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Judgment aggregation without full rationality
Franz Dietrich and Christian List1

August 2006, revised June 2007

Abstract

Several recent results on the aggregation of judgments over logically connected
propositions show that, under certain conditions, dictatorships are the only
propositionwise aggregation functions generating fully rational (i.e., complete
and consistent) collective judgments. A frequently mentioned route to avoid
dictatorships is to allow incomplete collective judgments. We show that this
route does not lead very far: we obtain oligarchies rather than dictatorships
if instead of full rationality we merely require that collective judgments be
deductively closed, arguably a minimal condition of rationality, compatible even
with empty judgment sets. We derive several characterizations of oligarchies and
provide illustrative applications to Arrowian preference aggregation and Kasher
and Rubinstein�s group identi�cation problem.

1 Introduction

Sparked by the "discursive paradox", the problem of judgment aggregation has
recently received much attention. The paradox consists in the fact that, if a
group of individuals takes majority votes on logically connected propositions,
the resulting collective judgments may be inconsistent, even when all individual
judgments are consistent (Pettit 2001, extending Kornhauser and Sager 1986).
Condorcet�s famous paradox of cyclical majority preferences is a special case
of the "discursive paradox", applied to judgments of binary preferability of the
form "x is preferable to y", "y is preferable to z" and so on (List and Pettit
2004). A simple example of the general problem is given in Table 1, where a
and b are atomic propositions and a ^ b is their conjunction.
From subsequent impossibility results we know that majority voting is not

alone in its failure to ensure rational collective judgments on interconnected

1This paper was circulated in August 2006 and presented at the Yale workshop on Aggre-
gation of Opinions, September 2006, at the Centre interuniversitaire de rechere en économie
quantitative, Montreal, October 2006, and at the 1st International Workshop on Computa-
tional Social Choice, Amsterdam, December 2006. We are grateful to the participants at
these occasions and the anonymous referees for comments. We also thank Ton Storcken for
discussion. Elad Dokow and Ron Holzman have independently proved closely related results,
which were also presented at the Yale workshop in September 2006, and circulated in the
December 2006 paper (Dokow and Holzman 2006). Addresses for correspondence: C. List,
Department of Government, London School of Economics, London WC2A 2AE, U.K.; F. Di-
etrich, Department of Quantitative Economics, University of Maastricht, P.O. Box 616, 6200
MD Maastricht, The Netherlands.



a b a ^ b
Individual 1 True True True
Individual 2 True False False
Individual 3 False True False
Majority True True False

Table 1: A discursive paradox

propositions, where rationality is understood as the conjunction of two require-
ments. Consistency: the set of accepted propositions must not entail a con-
tradiction; and completeness: it must contain a member of every proposition-
negation pair under consideration. The generic �nding is that dictatorships are
the only propositionwise aggregation functions generating consistent and com-
plete collective judgments and satisfying some minimal conditions (List and
Pettit 2002, Pauly and van Hees 2006, Dietrich 2006, Gärdenfors 2006, Nehring
and Puppe 2002, 2005, van Hees 2007, Dietrich 2007, Mongin 2005, Dokow and
Holzman 2005, Dietrich and List 2007a; the precise conditions di¤er from result
to result). This �nding is broadly analogous to Arrow�s theorem for preference
aggregation.2

A frequently mentioned way to avoid this impossibility is to drop the com-
pleteness requirement at the collective level and thus to allow the group to make
no judgment on some propositions. Examples of aggregation functions that en-
sure consistency at the expense of incompleteness are unanimity and certain
supermajority functions, where a proposition �and similarly its negation �is
collectively accepted if and only if a particular supermajority or all of the indi-
viduals accept it (List and Pettit 2002, List 2004, Dietrich and List 2007b; the
latter paper contains an analysis of anonymous judgment aggregation without
full rationality).

The most forceful critique of requiring completeness has been made by Gär-
denfors (2006), in line with his in�uential theory of belief revision (Alchourron,
Gärdenfors and Makinson 1985). Describing completeness as a "strong and
unnatural assumption", Gärdenfors has argued that neither individuals nor a
group need to hold complete judgments and that "the [existing] impossibility
results are consequences of an unnaturally strong restriction on the outcomes of
a voting function". Gärdenfors has also proved the �rst impossibility result on
judgment aggregation without completeness. His result shows that, under cer-
tain conditions, any aggregation function generating consistent and deductively
closed (but not necessarily complete) collective judgments is weakly oligarchic:
there is a smallest subgroup of individuals �the oligarchs �whose joint individ-
ual acceptance of any proposition is su¢ cient (though perhaps not necessary)

2Precursors to this recent literature are Wilson�s (1975) and Rubinstein and Fishburn�s
(1986) contributions on abstract aggregation theory. A related literature in arti�cial intelli-
gence is also concerned with merging sets of propositions, but without aiming at proposition-
wise aggregation (e.g., Konieczny and Pino-Perez 2002).
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for its collective acceptance. Deductive closure is the requirement that any
proposition under consideration that is entailed by other accepted propositions
must also be accepted (List and Pettit 2002).

In this paper, we continue this line of research and investigate judgment
aggregation without the completeness requirement. We drop this requirement,
�rst at the collective level and later at the individual one, replacing it with the
weaker requirement of merely deductively closed judgments, not even demand-
ing consistency. Under standard conditions on the aggregation function and
tight conditions on the agenda of propositions under consideration, we char-
acterize (strong) oligarchies:3 under such an aggregation function, there is a
subgroup of individuals �the oligarchs �whose joint acceptance of any propo-
sition is necessary and su¢ cient for its collective acceptance. Thus the set of
collectively accepted propositions is simply the set of propositions unanimously
accepted by the oligarchs. Our main result also implies a characterization of
the unanimity function,4 which is the only anonymous oligarchy. Further corol-
laries are new variants of existing characterizations of dictatorships (but using
no consistency condition). We provide illustrative applications of our results to
Arrowian preference aggregation problems and Kasher and Rubinstein�s group
identi�cation problem.

Our results strengthen Gärdenfors�s results in three respects. First, they
impose weaker conditions on aggregation functions. Second, they show that
strong and not merely weak oligarchies are implied by these conditions and in
fact fully characterize them. Third, they do not require the logically rich and
in�nite agenda of propositions Gärdenfors assumes. They reinforce Gärdenfors�s
arguments, however, in showing that, under surprisingly mild conditions, we are
restricted to oligarchic aggregation functions.

In judgment aggregation, one can distinguish between impossibility results
(like the results in List and Pettit 2002, Pauly and van Hees 2006, Dietrich
2006, Gärdenfors 2006) and characterizations of impossibility agendas (like the
present results and the results cited below). The former show that, for certain
agendas of propositions, aggregation in accordance with certain conditions is
impossible or severely restricted (e.g., to dictatorships or oligarchies). The lat-
ter characterize the precise class of agendas for which such an impossibility or
restriction arises (and thereby also the class of agendas for which it does not
arise). Characterizations of impossibility agendas have the merit of identifying
precisely which kinds of decision problems are subject to the impossibility results
in question and which are free from them. Notoriously, preference aggregation
problems are subject to most such impossibility results. There has been much
recent progress on such characterizations. Nehring and Puppe (2002) were the

3These oligarchies have no default. For truth-functional agendas, Nehring and Puppe
(2005) have characterized oligarchies with a default, which are distinct from the (strong or
weak) oligarchies considered by Gärdenfors (2006) and us. Oligarchies with a default by
de�nition generate complete collective judgments.

4Again without a default, thus with possibly incomplete outcomes.
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�rst to prove such results (originally in the context of the theory of strategy-
proof social choice on generalized single-peaked domains). Subsequent results
have been derived by Dokow and Holzman (2005), Dietrich (2007) and Diet-
rich and List (2007a). But so far all characterizations of impossibility agendas
assume fully rational collective judgments. We here give the �rst characteri-
zations of impossibility agendas without requiring complete or even consistent
collective judgments.5

2 The model

We model a group of individuals who seek to make collective judgments on some
propositions. Let us go through the components of our model.

2.1 Propositions and logic

We represent propositions as sentences in some logic (Dietrich 2007, generalizing
List and Pettit 2002, 2004). The logic is given by:

(i) a set of sentences (called propositions), de�ned as a set L 6= ? closed
under negation (i.e., if p 2 L then :p 2 L, with : as negation symbol);

and in order to represent logical relationships between propositions:

(ii) an entailment relation, de�ned as a binary relation � between sets of
propositions and propositions, where A � p is read as "A entails p" (with
A � L and p 2 L).6

In standard propositional logic, L contains propositions such as a, b, a ^ b,
a_ b, :(a! b) (where ^,_,! denote "and", "or", "if-then", respectively) and
� satis�es fa; a! bg � b, fag � a _ b, but not a � a ^ b.
We call a set A � L inconsistent if A � p and A � :p for some p 2 L, and

consistent otherwise. The logic is assumed to satisfy four axioms.7 Apart from

5For closely related results, see Dokow and Holzman (2006), as referenced in the acknowl-
edgement note.

6Formally, �� P(L)� L.
7L1 (self-entailment): For any p 2 L, fpg � p. L2 (monotonicity): For any p 2 L and any

A � B � L, if A � p then B � p. L3 (completability): ; is consistent, and each consistent
set A � L has a consistent superset B � L containing a member of each pair p;:p 2 L.
L4 (non-paraconsistency): For any A � L and any p 2 L, if A [ f:pg is inconsistent then
A � p. In L4, the converse implication also holds given L1-L3. So, under L1-L4, the notions
of entailment and inconsistency are interde�nable. It follows that we could alternatively use
as the primitive notion the system I of inconsistent sets Y � L rather than the entailment
relation �. The axioms are then: L1*: Every pair fp;:pg � L is inconsistent. L2*: Supersets
of inconsistent sets are inconsistent. L3*: Identical to L3. Then we de�ne entailment by
A � p , A [ f:pg 2 I for all p 2 L and A � L (so that L4 holds by de�nition). Under
the axioms, using � or I as the primitive notion is equivalent; the former is more common in
logic. For more details, see Dietrich (forthcoming).
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standard propositional logic, examples of such logics include predicate, modal
and conditional logics.

We call a proposition p 2 L a tautology if f:pg is inconsistent, a contra-
diction if fpg is inconsistent, and contingent if it is neither a tautology nor a
contradiction.

2.2 The agenda

The set of propositions on which judgments are to be made is called the agenda.
Formally, it is a non-empty subset X � L expressible as X = fp;:p : p 2 X�g
for a set X� � L of unnegated propositions. For simplicity, double negations
in the agenda cancel each other out, i.e., ::p stands for p.8 In our introduc-
tory example, X is fa;:a; b;:b; a^ b;:(a^ b)g in standard propositional logic.
Informally, the agenda captures a particular decision problem; the generality
of the logical framework allows the representation of various realistic decision
problems.

2.3 Individuals and their judgments

The individuals are represented by the set N = f1; 2; : : : ; ng (n � 2). Each
individual i�s judgment set is the set Ai � X of propositions that individual
i accepts. On the standard interpretation, to accept a proposition means to
believe it (but it could alternatively mean to desire it). A pro�le is an n-tuple
(A1; : : : ; An) of individual judgment sets. A judgment set Ai � X is

� consistent if it is a consistent set in L,
� complete if, for every proposition p 2 X, p 2 Ai or :p 2 Ai,
� deductively closed if, for every proposition p 2 X, if Ai � p then p 2 Ai.
The conjunction of consistency and completeness ("full rationality") implies

deductive closure (List 2004, Dietrich 2007). Deductive closure is a much weaker
requirement than full rationality; it can be met by small, even empty, judgment
sets.

2.4 Aggregation functions

A (judgment) aggregation function is a function F that assigns to each admis-
sible pro�le (A1; : : : ; An) a collective judgment set F (A1; : : : ; An) = A � X,
de�ned analogously to an individual one and interpreted as the set of propo-
sitions that the group accepts. The set of admissible pro�les (the domain) is
denoted Dom(F ). We call F

8To be precise, when we use the negation symbol : hereafter, we mean a modi�ed negation
symbol �, where � p := :p if p is unnegated and � p := q if p = :q for some q.
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� universal if Dom(F ) is the "universal" domain of all pro�les of consistent
and complete individual judgment sets;

� consistent, complete, deductively closed if it generates, respectively, a con-
sistent, complete, deductively closed collective judgment set F (A1; : : : ; An)
for every pro�le (A1; : : : ; An) 2 Dom(F ).

Examples of aggregation functions are majority voting, where, for each
(A1; :::; An) in the universal domain,

F (A1; :::; An) = fp 2 X : jfi 2 N : p 2 Aigj > jfi 2 N : p =2 Aigjg

and a dictatorship of individual i 2 N , where, for each (A1; :::; An) in the
universal domain,

F (A1; :::; An) = Ai:

As the "discursive paradox" shows, majority voting, while universal, is neither
consistent nor deductively closed; it is complete when n is odd. Dictatorships
are consistent, complete and deductively closed (as well as universal).

3 Main results

As noted above, standard impossibility results on judgment aggregation es-
tablish the di¢ culty of �nding appealing aggregation functions if we demand
consistent and complete collective judgment sets. Are there any appealing ag-
gregation functions if we weaken this requirement to deductive closure alone
and thus allow incomplete outcomes? The answer to this question depends on
two factors: �rst, the conditions we impose on the aggregation function (in
addition to universality and deductive closure), and second, the richness of the
logical interconnections between the propositions in the agenda.

3.1 Conditions on an aggregation function

Our results share with previous results the requirement of propositionwise ag-
gregation: the group "votes" independently on each proposition, as captured
by the following condition.

Independence. For any p 2 X and any (A1; : : : ; An); (A
�
1; : : : ; A

�
n)

2 Dom(F ), if [for all i 2 N , p 2 Ai , p 2 A�i ] then p 2 F (A1; : : : ; An) ,
p 2 F (A�1; : : : ; A�n).

Interpretationally, independence requires the group judgment on any given
proposition p 2 X to "supervene" on the individual judgments on p (List and
Pettit 2006). This re�ects a "local" notion of democracy, which could for in-
stance be viewed as underlying direct democratic systems that are based on
referenda on various propositions. If we require the group not only to vote
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independently on the propositions, but also to use the same voting method
for each proposition (a neutrality condition), we obtain the following stronger
condition, required by some of our results.

Systematicity. For any p; q 2 X and any (A1; : : : ; An); (A
�
1; : : : ; A

�
n)

2 Dom(F ), if [for all i 2 N , p 2 Ai , q 2 A�i ] then p 2 F (A1; : : : ; An) ,
q 2 F (A�1; : : : ; A�n).

Some of our results also require the following responsiveness condition.

Monotonicity. For any (A1; :::; An) 2 Dom(F ), we have F (A�1; :::; A
�
n) =

F (A1; :::; An) for all (A�1; :::; A
�
n) 2 Dom(F ) arising from (A1; :::; An) by re-

placing one Ai by F (A1; :::; An).

Monotonicity states that changing one individual�s judgment set towards the
present outcome (collective judgment set) does not alter the outcome.9 Finally,
throughout the paper, we use the very weak condition of unanimity preservation.

Unanimity preservation. For any unanimous (A; :::; A) 2 Dom(F ), we have
F (A; :::; A) = A.

3.2 Agenda richness

Interesting impossibility results on judgment aggregation never apply to all
agendas X. Typically, impossibilities using the strong condition of systematic-
ity apply to most agendas of interest, while impossibilities using the weaker
condition of independence apply to a class of agendas that both includes and
excludes many interesting agendas. Our present results con�rm this picture.
We use three agenda conditions: two relatively undemanding ones for the sys-
tematicity result and one more demanding one for the independence result.

The �rst two conditions allow a simpler expression for a �nite agenda or
compact10 logic. For expositional ease, we therefore state their simpli�ed form
for the �nite or compact case here. The general form, valid in all cases, is stated
in the appendix. All our results hold, and are proved, in full generality. Call a
set of propositions Y minimal inconsistent if it is inconsistent and every proper
subset Z ( Y is consistent. So here are the �rst two conditions in the �nite or
compact case:

9This is a judgment-set-wise monotonicity condition, which di¤ers from a proposition-
wise one (e.g., Dietrich and List 2005). Similarly, our condition of unanimity-preservation
is judgment-set-wise rather than proposition-wise. One may consider this as an advantage,
since a �avour of independence is avoided, so that the conditions in the characterization are
in the inutitive sense "orthogonal" to each other.
10A logic (L; �) is compact if, for all A � L and p 2 L, A � p implies that B � p for some

�nite subset B � A. Equivalently, given L1-L4, (L; �) is compact if every inconsistent set
A � L has a �nite inconsistent subset B � A.
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(i) There is a minimal inconsistent set Y � X with jY j � 3 (a standard
condition with a precursor in abstract aggregation theory, the non-median
space condition in Nehring and Puppe 2002).

(ii) There is a minimal inconsistent set Y � X such that (Y nZ)[f:p : p 2 Zg
is consistent for some subset Z � Y of even size (even-number negation
condition in Dietrich 2007 and Dietrich and List 2007a; equivalent, for
�nite X, to Dokow and Holzman�s 2005 non-a¢ neness).

For any p; q 2 X, we write p �� q (p conditionally entails q) if fpg [ Y � q
for some Y � X consistent with p and with :q. For instance, for the agenda
X = fa;:a; b;:b; a ^ b;:(a ^ b)g, we have a ^ b �� a (take Y = ;) and a �� :b
(take Y = f:(a ^ b)g).
(iii) For every contingent p; q 2 X, there exist p1; p2; :::; pk 2 X (with p =

p1 and q = pk) such that p1 �� p2, p2 �� p3, ..., pk�1 �� pk (path-
connectedness, a close variant of Nehring and Puppe�s 2002 total blocked-
ness, equivalent for �nite X).

Conditions (i) and (ii) are relatively undemanding; they are met by most
standard agendas in the judgment aggregation literature. For instance, if X
contains propositions a; b; a^b as in the example of Table 1, then in (i) and (ii) we
can take Y = fa; b;:(a^b)g, where in (ii) Z = fa; bg. IfX contains propositions
a; a ! b; b, then in (i) and (ii) we can take Y = fa; a ! b;:bg, where in
(ii) Z = fa;:bg. In Sections 4 and 5, we show that the conditions are also
met by agendas representing Arrowian preference aggregation or Kasher and
Rubinstein�s group identi�cation problem. Condition (iii) is more demanding.
The agenda X = fa;:a; b;:b; a ^ b;:(a ^ b)g, for example, violates it: for
a negated proposition (:a or :b or :(a ^ b)), there is no path of pairwise
conditional entailments to a non-negated one. The agendas for representing
preference aggregation or group identi�cation problems, however, satisfy (iii),
as discussed in Sections 4 and 5.

3.3 Results

We call an aggregation function F a (strong) oligarchy (dropping "strong" when-
ever there is no ambiguity) if it is universal and given by

F (A1; ::; An) = \i2MAi for each pro�le (A1; :::; An), (1)

where M � N is a �xed non-empty set (of oligarchs). A weak oligarchy is a
universal aggregation function F such that, among all non-empty sets M � N
that satisfy (1) with "=" replaced by "�", there exists a smallest one (the
set of weak oligarchs).11 An oligarchy (respectively, weak oligarchy) accepts all
11The term "oligarchy" (without further quali�cation) refers to a strong oligarchy, whereas

in Gärdenfors (2006) it refers to a weak one. A distinct oligarchy notion is Nehring and
Puppe�s (2005) "oligarchy with a default", which always generates complete collective judg-
ment sets by reverting to a default on each pair p;:p 2 X on which the oligarchs disagree.
Thus oligarchies with a default are special complete weak oligarchies.
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(respectively, at least all) propositions unanimously accepted by the oligarchs.
While an oligarchy is uniquely determined by the set M of oligarchs, a weak
oligarchy is not,12 because F (A1; ::; An) can be any superset of \i2MAi. Fur-
ther, while oligarchies are independent and incomplete (unless there is a single
oligarch or no contingent proposition), weak oligarchies need not satisfy inde-
pendence, and can be complete.

Theorem 1 Let the agenda X satisfy (i) and (ii).

(a) The oligarchies are the only universal, deductively closed,
unanimity-preserving and systematic aggregation functions.

(b) Part (a) continues to hold if the agenda condition (ii) is dropped and the
aggregation condition of monotonicity is added.

Theorem 2 Let the agenda X satisfy (ii) and (iii).

(a) The oligarchies are the only universal, deductively closed,
unanimity-preserving and independent aggregation functions.

(b) Part (a) continues to hold if the agenda condition (ii) is dropped and the
aggregation condition of monotonicity is added.

Proofs are given in the Appendix. Theorems 1 and 2 provide four charac-
terizations of oligarchies. They di¤er in the conditions imposed on aggregation
functions and the agendas permitted. Part (a) of Theorem 2 is perhaps the
most surprising result, as it characterizes oligarchies on the basis of the logically
weakest set of conditions on aggregation functions. We later apply this result to
Arrowian preference aggregation problems and Kasher and Rubinstein�s group
identi�cation problem.

In each characterization, adding the condition of anonymity � i.e., the
requirement that F (A1; : : : ; An) = F (A�1; : : : ; A

�
n) whenever (A1; : : : ; An) and

(A�1; : : : ; A
�
n) are permutations of each other �eliminates all oligarchies except

the unanimity function (i.e., the oligarchy with the set of oligarchs N), and
adding the condition of completeness eliminates all oligarchies except dictator-
ships (i.e., oligarchies with a single oligarch). So we obtain characterizations of
the unanimity function and of dictatorships.

Corollary 1 (a) In each part of Theorems 1 and 2, the unanimity function
is the only aggregation function satisfying the speci�ed conditions and
anonymity.

(b) In each part of Theorems 1 and 2, dictatorships are the only aggregation
functions satisfying the speci�ed conditions and completeness.

Note that none of the characterizations of oligarchic, dictatorial or unanimity
functions uses a collective consistency condition: consistency follows from the

12Unless the agenda contains no contingent propositions (i.e., it contains only tautologies
and contradictions).
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other conditions, as is seen from the consistency of oligarchic, dictatorial or
unanimity functions.

As mentioned in the introduction, our results strengthen Gärdenfors�s (2006)
oligarchy results. We discuss the exact relationship in Section 6, when we relax
the requirement of completeness not only at the collective level but also at the
individual one.

Part (b) of Corollary 1 is also related to the characterizations of dictatorships
by Nehring and Puppe (2002), Dokow and Holzman (2005), Dietrich (2007) and
Dietrich and List (2007a). To be precise, the dictatorship corollaries derived
from parts (a) of Theorems 1 and 2 are variants (without a collective consistency
condition) of Dokow and Holzman�s (2005) and Dietrich and List�s (2007a) char-
acterizations of dictatorships.13 The dictatorship corollaries derived from parts
(b) of Theorems 1 and 2 are variants (again without a collective consistency
condition) of Nehring and Puppe�s (2002) characterizations of dictatorships.

As announced in the introduction, we seek to characterize impossibility agen-
das. While Theorems 1 and 2 establish the su¢ ciency of our agenda conditions
for the present oligarchy results, we also need to establish their necessity. This
is done by the next result. The proof consists in the construction of appropriate
non-oligarchic counterexamples, given in the Appendix.14

Theorem 3 Suppose n � 3 (and X contains at least one contingent proposi-
tion).

(a) If the agenda condition (i) is violated, there is a non-oligarchic aggrega-
tion function that is universal, deductively closed, unanimity-preserving,
systematic and monotonic.

(b) If the agenda condition (ii) is violated, there is a non-oligarchic (in fact,
non-monotonic) aggregation function that is universal, deductively closed,
unanimity-preserving and systematic.

(c) If the agenda condition (iii) is violated, and the agenda is �nite or belongs
to a compact logic, there is a non-oligarchic (in fact, non-systematic) ag-
gregation function that is universal, deductively closed,
unanimity-preserving, independent and monotonic.

Each part of theorem 3 continues to hold if consistency is added as a further
condition on the aggregation function.

13For �nite X, our agenda conditions are equivalent to those of the mentioned other dicta-
torship characterizations.
14Part (c) still holds for n = 2. It could also be shown using an aggregation function

speci�ed by Nehring and Puppe (2002). For �nite X, part (b) could also be shown using
Dokow and Holzman�s (2005) parity rule.
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4 Application I: preference aggregation

We apply Theorem 2 to the aggregation of (strict) preferences, speci�cally to
the case where a pro�le of fully rational individual preference orderings is to be
aggregated into a possibly partial collective preference ordering.

To represent this aggregation problem in the judgment aggregation model,
consider the preference agenda (Dietrich and List 2007a; see also List and Pettit
2004), de�ned as X = fxPy;:xPy 2 L : x; y 2 K with x 6= yg, where
(i) L is a simple predicate logic, with

� a two-place predicate P (representing strict preference), and
� a set of constants K = fx; y; z; :::g (representing alternatives);

(ii) for each S � L and each p 2 L, S � p if and only if S [Z entails p in the
standard sense of predicate logic, with Z de�ned as the set of rationality
conditions on strict preferences.15

We claim that strict preference orderings can be formally represented as
judgments on the preference agenda. Call a binary preference relation � on K
a strict partial ordering if it is asymmetric and transitive, and call � a strict
ordering if it is in addition connected. Notice that (i) the mapping that assigns
to each strict partial ordering � the judgment set A = fxPy;:yPx 2 X : x �i
yg � X is a bijection between the set of all strict partial orderings and the set of
all consistent and deductively closed (but not necessarily complete) judgment
sets; and (ii) the restriction of this mapping to strict orderings is a bijection
between the set of all strict orderings and the set of all consistent and complete
(hence deductively closed) judgment sets.

To apply Theorem 2, we observe that the preference agenda for three or
more alternatives satis�es the agenda conditions of Theorem 2.

Lemma 1 If jKj � 3, the preference agenda satis�es (ii) and (iii).

Proof. Let X be the preference agenda with jKj � 3. To see that X
satis�es (ii) (using the simpli�ed form), take Y = fxPy; yPz; zPxg (for distinct
alternatives x; y; z 2 K), and Z = fxPy; yPzg. It is shown in Dietrich and List
(2007a) that X satis�es (iii) (Nehring 2003 has proved this result for the weak
preference agenda). �

Corollary 2 For a preference agenda with jKj � 3, the oligarchies are the
only universal, deductively closed (and also consistent), unanimity-preserving
and independent aggregation functions.

We have bracketed consistency since the result does not need the condition,
although the interpretation o¤ered above assumes it. In the terminology of

15Z contains (8v1)(8v2)(v1Pv2 ! :v2Pv1) (asymmetry), (8v1)(8v2)(8v3)((v1Pv2 ^
v2Pv3) ! v1Pv3) (transitivity), (8v1)(8v2)(: v1=v2 ! (v1Pv2 _ v2Pv1)) (connectedness)
and, for each pair of distinct contants x; y 2 K, :x=y.
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preference aggregation, Corollary 2 shows that the oligarchies are the only pref-
erence aggregation functions with universal domain (of strict orderings) gen-
erating strict partial orderings and satisfying the weak Pareto principle and
independence of irrelevant alternatives. Here an oligarchy is a preference aggre-
gation function such that, for each pro�le of strict orderings (�1; :::;�n), the
collective strict partial ordering � is de�ned as follows: for any alternatives
x; y 2 K, x � y if and only if x �i y for all i 2 M , where M � N is an
antecedently �xed non-empty set of oligarchs.

This corollary is closely related to Gibbard�s (1969) classic result showing
that, if the requirement of transitive social orderings in Arrow�s framework is
weakened to that of quasi-transitive ones (requiring transitivity only for the
strong component of the social ordering, but not for the indi¤erence compo-
nent), then oligarchies (suitably de�ned for the case of weak preference or-
derings) are the only preference aggregation functions satisfying the remaining
conditions of Arrow�s theorem. The relationship to our result lies in the fact
that the strong component of a quasi-transitive social ordering is a strict partial
ordering, as de�ned above.

5 Application II: group identi�cation

Here we apply Theorem 2 to Kasher and Rubinstein�s (1997) problem of "group
identi�cation" (see also Samet and Schmeidler 2003). A set N = f1; 2; :::; ng
of individuals (e.g., a population) each make a judgment Ji � N on which
individuals in that set belong to a particular social group, subject to the con-
straint that at least one individual belongs to the group but not all individuals
do (formally, each Ji satis�es ? ( Ji ( N).16 The individuals then seek to
aggregate their judgments (J1; :::; Jn) on who belongs to the social group into a
resulting collective judgment J , subject to the same constraint (? ( J ( N).
Thus Kasher and Rubinstein analyse the case in which the group membership
status of all individuals must be settled de�nitively.

By contrast, we apply Theorem 2 to the case in which the membership status
of individuals can be left undecided: i.e., some individuals are deemed members
of the group in question, others are deemed non-members, and still others are
left undecided with regard to group membership, subject to the very minimal
"deductive closure" constraint that if all individuals except one are deemed
non-members, then the remaining individual must be deemed a member, and if
all individuals except one are deemed members, then the remaining individual
must be deemed a non-member.
16This constraint can be interpreted as the conjunction of two feasibility constraints: it is

not feasible for the social group in question to be empty, and it is not feasible for it to be
universal. This may be plausible if citizenship of a country or membership of a club is at
issue. We make some remarks below on what happens if we relax one of these two feasibility
constraints.

12



To represent this problem in our model (drawing on a construction in List
forthcoming), consider the group identi�cation agenda, de�ned as X =
fa1;:a1; :::; an;:ang, where
(i) L is a simple propositional logic, with atomic propositions a1, ..., an and

the standard connectives :, ^, _;
(ii) for each S � L and each p 2 L, S � p if and only if S [Z entails p in the

the standard sense of propositional logic, where Z = fa1 _ :::_ an;:(a1 ^
::: ^ an)g.

Informally, aj is the proposition that "individual j is a member of the social
group", and S j= p means that S implies p relative to the constraint that
the disjunction of a1, ..., an is true and their conjunction false. The mapping
that assigns to each J (with ? ( J ( N) the judgment set A = faj : j 2
Jg [ f:aj : j =2 Jg � X is a bijection between the set of all fully rational
judgments in the Kasher and Rubinstein sense and the set of all consistent and
complete judgment sets in our model. A merely deductively closed judgment
set A � X represents a judgment that possibly leaves the membership status
of some individuals undecided, as outlined above and illustrated more precisely
below.

To apply Theorem 2, we observe that the group identi�cation agenda for
three or more individuals (n � 3) satis�es the agenda conditions of Theorem 2.

Lemma 2 If n � 3, the group identi�cation agenda satis�es (ii) and (iii).

Proof. Let X be the group identi�cation agenda with n � 3. To see that X
satis�es (ii) (using the simpli�ed form), take Y = faj : j 2 Ng, and let Z be an
arbitrary binary subset of Y . It is shown in List (forthcoming) that X satis�es
(iii). �

Corollary 3 For a group identi�cation agenda with n � 3, the oligarchies are
the only universal, deductively closed (and consistent), unanimity-preserving
and independent aggregation functions.

In group identi�cation terms, the oligarchies are the only group identi�cation
functions with universal domain generating possibly incomplete but deductively
closed group membership judgments and satisfying unanimity and indepen-
dence.17 Here an oligarchy is a group identi�cation function such that, for each
pro�le (J1; :::; Jn) of fully rational individual judgments on group membership,

17If the feasibility constraint on membership is relaxed so as to allow either an empty group
or a universal one, then other group identi�cation functions satisfying the conditions become
available: for example, oligarchies with the default of non-membership (if an empty group is
allowed) or with the default of membership (if a universal group is allowed). However, our
systematicity result (part (a) of theorem 1) continues to apply under the weakened feasibility
constraints.
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the collective judgment is given as follows: the set of determinate group mem-
bers is

T
i2M

Ji, the set of determinate non-members is
T
i2M
(NnJi), and the set of

individuals with undecided membership status is the complement of these two
sets in N , where M � N is an antecedently �xed non-empty set of oligarchs.18

6 The case of incomplete individual judgments

As argued by Gärdenfors (2006), it is natural to relax the completeness require-
ment not only at the collective level, but also at the individual one. Do the
above impossibilities disappear if individuals can withhold judgments on some
or even all pairs p;:p 2 X? The answer to this question is negative, even if the
conditions of independence or systematicity are weakened by allowing the col-
lective judgment on a proposition p 2 X to depend not only on the individuals�
judgments on p but also on those on :p. Such weaker independence or system-
aticity conditions are arguably more defensible than the standard conditions:
:p is intimately related to p, and thus individual judgments on :p should be
allowed to matter for group judgments on p. As the weakened conditions are
equivalent to the standard ones under individual completeness, all the results
in Section 3 continue to hold for the weakened independence and systematicity
conditions.

Formally, call F universal* ifDom(F ) is the "extended" universal domain of
all pro�les of consistent and deductively closed (but not necessarily complete)
individual judgment sets (this is a superdomain of the original universal do-
main). An oligarchy* is the universal* variant of an oligarchy as de�ned above.
Following Gärdenfors (2006), call F weakly independent if, for any p 2 X and
any (A1; :::; An); (A�1; :::; A

�
n) 2 Dom(F ), if [for all i 2 N , p 2 Ai , p 2 A�i and

:p 2 Ai , :p 2 A�i ] then p 2 F (A1; : : : ; An) , p 2 F (A�1; : : : ; A�n). Likewise,
call F weakly systematic if, for any p; q 2 X and any (A1; :::; An); (A�1; :::; A

�
n) 2

Dom(F ), if [for all i 2 N , p 2 Ai , q 2 A�i and :p 2 Ai , :q 2 A�i ] then
p 2 F (A1; : : : ; An), q 2 F (A�1; : : : ; A�n).
We now give analogues of parts (a) of Theorems 1 and 2, proved in the

Appendix.

Theorem 1* Let the agenda X satisfy (i) and (ii). The oligarchies* are the
only universal*, deductively closed, unanimity-preserving and weakly systematic
aggregation functions.

18The set of individuals whose group membership status is to be decided need not coincide
with the set of individuals who submit judgments on who is a member. More generally, the set
N can make judgments on which individuals in another set K (jKj � 3) belong to a particular
social group, subject to the constraint stated above. K can be in�nite. Corollary 3 continues
to hold since the corresponding group identi�cation agenda (for a suitably adapted logic) still
satis�es (ii) and (iii). Interestingly, if K is in�nite the agenda belongs to a non-compact logic.
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Theorem 2* Let the agenda X satisfy (ii) and (iii). The oligarchies* are the
only universal*, deductively closed, unanimity-preserving and weakly indepen-
dent aggregation functions.

In analogy with Theorems 1 and 2, these characterizations of oligarchies*
do not contain a collective consistency condition (but require individual con-
sistency). In each of Theorems 1* and 2*, adding the collective completeness
requirement (respectively, anonymity) narrows down the class of aggregation
functions to dictatorial ones (respectively, the unanimity function), extended
to the domain of all pro�les of consistent and deductively closed individual
judgment sets. So Theorems 1* and 2* imply characterizations of the latter
functions on the extended universal domain. Further, our applications of Theo-
rem 2 to the preference and group identi�cation agendas in Sections 4 and 5 can
accommodate the case of incomplete individual judgments by using Theorem
2* instead of Theorem 2.

We can �nally revisit the relationship of our results with Gärdenfors�s results.
Theorem 2, Corollary 1 and Theorem 2* strengthen Gärdenfors�s oligarchy re-
sults. First, they do not require Gärdenfors�s "social consistency" condition.19

Second, they show that the conditions on aggregation functions imply (and in
fact fully characterize) strong and not merely weak oligarchies (respectively,
oligarchies*). Third, they weaken Gärdenfors�s assumption that the agenda has
the structure of an atomless Boolean algebra, replacing it with the weakest
possible agenda condition under which the oligarchy result holds, i.e., (ii) and
(iii).20

Our results reinforce the observation that, if we seek to avoid the standard
impossibility results on judgment aggregation by allowing incomplete judgments
while preserving the requirements of deductive closure and (weak) indepen-
dence, this route does not lead very far. To obtain genuine possibilities, deduc-
tive closure must be relaxed or �perhaps better �independence must be given
up in favour of non-propositionwise aggregation functions.
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A Appendix: proofs

We �rst introduce some notation. Let C be the set of all consistent and complete
judgment sets A � X, and C� the set of all consistent and deductively closed
(but not necessarily complete) ones.

For all B � X,
� if B is consistent let AB � X be any consistent and complete judgment
set such that B � AB (AB is a "completion" of B and exists by L1-L3);

� let B := fp 2 X : B � pg (B is the "deductive closure" of B);
� let B: := f:p : p 2 Bg.
Also, for any sets Z � Y , let Y:Z denote the set (Y nZ) [ f:p : p 2 Zg,

which arises from Y by negating the propositions in Z.

Further, when we consider a pro�le (A1; :::; An); we often write Np for the
set fi : p 2 Aig of individuals accepting p 2 X.
Finally, for any W � P(N) (which can be arbitrary, even empty), let FW

be the universal aggregation function given by

F (A1; :::; An) = fp 2 X : Np 2 Wg for each pro�le (A1; :::; An) 2 Cn.

Let us �rst state conditions (i) and (ii) in full generality.

(i) There is an inconsistent set Y � X with pairwise disjoint subsets Z1; Z2; fpg
such that Y:Z1 , Y:Z2 and Y:fpg are consistent.

(ii) There is an inconsistent set Y � X with disjoint subsets Z; fpg such that
Y:Z , Y:fpg and Y:(Z[fpg) are consistent.

The following lemma illuminates their logical relationship with the simpli-
�ed expressions stated in the main text, which we now relabel (imain text) and
(iimain text), respectively.
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Lemma 3 (a) If X is �nite or belongs to a compact logic, (i) is equivalent
to (imain text), and (ii) is equivalent to (iimain text).

(b) In general, (imain text) implies (i), and (iimain text) implies (ii).

Proof. To prove (a) and (b), we show the implications (i))(imain text),
(imain text))(i), (ii))(iimain text), and (iimain text))(ii), where in the �rst and
third implication we assume that X is �nite or the logic is compact.

(i))(imain text). Let Y; Z1; Z2; p be as in (i), and Y 0 � Y a minimal inconsis-
tent set (which exists by the assumption of a �nite X or compact logic). As by
(i) Y 0 intersects with each of Z1; Z2; fpg, jY 0j � 3, implying (imain text).
(imain text))(i). Let Y be as in (imain text), and Z1; Z2; fpg disjoint singleton

subsets of Y .

(ii))(iimain text). Let Y; Z; p be as in (ii). (iimain text) holds for a minimal
inconsistent set Y 0 � Y (which exists by the assumption of a �niteX or compact
logic) and the subset Z \ Y 0 or (Z \ Y 0) [ fpg (whichever has even size).
(iimain text))(ii). Let Y be as in (iimain text), and choose a Z � Y of smallest

even size such that Y:Z is consistent. If Y:Z0 is consistent for a Z 0 � Z of size
jZj � 1, one easily checks that (ii) holds for Y with disjoint subsets Z 0; fpg =
ZnZ 0. Now assume

Y:Z0 is inconsistent for all Z 0 � Z of size jZj � 1. (2)

Then jZj � 4, as jZj is even, not zero (otherwise Y:Z = Y , which is inconsistent)
and not 2 (otherwise, by Y �s minimal inconsistency, Y:Z0 would be consistent
for subsets Z 0 � Z of size jZj � 1 = 1). So Y contains no pair r;:r (something
we will implicitly use), and contains distinct p; q 2 Z. Let

eZ := (Znfp; qg):, Y 0 := (Y nZ) [ eZ [ fpg.
We show (ii) for the set Y 0 with disjoint subsets fpg; eZ.
First, Y 0 is inconsistent as Y 0[fqg and Y 0[f:qg are inconsistent: Y 0[fqg =

Y:(Znfp;qg) by Z�s minimality property, and Y 0 [ f:qg = Y:(Znfpg) by (2).
Second, Y 0: eZ = Y nfqg and Y 0:(fpg[ eZ) = Y:fpgnfqg are consistent by Y �s

minimal inconsistency; and Y 0:fpg is so by Y
0
:fpg � Y:Z and Y:Z�s consistency. �

The next two lemmas have simple proofs, which we leave to the reader.

Lemma 4 The intersection of deductively closed judgment sets is deductively
closed. In particular, oligarchies are deductively closed.

Lemma 5 (a) F is universal and systematic if and only if F = FW for some
W � P(N).

(b) F is oligarchic if and only if F = FfC�N :M�Cg for some ; 6=M � N .
(c) Let X contain a contingent proposition. Then, for all W ;W 0 2 P(N),
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� if W 6=W 0 then FW 6= FW 0;
� FW is unanimity-preserving if and only if N 2 W and ; =2 W;
� FW is monotonic if and only if

C 2 W&C � C� � N ) C� 2 W. (3)

The next two lemmas are the essential steps towards Theorem 1.

Lemma 6 LetX satisfy (ii). For allW � P(N), if FW is unanimity-preserving
and deductively closed, then (3) holds, i.e. FW is monotonic by Lemma 5.

Proof. Assume (ii). Let W � P(N), and suppose F := FW is unanimity-
preserving and deductively closed. We assume C 2 W&C � C� � N and show
C� 2 W. Let Y; Z; p be as speci�ed in (ii). A pro�le (A1; :::; An) can be de�ned
(using the above notation) by

Ai =

8<:
AY:fpg if i 2 C
AY:Z if i 2 NnC�
AY:(Z[fpg) if i 2 C�nC,

where we used that Y:fpg, Y:Z and Y:(Z[fpg) are consistent sets by (ii). Now
F (A1; :::; An) contains all q 2 Z by Nq = C 2 W, and all q 2 Y n(Z [ fpg)
by Nq = N 2 W. So Y nfpg � F (A1; :::; An). By Y �s inconsistency (and
L4), Y nfpg � :p, whence F (A1; :::; An) � :p. So, by deductive closure, :p 2
F (A1; :::; An). Hence N:p 2 W, i.e. C� 2 W, as desired. �

Lemma 7 Let X satisfy (i). For all ; 6= W � P(N) satisfying (3), FW is
deductively closed if and only if W = fC � N :M � Cg for some M � N .

Proof. Let X and W be as speci�ed. Let F := FW .

First, supposeW = fC � N :M � Cg for some M � N . If M 6= ;, then F
is oligarchic by Lemma 5(b), hence deductively closed by Lemma 4. If M = ;,
then W = P(N) by (3), whence F always generates the full set X, hence is
again deductively closed.

Second, suppose F is deductively closed. Note that, to show that W =
fC � N : M � Cg for some M � N , it su¢ ces (by W 6= ; and (3)) to show
that W is closed under taking �nite intersections. Let W;W 0 2 W, and let us
show that W \W 0 2 W. Let Y; Z1; Z2; fpg be as in (i), and consider the pro�le
(A1; :::; An) given (in the above notation) by

Ai =

8<:
AY:Z1 if i 2 NnW
AY:Z2 if i 2 WnW 0

AY:fpg if i 2 W \W 0,
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where we use that Y:Z1, Y:Z2 and Y:fpg are each consistent by (i). Then
F (A1; :::; An) contains all q 2 Z1 by Nq = Nn(NnW ) = W 2 W, con-
tains all q 2 Z2 by Nq = Nn(WnW 0) � W 0 2 W and (3), and contains all
r 2 Y n(Z1 [ Z2 [ fpg) by Nr = N 2 W. So Y nfpg � F (A1; :::; An). By Y �s
inconsistency (and L4), Y nfpg � :p. Hence F (A1; :::; An) � :p, so that by
deductive closure :p 2 F (A1; :::; An). Hence N:p 2 W, i.e. W \W 0 2 W, as
desired. �

Proof of Theorem 1. We prove �rst part (b) and then part (a).

(b) Let (i) hold. As noted above, oligarchies satisfy the speci�ed conditions.
Now suppose F satis�es the conditions. By Lemma 5(a), F = FW for some
W � P(N), where by Lemma 5(c) W satis�es (3), ; =2 W and N 2 W. Hence
Lemma 7 applies, so that W = fC � N : M � Cg for some M � N . As
; =2 W, M 6= ;. So, by Lemma 5(b), F is oligarchic.
(a) Let (i) and (ii) hold. Again, as noted, oligarchies have the speci�ed

properties. Suppose now that F has these properties. By Lemma 5(a), F = FW
for some W � P(N). By Lemma 6, F is monotonic. So, by part (b), F is
oligarchic. �

Theorem 2 follows from Theorem 1 with the help of two further lemmas. The
�rst lemma is similar to a proof step in Dietrich and List (forthcoming), and
the second lemma shows that a standard argument, �rst made by Nehring and
Puppe (2002), requires neither completeness and consistency, nor monotonicity.

Lemma 8 If X satis�es (iii) and contains a contingent proposition, (i) holds.

Proof. Let X be as speci�ed. Then there are a contingent q 2 X, and
propositions q = p1; p2; :::; pk = :q 2 X such that pt �� pt+1 for all t 2 f1; :::; k�
1g. We �rst show that pt 6� pt+1 for some t 2 f1; :::; k�1g. Assume the contrary
holds. As fp1g = fqg is consistent and p1 � p2, fp1; p2g is consistent. So,
as p2 � p3, fp1; p2; p3g is consistent. Repeating this procedure, fp1; :::; pkg is
consistent. But then fp1; pkg = fq;:qg is consistent, a contradiction.
As just shown, there is a t 2 f1; :::; k � 1g with pt 6� pt+1. As pt �� pt+1, we

have fptg [ Y � � pt+1 for a Y � � X consistent with each of pt and :pt+1. It
follows that

fpt;:pt+1g [ Y � is inconsistent, (4)

fpt; pt+1g [ Y � and f:pt;:pt+1g [ Y � are each consistent.: (5)

By pt 6� pt+1, we have Y � 6= ;. Since fpt;:pt+1g is consistent, fpt;:pt+1g [ B
is consistent for some set B consisting of exactly one member of each pair
r;:r in fr;:r : r 2 Y �g. Now we de�ne Y := fpt;:pt+1g [ Y �, p := pt,
Z1 := f:pt+1g, and we let Z2 be the subset of Y � for which Y �:Z2 = B. Then, as
required in (i), Y = fpt;:pt+1g[Y � is inconsistent (by (4)), and Z1; Z2; fpg are
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pairwise disjoint subsets of Y , where the three sets Y:fpg = f:pt;:pt+1g [ Y �t ,
Y:Z1 = fpt; pt+1g [ Y �t and Y:Z2 = fpt;:pt+1g [ B are consistent (in the �rst
two cases by (5)). �

Call C � N semi-winning for p 2 X (under F ) if p 2 F (A1; :::; An) for all
pro�les (A1; :::; An) in the domain with fi : p 2 Aig = C.

Lemma 9 Let F be universal, deductively closed, independent and unanimity-
preserving.

(a) For all p; q 2 X, if C � N is semi-winning for p and p �� q then C is
semi-winning for q.

(b) If X satis�es (iii), F is systematic.

Proof. Let F be as speci�ed.

(a) Consider p; q 2 X. Suppose C � N is semi-winning for p and p �� q. By
p �� q, there is a Y � X such that fpg [ Y � q, and fpg [ Y and f:qg [ Y are
consistent. So, as fp;:qg [ Y is inconsistent, fp; qg [ Y and f:p;:qg [ Y are
each consistent. Let (A1; :::; An) be the pro�le given (in the above notation) by

Ai =

�
Afp;qg[Y if i 2 C
Af:p;:qg[Y if i =2 C.

As Np = C and C is semi-winning for p, p 2 F (A1; :::; An). From unanimity-
preservation and independence it follows that Y � F (A1; :::; An). So fpg[Y �
F (A1; :::; An). Hence, by fpg [ Y � q and deductive closure, q 2 F (A1; :::; An).
So, by Nq = C and independence, C is semi-winning for q, as desired.

(b) Let X satisfy (iii). To show systematicity, consider any p; q 2 X and
any (A1; :::; An); (A�1; :::; A

�
n) 2 Cn such that C := fi : p 2 Aig = fi : q 2

A�i g. We suppose that p 2 F (A1; :::; An) and prove that q 2 F (A�1; :::; A
�
n).

The latter holds if C = N : if C = N then, using unanimity-preservation
and independence, it follows that q 2 F (A�1; :::; A�n), as desired. Now let C 6=
N . We have C 6= ;, because otherwise, again by unanimity-preservation and
independence, we have p =2 F (A1; :::; An), a contradiction. As C is neither N
nor ;, p and q are each contingent (by individual rationality). Hence, by (iii),
there are p = p1; p2; :::; pk = q 2 X such that p1 �� p2, p2 �� p3, ..., pk�1 �� pk.
By C = fi : p 2 Aig, p 2 F (A1; :::; An) and independence, C is semi-winning
for p = p1. So a simple induction using part (a) tells us that C is semi-winning
for pk = q, as desired. �

We base come to the proof of Theorems 1*, which we derive from Theorem
1 using two lemmas.

Lemma 10 For all A � X, the "deductive closure" A (= fr 2 X : A � rg) is
deductively closed, and it is consistent if A is consistent.
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Proof. Let A � X.
To show that A is deductively closed suppose for a contradiction that r 2 X

with A � r but r =2 A. Then A 6� r. So, by L4, f:rg [ A is consistent, hence
extendible to a complete and consistent B � X with f:rg [ A � B. As B is
deductively closed, A � B. So f:rg[A � B. So f:rg[A is consistent. Hence
A 6� r, a contradiction.
Now let A be consistent. Then A is extendible to a complete and consistent

set B � X. As B is deductively closed, A � B. So A is consistent. �

For all C;C 0 � N , we call C semi-winning against C 0 for p 2 X (under
F ) if p 2 F (A1; :::; An) for all pro�les (A1; :::; An) in the domain with fi : p 2
Aig = C and fi : :p 2 Aig = C 0; and we call C simply semi-winning against
C 0 (under F ) if C is semi-winning against C 0 for every p 2 X. Note that a
weakly systematic aggregation function F is uniquely given by its set of pairs
(C;C 0) 2 (P(N))2 for which C is semi-winning against C 0.

Lemma 11 Let F be universal*, deductively closed, unanimity-preserving and
weakly systematic. Let C � N be semi-winning against eC � N , with C\ eC = ;.
(a) If X satis�es (ii), C is semi-winning against all C 0 � eC.
(b) If X satis�es (i) and (ii), C is semi-winning against all C 0 � N , i.e. is

semi-winning.

Proof. Let X;F;C; eC be as speci�ed.

(a) Assume (ii) holds, and consider any C 0 � eC. By (ii) there are pairwise
disjoint sets Y �; Z; fpg � X such that

(*) Y � [ Z [ fpg is inconsistent,
(**) Y � [ Z [ f:pg, Y � [ Z: [ fpg and Y � [ Z: [ f:pg are consistent.
Consider the pro�le (A1; :::; An) given (in our notation) by

Ai =

8>>><>>>:
Y � [ Z [ f:pg if i 2 C
Y � [ Z: if i 2 eCnC 0
Y � [ Z: [ fpg if i 2 C 0
Y � if i =2 C [ eC.

This pro�le is in (C�)n, by Lemma 10 and (**). We have Y � � F (A1; :::; An)
because N is winning against ; by unanimity-preservation and weak system-
aticity. Further, for all z 2 Z, as by (**) Y � is consistent with z and with
:z, Y � contains neither z nor :z; and so Nz = C and N:z = eC, whence
Z � F (A1; :::; An) as C is winning against eC. By Y � [ Z � F (A1; :::; An) and
(*), F (A1; :::; An) � :p, whence by deductive closure :p 2 F (A1; :::; An). As
by (**) Y � and Y � [ Z: are each consistent with p and with :p, none of Y �
and Y � [ Z: contains p or :p; and so Np = C 0 and N:p = C. So, using weak
systematicity, C is semi-winning against C 0, as desired.
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(b) Let X satisfy (i) and (ii), and consider any C 0 � N . We show that
C is semi-winning against C 0. This is vacuously true if C \ C 0 6= ; (using
universality*). Now suppose C \ C 0 = ;. As C 0 � NnC, it su¢ ces by part (a)
to show that C is winning against NnC.
By (i) there are pairwise disjoint sets Y �; Z1; Z2; fpg � X such that

(*) Y � [ Z1 [ Z2 [ fpg is inconsistent;
(**) Y � [ Z:1 [ Z2 [ fpg, Y � [ Z1 [ Z:2 [ fpg and Y � [ Z1 [ Z2 [ f:pg are

consistent.

Let (A1; :::; An) be the pro�le given by

Ai =

�
Y � [ Z1 [ Z2 [ f:pg if i 2 C
Y � [ fpg if i 2 NnC.

As in part (a), this pro�le belongs to (C�)n (using Lemma 10 and (**)), and
Y � � F (A1; :::; An) (as N is winning against ; by unanimity-preservation and
weak systematicity). Further, for all z 2 Z1 [Z2, Y � [fpg is by (**) consistent
with z and with :z, whence Y � [ fpg contains neither z nor :z, and so Nz = C
and N:z = ;. So, as C is by part (a) winning against ;, Z1[Z2 � F (A1; :::; An).
By Y �[Z1[Z2 � F (A1; :::; An) and (*), F (A1; :::; An) � :p, so that by deductive
closure :p 2 F (A1; :::; An). So, by N:p = C and Np = NnC and by weak
systematicity C is winning against NnC, as desired. �

Proof of Theorem 1*. LetX be as speci�ed. Oligarchies satisfy all properties
mentioned (using Lemma 4). Now let F have these properties. As F is weakly
systematic, F is given, for all (A1; :::; An) 2 (C�)n, by

F (A1; :::; An) = fp 2 X : Np is semi-winning against N:pg.

So F is oligarchic* if there is a non-empty set M � N such that

C is semi-winning against C 0 ,M � C, for all disjoint C;C 0 � N: (6)

To show this, note �rst that the aggregation function F jCn, obtained by restrict-
ing F to the domain Cn, is by part (a) of Theorem 2 oligarchic, say with set of
oligarchsM . We show that this setM satis�es (6). For any disjoint C;C 0 � N ,
C is semi-winning against C 0 if and only if C is semi-winning against NnC, by
Lemma 11 (and using that (i) holds by Lemma 8). The latter is equivalent to C
being semi-winning under F jCn (using thatN:p = NnNp for all (A1; :::; An) 2 Cn
and all p 2 X), which is in turn equivalent toM � C as F jCn is theM -oligarchy.
�

Theorem 2* follows from Theorem 1* with the help of Lemma 8 (which
ensures that X satis�es (i)) and the following lemma (which ensures that F is
weakly systematic).

23



Lemma 12 Let F be universal*, deductively closed, unanimity-preserving and
weakly independent.

(a) For all p; q 2 X, if C � N is semi-winning against C 0 � N for p, and
p �� q, then C is semi-winning against C 0 for q.

(b) If X satis�es (iii), F is weakly systematic.

Proof (with similarities to the proof of Lemma 9). Let F be as speci�ed.

(a) Consider p; q 2 X. Suppose C � N is semi-winning for p against C 0 � N
and p �� q. If C\C 0 6= ;, it is vacuously true that C is semi-winning against C 0
for q. Now let C \ C 0 = ;. By p �� q, there is a Y � X such that fpg [ Y � q,
and fpg [ Y and f:qg [ Y are consistent. So, as fp;:qg [ Y is inconsistent,
(*) fp; qg [ Y and f:p;:qg [ Y are consistent.
Let (A1; :::; An) be the pro�le given (in the above notation) by

Ai =

8<:
fp; qg [ Y if i 2 C
f:p;:qg [ Y if i 2 C 0
Y if i =2 C [ C 0.

This pro�le is in (C�)n, by (*) and Lemma 10. Further, Y contains none of
p;:p; q;:q: otherwise Y would be inconsistent with (another) one of them,
violating (*). It follows that Np = Nq = C and N:p = N:q = C 0. So, as C
is semi-winning against C 0 for p, p 2 F (A1; :::; An). By unanimity-preservation
and weak independence, Y � F (A1; :::; An). So fpg[Y � F (A1; :::; An). Hence,
by fpg [ Y � q and deductive closure, q 2 F (A1; :::; An). So, as Nq = C and
N:q = C 0, and by weak independence, C is semi-winning against C 0 for q, as
desired.

(b) Let X satisfy (iii). To show weak systematicity, consider any p; q 2 X
and (A1; :::; An); (A�1; :::; A

�
n) 2 (C�)n such that C := fi : p 2 Aig = fi : q 2 A�i g

and C 0 := fi : :p 2 Aig = fi : :q 2 A�i g. We suppose that p 2 F (A1; :::; An)
and prove that q 2 F (A�1; :::; A�n) (the converse being analogous).
First suppose that p or q is non-contingent, i.e. a tautology or contradiction.

Then, as all Ai and A�i are consistent and deductively closed, one of C;C
0

is N and the other one is ;. It is not possible that C = ; and C 0 = N :
otherwise p =2 F (A1; :::; An), since ; is not semi-winning against N for p by
unanimity-preservation and weak independence. So C = N and C 0 = ;. Then,
as desired, q 2 F (A�1; :::; A�n), because N is semi-winning against ; for q, again
by unanimity-preservation and weak independence.

Now let p and q be contingent. Then, by (iii), there are p = p1; p2; :::; pk =
q 2 X such that p1 �� p2, p2 �� p3, ..., pk�1 �� pk. By p 2 F (A1; :::; An)
and weak independence, C is semi-winning against C 0 for p = p1. So a simple
induction using part (a) tells us that C is semi-winning against C 0 for pk = q.
Hence q 2 F (A�1; :::; A�n), as desired. �

We now give constructive proofs of each part of Theorem 3.
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Proof of Theorem 3. Let n � 3 and let X contain a contingent proposition.

(a) Now let F := FW where W is de�ned as W = fC � N : f1; 3g � C
or f2; 3g � Cg. Then, by Lemma 5, F is non-oligarchic, universal, systematic,
unanimity-preserving, and monotonic. We assume that F is not deductively
closed, i.e. there is a pro�le (A1; :::; An) 2 Cn and a q 2 XnF (A1; :::; An), such
that F (A1; :::; An) � q. We prove that (i) holds for

Y := F (A1; :::; An) [ f:qg, p := :q,
Zi := fr 2 X : Nr \ f1; 2; 3g = fi; 3gg for i = 1; 2.

First, Y is inconsistent, as F (A1; :::; An) � q.
Second, we show the pairwise disjointness of the sets Z1; Z2; fpg. Obviously,

Z1\Z2 = ;. As F (A1; :::; An) � A3, we have (9). Now fpg is disjoint with each
Zi, because otherwise p 2 Zi, hence p 2 F (A1; :::; An), so that F (A1; :::; An)
would entail p and also entail q = :p, in contradiction to (9).
Finally, we have to show the consistency of each of Y:Z1, Y:Z2 and Y:fpg. As

Y = F (A1; :::; An) [ fpg is a disjoint union (by an argument like the previous
one),

Y:fpg = F (A1; :::; An) [ f:pg = F (A1; :::; An) [ fqg.
By F (A1; :::; An) � A3 and F (A1; :::; An) � q, we have F (A1; :::; An)[fqg � A3,
i.e. Y:fpg � A3. Hence Y:fpg is consistent. Further, as 3 2 Nq and (by q =2
F (A1; :::; An)) Nq =2 W, we have 1; 2 =2 Nq, whence

1; 2 2 N:q = Np. (7)

Letting Z3 := fr 2 X : Nr\f1; 2; 3g = f1; 2; 3gg, we have Y = Z1[Z2[Z3[fpg,
where this is a disjoint union (by an argument like the one above). So

Y:Z1 = f:r : r 2 Z1g [ Z2 [ Z3 [ fpg. (8)

Here, r 2 Z1 implies r =2 A2, which implies :r 2 A2. Using this and (7), the
relation (8) implies that Y:Z1 � A2, whence Y:Z2 is consistent. For analogous
reasons, Y:Z2 is consistent.

(b) Let F be FW where W := fN;Nnf1; 2gg. By Lemma 5, F is non-
monotonic (hence non-oligarchic), universal, systematic, and unanimity-preserving
(the latter uses that ; =2 W by n � 3). The crucial claim is that, if (ii) is vio-
lated, F is deductive closed. We suppose F is not deductively closed and prove
(ii).

By assumption, there is a pro�le (A1; :::; An) 2 Cn and a q 2 XnF (A1; :::; An),
such that F (A1; :::; An) � q. We prove that (ii) hods for

Y := fr 2 X : Nr = Nnf1; 2g or Nr = Ng [ f:qg (= F (A1; :::; An) [ f:qg)
Z := fr 2 X : Nr = Nnf1; 2gg, p := :q.

First, Y is inconsistent as F (A1; :::; An) � q.
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Second, we show that fpg (= f:qg) and Z are disjoint. Note that

F (A1; :::; An) is consistent, (9)

as F (A1; :::; An) � \k2Nnf1;2gAk. If fpg and Z were not disjoint, we would have
p 2 Z, hence p 2 F (A1; :::; An); so F (A1; :::; An) would entail both p (= :q)
and q, violating (9).

Finally, we show that Y:Z and Y:(Z[f:qg) are consistent. Note that
\k2Nnf1;2gAk � q by F (A1; :::; An) � q and F (A1; :::; An) � \k2Nnf1;2gAk. Hence
for each k 2 Nnf1; 2g, Ak entails q, hence contains q. SoNnf1; 2g � Nq. Hence,
as Nq is (by q =2 F (A1; :::; An)) neither N nor Nnf1; 2g, Nq is either Nnf1g or
Nnf2g. We assume that

Nq = Nnf1g; and hence N:q = f1g (10)

(the case of Nq = Nnf2g being analogous). Note that

Z [ fpg = f:qg [ fr 2 X : Nr = Nnf1; 2gg
Y = f:qg [ fr 2 X : Nr = Nnf1; 2gg [ fr 2 X : Nr = Ng,

where these are unions of pairwise disjoint sets by N:q = f1g. So

Y:Z = (f:qg [ fr 2 X : Nr = Nnf1; 2gg [ fr 2 X : Nr = Ngg):fr2X:Nr=Nnf1;2gg
= f:qg [ f:r 2 X : Nr = Nnf1; 2gg [ fr 2 X : Nr = Ng,

Y:(Z[fpg) = (f:qg [ fr 2 X : Nr = Nnf1; 2gg [ fr 2 X : Nr = Ng):(f:qg[fr2X:Nr=Nnf1;2gg)
= fqg [ f:r 2 X : Nr = Nnf1; 2gg [ fr 2 X : Nr = Ng.

It follows that Y:Z � A1 and Y:(Z[fpg) � A2, in both cases using (10) and
Nr = Nnf1; 2g , N:r = f1; 2g. So Y:Z and Y:(Z[fpg) are consistent.
(c) Suppose X violates (iii). Then there is a contingent r 2 X with no

��-path to some s 2 X. Write X = X1 [X2, where

X1 := fs 2 X : there is a �� -path from r to sg and X2 := XnX1.

Let F be the universal aggregation function given, for all (A1; :::; An) 2 Cn, by

F (A1; :::; An) := (X1 \ A1) [ [X2 \ (\i2NAi)] ;

i.e. within X1 person 1 is a dictator and within X2 the unanimity function
is used. F is non-oligarchic (by X1 6= ; and X2 6= ;), universal, unanimity-
preserving, and independent.

To see monotonicity, let (A1; :::; An); (A�1; :::; A
�
n) 2 Cn be such that A�i = Ai

for all individuals i except from, say, individual j, who has A�j = F (A1; :::; An).
To show that F (A�1; :::; A

�
n) and F (A1; :::; An) are identical, we show that they

26



have the same intersections with X1 and with X1. Regarding the intersection
with X2, we have

X2 \ F (A�1; :::; A�n) = X2 \ (\i2NA�i )
= X2 \ F (A1; :::; An) \

�
\i2NnfjgAi

�
= X2 \ F (A1; :::; An),

as desired. Regarding the intersection with X1, we have again

X1 \ F (A�1; :::; A�n) = X1 \ A�1 = X1 \ F (A1; :::; An),

where the last equality follows from A�1 = F (A1; :::; An) if j = 1, and from
X1 \ A�1 = X1 \ A1 = X1 \ F (A1; :::; An) if j 6= 1.
We �nally show deductive closure. We suppose for a contradiction that

there is a pro�le (A1; :::; An) 2 Cn and a q 2 XnF (A1; :::; An), such that
F (A1; :::; An) � q. By F (A1; :::; An) � A1, we have (9), and we have A1 � q,
hence q 2 A1. So q 2 X2: otherwise q would be in X1 \ A1, hence in
F (A1; :::; An), hence entailed by F (A1; :::; An). As X is �nite or the logic com-
pact, F (A1; :::; An) has a minimal subset Z that entails q. There is a p 2 Z\X1:
otherwise Z � X2, hence Z � \i2NAi, so that \i2NAi � q, whence (by Lemma
4) q 2 \i2NAi � F (A1; :::; An), a contradiction.
We show that p �� q, a contradiction by p 2 X1 and q 2 X2. Putting

Y := Znfpg, we have fpg[Y = Z � q, where Y is consistent with :q (otherwise
Y � q) and with p (as Z is consistent by Z � F (A1; :::; An)). �
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