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Explaining the behavior of joint and marginal Monte

Carlo estimators in latent variable models with

independence assumptions.

Silia Vitoratou, Ioannis Ntzoufras and Irini Moustaki.



Abstract

In latent variable models parameter estimation can be implemented by using the joint or
the marginal likelihood, based on independence or conditional independence assumptions.
The same dilemma occurs within the Bayesian framework with respect to the estimation of
the Bayesian marginal (or integrated) likelihood, which is the main tool for model comparison
and averaging. In most cases, the Bayesian marginal likelihood is a high dimensional integral
that cannot be computed analytically and a plethora of methods based on Monte Carlo
integration (MCI) are used for its estimation. In this work, it is shown that the joint MCI
approach makes subtle use of the properties of the adopted model, leading to increased
error and bias in finite settings. The sources and the components of the error associated
with estimators under the two approaches are identified here and provided in exact forms.
Additionally, the effect of the sample covariation on the Monte Carlo estimators is examined.
In particular, even under independence assumptions the sample covariance will be close to
(but not exactly) zero which surprisingly has a severe effect on the estimated values and their
variability. To address this problem, an index of the sample’s divergence from independence
is introduced as a multivariate extension of covariance. The implications addressed here are
important in the majority of practical problems appearing in Bayesian inference of multi-
parameter models with analogous structures.



1 Introduction

Latent variable models are widely used to capture latent constructs by means of multiple
observed indicators (items). From the early readings, the methods applied for the parameter
estimation of model settings with latent variables relied either on the joint (Lord and Novick,
1968; Lord, 1980) or the marginal likelihood (Bock and Lieberman, 1970; Bock and Aitkin,
1981). The former suggests to estimate the observed and latent variable scores simultane-
ously while the latter to marginalize out the latent variables prior to the model parameter
estimation. Similarly, counterpart approaches have been developed within the Bayesian con-
text (for instance Mislevy, 1986; Gifford and Swaminathan, 1990; Kim et al., 1994; Baker,
1998; Patz and Junker, 1999).

The Bayes factors, posterior model probabilities and the corresponding odds (Kass and
Raftery, 1995) require the computation of the Bayesian marginal (or integrated) likelihood
which is defined as the expectation of the likelihood over the prior distribution. To separate
from the marginal likelihood term used in the context of latent variables, we will refer to this
as the Bayesian marginal likelihood (BML). In most cases the BML is a high dimensional
integral which is not analytically tractable. Sophisticated Monte Carlo techniques have been
developed throughout the years, such as the bridge sampling (Meng and Wong, 1996) and
the Laplace-Metropolis estimator (Lewis and Raftery, 1997), among others. Despite the
method implemented however, the BML can be estimated by considering either the joint or
the marginal likelihood expressions.

Intuitively one expects the joint approach to be less efficient, especially as the number of
dimensions increases. Empirical findings are available in the literature to verify this fact (see
for instance Kim et al., 1994 and references within). However, to our knowledge, there are
no theoretical justifications to illustrate the differences between the two approaches in terms
of error. On the other hand, the use of the joint expression can be directly implemented
through ready-to-use Markov chains Monte Carlo (MCMC) software such as WinBUGS.
This favorites the full augmented scheme and the corresponding joint estimator, either for
actual data analysis or for illustration purposes, as for instance in Chib and Jeliazkov (2001,
Sec. 3.2 and 3.3), Friel and Pettitt (2008, Sec. 4.2) and Congdon (2010, Sec. 2.2.3). In
this work, we obtain analytical expressions for the variances associated with the estimator of
each approach and we consider the factors that influence their associated Monte Carlo error
(MCE). In particular, we illustrate graphically and mathematically that even though the
MCE is not by definition associated directly with the dimensionality of a model, the latter
plays a key role through the variance components. In turn, the variance components are
directly influenced by the number of the variables involved and their variability. Additionally,
we demonstrate the effect of the sample covariation on the Monte Carlo estimates, which is
considerably understated in the literature. In particular, for independent random variables
the sample covariance is typically close but not exactly equal to zero. Here, we illustrate
that, in high dimensions, even small sample covariances influence the estimators producing
biased Monte Carlo estimates. This bias usually remains undetected, due to the fact that
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the effect of sample covariation also causes underestimation of the corresponding MCEs.

Concerns arise with respect to convergence, since the extensive use of simulation methods
nowadays is not always followed by the necessary precautions to ensure accurate estimation
of the quantity of interest. For instance, Koehler et al. (2009) reported that in a large
number of articles with simulation studies, only a tiny proportion provided either a formal
justification of the number of replications implemented or the actual estimate of the MCE.
That is, integral approximations are based on an arbitrary number of replications, that are
considered to be “large enough” to accurately estimate the quantity of interest. Nevertheless,
in complex high dimensional problems, where the rate of convergence can be extremely low,
millions of iterations may be required to achieve a desirable level of precision for the MC
estimate of interest. Hence, in many cases the simulations are practically stopped “when
patience runs out”, as Jones et al. (2006) fluently describe. The remarks that are made in this
paper facilitate the understanding of the error and bias mechanism of Monte Carlo methods
under independence and conditional independence and hopefully will assist the researchers
to accurately estimate the quantity of interest in high dimensions.

The findings of this article have applicability in a wide range of modern statistical mod-
els including factor analysis models, latent class models, random effects models, longitudinal
models, cluster analysis models, data-augmented specific models, mixture models, negative
binomial response models, zero-inflated models, bivariate Poisson models and Poisson dif-
ference (or Skellam distributed) models.

The structure of the paper is as follows. Section 2 presents a motivating example with
regard to the estimation of the BML in a model with latent variables. Three popular MCMC
methods are implemented, under both joint and marginal approaches. Key observations
are made based on the comparison of the derived estimated values which motivate further
research. Section 3 presents the Monte Carlo integration under the joint and marginal
settings, with emphasis on high dimensional integrals where independence can be assumed for
the integrand. The MCEs under both approaches are derived in Section 3.1 while the factors
that affect the error are considered in Section 3.2. For illustration purposes a simple example
is provided, that is, estimating the mean of the product of independent and identically
distributed (i.i.d) Beta random variables. In Section 3.3, the variance reduction in the
case of conditional independence is discussed. In Section 3.4 the total covariation of N
variables is defined as a multivariate counterpart of covariance. A corresponding index
that measures the sample’s divergence from independence is developed and employed to
amplify the factors that influence the total sample covariation. Finally, it is shown that in
finite settings where the sample covariation is non zero, the MCE associated with the joint
approach is underestimated.
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2 A motivating example: BML estimation in gener-

alised linear latent trait models

A broad and popular family of models that can handle continuous, discrete and categorical
observed variables are the generalised linear latent variable models (GLLVM, Bartholomew
et al., 2011). Due to GLLVM’s versatile applicability, they are utilized in this section to
amplify the difference between the joint and marginal likelihood approaches. In particular,
we focus on a latent trait model (Moustaki and Knott, 2000) with binary observed items,
under the Bayesian paradigm. The BML is computed in a simulated data set under the
joint and marginal approaches. The derived estimations raise specific concerns which are
discussed at the end of the section.

2.1 Model setting and estimation techniques

The GLLVM consist of four main components: (a) the multivariate random component
Yi = (Yi1, Yi2, . . . , Yip)

T of the p response variables of subject i, (i = 1, . . . , N), (b) a set
of k-dimensional latent vectors Zi = (Zi1, . . . , Zik) characterizing subject i, (c) the linear
predictor ηi = (ηi1, . . . , ηip)

T of the latent variables Zi for subject i and (d) the link function
υ(·), that connects the previous three components. Hence, a GLLVM can be summarized as

Yij |Zi ∼ ExpF, ηi = α+ βZi, Zi ∼ π(Zi) and υ
[
E(Yi|Zi )

]
= ηi, for i = 1, . . .N,

where ExpF is a member of the exponential family, α = (α1, . . . , αp)
T , β = (βjℓ ; j =

1, . . . , p, ℓ = 1, . . . , k) andZi ∼ π(Zi) denotes that Zi is random variable with density π(Zi).
In the above formulation, π(Zi) needs to be specified for the latent variables. Typically,
the latent variables are assumed to be a-priori distributed as independent standard normal
distributions, that is, Zi ∼ N(0, Ik) for all individuals (Bartholomew et al., 2011), where
Ik is the identity matrix of dimension k × k.

In the following, we focus on models with binary responses and k latent vectors, which
belong to the family of generalized latent trait models discussed in Moustaki and Knott
(2000). The logistic model is used for the response probabilities:

logit
[
Pij (Zi)

]
= αj +

k∑

ℓ =1

βjℓ Ziℓ, i = 1, . . . , N, j = 1, . . . p,

where Pij(Zi) is the conditional probability of a positive response by the individual i to
item j. The model assumes that for each subject i the responses are independent given
the latent vector Zi (local independence assumption) leading to either the joint (Lord and
Novick, 1968; Lord, 1980)

f(Y| θ,Z) =
N∏

i=1

f(Yi| θ,Zi) =
N∏

i=1

p∏

j=1

Pij (Zi)
yij
[
1− Pij (Zi)

](1−yij ) (1)
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or the marginal likelihood (Bock and Lieberman, 1970; Bock and Aitkin, 1981; Moustaki
and Knott, 2000)

f(Y| θ) =
N∏

i=1

∫ p∏

j=1

Pij (Zi)
yij [1− Pij (Zi)]

(1−yij ) dZi, (2)

where θ = (α,β).

For the Bayesian counterpart of the model, priors distributions are additionally assigned
on model parameters θ. The prior specification of the model used here is based on the ideas
presented by Ntzoufras et al. (2003) and further explored in the context of generalized linear
models by Fouskakis et al. (2009, equation 6). For a GLLVM with binary responses, this
prior corresponds to a N(0, 4). In the case of k > 1 latent variables, constraints need to
be imposed on the loadings β to ensure identification of the model. To achieve a unique
solution, the loadings matrix is constrained to be a full rank lower triangular matrix (see
also Geweke and Zhou, 1996, Aguilar and West, 2000 and Lopes and West, 2004), by setting
βjℓ = 0 for all j < ℓ and βℓℓ > 0. The prior is summarized as follows:

π(βjℓ) =

{
LN(0, 1) if j = ℓ
N(0, 4) if j > ℓ

where X ∼ LN(0, 1) is the log-normal distribution with zero mean and the variance equal
to one for logX . For diagonal elements βℓℓ, the LN(0, 1) was selected as a prior in order
to approximately match the prior standard deviation used for the rest of the parameters.
Moreover, this is one of the default prior choices for such parameters in the relevant literature;
see for example in Kang and Cohen (2007) and references therein.

In analogy with (1) and (2), under the local independence assumption there are two
equivalent formulations of the BML, namely

f(Y) =

∫ N∏

i=1

f(Yi| θ,Zi) π(θ,Z) d(θ,Z) (3)

and

f(Y) =

∫
f(Y | θ) π(θ) dθ =

∫ [ N∏

i=1

∫
f(Yi| θ,Zi) π(Zi) dZi

]
π(θ) dθ . (4)

Hereafter we refer to (3) with the term joint approach and to (4) with the term marginal
approach for the BML and we compare them within the Bayesian framework.

For both approaches, we employ three popular BML estimators namely: the recipro-
cal mean estimator (RM ; Gelfand and Dey 1994), the bridge harmonic estimator (BH ;
Meng and Wong 1996, often refer to as the generalised harmonic mean) and the bridge
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geometric estimator (BG; Meng and Wong 1996). The identities that correspond to these
estimators are provided in the Appendix. In order to construct the estimators using the
joint approach, the parameter vector is augmented to include the latent variables, that is
ϑ = {θ,Z} = {α,β,Z1, . . . ,ZN}, while for the marginal approach it holds ϑ = θ = {α,β}.

The estimators require also an importance function g(ϑ). The objective and recommen-
dation of many authors (DiCiccio et al., 1997; Gelman and Meng, 1998; Meng and Schilling,
2002; Meng and Wong, 1996), is to choose a density similar to the target distribution (here
the posterior). In the current example, we use an approximation based on the posterior
moments for each parameter, with structure g(θ) = g(α)g(βe) where

g(α) ∼ MN(m̃α, Σ̃α) and g(βe) ∼ MN(m̃βe
, Σ̃βe

), βe = βjℓ, j ≥ ℓ

and βe refers to the non-zero components of β with elements log βℓℓ for j = 1, . . . , p and βjℓ

for j > ℓ. The MN(m̃, Σ̃) denotes a multivariate normal distribution whose parameters

(m̃, Σ̃) are the posterior mean and variance-covariance matrix estimated from the MCMC
output. For the joint approach, the g(ϑ) is simply augmented for the latent vector

g(ϑ) = g(α)g(βe)
N∏

i=1

k∏

ℓ=1

g(Ziℓ),

where g(Ziℓ) ∼ N(m̃Ziℓ
, s̃2Ziℓ

), with parameters estimated from the MCMC output used to
approximate the posterior π(Ziℓ|Y ).

2.2 Simulation study

A simulated data set with p = 6 items, N = 600 cases and k = 2 factors is firstly considered.
The model parameters were selected randomly from a uniform distribution U(-2,2). Using
a Metropolis within Gibbs algorithm, 50,000 posterior observations were obtained after dis-
carding a period of 10,000 iterations and considering a thinning interval of 10 iterations to
diminish autocorrelations. The posterior moments involved in the construction of the im-
portance function were estimated from the final output and an additional sample of equal
size was generated from g(θ). The MCMC estimators were computed in two versions, joint
and marginal, using the entire MCMC output of 50,000 iterations. In a second step, the
simulated sample was divided into 50 batches (of 1,000 iterations) and the integrated log-
likelihood was estimated at each batch. The standard deviation of the log-BML estimators
over the different batches is considered here as its MCE estimate (Schmeiser 1982, Bratley
et al. 1987, Carlin and Louis 2000).

The batch mean method is the most frequently met approach for the estimation of the
Monte Carlo error of the marginal likelihood estimates. The method is considered reliable
and it can be implemented in a straight-forward manner. However, motivated by a referee’s
comment, we have also implemented the overlapping batch means method (Meketon and
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Schmeiser, 1984) which is proven to be strongly consistency according to Flegal and Jones
(2010). The two methods gave identical results both in terms of the estimated marginal
likelihood and in terms of MCEs. Therefore, only the results based on the batch mean
approach are presented in the following.

The BML (4) was calculated by approximating the inner integrals with fixed Gauss-
Hermite quadrature points. This way, the computational burden is considerably reduced
without compromising the accuracy, since such approximations are fairly precise in low di-
mensions. For instance, in the current example where the inner integrals are two-dimensional
(k = 2), Monte Carlo integration leads to identical results with the Gauss-Hermite method,
with the latter being more than 80% faster to implement. Other approximations can be al-
ternatively used, such as the adaptive quadrature points (Rabe-Hesketh et al. 2005, Schilling
and Bock 2005) or Laplace approximations (Huber et al., 2004). All simulations were con-
ducted using R (version 2.12) on a quad core i5 Central Processor Unit (CPU), at 3.2GHz
and with 4GB of RAM. The estimated values for each case are presented in Table 1.

Table 1: BML estimates (log scale) for the GLLVM example

Approach Estimator Estimation Batch mean MĈE

RM -2062.3 -2053.9 3.46
Joint BH -2068.8 -2065.5 17.92

BG -2073.3 -2072.8 2.21

RM -2071.3 -2071.2 0.28
Marginal BH -2069.6 -2069.3 2.11

BG -2071.6 -2071.6 0.07
The estimated BML of a GLLVM model with p = 6 items, N = 600 cases
and k = 2 factors. Each estimation was computed over a sample of 50,000
simulated points while the batch mean and the associated error were computed
over 50 batches of 1,000 points each. RM: Reciprocal mean estimator, BH: Bridge
harmonic estimator and BG: Bridge geometric estimator.

2.3 Estimations and key observations

The first observation derived from the current example refers to the variability differences
between the estimators and between their joint and marginal counterparts. For illustration
purposes we focus on the two bridge sampling estimators. The joint bridge harmonic (BHJ)
and bridge geometric (BGJ) estimators are depicted in Figure 1(a) over the 50 batches. The
variability differences between them is striking, implying that the geometric estimator is a
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variance reduction technique as opposed to the harmonic. The next step in our investiga-
tion was to compare the less variant estimator with its marginal counterpart. Figure 1(b)
illustrates that further variance reduction can be achieved by implementing the marginal
rather than the joint geometric estimator. It becomes apparent that even the efficient bridge
geometric estimator was considerably improved by employing the marginal approach. This
fact is typical in high dimensional models and often expected intuitively.

The second observation was less imaginable and it refers to the estimated values per
se. In particular, Figure 1(c) illustrates that the BHJ , BGJ and BGM estimators vary
around a common estimated value for the BML and the divergencies present in Table 1 are
within the margins of their corresponding errors. However this is not true in the case of
the reciprocal estimator. As opposed to the bridge estimators, Figure 2(a) illustrates that
substantially distant estimations were derived by the joint (RMJ) and marginal (RMM)
reciprocal estimators. The difference in the estimated values is about 10 units in log-scale,
meaning that it far exceeds the corresponding MCEs and hence cannot be explained solely
by variability. In addition, it is interesting to notice that the RMJ occurs to be much more
divergent than the BHJ , even though the latter is associated with 5 times higher error (Table
1). The three joint estimators are depicted in Figure 2(b) and their marginal counterparts
are illustrated in Figure 2(c).
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Figure 1: The joint bridge harmonic estimator BH
J

(dotted line), the joint bridge geometric estimator BG
J

(gray solid
line) and the marginal bridge geometric estimator BG

M
(black solid line), for the BML (log scale), implementing a simulated

data set with p = 6 binary items, N = 600 cases and k = 2 factors, over 50 batches.

Several concerns arise therefore with regard to the convergence of the estimators in finite
settings, listed below:

a) What is the mechanism which produces these differences?
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b) Can the differences in the error be ameliorated to some extend by increasing the sim-
ulated sample size in finite settings?

c) By increasing the number of the simulated points, do the discrepancies in the estimated
values reduce? Where is this type of bias coming from?

Regarding the mechanism, we state here that is related to the model assumptions. Specif-
ically, consider the model parameters θ fixed in the BML expressions (3) and (4). It occurs
that the joint expression implements the mean of the product of the independent variables
f θ(Yi|Zi) while the marginal expression employs the product of their means. The former is
a generally applicable approach while the latter occurs explicitly under independence. We
conclude that the joint approach makes subtle use of the local independence assumption.
This fact has direct implications on the estimated value and the associated error which are
thoroughly examined in the following section.

3 Joint and marginal Monte Carlo estimators under

independence assumptions

The Monte Carlo integration techniques are reviewed here in a general framework, since the
subsequent theoretical findings extend beyond models with latent variables. In particular,
we consider any multi-dimensional integral of the form

I =

∫
φ(Y)h(Y) dY, where Y = (Y1, Y2, ..., YN). (5)

The MC approximation of the integral (5) corresponds to the expected value of φ(Y ) over

h(Y ). Specifically, if y(r) =
(
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

)
and yR =

{
y(r)
}R
r=1

is a random sample of

points generated from the distribution h(y), then the estimator Î = φ = 1
R

∑R
r=1 φ

(
y(r)
)
will

approach (5) for sufficiently large sample size R. The degree of accuracy associated with
the Monte Carlo estimator is directly related to the size of the simulated sample R. The
standard deviation of φ is the MCE of the estimator. The MCE is therefore defined as the
standard deviation of the estimator across simulations of the same number of replications R
and is given by:

MCE =

√
Var(φ ) =

σφ√
R
, (6)

while an obvious estimator of MCE is given by M̂CE = Sφ/
√
R, provided that an estimator

S2
φ of the integrand’s variance σ2

φ is available. From (6), it occurs that the MCE directly
depends on σφ and R.
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Here we focus on the estimation of the expected value of φ(Y ) =
∏N

i=1 φi(Yi) given by

I = E[φ(Y)] = E

[
N∏

i=1

φi(Yi)

]
=

∫ N∏

i=1

φi(Yi)h(Y1, Y2, ..., YN) d(Y1, Y2, ..., YN) . (7)

Under the assumption of independence for Yi, we can rewrite (7) as

I =

N∏

i=1

E [φi(Yi)] =

N∏

i=1

∫
φi(Yi)hi(Yi)dYi . (8)

The expressions (7) and (8) can be used to construct two unbiased Monte Carlo estimators
of I, described in Definitions 3.1 and 3.2 that follow.

Definition 3.1 Joint estimator of I. For any random sample
{
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

}R
r=1

from
h, the joint estimator of I is defined as

ÎJ = φ =
1

R

R∑

r=1

φ
(
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

)
=

1

R

R∑

r=1

[
N∏

i=1

φi

(
y
(r)
i

)]
. (9)

Definition 3.2 Marginal estimator of I. For any random sample
{
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

}R
r=1

from h, the marginal estimator of I is defined as

ÎM =
N∏

i=1

[
1

R

R∑

r=1

φi

(
y
(r)
i

)]
=

N∏

i=1

φi. (10)

In the remaining of the paper we examine the divergencies between the two estimators in
finite settings, as a result of disregarding the assumption of independence.

3.1 Monte Carlo errors

The exact MCEs for the joint and marginal estimators are expressed in terms of their vari-
ances. In particular, the variance of the joint estimator (9) is directly linked to the variance
of the product of N independent variables since

V ar(ÎJ) = V ar

[
1

R

R∑

r=1

{ N∏

i=1

φi

(
y
(r)
i

)}]
=

V ar
[∏N

i=1 φi(Yi)
]

R
. (11)

On the other hand, the variance of the marginal estimator (10) is given by the variance of
the product of N univariate MC estimators, that is

V ar(ÎM) = V ar

[
N∏

i=1

φi

]
. (12)
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The difference between (11) and (12) becomes apparent if the early findings of Goodman
(1962) are reviewed within the framework of Monte Carlo integration. Goodman (1962, eq.
1 and 2) provides the variance σ2 of the product of N independent variables Yi, (i = 1, ..., N)
with probability or density functions hi(Yi). For our purposes, we expand it to the case of
functions φi(Yi) of the original independent random variables, leading to

V ar

(
N∏

i=1

φi(Yi)

)
=

N∑

i=1

Vi

N∏

i ′ 6=i

E2
i ′ +

N∑

i1<i2

Vi1Vi2

N∏

i ′ 6=i1, i2

E2
i ′ + ...+ V1V2 · · · VN , (13)

where Ei ′ = E[φi ′(Yi ′)] and Vi = V ar[φi(Yi)], (i, i
′ ∈ {1, ..., N}), with all moments being

calculated over the corresponding densities hi(Yi).

Equation (13) can be written as

V ar

(
N∏

i=1

φi(Yi)

)
=

N∑

k=1

∑

C∈(Nk )


∏

i∈C

Vi

∏

j∈N\C

E2
j


 , (14)

where
(
N
k

)
is the set of all possible combinations of k elements of N = {1, 2, . . . , N} and any

product over the empty set is specified to be equal to one.

The variances of the two Monte Carlo estimators in (11) and (12) may now be expressed
in terms of (13). Specifically, the variance of the joint estimator is directly obtained by
dividing the integrand’s variance in (13) with the simulated sample size R. For the marginal
estimator, the variance (12) can be obtained by substituting Vi by Vi/R in (14). The variance
components that correspond to the MCEs in each case are presented in the following lemma.

Lemma 3.1 The variances of the joint (9) and marginal estimators (10) are given by

V ar(ÎJ) =
1

R

∑

i∈N

Vi

∏

j∈N\{i}

E2
j +

N∑

k=2



1

R

∑

C∈(Nk )

∏

i∈C

Vi

∏

j∈N\C

E2
j


 ,

and

V ar(ÎM) =
1

R

∑

i∈N

Vi

N∏

j∈N\{i}

E2
j +

N∑

k=2




1

Rk

∑

C∈(Nk )

∏

i∈C

Vi

∏

j∈N\C

E2
j


 ,

In each case, the associated MCE equals the square root of the corresponding variance
in Lemma 3.1. The variances (and therefore the MCEs) are asymptotically equivalent, since
both converge to zero with rate of order O(R−1). However, with the exception of the first

term in V ar(ÎM), the rest of the components in the summation converge faster to zero with
rates O(R−k) for any k ≥ 2. Hence, in finite settings the joint estimator will always have
larger error. The factors that influence the magnitude of this difference are discussed in the
next section.
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3.2 Determinants of Monte Carlo error difference

In this section, we study the difference in the errors associated with the joint and marginal
estimators. We illustrate how it depends on the dimensionality of the problem at hand (N),
the variation of the variables involved and the simulated sample’s size (R).

To begin with, if both estimators ÎJ and ÎM are applied with the same finite R, then
according to Lemma 3.1, the difference in their variances is given by

V ar(ÎJ)− V ar(ÎM) =
1

R

N∑

k=2



(
1− 1

Rk−1

) ∑

C∈(Nk )

∏

i∈C

Vi

∏

j∈N\C

E2
j


 ,

As the number of the variables increases, more positive terms are added to (15) and this
explains the indirect effect of the dimensionality. The effect of the moments Ei and Vi, i =
1 . . .N , can be expressed in terms of the corresponding coefficients of variation (CV2

i ), ac-
cording to the following lemma.

Lemma 3.2 Without loss of generality, let {Yi, i ∈ N0} be the sub-set of {Y1, Y2, . . . , YN}
random variable with zero expectations. The variances of the joint (9) and marginal (10)
estimators are given by:

V ar(ÎJ) =
1

R
×
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(CV 2
i + 1)− I(N0 = ∅)




and

V ar(ÎM) =
1

RN0
×
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(
CV 2

i

R
+ 1

)
− I(N0 = ∅)




where N0 ⊆ N = {0, 1, ..., N}, N 0 = N \ N0 is the index of variables Yi with non-zero
expectations,

∏
i∈∅

Qi = 1 for any Qi and I(N0 = ∅) is equal to one if Ei 6= 0 for all i ∈ N and

zero otherwise.

⊲ The proof of Lemma 3.2 is given at the Appendix. 2

Based on Lemma 3.2, the difference in the variances of the estimators becomes larger as the
variability of the Yis increases. The maximum difference occurs when all variables involved
have zero means, in which case V ar(ÎJ) = RN V ar(ÎM). On the contrary, when all means
are non zero, the difference mainly depends on the coefficients of variation. Based on Lemma
3.2, we may also consider the case where the two estimators have the same variance, that is
V ar(ÎJ) = V ar(ÎM), which can be achieved under different number of replications, RJ and

12



RM . The number of replications that the joint estimator requires, in order to archive the
same error with the marginal estimator, is defined at the following corollary.

Corollary 3.1 The joint (9) and marginal (10) estimators achieve the same accuracy when

RJ = R
N0
M × ω(N,N0, CV)

with

ω(N,N0, CV) =





RN−N0
M if N0 = N
N∏
i=1

(CV 2
i +1)−1

N∏
i=1

(CV 2
i /RM+1)−1

if N0 = ∅
∏

i∈N 0

CV 2
i +1

CV 2
i /RM+1

otherwise

where N0 = |N0| denotes the number of the zero mean variables, CV = {CVi : i ∈ N 0} and
RJ , RM are the number of iterations for the joint and marginal estimators, respectively.

Corollary 3.1 states that the joint estimator achieves the same MCE when its number of
iterations RJ is equal to the number of iterations of the marginal estimator RM raised to
the number of variables with zero expectations and multiplied by a factor ω(N,N0, CV) > 1
for RM > 1. Hence, in order to achieve the same precision for the two estimations, the
joint estimator will always require more iterations RJ than the marginal one RM . The
multiplicative factor ω heavily depends on the number of variable with zero expectations
and on the variability of the Yis (through CVs) for the non-zero variables. In the special case
where all expectations Ei are zero, the required number of iterations is RJ=RN

M . Lemma
3.2 and Corollary 3.1 indicate that the error of the joint estimator may not be always
manageable. That is, if the number of variables is large or if their variability is high, then
the joint estimator requires simulated samples that can be unreasonably large.

For illustration purposes, we implement a toy example of N independent and identically
distributed (i.i.d) Beta random variables Yi ∼ Beta(λ1, λ2) (i = 1, ..., N). The mean of their
product is given by:

E

(
N∏

i=1

Yi

)
=

(
λ1

λ1 + λ2

)N

.

Fifty samples with size ranging from 5 to 250 thousands simulated points, were generated
from N = 10 Beta(1, 2) distributions. The two estimators were computed and depicted in
Figure 3(a). The same procedure was repeated for N = 50 and N = 150 and is graphically
represented in Figures 3(b) and 3(c).

In the low dimensional case (N = 10), the error of the joint estimator (ÎJ : light grey line)

is rather comparable with the error of marginal (ÎM : dark grey line). When R reaches 250
thousands, both estimators reach the true mean (IT : dashed line). However, if the number
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of variables is increased to N = 50 and N = 150, the variability differences between the two
approaches remain large even for R = 250, 000; see Table 2.

The exercise was also replicated for N = 10, 50 and 150 i.i.d. Beta(0.1, 0.2) variables.
The true mean is the same with the previous setting (equal to 1/3), but the coefficient of
variation (CV) is now approximately 77% higher. For the same R and N , the difference in
the errors of the two estimators is even larger (Figures 3(d) to 3(e)), indicating the role of the
variability of the variables involved. The estimated values and the corresponding errors are
summarized in Table 2. Although, this example is simple assuming i.i.d random variables,
the same picture can be reproduced for non identically distributed random variables.

Table 2: Estimated mean of the product of i.i.d Beta variables (log scale)

Distribution N IT ÎM MĈEM ÎJ MĈEJ

Beta(1, 2)
10 -10.99 -10.98 0.02 -10.97 0.07
50 -54.93 -54.93 0.06 -52.01 2.03
150 -164.79 -164.79 0.09 -176.94 3.37

Beta(0.1, 0.2)
10 -10.99 -10.98 0.04 -11.05 1.07
50 -54.93 -54.90 0.10 -113.81 13.77
150 -164.79 -164.80 0.17 -595.13 28.50

N : Number of i.i.d variables; IT : true mean; Î(J orM): the estimated value via the joint or the

marginal approach respectively, over R =250,000 iterations; Î(M or J) and MĈE(M or J): batch
mean error over 25 batches of 10,000 points each (obtained as the standard deviation of the log
estimates).

3.3 Variance reduction under conditional independence

In this section, we demonstrate how we can extend the previous results in the case of condi-
tional independence which is more realistic in practice and it frequently met in hierarchical
models with latent variables.

Specifically, let us substitute Y by (U ,V ). In analogy with the previous setting, let
U i (with i = 1, 2, . . . , N) be conditionally independent random variables when V are given
with densities denoted by h(ui|v). We are interested in estimating the integral

I =

∫ [ N∏

i=1

ϕi(u i, v)
]
h(u , v) d(u , v), (15)

that now corresponds to the expected value of ϕ(u , v) =
∏N

i=1 ϕi(u i, v) over h(u , v). This
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can be directly estimated by the joint estimator

ÎJ =
1

R

R∑

r=1

[
N∏

i=1

ϕi

(
u

(r)
i , v (r)

)
]

(16)

assuming that we can generate a random sample
{
u(r), v(r)

}R
r=1

from h(u, v).

If we use the conditional independence assumption, (15) can be written as

I =

∫ { N∏

i=1

[ ∫
ϕi(u i, v)h(u i|v) duj

]}
h(v ) dv =

∫ N∏

i=1

E
(
ϕi

∣∣v
)
h(v) dv, (17)

where E
(
ϕi

∣∣v
)
is the conditional expectation of ϕi(ui, v) with respect to h(ui|v). From (17)

we can directly obtain the corresponding marginal estimator by

ÎM =
1

R1

R1∑

r1=1

[ N∏

i=1

ϕ
(r1)
i

]
with ϕ

(r1)
i =

1

R2

R2∑

r2=1

ϕi

(
u
(r2)
i , v(r1)

)
, (18)

calculated by a nested Monte Carlo experiment; where
{
v(r1)

}R1

r1=1
is a sample from h(v)

and
{
u
(r2)
i

}R2

r2=1
is a sample obtained by the conditional distribution h

(
ui|v = v(r1)

)
.

Lemma 3.3 The variances of the joint (16) and marginal estimators (18) under the as-
sumption of conditional independence are given by

V ar(ÎJ) =
1

R
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R

N∑

k=1

∑

C∈(Nk )

Ev

[∏

i∈C

V
(
ϕi

∣∣v
) ∏

j∈N\C

E
(
ϕj

∣∣v
)2]

and

V ar(ÎM) =
1

R1
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R1

N∑

k=1

1

Rk
2

∑

C∈(Nk )

Ev

[∏

i∈C

V
(
ϕi

∣∣v
) ∏

j∈N\C

E
(
ϕj

∣∣v
)2]

where Ev

[
g(v)

]
and V arv

[
g(v)

]
denote the expectation and the variance of g(v) with respect

to h(v) and V
(
ϕi

∣∣v
)
is, in analogy to E

(
ϕi

∣∣v
)
, the conditional variance of ϕi(ui, v) with

respect to h(ui|v).

⊲ The proof of Lemma 3.3 is given at the Appendix. 2

Lemma 3.3 is an extension of Lemma 3.1 for the case of conditional independence. For this
reason, similar statements about the behaviour and the error of the joint and the marginal
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estimators also hold for the case of conditional independence. The main difference is the first
term of variances of the estimators which is common and it is due to the additional variability
of v which is of order O(R−1). Moreover, for R1 = R and any R2 > 1 the marginal estimator

is better since V ar(ÎM) < V ar(ÎJ). It would be interesting to examine the case of using
the exactly the same computation effort in terms of Monte Carlo iterations. Nevertheless,
setting R = R1R2, then no clear conclusion can be drawn since the first common term will
be of different order. For example, if we consider R1 = R2 = r and R = r2 then the two
variances are given by

V ar(ÎJ) =
1

r2
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

r2

N∑

i=1

Ev

[
V
(
ϕi

∣∣v
) ∏

j∈N\{i}

E
(
ϕj

∣∣v
)2]

+O(r−2)

and

V ar(ÎM) =
1

r
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

r2

N∑

i=1

Ev

[
V
(
ϕi

∣∣v
) ∏

j∈N\{i}

E
(
ϕj

∣∣v
)2]

+O(r−3)

Finally, in the case that instead of nested Monte Carlo, we use a numerical method which
approximates very well the expectations E(ϕi|v) then the second term of the the variance
of the corresponding marginal estimator will be zero making the method considerably more
accurate and faster to converge than the joint estimator.

Due to the fact that Lemma 3.3 also incorporates similar expressions as in Lemma 3.2, the
remarks made on the error differences with regard to the sample size, the number of variables
and their variability apply also in the case of conditional independence assumption. We may
now explain the different behaviour of the three BML estimators at the GLLVM example
(Section 2), where ui = Zi are the latent variables and v = (α,β) are the model parameters.
The error differences observed in Figure 1(a) between the BHJ and BGJ estimators (for
the same N and R) can be now attributed to the different coefficients of variation of the
averaged quantities involved. For both estimators, the expectation in the numerator is taken
over g(α,β,Z) = g(α)g(β)

∏N
i=1(Zi). However, the N averaged variables differ according

to (24) and (25). Specifically for i = 1, . . . , N the averaged variables were:

(a) ϕi(·) =
[
g(α)1/Ng(β)1/Ng(Zi)

]−1

, in the case of BHJ and

(b) ϕ′
i(·) =

{
f(Yi|α,β,Zi)π(Zi)

g(Zi)

[
π(α)π(β)
g(α)g(β)

]1/N}1/2

, in the case of BGJ .

Moreover, none of the conditional expectations will be equal to zero since φi and φ′
i are both

positive. Therefore, following Lemma 3.2 we may rewrite the variances of the estimators as
functions of the corresponding coefficients of variation

V ar(ÎJ)=
1

R
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R
Ev

[
N∏

i=1

E
(
ϕi

∣∣v
)2
{

N∏

i=1

[
CV (ϕi|v)2 + 1

]
− 1

}]

16



and

V ar(ÎM)=
1

R1

V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R1

Ev

[
N∏

i=1

E
(
ϕi

∣∣v
)2
{

N∏

i=1

[
CV (ϕi|v)

2

R2
+ 1
]
− 1

}]

From the above equations, it is obvious that the variances of the estimators will explode
for large N in the (a) case since we expect values of ϕi > 1 demanding a large number of
iterations to reach a required precision level. The effect will be more evident in the joint
estimator, since the marginal estimator some of these effects will be eliminated for large R2

(or using well behaved numerical methods). For case (b), the situation seems much better,
since (assuming that g is a good proxy for the posterior) the expectation in the first term
(which is common in both approaches) will estimate the normalizing constant of f(α,β|y)
for given values of α and β. These values are usually small and therefore will not too greatly
influenced by N . Therefore this term will be eliminated for reasonably small R and R1. If
this is the case, the second term will behave as in described in previous sections and therefore
any action of marginalizing will greatly improve the Monte Carlo errors.

To verify this, we used the last 5000 iterations to calculate the corresponding CV s.
For the bridge harmonic estimator, the CV s of the N quantities in (a) varied in log scale
from 0.20 to 0.52 (median CV=0.27). In the case of the bridge geometric estimator, the
CV s of the corresponding variables in (b) were substantially lower, varying from 0.01 to
0.10 (median CV=0.02). Similar results occurred for the denominators of the two bridge
sampling estimators (harmonic: CV from 0.2 to 0.9 /geometric: CV less than 0.006).

The conditional independence setting considered here, applies to a plethora of high di-
mensional models involving latent vectors and it provides formally the rationale behind
choosing to marginalize out the latent variables. In such settings, the rate of convergence
is extremely slow and millions of iterations may be required to achieve a desirable level of
precision for the joint estimator. However, convergence is not only a matter of the associated
MCE, as will be explained in the next section.

3.4 The role of the sample covariation

Up to this point, we have studied the variability differences between the two approaches
under consideration. In this section, we focus on the estimations themselves and show how
they are influenced by sample covariation.

In the bivariate case, the difference between the mean of the product of two variables and
the product of their means is by definition their covariance. Let us refer to a multivariate
analogue of covariance with the general term total covariation defined as:

TCI(Y ) = E
( N∏

i=1

Yi

)
−

N∏

i=1

E(Yi), (19)
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which is actually the difference between the expectations under the joint and marginal ap-
proaches in their simplest forms. That is, it coincides with the difference between the expres-
sions in (7) and (8) if in (19) we use the random variables φi(Yi), i = 1, ..., N (for simplicity
in the notation hereafter we proceed with the original variables without loss of generality).

Therefore, by definition, the difference between the estimated means provided by ÎJ and
ÎM reflects the total sample covariation between the N variables. In fact, the total sample
covariation is accountable for and completely explains the estimation differences which occur
in the simulated example of Section 2.2 and cannot be attributed to the associated Monte
Carlo errors of the two estimators.

Therefore, while independence demands zero total sample covariation, that is not the
case in finite samples. When N random variables are simulated independently, even the
smallest dependencies between the variables will result in non zero total sample covariation.
The covariance induced by the simulation procedure cannot be ignored even for samples of
several hundreds of thousands points (see Tables 1 and 2). We proceed with exploring the
factors that affect the total sample covariation.

The identity (19) is not useful into gaining insight on the factors that affect the total
sample covariation. Here, we provide an alternative expression which assesses the total
covariation among N random variables, in terms of their expected means E(Yi), i = 1, ..., N
and covariances of the form:

Cov(k)(Y ) = Cov
(k−1∏

i=1

Yi, Yk

)
. (20)

Lemma 3.4 The total covariation among N variables, is given by:

TCI(Y ) = Cov(N)(Y ) +

N−2∑

k=1

[(
N∏

i=N−k+1

E(Yi)

)
Cov(N−k)(Y )

]
, (21)

where N ≥ 3 and E(YN+1) = 1.

⊲ The proof of Lemma 3.4 is given at the Appendix. 2

The total covariation among N random variables is therefore assessed through a weighted
sum of N -1 covariance terms. The means of the variables serve as weights that adjust the
contribution to the total covariation for each additional variable.

The total covariance index (TCI) defined in (19) will be zero if Y are independent.
Nevertheless, the reverse statement does not hold, that is a zero value of TCI does not
ensure independence. In the case where N random variables are generated independently,
the sample covariances participating in (21) will be non-zero resulting in a sample total
covariation far away from zero. Therefore, it can be viewed as an index of the sample’s
divergence from independence. By definition, the total sample covariation is accountable for
and completely explains the estimation differences that were illustrated in the our examples.
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Equation (21) implies that any divergence from the independence assumption is also
affected by the number of variables N , their expectations, their covariation and the simulated
sample size R, as already illustrated graphically in Figures 3(a) to 3(f). In the case of
independent variables, the sample covariation converges to zero as R goes to infinity. The
Cauchy-Schwartz inequality provides an upper bound, according to the following corollary.

Corollary 3.2 An upper bound for the absolute value of TCI(Y ) is given by:

|TCI(Y )| ≤
N−2∑

k=0



(

N+1∏

i=N+1−k

|E(Yi)|
)√√√√V ar

(
N−k−1∏

j=1

Yi

)
V ar(YN−k)


 .

⊲ Corollary 3.2 immediately follows from Lemma 3.4 by further implementing the Cauchy-
Schwartz inequality. 2

Corollary 3.2 provides only an upper end to the total covariation. Therefore, we cannot
draw any firm conclusion regarding its magnitude especially in combination with several
quantities of interest (e.g. means, variances or the number N of the variables under consid-
eration).

However, in a vise versa point of view, it suggests that:

– The lower the expected means of the variables (in absolute value) are, the lower the
index is expected to be (due to the lower bound).

– The lower the variances of the variables are, the lower the index is expected to be (due
to the lower bound).

– Fewer variables (lower N) correspond to lower number of positive terms added to the
right part of the inequality and therefore to lower total covariation.

The total sample covariation affects also the estimated variance of the joint estimator.
Let us denote with R0, the number of iterations required to overcome the sample covariation
effect. For simulated samples less than R0, the variance of the joint estimator is underesti-
mated by a factor of TCI(Y )2, according to the following lemma.

Lemma 3.5 The variance of the product of N variables, equals their variance under assumed
independence minus the square of their total covariation,

V ar

(
N∏

i=1

Yi

)
= V ar

(
N∏

i=1

Yi

∣∣∣Independence
)

− TCI(Y )2 , (22)

where V ar
(∏N

i=1 Yi

∣∣∣Independence
)

is the variance of the product under the assumption of

independence.
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⊲ The proof of Lemma 3.5 is given at the Appendix. 2

According to Lemma 3.5, in the presence of sample total covariation, the joint approach
leads in practice to a false sense of accuracy. Once the simulated sample is large enough
(larger than R0), the covariation effect vanishes (TCI(Y )2 ≃ 0), yet the variance of the joint
estimator is always larger than the one associated with the marginal estimator, according to
(15).

Based on the sample total covariation of Φ =
(
φ1(Y1), . . . , φN(YN)

)
, it is now possible to

explain why at the GLLVM example (Section 2) MCMC estimators lead to biased estima-
tions, even though they were associated with low MCE. In particular, the sample covariation
does not seem to affect the bridge harmonic (BHJ) estimator while it is clearly present in
the case of the reciprocal (RMJ) estimator (see Table 1). To explain this phenomenon, we
need first to underline that the bridge harmonic estimator is a ratio. Based on the last
5,000 draws, the sample total covariation between the averaged variables at the numerator
of BHJ was -723.8 and -730.5 at the denominator. These values are substantially larger
than the sample covariation among the averaged variables in the case of the reciprocal es-
timator (equal to -23.0). However, since BHJ is a ratio the sample covariations estimated
at the numerator and the denominator cancel out, which is not the case for the reciprocal
estimator. Similarly, the sample covariation effect also cancels out in the case of the bridge
geometric estimator. On the other hand, the sample covariation leads to underestimation of
the marginal likelihood which, in turn, leads to underestimation of the MCE (Lemma 3.5).
Therefore, estimators that are affected by sample covariation appear to have smaller MCE
than they actually do.

4 Discussion

In the presence of independence assumptions, the mean of the product of N variables can be
either estimated by implementing the joint or the marginal approaches. Early in the 90’s,
Kim et al. (1994) had identified the significance and the distinction of the two approaches
comparing them empirically (for applications, see also references within). As pointed out by
referees, modern-day practitioners less frequently select joint estimators for the evaluation of
the marginal likelihood, especially in settings with high-dimensional latent vectors. Never-
theless, the easy-to-use specification of the MCMC sampler and their direct implementation
through ready-to-use MCMC software such as WinBUGS, may lead researchers to marginal
likelihood estimators based on the full augmented scheme and the corresponding joint esti-
mators either for illustration purposes or for actual data analysis. For example, the efficiency
of the marginal likelihood estimation could have been increased if the ”marginal” approach
have been adopted in the longitudinal examples of Chib and Jeliazkov (2001, Sec. 3.2 and
3.3) and Friel and Pettitt (2008, Sec. 4.2). Another example of the implementation of the
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joint estimator can be found in Congdon (2010, Sec. 2.2.3), used for illustration purposes in
hierarchical models. In all the above cases, there is no indication that the estimators have
not converged to their target value but, according to our ndings, similar levels of precision
could have been achieved in less iterations if the marginal approach have been used instead.

On the other hand, the intuitive tendency to use the marginal estimators is mainly based
on empirical findings rather than theoretical justifications, as the ones provided here. The
absence of explicit evidence against the use of the joint marginal likelihood estimators in
the relevant literature, makes its use even more attractive since it is directly available from
easily applicable Gibbs sampling schemes.

The findings of this article have applicability in a wide range of modern statistical models
that can be expressed with the incorporation of latent variables. A (non-exhaustive) list of
such models include the Gaussian factor models, factor models with non-normal responses,
latent class models, random effects models, longitudinal models, cluster analysis models,
data-augmented specific models, mixture models, negative binomial response models, zero-
inflated models, bivariate Poisson models and Poisson difference (or Skellam distributed)
models.
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APPENDIX

The identities of the MCMC estimators used in the Section 2.1 are

• Reciprocal importance (RM) sampling estimator (Gelfand and Dey, 1994)

f(Y ) =

[∫
g(ϑ)

f(Y|ϑ) π(ϑ) π(ϑ|Y) dϑ

]−1

, (23)

• Generalized harmonic bridge (BH) sampling estimator (Meng and Wong, 1996)

f(Y ) =

∫
[ g(ϑ)]−1 g(ϑ) dϑ

∫
[f(Y|ϑ)π(ϑ)]−1 π(ϑ|Y) dϑ

, (24)

• Geometric bridge (BG) sampling estimator (Meng and Wong, 1996)

f(Y) =

∫ [
f(Y|ϑ)π(ϑ)

g(ϑ)

]1/2
g(ϑ) dϑ

∫ [
f(Y|ϑ)π(ϑ)

g(ϑ)

]−1/2

π(ϑ|Y) dϑ

. (25)

Proof of Lemma 3.2

According to Goodman (1962), the variance of the product of N variables is given by

V ar

(
N∏

i=1

φi(Yi)

)
=

N∏

i=1

(
Vi + E2

i

)
−

N∏

i=1

E2
i . (26)

Hence we can write

V ar

(
N∏

i=1

φi(Yi)

)
=

∏

i∈N0

(
Vi + E2

i

) ∏

i∈N 0

(
Vi + E2

i

)
−
∏

i∈N0

E2
i

∏

i∈N 0

E2
i .

=
∏

i∈N0

Vi

∏

i∈N 0

[
E2

i

(
CV 2

i + 1
) ]

−
∏

i∈N0

E2
i

∏

i∈N 0

E2
i .

=
∏

i∈N 0

E2
i ×


∏

i∈N0

Vi

∏

i∈N 0

(
CV 2

i + 1
)
−
∏

i∈N0

E2
i


 .
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Note that
∏

i∈N0

E2
i will be the value of one if N0 = ∅ and zero otherwise. Therefore we can

write
∏

i∈N0

E2
i =

∏
i∈N0

E2
i ×

∏
i∈N0

V 2
i resulting in

V ar

(
N∏

i=1

φi(Yi)

)
=

∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(
CV 2

i + 1
)
−
∏

i∈N0

E2
i


 .

=
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(
CV 2

i + 1
)
− I(N0 = ∅)


 ,

which gives

V ar

(
N∏

i=1

φi(Yi)

)
=

=





N∏
i=1

Vi if N0 = N (all expectations are zero)

N∏
i=1

E2
i ×

[ N∏
i=1

(
CV 2

i + 1
)
− 1
]

if N0 = ∅ (all expectations are non-zero)
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×

∏
i∈N 0

(CV 2
i + 1) otherwise

The proof is completed by placing the general expression for the integrand’s variance in (11)
and (12) respectively. �

Proof of Lemma 3.3

V ar(ÎJ) = V ar(u,v)

{
1

R

R∑

r=1

[
N∏

i=1

ϕi

(
u

(r)
i , v (r)

)
]}

=
1

R
V ar(u,v)

[
N∏

i=1

ϕi

(
u i, v

)
]

=
1

R
V arv

{
Eu|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]}

+
1

R
Ev

{
V aru|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]}

(27)
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Due to conditional independence we have that

Eu|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]

=

N∏

i=1

Eu|v

[
ϕi

(
u i, v

) ∣∣∣v
]
=

N∏

i=1

E
(
ϕi

∣∣v
)
. (28)

Moreover, from (14) we have that

V aru|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]

=

N∑

k=1

∑

C∈(Nk )

[∏

i∈C

V
(
ϕi

∣∣v
) ∏

j∈N\C

E
(
ϕj

∣∣v
)2]

(29)

By substituting (28) and (29) in (27), we obtain the variance of the joint estimator of Lemma
3.3.

Similarly, for the marginal estimator we have

V ar
(
ÎM

)
= V ar(u,v)

[
1

R1

R1∑

r1=1

N∏

i=1

ϕ
(r1)
i

]
=

1

R1
V ar(u,v)

[
N∏

i=1

ϕi

]

=
1

R1
V arv

{
Eu|v

[ N∏

i=1

ϕi

∣∣∣v
]}

+
1

R1
Ev

{
V aru|v

[ N∏

i=1

ϕi

∣∣∣v
]}

(30)

Due to conditional independence we have that

Eu|v

[ N∏

i=1

ϕi

∣∣∣v
]

=

N∏

i=1

Eu|v

[
ϕi

∣∣∣v
]
=

N∏

i=1

E
(
ϕi

∣∣v
)
. (31)

Moreover, from Lemma 3.1 we have that

V aru|v

[ N∏

i=1

ϕi

∣∣∣v
]

=

N∑

k=1




1

Rk
2

∑

C∈(Nk )

∏

i∈C

Vi

∏

j∈N\C

E2
j


 , (32)

Substituting (31) and (32) in (30) gives the expression of the variance of the marginal
estimator of Lemma 3.3.
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Proof of Lemma 3.4

The proof of Lemma 3.4 can be obtained by induction. The statement of the Lemma
holds for N = 3 with Y 3 = (Y1, Y2, Y3) since

Cov(3)(Y ) +

1∑

k=1

[(
3∏

i=4−k

E(Yi)

)
Cov(3−k)(Y )

]
= Cov(3)(Y ) +

(
3∏

i=3

E(Yi)

)
Cov(2)(Y )

= Cov(Y1Y2, Y3) + E(Y3)Cov(Y1, Y2)

= E(Y1Y2Y3)−E(Y1Y2)E(Y3) + E(Y3)[E(Y1Y2)−E(Y1)E(Y2)]

= TCI(Y 3) .

which is true by the definition of TCI (see equation 19) for vectors Y of length equal to
three.

Let us now assume that (21) it is true for any vector Y N of length N > 3. Then, for
Y N+1 = (Y N , YN+1) = (Y1, . . . , YN , YN+1) the equation

TCI(Y N+1) = Cov(N+1)(Y ) +
N−1∑

k=1

[(
N+1∏

i=N−k+2

E(Yi)

)
Cov(N+1−k)(Y )

]
, (33)

is also true since

TCI(Y N+1) =E

([
N∏

i=1

Yi

]
× YN+1

)
−
[

N∏

i=1

E(Yi)

]
E(YN+1)

= Cov(N+1)(Y ) + E

(
N∏

i=1

Yi

)
E(YN+1)−

[
N∏

i=1

E(Yi)

]
E(YN+1)

= Cov(N+1)(Y ) + TCI(Y N )E(YN+1)

= Cov(N+1)(Y ) +

{
Cov(N)(Y ) +

N−2∑

k=1

[(
N∏

i=N−k+1

E(Yi)

)
Cov(N−k)(Y )

]}
E(YN+1)

(from eq. 21)

= Cov(N+1)(Y ) + Cov(N)(Y )E(YN+1) +

N−2∑

k=1

[(
N+1∏

i=N−k+1

E(Yi)

)
Cov(N−k)(Y )

]

= Cov(N+1)(Y ) + Cov(N)(Y )E(YN+1) +
N−1∑

k′=2

[(
N+1∏

i=N−k′+2

E(Yi)

)
Cov(N−k′+1)(Y )

]

( we set k′ = k + 1 )

= Cov(N+1)(Y ) +

N−1∑

k′=1

[(
N+1∏

i=N−k′+2

E(Yi)

)
Cov(N−k′+1)(Y )

]

[for k = 1, the term in the summation of (33) is equal to Cov(N)(Y )E(YN+1)].

25



Proof of Lemma 3.5

V ar
( N∏

i=1

Yi

)
= E

[
N∏

i=1

Yi − E
( N∏

i=1

Yi

)]2

= E

[(
N∏

i=1

Yi −
N∏

i=1

E(Yi)

)
− TCI(Y )

]2

= E

[
N∏

i=1

Yi −
N∏

i=1

E(Yi)

]2
+ TCI(Y )2 − 2E

{
TCI(Y )

[ N∏

i=1

Yi −
N∏

i=1

E(Yi)
]}

= E

[
N∏

i=1

Yi −
N∏

i=1

E(Yi)

]2
= V ar

(
N∏

i=1

Yi

∣∣∣Independence
)

− TCI(Y )2.

since E
{
TCI(Y )

[∏N
i=1 Yi −

∏N
i=1E(Yi)

]}
= TCI(Y )E

[∏N
i=1 Yi −

∏N
i=1E(Yi)

]
= 0. �

26



References

Aguilar, O. and West, M. (2000). Bayesian Dynamic Factor Models and portfolio allocation.
Journal of Business and Economic Statistics, 18:338–357.

Baker, F. (1998). An investigation of the item parameter recovery characteristics of a Gibbs
sampling procedure. Applied Psychological Measurement, 22:153–169.

Bartholomew, D., Knott, M., and Moustaki, I. (2011). Latent variable models and factor
analysis: a unified approach. Wiley Series on Probability and Statistics. John Wiley and
Sons, London, UK, 3rd edition.

Bock, R. and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parame-
ters: Application of an EM algorithm. Psychometrika, 46:443–459.

Bock, R. D. and Lieberman, M. (1970). Fitting a response model for n dichotomously scored
items. Psychometrika, 35:179–197.

Bratley, P., Fox, B. L., and Schrage, L. (1987). A guide to simulation. Springer, second
edition.

Carlin, B. P. and Louis, T. A. (2000). Bayes and Empirical Bayes methods for data analysis.
Chapman & Hall/CRC, second edition.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings output.
Journal of the American Statistical Association, 96:270–281.

Congdon, P. (2010). Applied Bayesian Hierarchical Methods. Chapman and Hall/CRC.

DiCiccio, T. J., Kass, R. E., Raftery, A., and Wasserman, L. (1997). Computing Bayes
Factors by combining simulation and asymptotic approximations. Journal of the American
Statistical Association, 92(439):903–915.

Flegal, J. and Jones, G. (2010). Batch means and spectral variance estimators in markov
chain monte carlo. Annals of Statistics, 38:1034–1070.

Fouskakis, D., Ntzoufras, I., and Draper, D. (2009). Bayesian variable selection using cost-
adjusted BIC, with application to cost-effective measurement of quality of health care.
Annals of Applied Statistics, 3:663–690.

Friel, N. and Pettitt, N. (2008). Marginal likelihood estimation via power posteriors. Journal
of the Royal Statistical Society Series B (Statistical Methodology), 70(3):589–607.

Gelfand, A. E. and Dey, D. K. (1994). Bayesian Model Choice: Asymptotics and exact
calculations. Journal of the Royal Statistical Society. Series B (Methodological), 56(3):501–
514.

27



Gelman, A. and Meng, X.-L. (1998). Simulating normalizing constants: From Importance
sampling to Bridge sampling to Path sampling. Statistical Science, 13(2):163–185.

Geweke, J. and Zhou, G. (1996). Measuring the pricing error of the Arbitrage Pricing Theory.
Review of Financial Studies, 9:557–587.

Gifford, J. A. and Swaminathan, H. (1990). Bias and the effect of priors in Bayesian es-
timation of parameters of Item Response Models. Applied Psychological Measurement,
14:33–43.

Goodman, L. A. (1962). The variance of the product of K random variables. Journal of the
American Statistical Association, 57:54–60.

Huber, P., Ronchetti, E., and Victoria-Feser, M.-P. (2004). Estimation of generalized linear
latent variable models. Journal of the Royal Statistical Society, Series B, 66:893–908.

Jones, G., Haran, M., Caffo, B., and Neath, R. (2006). Fixed-width output analysis for
Markov Chain Monte Carlo. Journal of the American Statistical Association, 101:1537–
1547.

Kang, T. and Cohen, A. S. (2007). Irt model selection methods for dichotomous items.
Applied Psychological Measurement, 31(4):331358.

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical Associ-
ation, 90:773–795.

Kim, S.-H., Cohen, A. S., Baker, F. B., Subkoviak, M. J., and Leonard, T. (1994). An
investigation of hierarchical Bayes procedures in item response theory. Psychometrika,
59(3):405–421.

Koehler, E., Brown, E., and Haneuse, S. J.-P. A. (2009). On the assessment of Monte Carlo
error in simulation-based statistical analyses. The American Statistician, 63(2):155–162.

Lewis, S. and Raftery, A. (1997). Estimating Bayes factors via posterior simulation with the
Laplace Metropolis estimator. Journal of the American Statistical Association, 92:648–655.

Lopes, H. F. and West, M. (2004). Bayesian model assessment in factor analysis. Statistica
Sinica, 14:4167.

Lord, F. M. (1980). Applications of Item Response Theory to practical testing problems.
Erlbaum Associates, Hillsdale, NJ.

Lord, F. M. and Novick, M. R. (1968). Statistical theories of mental test scores. Addison-
Wesley, Oxford, UK.

28



Meketon, M. S. and Schmeiser, B. W. (1984). “Overlapping batch means: Something for
nothing?”. in Proceedings of the 1984 Winter Simulation Conference, pages 227–230,
Piscataway, NJ. Institute of Electrical and Electronics Engineers Inc.

Meng, X.-L. and Schilling, S. (2002). Warp Bridge Sampling. Journal of Computational and
Graphical Statistics, 11(3):552–586.

Meng, X.-L. and Wong, W.-H. (1996). Simulating ratios of normalizing constants via a
simple identity: A theoretical exploration. Statistica Sinica, 6:831–860.

Mislevy, R. (1986). Bayes modal estimation in Item Response Models. Psychometrika,
51:177–195.

Moustaki, I. and Knott, M. (2000). Generalized Latent Trait Models. Psychometrika,
65:391–411.

Ntzoufras, I., Dellaportas, P., and Forster, J. (2003). Bayesian variable and link deter-
mination for Generalised Linear Models. Journal of Statistical Planning and Inference,
111(1-2):165–180.

Patz, R. and Junker, B. (1999). A straightforward approach to Markov Chain Monte Carlo
methods for Item Response Models. Journal of Educational and Behavioral Statistics,
24:146–178.

Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2005). Maximum likelihood estimation of
limited and discrete dependent variable models with nested random effects. Journal of
Econometrics, 128:301–323.

Schilling, S. and Bock, R. (2005). High-dimensional maximum marginal likelihood item
factor analysis by adaptive quadrature. Psychometrika, 70:533–555.

Schmeiser, B. W. (1982). Batch size effects in the analysis of simulation output. Operations
Research, 30:556–568.

29



0 10 20 30 40 50

−
21

00
−

20
80

−
20

60
−

20
40

Joint
Marginal

B
M
L
es
ti
m
at
or
s
(l
og

sc
al
e)

(a) Reciprocal estimator
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Figure 2: Joint and marginal approaches for the reciprocal (RM), bridge harmonic (BH) and bridge geometric (BG)
estimators of the BML (log scale), implementing a simulated data set with p = 6 binary items, N = 600 cases and k = 2 factors,
over 50 batches.
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(a) N=10

0 50000 100000 150000 200000 250000

−
65

−
60

−
55

−
50

Product of N Beta(1,2) i.i.d random variables (CV=0.7)

Simulated sample size R

(b) N=50

0 50000 100000 150000 200000 250000

−
18

0
−

17
0

−
16

0
−

15
0

(c) N=150

0 50000 100000 150000 200000 250000

−
16

−
14

−
12

−
10

−
8

E
st
im

at
io
n
of

th
e
m
ea
n
(l
og

sc
al
e)

(d) N=10
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Figure 3: The joint estimator ÎJ (dashed grey line) and the marginal estimator ÎM (solid grey line)
compared with the true mean (black dashed line) of the product of N i.i.d Beta(λ1, λ2) variables, as the size
of simulated the samples increases from 5000 to 250000 and for N = 20, 50, and 150.
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