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Abstract We report a study of a stylized banking cascade model investigating systemic risk
caused by counterparty failure using liabilities and assets to define banks’ balance sheet. In
our stylized system, banks can be in two states: normally operating or distressed and the state
of a bank changes from normally operating to distressed whenever its liabilities are larger
than the banks’ assets. The banks are connected through an interbank lending network and,
whenever a bank is distressed, its creditor cannot expect the loan from the distressed bank to
be repaid, potentially becoming distressed themselves. We solve the problem analytically for
a homogeneous system and test the robustness and generality of the results with simulations of
more complex systems. We investigate the parameter space and the corresponding distribution
of operating banks mapping the conditions under which the whole system is stable or unstable.
This allows us to determine how financial stability of a banking system is influenced by
regulatory decisions, such as leverage; we discuss the effect of central bank actions, such
as quantitative easing and we determine the cost of rescuing a distressed banking system
using re-capitalisation. Finally, we estimate the stability of the UK and US banking systems
comparing the years 2007 and 2012 by using real data.

Keywords Systemic risk · Counterparty risk · Banking crisis · Random field ising model

1 Introduction

During recent years, it became evident that the structure of the modern financial system can
cause sever danger in the event of distress of single banks by spreading the distress through
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Systemic Losses Due to Counterparty Risk 999

claims on the interbank market to other banks. The risk that banks impose on others through
interconnectedness is called counterparty risk [51] and it is the subject of this paper.

In this study, we are reporting how interconnectedness via the interbank market and the
ratios between liabilities and assets influence the stability of a stylized banking system. The
risk of banks to cause system failure is called systemic risk [24]. Extending a simple Merton
model of default [44], we are able to test the systemic resilience of the financial system based
on balance sheet quantities and determine ratios at which counterparty risk can cause the
entire system to fail.

There is a rich literature on stylized banking models. For instance, in [11,30,42,46] coun-
terparty risk exposed via interbank lending is investigated. Other studies by [16,49,50],
considered default cascade from an initial shock on asset prices and study market risk of
correlated asset classes. These models have been used to investigate avalanches, loss dis-
tributions and parameter influences on the stability of the system. Most of the models are
simulation based, and use as initial shock an arbitrary failure of a portion of banks, or arbitrary
loss on the value of assets.

In this paper, we propose a model combing the balance sheet based model, used by [30]
and [46], with the contagion model used by [49] creating a stylized banking system that is
analogous to the random field Ising model, a well-known model in the statistical physics
literature. The application of this kind of model in the context of economic and financial
behaviour has been reviewed in [14], and its application to credit default models has been
discussed in [36].

In our stylized banking system, a bank is considered insolvent, if its liabilities are larger
than the bank’s assets, the so-called balance sheet test [32]. Such insolvency of a bank can be
triggered by a random event (such as changes in the value of the assets). The interconnected-
ness between institutions, in form of loans from one institution to another, can propagate this
insolvency from a bank to another creating further insolvencies, bringing down -eventually-
the entire system. In this paper, we discuss a solution of this model, obtained by homog-
enizing the system. This allows for a mean-field assumption enabling us to compute the
equilibrium fraction of surviving banks given changes in the values of the balance sheet
quantities. Further, we test numerically our results changing the structure of the exposure
network testing robustness and generality of the mean-field solution. We detail the parameter
ranges that lead to a stable or unstable system, allowing us to determine restricting ratios
between liabilities and assets to ensure a stable banking system. Further, we quantify the
costs of potential rescue attempts to re-direct an unstable system into a stable region. We find
that interbank lending can increase the stability of a banking system but this at the price of
an increasing risk of a sudden systemic failure with inflating recovery cost. Finally we show,
using balance sheet data for 2007 and 2012, that the US and UK banking system in 2007 was
more prone to failure than in 2012.

The structure of the paper is as follows: In Sect. 2, we describe the setup of the contagion
model. This is followed by Sect. 3, where we state our assumptions and define an iteration
function that describes the contagion process. In Sect. 4, we discuss the results and implica-
tions of the model. In particular, Sect. 4.4 addresses the stability of the system and discusses
the implication for central banks and regulators to influence the quantities of a balance sheet
to create, or return, to a stable system. Section 5 compares the mean-field results with the
equilibrium values of simulation testing the robustness of the model for different random
distributions for the balance sheet quantities, determining the effects of different structures
for the exposure network and collateralized lending. In Sect. 6, data of US and UK banks’
balance sheets are used to determine the stability of the US and UK banking system in 2007
and 2012. Conclusions and perspectives are given in Sect. 7.
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1000 A. Birch, T. Aste

Fig. 1 Stylised balance sheet of bank i . The total liabilities of bank i at time t , Li (t), is the sum of the bank’s
deposits, di (t), and interbank borrowing,

∑
k∈γi

Jki . The total assets of bank i at time t , Ai (t), is the sum of
non-interbank assets, gi (t), and interbank lending,

∑
k∈νi

Jik (t)Sk (t). The difference in the bank’s total assets
and liabilities is the bank’s capital Ei (t) = Ai (t)− Li (t). A bank is said to operate normally if Ai (t) ≥ Li (t).
If Ai (t) < Li (t) the bank is said to be in distress

2 Stress Model

In our model, we consider M banks. To investigate the default process, we restrict our interest
to the short term propagation of stress on the banking system. Specifically, we look at short
lapses of time when banks just become unable to operate but still are not necessary defaulted.
Thus, we distinguish between normally operating banks and distressed banks, such that the
state of a bank is given by:

Si (t) =
{

1 if bank i is operating normally
0 if bank i is distressed

. (1)

We adopt the stylized balance sheet introduced by [30] and [46], also considering liabilities
and assets. A schematic diagram of a simple balance sheet of a bank ‘i’ is given in Fig. 1.

The non-interbank assets of a bank i at time t are gi (t). The exposure matrix
{Jik(t)}1≤i,k≤M describes the interbank lending network at time t ; interbank lending is mod-
elled by adding all the debt of banks k at time t to a bank i , and multiplying this with the
state of banks k, i.e.

∑
k∈νi

Jik(t)Sk(t), where νi is the set of borrowers to bank i . The state
of a bank k indicates whether bank k is able to pay back the loan. Then, the total assets of
bank i at time t are

Ai (t) = gi (t) +
∑

k∈νi

Jik(t)Sk(t). (2)

The customer deposits of bank i at time t is denoted by di (t). Interbank borrowing at time t
is

∑
k∈γi

Jik , where γi is the set of loaners to bank i and Jki (t) is the amount borrowed by
bank i from bank k so that the total liabilities of bank i are:

Li (t) = di (t) +
∑

k∈γi

Jki . (3)

The difference between total assets and total liabilities of a bank i is the bank’s capital:

Ei (t) = Ai (t) − Li (t). (4)
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Table 1 Variables of bank i at time t used in the balance sheet model

Variable Description of variables

Si (t) State

Jki (t) Interbank loan from bank k to bank i

gi (t) Non-interbank assets of bank i

Ei (t) Capital

di (t) Customer deposits
∑

k∈νi
Jik (t)Sk (t) Total interbank loans

∑
k∈γi

Jki Total interbank borrowing

Ai (t) Total assets

Li (t) Total liabilities

Si (t) describes the state of bank i , Jki (t) the loan from bank k to bank i . Similarly, Jik (t) the loan from bank
i to bank k. The sets νi and γi denote the set of loaners and borrowers on the interbank market of bank i such
that the total interbank loans from bank i to bank k are

∑
k∈νi

Jik (t)Sk (t), and bank i borrows on the interbank
market a total amount of

∑
k∈γi

Jki from its loaner banks k. The non-interbank assets are represented by gi (t),
and di (t) denotes customer deposits and Ei (t) denotes the bank’s loss absorbing capital. The total assets are
Ai (t) = gi (t) + ∑

k∈νi
Jik (t)Sk (t), and the total liabilities are Li (t) = Ei (t) + di (t) + ∑

k∈γi
Jki

The above equation is the Balance Sheet Equation. For the purpose of this model, we consider
loss absorbing Tier 1 capital as capital only.

The stress criteria is modelled by using the balance sheet test to determine insolvency, as
outlined in [32]. Namely, a bank is said to be in stress if assets are less than liabilities at time
t , i.e. the Distress Condition is:

Ai (t) < Li (t). (5)

Table 1 summarizes the variables used in this model.
Given that the state of a bank i is determined by the Distress Condition 5, consequently

the state of a bank at time t + 1 is

Si (t + 1) = H(Ai (t) − Li (t)), (6)

where H(x) is the Heaviside function. In the Ising model literature describing spin systems,
Ui (t) = Ai (t) − Li (t) is called the ‘incentive function’ [19]. The probability of bank i to
be in a particular state, using the logit rule (which is a standard choice to determine the
probability of a spin being in a particular state) is:

P(Si (t) = 1|Ui (t − 1)) = 1
1+exp(−βUi (t−1))

, (7)

where β is the inverse temperature of the spin system. When β tends to zero (infinite tem-
perature limit) the incentive do not influence the state of the bank. Hence, bank i is normally
operating or under stress with probability 1/2. Conversely, when β tends to infinity (zero
temperature limit) then Eq. 6 is recovered. Thus, our stylized banking system is a zero tem-
perature Ising model.

3 Uniform, Mean-Field Solution

In order to obtain a closed form expression for the stability of the banking system, let us here
introduce a few assumptions.

123



1002 A. Birch, T. Aste

We are looking at the instantaneous stress imposed on a banking system given a particular
distribution of non-interbank assets and liabilities. Hence, any change in the investment after
the system is distressed is neglected, as the time to counteract is considered longer than the
instantaneous stress imposed by distressed banks to its creditors. Therefore, we consider
most of the balance sheet quantities to be constant in time. Specifically, we consider that the
process of stressing a bank, and the consequent loss of the interbank loan, are much more
imminent than the distribution of any assets belonging to a distressed bank. Therefore, even
if the creditor of a bank is bankrupt, the bank has still to pay any outstanding loans towards
the defaulted bank, assuming further that transfers of asset belonging to the distressed bank
to counterparties are excluded. Hence, we say that the liabilities, Li (t) = Li are constant in
t and vary from bank to bank as drawn from a random distribution.

The non-interbank assets gi (t) = gi are also considered constant in t and drawn from a
random distribution. This represents different investment decisions, and henceforth, different
investment returns. For interbank loans, we assume a mean field, i.e. the average amount
loaned by bank i to all its debtors,

∑
k∈νi

Jik(t)Sk(t), is approximated with z J pt , where
z is the average number of banks that are borrowing money from a given bank, J is the
average loan borrowed from one bank to another and pt is the fraction of operating banks at
a given time t . Finally, we consider that the number of banks in the system M and the bank
interconnections are very large.

The previous assumptions homogenize the system. It should be noted that interbank net-
works of most countries are far from a homogenous system. Indeed, banks’ balance sheets
differ greatly in size by a couple of order of magnitudes (see Sect. 5.4 for a detailed dis-
cussion of real banking system). Here we study a homogenous system because it can be
solved analytically. The reason why a homogenous solution of a heterogeneous system can
still be of interest, is the particular structure of the interbank network. It has been shown that
in some countries the interbank network structure can be described as a tightly connected
core with internationally operating banks in the centre and smaller regional banks in the
periphery [25,45]. In such a structure the larger international banks in the core are of similar
sizes. Therefore we can argue that, for systemic risk, the most relevant part of the interbank
network is the homogeneous core network of large banks. The extension of our model to an
heterogenous system is under investigation.

Let pr be the fraction of normally operating banks after r rounds of default. By using
the above assumptions, from Eq.6, we can write the fraction of non-defaulted banks after r
rounds of default as

pr = 1

M

∑

i

H(gi + z J pr−1 − Li ), (8)

which is
pr = F(pr−1), (9)

where F(x) = 1 − P(gi − Li < −z J x) is a cumulative distribution function (CDF). Given
the initial fraction, p0, of surviving banks (note that p0 can differ from one), the solution of
Eq.9 is a fixed point probability satisfying p = F(p) that may depend on the initial fraction
of distressed banks. Note that, a distressed bank (Si (t) = 0) can recover and change its state
to Si (t +1) = 1 if the difference between liabilities and total assets is positive: Ai (t) > Li (t).
This possibility can occur whenever capital is introduced to a distressed bank, as done via
quantitative easing (QE) or government bail-outs. The cost of returning to a stable system,
and more details about capital injections are discussed in Sect. 4.4.
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Let us here use the assumption, that gi and Li are independent and follow distributions
in the location-scale family with means μg and μL , and standard deviations σg and σL ,
respectively. Then the random variable gi −Li has mean μ = μg −μL and standard deviation

σ =
√

σ 2
g + σ 2

L . Thus, the mean μ can be thought of as the mean of the loss absorbing
capital minus the average interbank lending and the standard deviation σ represents the level
of uncertainty of the predicted value for non-interbank assets and liabilities.

For convenience, let us introduce the following two variables:

a = μL − μg

σ
; (10)

and

b = z J

σ
. (11)

In the following we will assume that the random variables are drawn from a normal
distribution. Note, this assumption is not necessary and other kinds of distributions can be
explored with a similar approach. To transform the CDF into a standard normal CDF, let
gi − Li = μ + σεi , where εi is taken from a standard normal distribution. Then the Distress
Condition, Eq. 5, becomes εi < a − bpr .

Let us note that Eq. 9 belongs to the group of Random Field Ising models (RFIM) or
moving equilibrium models in the innovation diffusion literature [14]. In the RFIM literature,
the parameter b models the influence of agents on other agents. In our model b describes the
average loan divided by the standard deviation, σ , of the sum of non-interbank assets and
liabilities, and hence, b is always positive. When b is negative, banks would have to pay their
loaners to keep the loans. When b equals zero, then, whether a bank is distressed, depends
solely on the distributions of the non-interbank assets and liabilities. Since, the variables εi are
from a standard normal distribution, it is to be expected that half the banks are distressed when
a and b equal zero. Conversely, when b becomes larger, i.e. when the average total interbank
loan becomes larger, or when the standard deviation of the sum of non-interbank assets and
liabilities becomes smaller, then, for a fixed a, the system is more resilient. However, we will
see in Sect. 4.4, there exists a critical value bc at which the behaviour of the system changes
from a smooth decline in normally operating banks to a sudden decrease.

The parameter a is the difference between the mean values of liabilities and non-interbank
assets divided by the variance of non-interbank assets and liabilities. If a is negative, then
the mean value of non-interbank assets are larger than the liabilities. The denominator of a is
the standard deviation, σ . Therefore, if a is negative, then a small σ implies that a becomes
even more negative, leading to a more stable system. However, if a is positive, then a small σ

leads to a more unstable system. Instead, if the mean value of non-interbank asset is sufficient
to counter the liabilities, i.e. a � 0, a large σ would imply that for some banks, their non-
interbank assets would not be enough to satisfy the Distress Condition 5. Henceforth, if the
interbank loans are not sufficient, these banks are under stress. Conversely, if a � 0, then
a large σ is desirable, as this implies that for some banks, their non-interbank asset value is
higher than the average value. Thus, these banks can satisfy the Distress Condition 5, and
will operate normally.
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1004 A. Birch, T. Aste

Fig. 2 The first row of this figure shows F(p) form Eq. 12 vs. p for r = 0, . . . , 100 with various combinations
of parameters a and b. The second row shows plots of p − F(p). The extreme values, x1 and x2, of p − F(p)

are indicated with a cross and the corresponding fixed points, w1, w2 and w3 are the points where p − F(p)

crosses zero. The arrows indicate which fixed point is reached starting at a particular p0

4 Results

4.1 Fixed Points

To study the behaviour of the iteration map in Eq. 9, we investigate when it reaches a fixed
point p, such that p = F(p). From Eq. 9, by using the standard normal distribution, we can
write:

F(x) = 1 − �(a − bx), (12)

for x ∈ [0, 1] and where �(x) is the standard normal CDF. Note, that the following discussion
can be repeated with another location-scale distribution.

In order to investigate the fixed point we report in Fig. 2 (first row) various plots of the
iteration map pr = F(pr−1) for different values of a and b for r from r = 0 to r = 100. It
becomes clear, that, given particular parameter values, and the same starting value, the fixed
points change. This is better illustrated in the second row of Fig. 2 where p − F(p) is plotted
which crosses zero at the fixed point. We can see that up to three fixed points can occur.
Namely, if b < bc = √

2π , only one fixed point occurs. If b > bc, then three fixed points,
w1, w2, w3, become possible. That is because, whenever b > bc, the function x − F(x) has

extrema at x1,2 = b−1
(

a ∓
√

2 ln b√
bc

)
(where x1 is a maximum and x2 is a minima) if a ∈

[a1, a2], where a1 = b+
√

2 ln b
bc

−b�
(√

2 ln b
bc

)
and a2 = b−

√
2 ln b

bc
−b�

(
−

√
2 ln b

bc

)
.

Note that, w1 ≤ x1 ≤ w2 ≤ x2 ≤ w3. We have F ′(w1) < 1 indicating that the fixed point
w1 is stable. Similarly, w3 is stable, and, because the iteration map is one-dimensional, w2

is unstable. Thus, the fixed point w2 forms a barrier.
If a < a1, or a > a2, then p = F(p) has only one solution, w1, which is a stable fixed

point.
Consider the case when a ∈ (a1, a2). If the starting value p0 is in the orbit [0, w1] or

[w3, 1], then the attracting fixed points are w1 or w3, respectively. If p0 ∈ [w1, w2], then

123



Systemic Losses Due to Counterparty Risk 1005

w2 is a repelling fixed point and w1 is the attracting fixed point that is eventually reached.
Similarly, if p0 ∈ [w2, w3], the fixed point eventually reached is w3.

If a = a1, then the fixed points w1 and w2 merge, and w1 = x1 = w2. This implies that
the left-hand side of the fixed point w1 = w2 is stable, however the right-hand side of the
fixed point w1 = w2 is unstable. Hence, if a starting value p0 is in the orbit [0, w1 = w2],
then the fixed point reached is w1. However, if p0 ∈ [w1 = w2, w3], then the fixed point
reached is w3. For p0 ∈ [w3, 1] the attracting fixed point is again w3.

In the case if a = a2, then w2 = x2 = w3, i.e. w2 and w3 merge implying that if
p0 ∈ [w1, w2 = w3], then w1 is the attracting fixed point. If p0 ∈ [0, w1] or p0 ∈ [w3, 1],
then the fixed points reached are w1 and w3, respectively.

In terms of the stability of the modeled banking system we note that when b > bc a barrier,
represented by the unstable fixed point, can occur, such that the number of operating banks
does not decrease below a certain value (or increases above a certain value). However, if there
is a change in the parameter values, then it becomes possible that the entire system suddenly
collapses (or becomes fully functional again). Hence, for b < bc, the system is reversible, but
for b > bc, a hysteresis cycle occurs, such that the system becomes irreversible, and depends
on its history. Therefore, a large amount of lending on the interbank market (i.e. large b when
p0 = 1) can help to stabilize the system, if the corresponding value for liabilities and mean
value of non-interbank assets are such that a < a2, because in this case the barrier prevents
an entire system failure.

4.2 Change in the Number of Surviving Banks Induced by One Bank Failure

For a small change from pr to pr+1, the change in the number of surviving banks is given
by M F ′(pr ) . Note that F ′(x) is the probability density function that εi = a − bx . Thus, the
number of banks becoming distressed as a consequence of one bank changing from operating
normally to distressed in the next iteration is [18]:

n = F ′(x). (13)

If n is less than one, any avalanche will eventually stop. Whereas, if n ≥ 1 one bank default
can trigger an entire system failure. Starting with p0 = 1, for b > bc and x = x1, n is
precisely one. The maximum of F ′(x) is reached when x = a/b. At this point the number of
stressed banks triggered by one bank in the following iteration is of order z suggesting that
all the neighbouring banks of the initially distressed bank become all distressed as well.

4.3 Relation Between a and b

For fixed capital E(p), the parameters a and b are dependent on one other such that the
parameter a can be expressed in terms of b as:

a = − E(p)

σ
+ bp. (14)

where E(p) = μg + bpσ − μL . Thus, a change in a given a fixed b at the fixed point p can
only happen when external capital is introduced to the system. There are multiple ways of
increasing capital of a bank. For instance, a bank can raise capital by issuing shares. Given the
thread of default a government can intervene by inducing capital into the distressed bank via
government bailouts. Further, central banks use methods of QE by adjusting interest rates and
lending to banks, or buying assets using open market operations. Hence, QE can ensure that
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1006 A. Birch, T. Aste

Fig. 3 This figure shows the fraction of surviving banks as a function of the parameter a for given fixed
values of b. The blue graphs are the solution of the Iteration Function 12 for different b values: b = 1, . . . , 15.
The solid lines indicate stable fixed points whereas the dotted lines indicate unstable fixed points. If the fixed
point is unique as in the case for b = 1, 2, no hysteresis occurs for decreasing or increasing a. For this value
of b > bc and a particular range of a three fixed points become possible leading to a hysteresis cycle. The
thick blue line indicates the fixed points for b = 7. The red arrows indicate the hysteresis cycle that occurs
for b = 7. Starting from p0 = 1, the parameter a needs to increase to a = a2 ≈ 5.04 for the entire system to
default. If the starting value is p0 = 0 then a needs to decrease to a = a1 ≈ 1.96 for the banks to be operating.
Thus, the path is history depended (Color figure online)

liabilities are reduced using the central bank loans with smaller interest rates than otherwise
required by the interbank market and assets are liquidated above the market value ensuring
that capital is not needed to overcome losses when faced by liquidity shortages.

4.4 Parameter Analysis

We have observed that when b becomes larger than the critical value bc, the system passes
form a reversible kind of dynamics to an irreversible one where hysteresis cycles emerge.
This is illustrated in Fig. 3 where the fixed point probability values are plotted for varying
a for various b ranging from b = 0, . . . , 15. The solid blue lines indicate the stable fixed
points, whereas the blue dashed lines indicate the unstable fixed points. The hysteresis cycle
is indicated by the red arrows.

We can observe that at b = 0, when banks are not lending to each other, the system is
stable for negative values of a; fluctuations in the assets side of the balance sheet equation
can cause banks to fail and, at a = 0, half the banks in the system are in distress. By lending
money from one bank to another (b > 0), the system becomes more stable with smaller
numbers of banks in distress for the same values of a.

If a increases further but b is kept constant, then more banks fail as the difference between
the banks non-interbank assets and liabilities increases. Hence, the capital in the system is
lowered. If b is below its critical value, then the system is reversible and all fixed points are
stable. If b becomes larger than the critical value bc and a < a2, almost the entire system
is stable (if p0 = 1) because of the barrier. However, when a increases above a2, then the
whole system suddenly crashes.

Also, if a is constant but b decreases, then a sudden jump becomes possible as well. Let
us here note that a decrease in b happens, if the average interbank loans z J decrease, or the
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Systemic Losses Due to Counterparty Risk 1007

(a) (b)

Fig. 4 The figures show the fraction of operating banks for given a and b obtained by numerically solving
the Iteration Function 12 starting from an initial value p0 = 1 (a) and p0 = 0 (b). The hysteresis behaviour
becomes visible form the jump occurring in a at a = a2 and in b at a = a1

variance σ =
√

σg(t)2 + σL(t)2 increases. In [38], it was shown that during the financial
crisis, there was indeed a decrease in the amount of money loaned but also the interest rates
for loans increased. Thus, b decreased, and a increased. In our stylized system this is a
mechanism that would create disastrous consequences unless b < bc.

In order to return to a normally operating system after the crash, a needs to be reduced
at least to a1. Then a sudden jump brings the whole system operative again. Hence, the cost
of rescuing a banking system is given by the difference between a1(b(t)) and a2(b(t + δt)),
where b(t) is the value of b at the beginning of the crisis and b(t + δt) the value of b at the
time of rescue.

To be more specific, let us here discuss the case b = 7 and starting from fully operating
banks (i.e. p0 = 1). Here the infinite avalanche occurs when a reaches a2 ≈ 5.04. Whereas,
if one starts with all banks distressed, a would need to be lowered to a1 ≈ 1.96, in order to
return to a stable system. In Fig. 3, this cost is indicated by the green arrow.

Figure 4 is a plot of the equilibrium fraction of normally operating banks for different
parameter values. The figure contains two plots A and B, and depicts the solution of Eq. 9
for different values of a and b when the initial state of all banks is p0 = 1 (plot A) or
p0 = 0 (plot B). Whenever b = 0, the fraction of operating banks depends only on the
CDF of non-interbank assets. In the case, of the standard normal CDF, for a = 0 half of
the banks are expected to be under stress; at a = −2.5 the equilibrium fraction of operating
banks is p ≈ 0.9938; whereas for a = 2.5 the equilibrium fraction of operating banks is
p ≈ 0.0062. If 0 < b < bc, the system becomes more stable which is obvious as the asset
side of the balance sheet is increased and the interbank loans act as an extra asset. If a is
kept constant then either extra capital is introduced in the system or the values μL , μg, σL

and σg change such that a stays constant. Further, for values of b in that range, the decline in
the fraction of normally operating banks for increasing a is still smooth. When b > bc, the
fraction of operating banks suddenly jumps from almost all operating to almost all banks in
stress, which happens because of the occurrence of the multiple fixed points as outlined in
Sect. 4.1.
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Fig. 5 The figure shows the minimum leverage, γmin, for an average bank to ensure a stable banking system
as a function of the fraction of interbank assets θ . The different curves correspond to various σ ’s. From the
figure, we can see that the larger σ the larger is θ at the instability and also the large the minimum leverage

4.5 Leverage

For a stable system (i.e. p ≈ 1) with b > bc, the ratios between assets and liabilities should
ensure that a ≤ a2. Using the mean-field assumption, the interbank assets of a bank are a
fraction θ of the total mean assets, i.e. z J = θμA (where μA = μg + z J p0). Further using
Eq. 14, this implies that, to ensure a stable banking system, the leverage ratio—the ratio of
capital to total assets, i.e. γ = μE

μA
should satisfy the following condition:

γ ≥ θc

bc

√

2 ln
θ

θc
+ θ�

(

−
√

2 ln
θ

θc

)

, (15)

where θc = σbc
μA

. Figure 5 is a plot of Eq. 15 depicting the minimal value of the leverage,
γmin, at which the system is stable as a function of θ , of interbank assets to total assets for
given values of σ . The value of σ is chosen to be a fraction of the mean total assets for each
graph as applicable in the accompanying legend. We chose to represent σ in this way as then
Eq. 15 becomes independent of μA. Any leverage value above and including γmin ensures a
safe banking system given a particular σ .

It becomes clear that the larger σ the larger θc and also the leverage requirement needs to
increase significantly in order for the banking system to be stable.

4.6 Collateralized Lending and Recovery Rates

The effects of collateralized lending can be discussed by adding qz J (1 − pt ) to the sum
of total assets Ai (t). The parameter q ∈ [0, 1] indicates the average amount a bank can
expect as collateral when counterparties become unable to pay back loans. Another way of
thinking about this term is the value of a defaulted loan, i.e. any possible payback during the
insolvency procedure. Thus, q can be considered the recovery rate of insolvent banks. The
term qz J (1 − pt ) shifts the point of systemic failure and the variables a and b including
collateralized loans need to be adjusted to

a
′ = μL − μg − qz J

σ
; (16)
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and

b′ = z J (1 − q)

σ
. (17)

A plot of the fixed points of the Iteration Function 12 using a′ and b′ is given in Fig. 10
(Sect. 5.5).

5 Simulation

5.1 Simulation Set-Up

The mean-field assumption of the interbank market implies that each bank lends the same
amount to all other banks. Hence when using the mean-field assumption the network structure
is a fully connected graph. Further, normal fluctuations for the value of the non-interbank
assets have been assumed in the analysis done so far. To test the effects of different network
structures and different distributions, we use a simulation approach similar to the one in [27].
The banking system modelled in our simulations still represents a highly stylized banking
system as we restrict the simulations to banks with balance sheets of similar size leaving
the effects of a heterogeneous banking system to a later stage. The simulation results are
intended to verify that the overall behaviour and the hysteresis effect can be retrieved also
by using different network structures and different distributions for liabilities and assets.

As before, the system consists of M banks. Each bank i is initially calibrated with liabilities
Li (0) and assets Ai (0) drawn respectively from distributions with mean μL and variance σ 2

L
(for liabilities) and mean μA and variance σ 2

A (for assets). For the interbank assets, we use a
fraction θ ∈ [0, 1] of the total assets Ai (0) of bank i such that the total interbank assets of
bank i are θ Ai (0). The interbank lending structure is given by the network G = {g1≤i j≤M },
where gi j = 1 if bank i loans to bank j and 0 otherwise. The individual loans from bank i
to its neighbouring banks j are the total interbank assets divided by the degree zi of bank i ,
i.e. the amount loaned from bank i to bank j is θ Ai gi j/zi .

The distributions tested are Normal distribution and Student’s t-distribution. To calibrate
total assets and total liabilities with Normal distributions, random variables εi are drawn
from a standard normal distribution; the total assets are Ai (0) = μA + σAεA

i and the total
liabilities are Li (0) = μL + σLεL

i . Similarly, if the distribution used to calibrate total assets
and total liabilities is the Student’s t distribution, random variables t L

i , t A
i are drawn from a

standard Student’s t distribution with degree of freedom ν. The total assets and liabilities are
given by Ai (0) = μA + σAt A

i and Li (0) = μL + σL t L
i . Note that the random variables ε

L ,A
i

and t L ,A
i are different and independent.

For constructing the underlying exposure network structure G, we used three different
standard network types: the Erdős–Rény network, the Small-World network [53] and a core-
periphery network produced using the preferential attachment algorithm as outlined in [6].
For the Erdős–Rény network, a bank i is connected to a bank j with probability α. For
the Small-World network, we used an initial network where each bank is connected to its
c closest neighbours and a probability β is used to re-wire any existing links between the
neighbouring banks to other banks creating the small-world effect. For the core-periphery
network, we used an Erdős–Rény seed network of banks with a connection probability of α

and added ‘perioheral’ banks individually to the system using preferential attachment.
We would like to stress that the network structures as well as the distributions are standard

choices and reality might differ greatly. The different structures and distributions are intended
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Table 2 Variables and values used for initializing banks balance sheets and exposure structure in the simulation
modelling a stylized banking system

Variable Values used for calibration Description of variables of bank i at time 0

M 500 Number of banks in the stylised banking system

ε
A,L
i ε

A,L
i ∼ N (0, 1) Standard normal random variables

t A,L
i t A,L

i ∼ T (ν) Standard Student’s t random variables with degree of
freedom ν

ν 2 Degree of freedom for Student’s t distribution

Si (t) Si (0) = 1 State, all banks are operating initially

μA 1,000 Mean value for total assets

σA 30 Standard deviation for assets

μL 700–1,200 Mean value for liabilities

σL 50 Standard deviation for liabilities

θ 0.0, 0.1, 0.3 Fraction for interbank assets

α 0.1 Probability of bank i being connected with bank j used
to generate Erdős–Rény network and seed network for
the core-periphery network

c 12 Neighbouring banks of all bank i in Small-World
network

β 0.1 Re-wiring probability for a link in the Small-World
network

The banking system consist of M = 500 banks. The state of each bank is set to operating initially, i.e. Si (0) = 1
for all banks i. Two location scale distribution, the normal distribution and the Student t distribution, are
used to calibrate the balance sheets of banks. In particular, the initial value for total asset and liabilities for
bank i are Ai (0) = μA + σAε A

i and Li (0) = μL + σLεL
i for simulations using normal distributions, and

Ai (0) = μA + σAti and Li (0) = μL + σL t L
i for simulations using Student t distributions. To compute the

structure of the exposure network G = {g1≤i, j≤M }, three different network structures are used: Erdős–Rény
networks, Small-World networks and a network structure with a core and periphery banks. For the Erdős–Rény
networks a link exists between two banks with probability α = 0.1. To construct the Small-World network,
we used the algorithm from [53] with banks have c = 12 neighbours and a re-wiring probability of each link
of β = 0.1. To create the core-periphery network, we use the algorithm from [6] with an Erdős–Rény network
seed network with 50 banks and connection probability α = 0.1 and 450 banks with 15 links added with a
preferential attachment to the existing banks as described in [6]. The weight for a loan from bank i to bank j
is θ Ai gi j /zi , where θ is the fraction of interbank assets total assets

to show that the model predictions are robust for a variety of assumptions. The choice to
use Normal and Student’s t distributions is to compare the results drawn from the iteration
function, as these distributions are part of the location-scale family, and the mean and variance
values for total liabilities and assets can be compared to the fixed points of the Iteration
Function 12. The parameter values used to initialize the model can be found in Table 2.

For the contagion propagation, we use a similar algorithm as in [27]. Specifically, for each
iteration r , the following algorithm is computed:

1. It is simultaneously tested for all banks i whether the total assets of each bank i is smaller
than its total liabilities.

2. If this is the case, then the state of bank i , Si (r), is set to zero, and the bank is said to be
distressed.

3. Eq. 2 is then used to evaluate the total assets of bank i for the next iteration r + 1.
4. The above steps are repeated until no further default occur.
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Fig. 6 The figure shows the average error between the solution of the simulation and Iteration Function 12 of
the fraction of surviving banks. The figure reports the second norms of the difference between the fractions of
surviving banks of the fixed point solutions of Iteration Function 12 and the fraction of surviving banks of an
average of 100 simulations for fixed values (μL −μA)/(σ 2

A +σ 2
L )1/2 (changing μL for different simulations)

and a −b (changing a for different fixed points). The simulation assumes Normal distributions for the balance
sheet values and for the structure of the exposure network Erdős–Rény networks with connection probability
α and fraction of interbank loans to total assets θ are used. To test the influence of the number of links from
one bank to others, α is varied in (0, 0.04]

When the iteration process stops we obtain the fraction of surviving banks p by counting the
banks that are still operating.

5.2 Comparing with Fixed Point Solution

To compare the fraction of surviving banks with the fixed points of the Iteration Function
12, we identify (μL − μA)/(σ 2

A + σ 2
L)1/2 with a − b and J z ≈ θ Ai (0), where a and b from

Eqs. 10 and 11.
Figure 6 shows the difference between the fraction of surviving banks computed by using

the fixed points of the Iteration Function 12 and the mean value of the fraction of surviving
banks from 100 simulations. In the simulation, we use Erdős–Rény networks as underlying
structures for the exposure networks and Normal distributions for liabilities and assets with
varying mean of the Liabilities μL and connection probability α. The ratio between interbank
assets and total asset θ is set to 0.3. For this value of θ , b is well above its critical value and
a jump is predicted. For the fixed point equation a is varied to balance the changes in μL in
the simulation. The colour scale in Fig. 6 reports the error between the predicted values and
the value archived using the average from 100 simulations. As expected close to the jump the
error is large. However, for α smaller than 0.01, a large error is observed. This is because in
that region the jump is only marginal or does not occur in the simulation implying that due to
the smaller number of links the stress distribution and subsequent cumulative counterparty
losses via the network are not realized.

We note that large errors happen in a range close to the jump for connection probabilities
α smaller than 8 × 10−3. In that region the average degree z̄ of a bank is between 0 and 4
for M = 500.1 For α < 10−3, the jump was not observed or it was not very dominant in
the simulation testing. The amount loaned from one bank to another is still θ Ai . However,
it is a well known phenomena that the upper critical Euclidean dimension for the mean-
field assumption of the Ising model is 4 [7]. Thus, it becomes clear that the mean-field
approximation does not capture the behaviour for average degrees smaller than 4 and further

1 For an Erdős–Rény network is the average degree is z̄ = α(M − 1).
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(a)

(b)

Fig. 7 The figure shows the fraction of surviving banks p evaluated by initializing the liabilities and assets
of banks’ balance sheets with Normal distributions (a) and Students’ t distributions with 2 degrees of freedom
(b) with varying mean μL and fixed standard deviation σL for liabilities, fixed mean μA and fixed standard
deviation σA for assets plotted against (μL − μA)/(σ 2

A + σ 2
L )1/2. Each symbol is the average of the fraction

of surviving banks of 100 simulations. The error bars are the standard deviation of the 100 simulations.
To compute the blue line, we set the average fraction of interbank loans to zero, i.e. θ = 0.0, for the red
line θ was set to 0.1 and for the green line θ was set to 0.3. The underlying structure of the exposure
networks are Erdős–Rény networks with connection probability α = 0.1 and M = 500 banks. The black
lines accompanying each plot are the fixed points of the Iteration Function 12 plotted against a–b which is
approximately (μL −μA)/(σ 2

A +σ 2
L )1/2. Note that b is changed to fit the equivalent θ value. A steep decline

in the fraction of surviving banks happens when θ equals to 0.3 in the area of the predicted jump. For θ equal
to 0.0 and 0.1 the simulation result for both distributions are close to the fixed point solution of the Iteration
Function 12. The parameter values used to initialize the system are stated in Table 2 (Color figure online)

investigation needs to be done into whether an average low number of counterparties in a
banking system reduces the risk of a systemic stress event.

5.3 Normal and Student’s t Distributions

The effects of different underlying distribution are illustrated in Figs. 7 and 8. The underlying
network structure of the exposure matrix is, in both figures, an Erdős–Rény network.

In Fig. 7, we report the average simulated fraction of surviving banks against (μL −
μa)/(σ 2

A +σ 2
L)1/2 and the fixed point solution of the Iteration Function 12 (black line) against

a − b. For the simulated fraction, we varied μL and for the fixed point solution, we changed
a to satisfy (μL − μa)/(σ 2

A + σ 2
L)1/2 ≈ a − b. For each μL , the simulation was repeated

100 times. In the figure, symbols represent average fractions and vertical error bars are the
standard deviations from the 100 simulations. To test the behaviour of the simulation for
different fractions of average interbank loans, we changed θ from 0.0 (blue line), to 0.1 (red
line) and 0.3 (green line). To compute the equivalent fixed point solution for each value of θ ,

we changed the value for b in the Iteration Function 12 accordingly, i.e. b ≈ θμA/

√
σ 2

A + σ 2
L .

The critical value for b for the normal distribution is bc = √
2π . For the Student’s t distribution

with 2 degrees of freedom, the critical value for b is reached when bc ≈ 2.82. Hence, θ = 0.1
leads to a value of interbank assets of bank i below the critical value and, conversly, setting
θ = 0.3 creates a value of interbank assets above the critical value where a jump becomes
visible.
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(a)

(b)

Fig. 8 This figure shows the frequency distribution of fractions of surviving banks p for banks initialized
with Normal (a) and Student’s t distribution (b) for fixed values of μL , μA, σL and σA . The fraction of
interbank loans to total assets θ is set to 0.3 and the underlying structure of the exposure network is an Erdős–
Rény network. To observe the behaviour in the proximity of the jump the values for μL where set to 890 for
the Normal distribution and 870 for the Student’s t distribution. To compute the frequency distribution, we
repeated the simulation 10,000 times. Two peaks occur because of perturbations of the balance sheet values
due to the randomness. The two peaks are visible in both sub-plots at the end and beginning of the scale of p
indicating that most of the banks in the banking system either survive or are distressed. Intermediate fractions
of surviving banks do not occur

The difference between Figs. 3 and 7 is that to compute the fixed point solution in Fig. 3,
the total assets of the banks are varied as the mean of non-interbank assets is constant and
a change in b implies that either capital is changed to compensate a decrease or increase in
total assets, or μL , μg, σL and σg change accordingly such that a is constant. Whereas, in
Fig. 7, the mean of the total assets of banks is constant and a change in θ does not effect the
size of the balance sheet. Hence, capital stays constant for fixed values of μL , σL and σg .

The fractions of surviving banks computed in Fig. 7 used Normal distributions (A) and
Student’s t distributions (B) to initialize total assets and total liabilities. Similarly, to compute
the fixed point solutions, we used a standard normal CDF in A and a standard Student’s t
CDF in B.

We note that, for θ = 0.3 more banks default for the same values of μA, μL , σA and σL

than when θ = 0. The reason is that there exists no counterparty risk when θ = 0.0. For both
distributions a sudden decrease in the fraction of surviving banks is observed for θ = 0.3.
The jump starts earlier for the banking system with banks initialized with the Student’s
t distribution than for banks initialized with the Normal distribution. Also, the simulation
results for a banking system initialized with Normal distributions are a closer fit to the fixed
point solutions of the Iteration Function 12, nonetheless the simulated results initialized with
the Student’s t distribution are also reasonable close to the fixed points. In the proximity
of the jump, the standard deviation of the simulated fractions of surviving banks increases.
This indicates that for the values of μA, μL , σA and σL , at which the jump occurs, either
most of the banks are operating or most of the banks are in distress with no intermediate
state.

To investigate this behaviour for parameter values close to the jump, we plotted the fre-
quency distribution for fixed values of μA, μL , σA and σL in proximity of the jump in Fig. 8.
We used different values of μL for the simulations when initializing with Normal distributions
(μL = 890) and Student’s t distribution (μL = 870). This is because of the jump starting
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earlier for the Student’s t distribution than for the Normal distribution. The value for θ is
set to 0.3 again. To determine the frequency distribution, we repeated the default algorithm
for the fixed values of μA, μL , σA and σL 10,000 times and sum the occurrence of the same
equilibrium fraction of surviving banks. Sub-plot A shows the results for simulations using
the Normal distribution and sub-plot B shows the results for simulations using the Student’s t
distribution. For both distributions, two peaks occur. The peaks of the frequency distribution
for a banking system initialized with the Normal distribution occur around p close to zero
and for p between 0.9 and 1.0. The first peak for the fraction of surviving banks for a banking
system with balance sheets initialized with the Student’s t distribution happen between 0.01
and 0.15 and the second peak for values of p between 0.65 and 0.95. Values of fractions of
surviving banks between the two peaks do not occur. The lack of intermediate values is due
to the stable and unstable fixed points. The unstable fixed point forms a barrier between the
stable fixed points. However, slight perturbations of the values of banks assets and liabilities
caused by the randomness of the simulation either tip the banking system into distress or
survival.

The number of banks defaulting before the sudden system failure happens when initialized
with the Normal distribution is less than for a banking system initialized with the Student’s t
distribution. The Student’s t distribution is a fat tail distribution implying that banks balance
sheets differ more than when the balance sheet values are distributed with a Normal distrib-
ution. Thus, after the jump some banks have a greater chance of survival, as they have more
capital, than other members of the banking system. However, because of the greater diversity,
some banks also have less capital than other banks, causing the system failure to happen for
a smaller mean value of liabilities in comparison to a more homogeneous banking system
when initialized with the Normal distribution. Thus, the more diverse system is more prone
to failure but chances of survival of some banks are larger than for a more homogeneous
banking system.

5.4 Network Influence

Interbank networks of various countries (Austria [13], Brazil [17], UK [41], Italy [38], etc.)
have been studied with the outcome that the networks do not resemble Erdős–Rény networks.
Instead, they consist of “low clustering coefficients with short average path length “ [13] and
the links in the interbank networks resembling the exposure from one bank to others are
distributed with tails exhibiting “a linear decay in log-scale, suggesting a heavy Pareto tail”
[17] indicating a core-periphery structure with banks in the centre being highly connected
and periphery banks being connected to the core banks [52].

In Fig. 9, we test the influence of other exposure network structures than the Erdős–Rény
network. The distributions used to initialize the balance sheets for both sub-plots are Normal
distributions. The structure of the outline of Fig. 9 is similar to the one in Fig. 7. Again, we
plotted the average fraction of 100 trials of surviving banks for a θ of 0.3 (green line), 0.1 (red
line) and 0.0 (blue line) against (μL −μa)/(σ 2

A +σ 2
L)1/2 varying μL . The black lines are the

solution of the fixed points of Eq. 12 for changing b to match the equivalent value of θ . Plot
A shows the results given that the underlying exposure network has a Small-World structure
and in plot B, the underlying exposure network structure uses the preferential attachment
algorithm to create a core-periphery structure. To tidily connected the core banks, we used
Erdős–Rény core networks made out off 50 banks with a connection probability α of 0.75.
The remaining 450 periphery banks are added one-by-one connecting to 15 banks using the
preferential attachment algorithm.
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(a)

(b)

Fig. 9 The figure shows the average fraction of surviving banks p computed using 100 simulations plotted
against (μL −μA)/(σ 2

A +σ 2
L )1/2. The balance sheet values are normally distributed. The underlying structure

of the exposure networks are Small-World with neighbouring nodes c = 12 and a re-wiring probability β set
to 0.1 (a) and core-periphery networks with a strongly connected cores created using Erdős–Rény networks
with connection probability α = 0.75 and 50 banks, and 450 periphery banks that are added one by one and
joint to 50 already existing banks using the preferential attachment algorithm. As in Fig. 7, for a fraction of
interbank assets to total assets, p is plotted using green symbols, for θ = 0.1 we used red symbols and for
0.0 blue symbols were used. The error bar is the standard deviation of the results of 100 trials. The black line
represents the fixed points of the Iteration Function 12 plotted against a − b for changing θ as used in the
simulation. The values of p for the simulation and the Iteration Function 12 are for both network structures
reasonable close and the steep decrease in the proximity of the jump are for both network structures observable
(Color figure online)

As shown in Fig. 9, the simulation results using both network structures are reasonable
close to the fixed point solutions of the Iteration Function 12 with a steep decline in surviving
banks for θ = 0.3.

The steep decline of p when the Small-World network is used starts a bit earlier than the
predicted jump in the mean-field. Before the rewiring process, the Small-World network is an
ordered lattice. The Ising model on an ordered lattice can be approximated using the mean-
field solution as long as the number of close neighbours is larger than 4. The re-wiring creates
long-distance links between banks distributing the shock quicker through the network.

Thus, it can be said that the network influence is marginal given that the number of lending
banks is large enough. This can be explained using the results in Sect. 4.2. There, we showed
that when pr = x1 (and assuming a small change from pr to pr−1), the average number of
banks failing as a result of one distressed bank is one again. Therefore, this implies that when
capital is low the distress of one bank causes a chain of distress in connected banks resulting
in distress throughout the entire system implying that the network structure is secondary.
However, it has been reported that in the real world networks, periphery banks are of smaller
size than core banks, which we did not account for and might lead to a different result. A
study of real interbank network system, combined to the investigation of inferred networks
form assets correlations studies [5,20,31,47] is under current investigation.

5.5 Collaterals

To incorporate collaterals of a lending agreement we add the following term to total assets,
Ai (r), of bank i in round r :

M∑

j=1

qθ Ai gi j (1 − S j (r)), (18)
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Fig. 10 The figure shows the average fraction of surviving banks p computed using 100 simulations plotted
against (μL −μA)/(σ 2

A +σ 2
L )1/2. The balance sheet values are normally distributed. The underlying structure

of the exposure network is an Erdős–Rény network. A collateral term was added when the total assets where
computed during simulation modelling. The collateral on loans becomes active after the loaner defaulted. The
black line represents the fixed points of the Iteration Function 12 using a′ and b′ as given in Eqs. 16 and 17 to
compute the fixed point. The fixed points are plotted against a′ − b′ (θ = 0.3 was used in the simulation). The
different coloured lines represent varying fractions q such that the value of the collateral for any loan from
bank i to bank j is qθ Ai gi j . For increasing q the interbank interaction is reduced such that for q = 1 the
interbank loans can be disregarded (Color figure online)

where q ∈ [0,∞] accounts for the value difference of the loan from bank i to bank j and
the collateral bank j has to pay whenever it cannot pay its outstanding credit.

Figure 10 is a plot of the fraction of surviving banks p using simulation testing including
the collateral term and the fixed point solution of the Iteration Function 12 using a′ and b′
as given in Eqs. 16 and 17. The average fraction of surviving banks was plotted for 100
trials along with the errorbars (coloured lines) for fixed θ = 0.3. The black line are the fixed
point solutions of the Iteration Function 12. The different colours represent varying fractions
of q . For increasing q the interaction in form of the interbank loans between banks can be
disregarded. However, for lower values of q the jump can still be observed.

6 Analysis of Real Banking System Data

Banks report their balance sheet quantities yearly as part of their financial statement in their
annual report. We used Bankscope [15] to collect data for US and UK banks.2 The data
includes consolidated values for some banks and unconsolidated values for others. Only
using the values from consolidated balance sheets would have reduced the list of banks
considerably mostly excluding foreign subsidiaries of foreign banks. We chose the years
2007 and 2012 as reference years, to determine the stability of the UK and US banking
system during the recent financial crisis and a non-crisis time. The parameters μA and μE

represent the “true” of the average value of total assets and capital per bank.
The two quantities that are decisive for the stability of the banking system in our model are

the mean of the total assets μA = μg +θμA p0 (with p0 = 1) and the mean of loss absorbing
capital μE = μA − μL . We are using the “Tier 1 Capital” and “Total Assets” as reported in

2 The query settings were on “Status: Active Banks, Inactive Banks”, “Specialisation: Commercial banks,
Savings banks, Cooperative banks, Real Estate & Mortgage banks, Investment banks, Islamic banks, Other
non banking credit institutions, Bank holdings & Holding companies, Private banking / Asset management
companies” and “Ultimate Owner: Def. of the UO: min. path of 50.01%, known or unknown shareh., closest
quoted company in the path leading to the Ultimate Owner (if any); GUO and DUO.”
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Table 3 The table reports the mean value of total assets μA and Tier 1 capital of banks μE and the standard
deviations for the years 2007 and 2012 for the UK and US banking system

UK USA

2007 in GBP 2012 in GBP 2007 in USD 2012 in USD

μA 2.0287e+11 1.8307e+11 1.8505e+10 2.0247e+10

STD 4.7503e+11 4.2912e+11 1.3592e+11 1.5234e+11

μE 6.3032e+09 8.1836e+09 1.0615e+09 1.5829e+09

STD 1.3785e+10 2.0298e+10 6.6785e+09 1.1102e+10

Leverage, γ 0.0311 0.0447 0.0574 0.0782

No. banks 26 38 666 779

The data is from Bankscope. We only considered banks that reported their Tier 1 capital. Thus, the table
additionally states the number of banks. To compare the Tier 1 capital, we also stated the leverage ratio γ , i.e.
Tier 1 capital to total assets

Bankscope. It should be noted that the UK and US use different accounting systems leading
to different estimations for the value of the same asset and liabilities. Henceforth, the value
of total assets, total liabilities and Tier 1 capital for UK and US banks reported in Bankscope
cannot be compared country wise. However, it is possible to discuss changes in financial
stability of the banking systems in a country for different years. To compute the mean values
for μA and μE we only use banks with Tier 1 capital larger than zero this reduced the list
of banks considerably (especially in 2007) as Bankscope does not report the Tier 1 capital
value for all banks. The mean values as well as the number of banks used to compute the
values can be found in Table 3. To compare the values for Tier 1 capital and total assets in the
different years, we also included leverage, γ in the table. It becomes clear that in 2007 the
average leverage both in the US and UK was less than it was in 2012 and henceforth already
implies a less stable system in 2007.

The parameter σ is a free model parameter that indicates the uncertainty about the value
of asset and liabilities. More precisely σg increases if the value for non-interbank assets is
uncertain. Similarly, difficulties in obtaining funding from banks or other funding sources
are represented in an increased σL . In a way σ measures the severity of the shock and hence
we tested for different values of σ . To calibrate σ , we use a variable f ∈ [0, 1] and say
that σ is a fraction of the mean value of the Tier 1 capital, μE . Strictly speaking, σ as
discussed in the above analysis of the homogeneous banking model is the standard deviation
of μL − μg , but as seen in Sect. 5 the difference between the standard deviation of μL − μg

and −μE = μL − μA is minimal.
Another parameter that cannot be easily obtained from the annual account data is the

average fraction of interbank assets, θ . Banks report their lending to other banks under
“Loans and advances to banks” and “Deposits by banks” in their annual reports. However,
as it is pointed out in [41] loans and advances to banks are not the only exposure banks have
to other banks. Such that to monitor the UK interbank market the Prudential Risk Authority
(PRA) collects data about other financial instruments that form part of the interbank market.
In particular [41] list: “prime lending (. . . ); holdings of capital and fixed-income securities
issued by banks; credit default swaps bought and sold; securities lending and borrowing (. . . );
repo and reverse repo (. . . ); derivatives exposure (. . . ); settlement and clearing lines; asset-
backed securities; covered bonds; and short-term lending with respect to other banks and
broker dealers”. The balance sheet data reported in the annual reports does not differentiate
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Fig. 11 The sub plots show the fraction of surviving banks for the years 2007 (blue crosses) and 2012 (black
circles) against the fraction of σ to mean value of capital, f, for various values of the fraction of interbank
assets to total assets, θ . To calibrate the model, the mean of total assets, μA , and the mean of Tier 1 capital, μE ,
was used from banks from the UK banking system. For θ = 0, banks are not interconnected. In that case, for
both years no systemic distress event happens. In order for a system failure to happen, θ needs to be non-zero.
The sudden system failure happens for the banking system calibrated with the 2007 UK data for θ = 0.07 at
which the banking system calibrated with 2012 UK data is still in a stable state. For θ ≥ 0.10, the banking
system calibrated with 2012 UK data also becomes unstable for a large enough f . However, f at which the
systemic distress happens for the 2007 UK data is smaller then the value for f at which the systemic failure
happens when the banking system is calibrated with the 2012 UK data implying that the 2007 system is more
prone to failure then the 2012 banking system (Color figure online)

between the interbank market and products obtained from other financial institutions. Still
using only the values for “Loans and advances to banks” or “Deposits by banks” to calibrate
θ would underestimate the average fraction of interbank lending. Henceforth, we again use
multiple values of θ to test the stability of the system.

Figures 11 and 13 show various plots the fraction of surviving banks, p, plotted against
the fraction of σ to the mean Tier 1 capital μE , f for the UK and US system, respectively.
The fraction of surviving banks is calculated using the fixed points of Eq. 12 using a standard
normal CDF as before. The value of the fraction of interbank lending to total assets, θ is fixed
and given above each sub plot. The blue crosses indicate the fraction of surviving banks for
a banking system calibrated with the 2007 data and the black circles symbolizes the fraction
of surviving banks for a banking system calibrated with the 2012 data.

For θ set to zero the fraction of surviving banks in the UK banking system is almost
identical (Fig. 11). The number of surviving banks declines for a larger f . However, even for
f tending to one more than 85 % of banks are operating in both 2007 and 2012. Note that
θ equal to zero corresponds to no interbank lending. The number of distressed banks is only
due to the uncertainty of the value of liabilities and non-interbank assets caused by a large
σ . For the range of σ from zero to the size of μE , no systemic event, i.e. the entire failure
of the banking system, becomes possible in both years given that there is only a shock to the
value of non-interbank assets or liabilities.

For the next graphs in Fig. 11 in the first row θ is increased to 0.03 and 0.07. It becomes
clear that the fraction of surviving banks deviates for 2007 and 2012 with p for 2007 being
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Fig. 12 The figure is similar to Fig. 4 showing the fraction of surviving banks for different values of a and b.
Additionally to the fraction of surviving banks for particular values of a and b, we also plotted the particular
values of the fraction of surviving banks calibrated with the 2012 UK data for θ fixed at 0.10 for varying f as
indicated. It becomes clear that for increasing f , b decreases such that for f = 0.90, b becomes less than bc .
Simultaneously, p increases explaining the increase in p observed in Fig. 11 for θ = 0.10 and θ = 0.11 for
increasing f for the 2012 UK data

considerable less than p for 2012 implying that the banking system 2007 was much more
prone to failure. For θ = 0.07 and the banking system calibrated with the 2007 data set,
a jump becomes visible for p for f around 0.5. The banking system calibrated with the
2012 data set remains stable for θ set to either 0.03 or 0.07. This changes when θ is further
increased. In the second row of Fig. 11, θ is set to 0.10, 0.11 and 0.13. The sudden jump for
banks calibrated with the 2007 data set happens for f around 0.56 to 0.51 and increases even
further in the third row when θ takes the values 0.3, 0.4 and 0.5 with a value of f around
0.31–0.46 being sufficient to ensure an unstable banking system. For the banking system
calibrated with the 2012 data set a jump also occurs for values of θ above and including 0.1.
For θ equal to 0.10 the jumps happens for f around 0.66. As for the 2007 data set, the jump
moves to a lower value of f for a larger θ with θ set to 0.5, f being around 0.36 for the jump
to happen.

For θ equal to 0.10 or 0.11 a jump occurs as well for the banking system calibrated with
the 2012 UK data set. However, after the jump, p increases for increasing f . This can be
explained using Fig. 12. Figure 12 is the same plot of the contour lines of surviving banks as
plotted in Fig. 4. The black symbols indicate the position of p for fixed θ equal to 0.10 and
varying f as indicated in the accompanying legend. It becomes obvious that for increasing
f , b decreases such that for f = 0.90 a jump does not become possible any more and the
system is in the reversible region. At the same time, the value of p increases for decreasing b.
Hence, we can observe an increase in p even so f and henceforth the uncertainty σ increases.

Figure 13 is similar to Fig. 11 except that we used US banks to calibrate the model with the
blue crossed line representing the fraction of surviving banks in 2007 and the black circled
line being the fraction of surviving banks in 2012. In Fig. 13 the difference in the stability
of the US banking system in 2007 and 2012 is less visible suggesting that a shock of similar
size as happened in 2007 would also cause severe damage in 2012.

Figs. 11 and 13 show that exposure to other banks played an important role in the recent
financial crisis. As we mentioned before we cannot be certain about the actual average
fraction of interbank loan nor the size of σ at that time. However, an exposure of 30 % of
total assets to other banks seems like a valid estimate. A σ of 25 or 50 % of the bank’s capital
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Fig. 13 The figure is similar to Fig. 11 except that US balance sheet data for the years 2007 and 2009 was
used to calibrate the model. The sub plots show the fraction of surviving banks for the years 2007 (cross)
and 2012 (circle) against the fraction of σ to mean value of capital, f, for various values of the fraction of
interbank assets to total assets, θ . To calibrate the model, the mean of total assets, μA , and the mean of Tier 1
capital, μE , was used from banks from the US banking system. For θ = 0, banks are not interconnected. In
that case, for both years no systemic distress event happens. In fact even for an increased θ of 0.10 the system
is stable with only some losses for large f but no system-wide failure. The sudden system failure happens
for the banking system calibrated with the 2007 US data for θ = 0.15. However, we note that for the same
value of θ , the banking system calibrated with 2012 US data is still in a stable state. For θ ≥ 0.17, the banking
system calibrated with 2012 UK data also becomes unstable for a large enough f . For both years, σ needs to
be at least half of the size of banks capital in order for the system wide failure to happen

only happens during a period of large uncertainty—which one can argue happened during
the 2008 meltdown of the financial sector. In particular, the Financial Services Authority
(FSA) stated in their report on “The failure of the Royal Bank of Scotland” [26] that beside
mismanagement a mismatch in short-term funding and devaluation of long-term assets played
part of the failure and eventual bail-out of the Royal Bank of Scotland by the UK government.
In the 2012 data set, for 30 % interbank assets to total assets, σ needs to be much larger for
the jump to occur implying a more stable system. This is due to more capital in the banking
system. Needless to say that using the balance sheet test to determine insolvency, a bank
failure is always an option as capital is limited. The likelihood of such a large shock to
happen is not part of this paper but certainly it can be considered a rare event. Nonetheless,
the maximal economical feasible leverage ratio should be used as a minimum to prevent
entire system failure and taxpayer intervention.

7 Conclusions

We studied a stylized banking model based on balance sheet quantities to understand the
influence of counterparty failure on the stability of the entire banking system. In our stylized
banking model, the number of bank failures can be reduced by increasing the amount of
lending in the interbank system which can compensate for fluctuations in the assets and

123



Systemic Losses Due to Counterparty Risk 1021

liabilities. However, above a certain critical fraction of the average amount borrowed with
respect to the average combined fluctuations in liabilities and non-interbank assets a single
bank failure can trigger catastrophic events that can bring down the entire system. In this
regime, the system is irreversible and the normal operating state can only be recovered at a
cost of introducing capital externally. In addition to estimating the cost of rescuing a failed
banking system, we estimated a minimum leverage requirement to ensure a stable system.
We have archived this by solving a fixed point equation that reveals at the transition two
stable fixed points separated by a barrier in the form of an unstable fixed point.

We archived this by constructing a Merton model of default where banks interact with one
another via interbank lending assigning banks a state whether they are normally operating
or are in distress. This allowed us to use a stability analysis of the fixed points to investigate
the stability of the banking system. The model uses balance sheet quantities to determine
the counterparty risk of banks. The initial round of distress is caused by changes in the
distributions of non-interbank assets and liabilities. We showed that depending on the balance
sheet parameters, non, partial, and entire failure due to counterparty risk of the banking system
becomes possible. An advantage of our model is, that interactions between variables can be
included. For example, we tested the effects of collateralized lending but the impact of credit
derivatives insuring against counterparty risk could also be included.

We have verified numerically that this behavior is robust for different kinds of distribution
of assets and liabilities fluctuations and for different types of interbank networks. We used
simulations distributing assets and liabilities randomly among banks varying the average
capital and thereby creating the initial round of default. The initial round of default created
subsequent defaults caused by reduction of the total assets due to distressed counterparties.
We showed that the predicted jump indeed occurs for different distributions and various
network structures.

Finally, we used balance sheet data of UK and US banks from the years 2007 and 2012
to demonstrate the stability of the banking systems in the individual years. We showed that
interbank lending made both the US and UK systems more prone to failure in 2007 such
that small fluctuations in assets and liabilities could have caused catastrophic events. In 2012
for the same fluctuations both banking systems are still stable with much larger fluctuations
needed to create a system-wide bank failure.

We would like to stress that the numbers evaluated with the model should be taken with
caution as the model is a simplification of the real world - as any model always will be.

The largest divergence of our model from reality is the assumption homogenizing the sys-
tem. Real banks in various observed banking system are far from homogeneous but exhibited
differences in the size of their balance sheets by order of magnitude, and are also diversified in
investment strategies. Except of changing the underlying exposure matrix, we did not explore
the effects of heterogeneity of banks on the stability of the system. The main motivation of
using the homogenising assumption was to simplify the model in its most elementary form
to be able to solve the model analytically. Nonetheless, we argue that it is possible to draw
conclusions from the homogeneous system to at least a fraction of real world interbank sys-
tems. Indeed, it has been suggested that internationally operating banks have similar sized
balance sheets and are also connected on international exposure markets. Hence, these banks
can be, to some extent, approximated by the homogeneous model. These banks are the most
relevant for systemic risk. Still, effects caused by heterogeneous structures of balance sheet
could potentially influence the stability of banking system and needs further investigation.

Also by no means are we claiming that the underlying distribution used to evaluate the
stability of the model is a Standard Normal distribution or Student’s t distribution. They have
been used to explain the propagation of distress in a connected banking system and explain
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the mechanism and conditions under which a system failure occurs. The simple model of
banking failure demonstrates the risk that counterparty failure imposes in a highly connected
banking system and is an explanation as to why the recent financial crisis had such a big
impact even if it started with a local shock in the US mortgage market.

The analysis of the network structure suggests that for banks of similar size and exposed
to similar market risk, the interbank network is not important. However, real world interbank
networks are structures such that periphery banks are mostly small regional banks with core
banks being internationally operating banks. Clearly, the default of a regional bank will not
have the same impact as the default of an internationally operating bank. However, this effect
is not covered in our homogeneous model. Similarly, discussions about ring-fencing the
banking system or using the Volcker rule to separate investment and retail banking suggest
that a shock to specific asset classes might not be as severe to specific kind of banks as to
others and henceforth reduce the overall shock to the system. Changing the above model to
a heterogeneous system might give answers to some of these questions and will be explored
in future works.
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