* (T + (NT)"'7?))
- 1,3 1 1
- OP(N2T ST ) do > 3,
which are o(1) under the stated conditions. O
Proof of Theorem 5.4

The proof is almost identical to that of Theorem 5.3, and is thus omitted. O
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Appendix B: Proofs of Propositions

Proof of Proposition 1 Forn > 0let N;, = {d: |d —do| <n}, N, ={d:d ¢ N,,d € D} . Writing
Mr (d) = L (d) — Lt (do) ,

P(d € N, <P (inf My (d) < 0)
N”I

Ny

< P <sup|VT (d)| > inf U(d)) ,
D
where Vi (d) = U (d) — My (d) with

U(d) = o Z V?(d)

o0
j=1

and the abbreviation v;(d) = 7; (d — dy) . Because U (d) is continuous, vanishes if and only if d = d,
and is otherwise positive, infy U (d) > 0. It remains to show that sup|Vr (d)| —, 0. We have

Tr (d) =U (d) + Ar(do) — Ar(d) + Br(do) — Br(d),

so in view of (14) it suffices to show that

sup |Ar(d) = Ar(do) = U (d)] = 0. (37)
We have
1 N T T—j
Ar(d) = Ar(do) U (d) = =D wi(d) Y (h —ap)
i=1 j=1 t=0

o T o
g .
“BS G- )RE@ - oF S (),
=1 J=T+1
Thus it remains to show that
N T T—j
1
S%P NT Z ZVf(d) (E?t - 0(2)) — 50, (38)
i=1 j=1 t=0
N T t j—1
1
Sl[l)p NT Z Z Z vi(vi(d)ei—j€i—k| — 50, (39)
i=1 t=1 j=1 k=0
T
1 . 9
S%Pf ]2:(:)(] —1) Vj(d) — 0, (40)
sup Y vi(d) — 0. (41)
D ot
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The left sides of (38) and (39) are bounded respectively by

N T—j

1 1

N Zsup T va(d) Z (eft - 03) , (42)
i-1 D j=1 =0

L | Lt

N Zsup T Z Z vi(vi(d)ei1—j€ii—k| - (43)
i=1 P t=1 j=1 k=0

It follows from the proof of Theorem 1 of Hualde and Robinson (2011), constancy of the 7; across
i, and identity of distribution of €;; across 4, that the i—summands in both (42) and (43) are o,(1)
uniformly in ¢, whence (38) and (39) are true, and thus

sup |v;(d)] =0 <Supj—(d—do)—1> =0 <j(do—4)—1) -0 (j_%_4/2> .
D D

Then (40) and (41) are straightforwardly checked, to complete the proof. O

Proof of Proposition 2 The left side of (15) can be written 72 Zfzo ver, where

vt =

N
1

it (Jer1 (L) €4t)
N%;H(Hl( )€it)

and our notation stresses the possibility that N increases with 7. Denoting by F;_; the o-field of
events generated by {g;5,% > 1,5 < ¢t} we have

1
2

T 2 T
E <Z’l}tT> Z'UtT —d N(071)
t=0

t=0

if (see e.g. Brown (1969))

E(’UtT |Ft,1 ) = O7 t Z ]., (44)
E(vyp) < K, t>0, (45)
T
1
T > {E Wi Fior ) = E (vip)} = 0. (46)
t=0

Clearly (44) holds by serial independence of the ;. Since Jyq (L) e = — Z;Zl €it—j/7,

2
N t

N
1 1
E@ir)=0| 522 (25| | <K
h=1i=1 \j=1
to check (45). The left side of (46) has mean zero and variance
1 « 2 2
= ZO (B{E (k1P )’} - {EB (})}?). (47)

t=
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Nowso

2 2 1 v " ehi ik :
E{E(UtTlthl)} = WZZE Z ] Z 7k
h=1i=1 =1 k=1
t 2 1 N t 1 2 t 1
= T Ho w2 E]
j=1 i=1 j=1‘7 j=1]

= {E ()} o,

and thus the left side of (47) is O((NT)™"), to check (46). O

Appendix C: Technical Lemmas

Lemma 1 For adll d,

Af+11—271'j =m(d—1).

7=0

Proof of Lemma 1 The first equality is immediate. To prove the second, note that m; (d — 1) is
the coefficient of L? in the expansion of A", But also, formally,

A= AN = im fi i ij m
t=0 =0 t=0

Introduce the digamma function ¢ (x) = (9/0z) log'(x).

Lemma 2 As T — oo,

T1—2d 1
= 1 il
STTT(d) (1—2d)F(1—d)2 +O( )7 d< 2’
log T 1
= =401, d=3,
2
1

(2d— 1) B(d, d)

T'=2d10g T 1—2d 1
Srir(d) = *(1_2d)r(1_d)2+O(T ) d<g
logT 1

1/J(2d) — 1 (d) — 53
(2d—1) B (d,d)

5r(d) = /01 <<>) do+ O, all d> 0

T

1
+O0(T 2% og T), d > 3
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9 o _ 1-2d 2 1 3 _ 1 L.
%STTT(d)fO(T log”T'1 d<§ +log” T1 dfi +1 d>§ );

0

5 Srmr(d) = 0(1), all d > 0.

Proof of Lemma 2

For d < % we have
T T
Zt‘w — / x4 dy <K
j=1 !

and from (6)

Spep(d) =1+ ﬁ Zt—ﬂ +O(t™Y)).

Thus, since f 2%y = (1-2d)7'T" 21+ 0(1),d < L fl ’1d:c = logT, the approximations
of S;,7(d) for d < 1 are readily checked, whereas that for d > 5 follows because ZJ ST (d) =

2 ;
m and (6) implies zj:TH 73 (d) = O(T*~ 24) for d > %. Next, since

7j(d) = —7; (d) {logj + O(1)}, as j — oo, (48)

and, for d < %
T

T
thzdlogtf/ z~ 2 log xdx
1

t=1

<K,

where flT z7 2 logzdr = (1—2d) ' T2 (logT + O(1)), d < T flTx_llogxdx = 1log® T, the

approximations of S;;r(d) With d < % may be checked, whereas that for d > % follows be-

canse 35207, (d) #o(d) = 3 (0/0d) T2 72 (d), (0/0d)log B (d,d) = 2(:(2d) — ¥(d)), and (6)
and (48) imply that Z]:THTJ (d)74(d) = O(T*>*1ogT). Given the identity >7°, 7; (d) /j =

fo ( (1—=x) d - 1) /xdx, the remaining results follow similarly and straightforwardly. O
Lemma 3 Uniformly in i and d, as T — oo,

aiT(d) _ Op (Tlnax(do—d,o)—i-lnax(%—d,O) 10g2 T) ]

Proof of Lemma 3  From (10), write a;r(d) as

aiT(d) = Z Ct (d)Eit,

t=0

where

ZTJ+t ;i (d—dp).

By summation-by-parts

T

T
air(d) = ) (ct(d) — ceya(d Z&s +er(d)) e
=0

t

|
—

Il
=)

Now

T
ler(d)] < K> (j+t) %% < KT~HT%~"1(d < dy) + log T1(d = do) + 1(d > do)).
j=0
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Also,

T—t—1

ci(d) — cry1(d) = _z: (Tj4t (d) = Tjpe41 (d)) 75 (d — do) + 77 (d) 77—t (d — do)
=0

J

SO
T—t—1
lee(d) —cipr(d)] < K Y (t44) Rt 4 KTUT — pydod?
j=1
T—t—-1
< Kty glomdttp KT — gydomdt (50)
j=1

For d < dy (50) is bounded by Kt~ 4=YT — t)do=d 4 KT~4T — t)4%~4=1 which is bounded by
Kt=d=17do~d for ¢ <T/2, and by KT~4T —t)4%~4=1 for ¢ > T/2. For d = dy (50) is bounded by
Kt=%~tlogT for t < T/2, and by KT %~ tlogT + KT % (T —t)~! for t > T/2. For d > dy (50)
is bounded by Kt~~! for t < T/2, and by KT %'+ KT~4T —t)%~9=1 for t > T/2. Now for all
i, t, ZZ:O eis = Oy (t1/?) (the left side having variance o%(t + 1)).

In view of these calculations, and the fact that ZZ:O gis = Op (tl/ 2) uniformly in ¢ for d < dy

(7/2] T-1
air(d) = O, [ TP 3" 45 4774 3" (17— )hmd=1gd 4 plo—2d+3
=1 t=(7/2]

; 1 . 1 1
= 0, (Td0—2d+z1 (d < 2) + T2 log T1(d = 2) + Th=1(d > )

_ Op <Td0d+max(éd,0)1 <d 7& ;) +Td07%1(d _ ;)

_ Op (Tdo—d-&-max(%—dp) log T)
uniformly; for d = dy

(T/2] T-1
air(d) = O, |logT Y 7072 4 T=0logT Y~ (T )7t + KT %% 2 logT + log T
t=1 t=[7/2]

1 1 .
= Op(logTl(do > ) + log® T'1(doy = 3) +T2"% log T1(dy < 1/2)

1 1
= 0, (Tmax(%—dvo) log T'1 (d # 2) +log® T1(d = 2)>
_ Op (Tmax(%fd,o) 10g2 T)

uniformly; and for d > dy,

(T/2] T-1
wr(d) = O, Zqu/erde Z (Tit)dofdfltl/Q+T7d71T3/2+T1/27d
t=1 t=[T/2]

0, (1(d > 1/2) +logT1(d = 1/2) + TY*741(d < 1/2))
= 0, (Tmax(l/H»OM (d#1/2) +logT1(d =1 /2))
o

) (Tmax(1/2—d,0) 10g T)

uniformly. The claimed bound is then readily assembled. [
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Lemma 4 For all d,

=i @) _ ().

=7

Proof of Lemma 4 Note that 7, (d) is the coefficient of L! in the expansion of (9/0d) A?. But
also
k

9 o} o> 13 o0 t - k;(d)
%Ad:AdlogA:—ij(d)LJZ?:—Z ZFT L. O

j=0 k=1 t=1 | j=1
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Table 1: Scaled asymptotic bias b (d) x 100/T of Fixed Effect estimate

T \d:| 03 06 09 1.0 1.1 1.4
5|-17.77 -11.04 -225 0 176 4.77

10 | -11.54 -6.64 -1.17 0 0.85 2.24

100 | -225 -1.04 -013 0 0.08 021

Table 2: Scaled asymptotic bias b2 (d) x 100/T of Differenced estimate

T \d:| 03 06 09 1.0 11 14
52705 543 020 0 014 117

10 | 28.94 451 014 0  0.08 0.63

100 | 18.90 1.18 0.02 0  0.01 0.06

Table 3: Relative bias of PML and Difference estimates b2 (dy) /b2 (do)

T \d:| 03 06 09 10 11 14
5038 0739 0984 - 0986 0.845

10 | 0.291 0.696 0.983 -  0.986 0.846

100 | 0.111 0.600 0.981 -  0.986 0.845

Table 4. Approximation to asymptotic bias of Fixed Effect estimate b% (d) x 100/T

T \d:| 03 06 09 1.0 1.1 1.4
5-19.57 -22.02 -250 0 162 3.56

10 | -14.00 -11.01 -1.25 0 0.81 1.78

100 | 280 -1.10 -0.13 0 0.08 0.8

Table 5. Approximation to asymptotic bias of Difference estimate b2 (d) x 100/T

T\d:| 03 06 09 1.0 11 14
55527 8264 044 0 020 1.28

10 | 52.17 4132 022 0 0.0 0.64

100 | 2621 413 002 0 001 0.06

Table 6: 100x Empirical bias of Fixed Effect estimates C/Pi: , Jg

Uncorrected estimates dAg

Bias-corrected estimates df. = d — bE (dL) /T

do : 0.3 0.6 0.9 1.0 1.1 14 0.3 0.6 0.9 1.0 1.1 14
T NT =100 NT =100

5|-19.95 -4542 -1943 -6.51 -0.33 2.37 -0.42  -26.69 -12.57 -4.69 -1.62 -2.48

10 | -17.80 -21.13 -4.27 -1.81 -0.42 0.50 -5.11  -11.34 -2.22 -141 -1.11 -1.73
T NT =200 NT =200

5 |-20.00 -48.28 -14.06 -2.49 1.25 3.69 -0.47 -29.01 -834 -1.70 -0.52 -1.26

10 | -18.92 -20.23 -2.88 -091 0.24 1.51 -6.15 -10.32 -1.17 -0.72 -0.57 -0.76

100 | -12.95 -7.99 -1.54 -0.71 -0.19 0.43 -5.05 -3.0r -0.76 -0.63 -0.57 -0.66
T NT =400 NT =400

5| -20.00 -49.62 -9.11 -0.88 1.75 4.49 -0.47 -30.13 -448 -0.57 -0.18 -0.53

10 | -19.58 -19.32 -2.20 -045 0.59 2.01 -6.77 -937 -0.65 -036 -0.28 -0.29

100 | -13.38 -7.31 -1.11  -0.35 0.13 0.83 -5.45 244  -040 -0.31 -0.28 -0.26
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Table 7: 100x Empirical bias of Difference estimates c/l? , JCLF)

Uncorrected estimates C/Z\IQ Bias-corrected estimates d2 = c?QDw — bR (c/i\i[p) )/T
do:| 0.3 0.6 0.9 1.0 1.1 1.4 0.3 0.6 0.9 1.0 1.1 1.4
T NT =100 NT =100
5| 2180 564 -076 -1.05 -0.85 -0.46 11.58 1.17 -1.36 -1.28 -1.09 -1.58
10 | 1791 3.63 -093 -1.10 -1.00 -0.93 6.04 -056 -1.31 -1.22 -1.13 -1.53
T NT =200 NT =200
52234 613 -028 -0.56 -0.36 0.66 13.01 222 -0.66 -0.67 -0.54 -0.51
10 | 18.63 4.14 -0.44 -0.60 -0.50 -0.00 8.07 050 -0.69 -0.66 -0.60 -0.62
100 | 15.12 2,59 -0.50 -0.59 -0.54 -0.33 4.04 -0.37 -0.65 -0.62 -0.59 -0.64
T NT = 400 NT = 400
5| 2265 642 -0.00 -0.29 -0.09 1.23 13.77 279 -0.29 -0.34 -0.25 0.03
10 | 19.06 4.47 -0.15 -0.31 -0.21 0.43 913 110 -0.34 -0.34 -0.30 -0.20
100 | 15.71 294 -0.20 -0.30 -0.24 0.06 5.56 022 -032 -0.31 -0.29 -0.26
Table 8: 100x Empirical bias of PML estimates &7;, élv;
Uncorrected estimates d2 Bias-corrected estimates df = d2 — b2 (dL)/T
do:| 0.3 0.6 0.9 1.0 1.1 1.4 0.3 0.6 0.9 1.0 1.1 1.4
T NT =100 NT =100
5| 018 -1.86 -1.17 -098 -0.84 -1.22 -9.7%  -6.19 -1.v0 -1.17 -1.05 -2.14
10 | -0.58 -1.43 -1.09 -1.00 -0.94 -1.27 -8.75 -487 -143 -1.11 -1.06 -1.77
T NT =200 NT = 200
51|-031 -0.98 -0.58 -049 -0.42 -0.47 -10.47 -5.17 -0.95 -0.58 -0.58 -1.42
10 | -0.54 -0.76 -0.56 -0.51 -0.47 -0.52 -8.84 -4.07 -0.80 -0.56 -0.57 -1.03
100 | -0.55 -0.65 -0.56 -0.53 -0.52 -0.57 -6.49 -294 -0.90 -0.56 -0.57 -0.83
T NT =400 NT = 400
5]-031 -0.46 -0.28 -0.23 -0.20 -0.17 -10.60 -4.57 -0.56 -0.28 -0.35  -1.15
10 | -0.33 -0.38 -0.28 -0.26 -0.24 -0.23 -8.69 -3.60 -047 -0.28 -0.33 -0.75
100 | -0.28 -0.31 -0.27 -0.26 -0.25 -0.24 -6.25 -2.54 -038 -0.27 -0.30 -0.51
Table 9: Empirical MSEx 100 of Fixed Effect estimates d%, dF
Uncorrected estimates &?} Bias-corrected estimates d2 = c/l? - b?(@;) /T
do:| 0.3 0.6 0.9 1.0 1.1 1.4 03 06 09 10 1.1 1.4
T NT =100 NT =100
51400 2295 1576 6.69 2.64 0.75 0.02 864 890 4.08 1.79 0.66
10 | 3.51 809 205 137 1.10 0.68 0.55 398 1.38 1.06 0.94 0.67
T NT =200 NT =200
51400 24.04 949 215 087 0.51 0.00 891 5.23 131 0.61 0.35
10 | 3.69 6.29 088 0.61 0.52 0.40 048 269 059 048 045 0.36
100 | 2.17 156 052 045 042 0.35 0.71 081 0.43 040 0.39 0.35
T NT =400 NT = 400
51400 2473 432 062 042 042 0.00 9.16 226 039 0.29 0.19
10 | 3.86 4.94 0.2 0.29 0.26 0.25 049 176 0.27 0.23 0.22 0.20
100 | 2.09 099 025 0.22 0.20 0.19 0.58 041 0.21 0.19 0.19 0.18
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Table 10: 100x Empirical MSE of Difference estimates c/l? , gl?

Uncorrected estimates C/Z\QQ Bias-corrected estimates d2 = @Dw — b2 (a\% )/T
d:/103 06 09 10 11 1.4 03 06 09 1.0 1.1 1.4
T NT =100 NT =100
51579 143 119 120 1.19 0.82 3.96 195 137 1.25 1.17 0.80
10 | 409 1.01 0.92 093 093 0.73 3.17 156 1.03 0.96 0.92 0.72
T NT =200 NT =200
5|551 093 0.59 060 0.59 047 293 097 0.67 061 0.57 0.44
10 | 3.90 0.60 045 0.46 045 0.40 1.88 0.73 049 0.46 045 0.39
100 | 2.72 045 039 039 039 0.36 1.59 0.60 0.41 0.40 0.39 0.36
T NT = 400 NT = 400
5|540 0.70 0.30 0.30 0.30 0.27 2,51 0.54 0.33 030 0.29 0.24
10 | 3.85 0.42 0.22 023 022 0.21 142 036 0.24 0.23 0.22 0.21
100 | 2.68 0.27 0.19 0.19 0.19 0.18 095 029 020 0.19 0.19 0.18

Table 11: 100x Empirical MSE of PML estimates c/l7TD, &?

Uncorrected estimates d2 Bias-corrected estimates df = d2 — b2 (dL)/T

dy:103 06 09 1.0 11 1.4 03 06 09 10 1.1 1.4
T NT =100 NT =100

51237 222 126 1.09 1.00 0.75 4.07 331 142 1.14 098 0.75

10 | 1.56 1.40 094 0.87 0.83 0.68 277 205 1.03 089 0.82 0.69
T NT = 200 NT = 200

5| 146 1.08 0.60 0.52 048 0.40 3.00 1.73 0.67 0.53 0.46 0.40

10 | 090 0.67 045 042 040 0.36 1.92 1.06 049 0.42 0.39 0.36

100 | 0.63 0.50 039 0.37 0.36 0.34 1.18 0.71 041 0.37 0.36 0.34
T NT = 400 NT = 400

51082 052 029 025 023 0.21 2.18 093 0.32 0.26 0.22 0.21

10 | 047 0.33 0.22 0.20 0.19 0.18 1.35 0.57 0.23 0.20 0.19 0.19

100 | 0.32 0.25 0.19 0.18 0.18 0.17 0.77 037 0.20 0.18 0.17 0.17

Table 12: Empirical coverage of 95% CI based on c/i?;, dE

Uncorrected estimates c/lgf Bias-corrected estimates gg = c/lgf - b?(c/ij; )/T
do : 0.3 0.6 0.9 1.0 1.1 1.4 0.3 0.6 0.9 1.0 1.1 1.4
T NT =100 NT =100

5| 017 418 56.17 70.08 76.82 96.08 99.90 394 6528 79.29 84.15 92.36
10 | 14.34 36.83 78.00 83.57 86.42 95.51 98.30 53.69 84.70 87.72 89.10 93.66
T NT =200 NT =200

5| 0.01 1.36  55.98 71.08 76.79 97.63 99.99 1.22 68.82 80.81 84.65 92.75

10 | 4.25 26.89 7822 84.27 86.88 96.71 99.37 48.75 85.69 88.36 89.50 94.12

100 | 34.47 61.87 87.23 89.64 90.79 96.23 66.33 78.74 90.46 91.34 91.77 95.04
T NT =400 NT =400

5 0 0.18 5420 71.41 75.85 67.41 100.00 0.19 70.20 81.60 85.16 93.17
10 | 039 14.63 77.75 84.57 86.91 85.98 99.88 41.74 86.03 88.66 89.75 94.59
100 | 16.27 52.86 87.56 90.04 91.09 91.50 99.08 7794 90.87 91.72 92.10 92.35
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Table 13: Empirical coverage of 95% CI based on c/l;[«) . dP
Bias-corrected estimates d2 = C/Z\IQ — bR (LTQQ)/T

Uncorrected estimates c/i\i[p)

do:| 0.3 0.6 0.9 1.0 1.1 1.4 0.3 0.6 0.9 1.0 1.1 1.4

T NT =100 NT =100

5| 2538 7933 84.26 84.05 84.08 93.01 49.49 7394 81.94 83.65 84.83 92.20

10 | 37.15 87.32 89.09 88.98 89.07 93.90 59.10 80.50 87.57 88.64 89.38 93.45
T NT =200 NT =200

5| 584 7193 8390 8375 83.94 94.13 36.60 72.45 8191 83.56 84.79 92.79

10 | 11.91 83.00 89.31 89.16 89.14 94.75 50.94 80.10 87.96 89.01 89.54 94.01

100 | 24.68 89.49 91.70 91.61 91.64 95.27 59.11 84.83 90.95 91.53 91.81 94.97
T NT =400 NT = 400

5| 0.26 58.03 8387 83.77 84.02 83.80 20.17 69.13 81.95 83.68 84.9 86.33

10 | 0.93 7437 89.32 89.18 89.29 89.67 37.27 79.32 88.03 89.10 89.76 90.34

100 | 456 85.27 91.93 91.83 91.91 92.17 51.33 84.91 91.28 91.79 92.11 92.28

Table 14: Empirical coverage of 95% CI based on c’iz,f , dvg
Uncorrected estimates d2 Bias-corrected estimates df = d — b2 (dL) /T
dy:| 0.3 0.6 0.9 1.0 1.1 1.4 0.3 0.6 0.9 1.0 1.1 1.4

T NT =100 NT =100

5159.04 7141 8397 86.23 87.81 93.60 48.77  63.38 82.09 85.94 88.38 92.84

10 | 73.30 81.69 89.13 90.25 90.92 94.35 60.36 73.98 87.80 89.99 91.15 93.95
T NT =200 NT =200

5 | 58.88 7145 84.41 86.74 8821 94.10 43.86 61.83 8259 86.61 88.88 92.76

10 | 73.34 8197 89.59 90.67 91.30 94.94 53.96 72.52 88.37 90.54 91.60 94.34

100 | 82.29 87.63 91.91 9242 92.69 95.41 67.29 81.06 91.21 92.30 9285 95.09
T NT =400 NT =400

5] 59.08 71.63 8498 87.36 88.85 90.36 35.72  59.27 83.11 87.30 89.61 89.98

10 | 73.47 82.22 89.94 91.11 91.72 92.32 43.44 70.20 88.80 91.03 92.09 92.17

100 | 82.56 8794 9234 9296 93.28 93.45 58.46 79.65 91.67 9291 9344 93.32
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