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Abstract 

In most countries economic prosperity is very unevenly distributed. Regional, urban 

and neighbourhood policies are often based on concerns about these kinds of 

disparities, and reducing such disparities is a key policy objective in many countries. 

High quality evaluation is central to understanding how to meet these 

objectives.  However, impact evaluation – which seeks to identify the causal effects 

of policies – is often in short supply for spatial policies. In this viewpoint we highlight 

three barriers that hamper more rigorous impact evaluation. First, data availability 

constrains research. Second, identifying the causal impact of polices is difficult. 

Third, there are several practical barriers. We briefly consider each of these in turn, 

and make practical recommendations for change. Better policy design, more use of 

open data, and capacity-building for government analysts are three important and 

achievable steps in improving the extent and quality of future impact evaluations.   
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In most countries economic prosperity is very unevenly distributed. Regional, urban 

and neighbourhood policies are often based on concerns about these kinds of 

disparities, and reducing such disparities is a key policy objective in many countries. 

High quality evaluation is central to understanding if these objectives have been met.  

There are different evaluation traditions. Process evaluation seeks to assess how 

public policies are designed and implemented, often using qualitative methods. 

Impact evaluation is instead concerned with identifying the causal effects of policy 

using quantitative methods (Gough et al, 2013). For many policies, the amount of 

process evaluation significantly outweighs that of impact evaluation. For example, in 

undertaking the first systematic review for the new What Works Centre for Local 

Economic Growth5 we identified an initial list of around 1,000 articles that set out to 

provide evaluations of employment training policy. Of these studies, less than 100 

provided a quantitative impact evaluation of the policy in question. Even then, many 

of these failed to score highly on the Scientific Maryland Scale that the Centre uses 

to rank the evaluation methodology and its implementation (Gibbons, McNally and 

Overman (2013).  

Prior experience suggests that this example is likely to prove representative. The 

impact evaluation of many spatial policies falls short of the standards set by other 

policy areas – for example in clinical treatments, active labour market policy or 

international development. While this partly reflects inherent difficulties in spatial 

analysis, it also stems from a failure to adopt methods that could improve those 

evaluations.  

In this viewpoint we highlight three barriers that hamper more rigorous impact 

evaluation. First, data availability constrains research. Second, identifying the causal 

impact of polices is difficult. Third, there are several practical barriers. We briefly 

consider each of these in turn. 

The most common data problem arises from the lack of appropriate data at the 

appropriate spatial scale. For many spatial issues the correct unit of analysis is 

difficult to define, but administrative boundaries are likely to provide poor substitutes 

(Cheshire and Magrini, 2009). Sampled data creates additional problems, particularly 

at smaller spatial scales. For a given sampling rate, smaller spatial scales reduce the 

average sample size for each spatial unit. For these reasons, there can be 

substantial problems generating descriptive statistics, even for administrative units.  

Even though administrative units may be arbitrary from an analytical perspective, 

they are, of course, very important to policy makers: local leaders and officials are 

always keen to know how their places are ‘performing’. As a result, local 

policymakers sometimes worry that without comprehensive data for (say) a Local 

Authority district, there is no way they can understand the impact of spatial policies 

for that local authority.  
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Happily, this need not be the case.  Sampled data can be informative about the 

impact of policy, even if it cannot comprehensively describe outcomes for specific 

places. For example, a small sample of firms from a local authority may not give a 

precise estimate of average firm size in that local authority. However, if a policy 

aimed at increasing firm employment is applied across several local authorities, then 

combining samples from different local authorities may still provide estimates of the 

impact of the policy.  

This might raise concerns for those who believe that every location is unique in every 

aspect. However, most empirical analysis – qualitative and quantitative – proceeds 

under the assumption that the cases under investigation, including the responses to 

policy changes, share at least some characteristics. This allows researchers to 

construct counterfactuals, predictions of what would have happened in the absence 

of policy (on which more below). Impact evaluation then needs to take account of the 

heterogeneity between places when formulating research designs and interpreting 

results – but this does not rule out all evaluation per se. In short, while the lack of 

large samples for administrative spatial units may appear to be a barrier to 

evaluation, it need not be.  

Even when appropriate spatial data is available, many impact evaluations have not 

paid sufficient consideration to the crucial issue of identification of causal effects. 

These problems are discussed in detail in Gibbons and Overman (2012). This 

neglect of causality has profound implications for our understanding of policy effects.   

Causality is concerned with questions of the type ‘if we change x what do we expect 

to happen to y?’ The fundamental challenge to answering these questions is that 

policies are not usually randomly assigned. As a result, in most real-world cases we 

lack the counterfactual that tells us what would have happened to the targets or 

recipients of the policy (‘the treated’) if they had not been treated:  this is 

fundamentally unobservable. This is a problem, because it is the comparison of 

actual outcomes to this counterfactual that identifies the causal impact of policy. So 

the way in which this counterfactual is (re)constructed is the key element of 

programme evaluation design. Applied economics has come a long way in its efforts 

to find credible ways to construct such counterfactuals from observed data (Angrist 

and Pischke, 2009). Unfortunately, however, such methods have not been widely 

used in the evaluation of spatial policy. 

A standard approach is to create a counterfactual group of similar (say) individuals 

not participating in the programme being evaluated. Outcomes can then be 

compared between the ‘treatment group’ (those affected by the policy) and the 

‘control group’ (similar individuals not exposed to the policy). The challenge for good 

programme evaluation is to ensure and demonstrate that this control group is 

plausible. 
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If the construction of plausible counterfactuals is central to good policy evaluation, 

then the crucial question becomes: can we design such counterfactuals for spatial 

policies? The answer is certainly ‘yes’ for some, but not all, spatial policies. The 

answer may depend crucially on the extent to which evaluation was embedded in the 

policy design process so that the policy was implemented in such a way as to allow 

the construction of a counterfactual.   

One way to achieve this is to randomly assign cases to treatment and control 

groups. Such Randomised Control Trials (RCTs) are often considered the ‘gold 

standard’ of evaluation (Banerjee and Duflo 2010, DiNardo and Lee, 2010, Haynes 

et al 2012). Properly implemented, randomisation ensures that treatment and control 

groups are comparable, thus identifying the causal impact of policy (Katz et al 2001, 

Kling et al 2005, Sanbonmatsu et al 2012). However, there are challenges applying 

RCTs to spatial policies. For example, clinical trials are typically halted when 

significant evidence of benefits / harm first emerges. This can be harder to 

implement for spatial policies, where effects may take months or years to appear, 

and where effects may be harder to reverse. Large-scale experiments are costly and 

can still suffer from design flaws; small scale experiments may not generalise to 

other contexts.  

Where randomised control trials are not an option, there are various ‘identification 

strategies’ that can be used instead. For area-based interventions, one possible 

approach is to compare those areas treated to other similar areas that were not 

treated. Such simple comparisons remain problematic, however: unless we have an 

exhaustive list of area characteristics that influence outcomes, we should worry that 

some unobserved characteristic drives both the decision to target the area and 

outcomes in that area (Criscuolo et al 2012). In this case, we would wrongly attribute 

changes in outcomes to the policy when, in fact, they are driven by unobservable 

area characteristics. Much of the improvement in policy evaluations has come from 

novel ways of addressing this problem, combined with better understanding of how 

to interpret the results.  

One possibility is to compare outcomes for areas that receive funding to areas that 

applied for, but did not receive, funding. Busso et al (2013) apply this approach to 

US Empowerment Zones, and it could also be used for competition-based 

programmes in the UK. We could extend this idea to a three-way comparison 

between these two groups and a group of areas that did not apply for funding. The 

timing of policy interventions may provide another source of identification: in theory, 

if some areas are given money before others they should start improving earlier. If 

not, that raises questions about whether treatment caused any improvement. 

Even if we cannot be sure that funding decisions are uncorrelated with all relevant 

unobservable characteristics, we may believe that this condition holds for marginal 

decisions. For example, government may make funding decisions on the basis of a 

ranking of projects or of areas. If this ranking is available, then this may allow 
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identification from the comparison of outcomes for areas just ‘above the bar’ (and 

treated) to outcomes for similar areas just ‘below the bar’ (and not treated). In other 

cases, changes to policy design may allow identification. For example, if firms are 

only treated in eligible areas, then changes to the map of eligible areas may allow 

identification by comparing treated firms to similar firms who might have been treated 

before the map changed, but are now ineligible. Criscuolo et al (2012) use such 

shifts in EU eligibility criteria to identify the effects of Regional Selective Assistance 

on UK firms. 

The fundamental idea underlying all these approaches is that, in the absence of 

explicit randomisation, ‘quasi-experimental’ sources of randomisation may address 

selection on unobservables. These sources may occur as a result of institutional 

rules and processes (and changes in these), or through environmental or other 

phenomena that result in some cases randomly receiving treatment.  

Even using these strategies, though, the treatment and control groups may not be 

comparable. Statistical techniques such as Ordinary Least Square (OLS) and 

matching can be used to address this problem. However, good quality impact 

evaluation uses identification strategies to construct a control group and then tries to 

control for remaining differences on observable characteristics. It is the combination 

that is powerful: OLS and matching alone raise concerns about the extent to which 

unobservable characteristics determine both treatment and outcomes and thus bias 

the evaluation. 

Evaluations of spatial policies paid for by government usually make little use of these 

strategies. This significantly complicates policy development, because reports that 

are less careful about causality often make much broader claims about the impact of 

policy (and how that impact was achieved). As a result, policy makers face a difficult 

trade-off when trying to decide how to evaluate policies. Wide-ranging ‘evaluations’ 

that are less careful about causality appear to provide more information. In contrast, 

high-quality quantitative evaluations often make fairly narrow claims about the impact 

of policy. 

Improving evaluation need not be costly. Using policy design to assess causal 

effects ideally requires detailed information about the decision making process. How 

were bids solicited and assessed? How were the winning bids selected? How were 

funding levels decided? Unfortunately, in many cases crucial information (e.g. for 

unsuccessful applicants) is either not systematically recorded or is not made 

available to researchers. For all kinds of reasons, governments remain reluctant to 

change this situation.  

A second, trickier challenge is officials’ and elected leaders’ (understandable) desire 

for rapid results. High quality evaluation requires data on both policy and relevant 

outcomes. That outcome data is usually only available with a time lag – which 

complicates the interaction between evaluation and policy formulation, if policy 
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makers are working on shorter time scales. In short, better evaluation often requires 

patience and transparency. Unfortunately, political imperatives – in particular, the 

desire to show quick results – can over-ride the need to take a longer-term view.  

Some of these problems stem from fundamental differences in goals between 

researchers and policy makers. Happily, others are more easily addressed. 

Collecting data for more ‘sensible’ spatial units – such as metropolitan areas – can 

better align the spatial scales used by policy makers and analysts. Designing policies 

with clear, well-documented rules and easily observable recipient characteristics 

helps researchers use programme features to evaluate those policies. Using such 

institutional features of policies will, in turn, help improve impact evaluation. Other 

important steps are opening up programme datasets to researchers, and improving 

government analysts’ capacity to understand and work with the newest impact 

evaluation techniques.   

Of course, simply having (process or impact) evidence to hand is not sufficient to 

make good policy: policymakers need objectives, and principles to guide these. But 

belief or principle-driven policy making is also often costly and ineffective, and such 

approaches will still win out over evidence-based policy making in many situations. 

Strong evidence is a necessary condition for effective policy making, and addressing 

the barriers above will help move us towards this. Addressing these problems also 

makes for better research and evaluation – regardless of any influence on policy. 
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