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STABILITY OF THE EXPONENTIAL UTILITY MAXIMIZATION PROBLEM

WITH RESPECT TO PREFERENCES

HAO XING

Abstract. This paper studies stability of the exponential utility maximization when there are

small variations on agent’s utility function. Two settings are considered. First, in a general semi-

martingale model where random endowments are present, a sequence of utilities defined on R con-

verges to the exponential utility. Under a uniform condition on their marginal utilities, convergence

of value functions, optimal payoffs and optimal investment strategies are obtained, their rate of con-

vergence are also determined. Stability of utility-based pricing is studied as an application. Second,

a sequence of utilities defined on R+ converges to the exponential utility after shifting and scaling.

Their associated optimal strategies, after appropriate scaling, converge to the optimal strategy for

the exponential hedging problem. This complements Theorem 3.2 in M. Nutz, Probab. Theory

Relat. Fields, 152, 2012, which establishes the convergence for a sequence of power utilities.

0. Introduction

This paper considers an optimal investment problem where an agent, whose preference is de-

scribed by a utility function, seeks to maximize expected utility of her wealth from investment and

a random endowment (illiquid asset) at an investment horizon T ∈ R+. Given two problem primi-

tives: utility function and market structure, the goal is to identify the optimal investment strategy

that the agent undertakes. When the utility has constant absolute risk aversion, Delbaen et al.

(2002) give an elegant solution to this problem. We study in this paper stability of the optimal

investment strategy when agent’s utility deviates from exponential utility. In particular, we are

interested in a quantitative measure on how far the optimal strategy deviates when there are small

variations on agent’s preference.

Two settings are studied. First, consider a sequence of utility functions (Uδ)δ>0, each of which is

defined on R, such that it converges pointwise to U0 which has unit absolute risk aversion. Deviation

is measured by two components: i) the ratio of marginal utilities Rδ between Uδ and an exponential

utility Ũδ with absolute risk aversion αδ; ii) the difference between αδ and 1. The first component

measures how far Uδ is away from an exponential utility; while the second component describes

how far this exponential utility is away from the exponential utility with unit risk aversion. When

Rδ is bounded from above and away from zero, uniformly in δ, our first main result, Theorem
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2 STABILITY OF THE EXPONENTIAL UTILITY MAXIMIZATION PROBLEM

1.8, states the convergence of the optimal payoffs and value functions in a general semimartingale

model; moreover the convergence of optimal strategies also follows, when asset price processes are

continuous. Beyond these continuity results, the rate of convergence is determined in Corollary

1.11. Aforementioned two components of variations impact deviation of the optimal payoff (hence

the optimal strategy) at different rates: the convergence of absolute risk aversions has first order

impact, while the convergence of Rδ has second order effect. Stability of utility based prices, Davis

price and indifference price, with respect to agent’s preference is also discussed as an application;

cf. Corollaries 1.13 and 1.14.

The stability problem studied in the first setting is similar to Carassus and Rásonyi (2007),

where the problem is formulated in a discrete time setting and asset price processes are assumed

to be bounded. For utilities defined on R+, aforementioned stability problem has been extensively

studied. Jouini and Napp (2004) consider an Itô process model. Larsen (2009) extends the analysis

to continuous semimartingale models. Kardaras and Žitković (2011) allow simultaneous variations

on preferences and subjective probabilities. More recently, Mocha and Westray (2013) focus on

the power utility maximization problem and investigate stability respect to relative risk aversion,

market price of risk, and investment constraints.

In Larsen (2009) and Kardaras and Žitković (2011), convergence in probability of optimal payoffs

is obtained under an uniform integrability assumption. One can prove that the optimal investment

strategies also converge; cf. Remark 1.9. Our uniform bound on the ratio of marginal utilities

implies an analogous integrability condition; cf. Remark 1.10. However the additional structure

imposed here allows us to obtain more precise information on how fast the convergence takes place.

A different type of stability problem is studied in Larsen and Žitković (2007). Therein stability

of the optimal payoff with respect to market variations is studied while a utility defined on R+ is

fixed. This type of stability problem has recently been investigated in Frei (2013) and Bayraktar

and Kravitz (2013) for the exponential utility maximization problem.

In the second setting, we consider a sequence of utility random fields (Up)p<0, each of which is of

the form Up = DUp for a positive random variable D and a utility function Up defined on R+. For

each Up, the ratio of its marginal utility with respect to xp−1 is bounded from above and away from

zero. In this sense Up is comparable to power utility Ũp = xp/p with constant relative risk aversion

1− p. As the ratio of marginal utilities going to 1, (Up)p<0 approaches (Ũp)p<0 which converges to

exponential utility, with appropriate domain shift, as p ↓ −∞ (cf. (Nutz, 2012, Remark 3.3)).

Our second main result, Theorem 1.20, states that, when the ratio of marginal utilities converges

to 1 at a rate at least as fast as the relative risk aversion going to infinity, then the optimal

proportion invested in risky assets, scaled by 1 − p, converges to the optimal monetary value

invested in risky assets in the exponential hedging problem. Therein (1− p)−1 can be regarded as

the rate of convergence. This result is first obtained in Nutz (2012) where (Up)p<0 is a sequence of

power utilities. We complement Nutz’s result by allowing deviation from power utility and analyze

the impact on the convergence from the ratio of marginal utilities. On the dual side, the stability
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problem formulated here is related to the convergence of optimal martingale measures which is

studied in Grandits and Rheinländer (2002), Mania and Tevzadze (2003), and Santacroce (2005).

The starting point of our proofs in both settings is the following key result from the duality

theory : the optimal wealth process is a martingale after multiplied by the optimal dual process,

and a supermartingale after multiplied by any other processes in the dual domain. When random

endowment presents, aforementioned properties have been proved in Owen and Žitković (2009) for

utility defined on R and in Karatzas and Žitković (2003) for utility defined on R+. This property,

combined with scaling properties of exponential (resp. power) utility, leads to an estimate on the

difference (resp. ratio) of optimal payoffs for Uδ (resp. Up) and exponential (resp. power) utility.

The remaining proof does not depend on the market specifications. Therefore methods in this paper

could potentially be applied to other market settings where the aforementioned property on the

optimal wealth process holds, for example, markets with transaction cost, see Cvitanić and Karatzas

(1996), and the utility maximization with forward criteria, see Musiela and Zariphopoulou (2009).

The structure of the paper is simple. After this introduction, Section 1 describes the problems

and states main results, while all proofs are given in Sections 2 and 3.

1. Main results

We consider a financial market of d-risky assets whose discounted prices are modeled by a locally

bounded Rd-valued semimartingale (St)t∈[0,T ], defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P),

in which F0 coincides with the family of P-null sets and (Ft)t∈[0,T ] is right continuous. When price

processes are non-locally bounded, we refer reader to (Biagini and Frittelli, 2005, 2007).

1.1. Utilities defined on R. Consider a sequence of standard utility functions1 Uδ : R → R,

indexed by δ ≥ 0, converging in the following sense:

Assumption 1.1. limδ↓0 Uδ(x) = U0(x) for x ∈ R, where U0(x) = − exp(−x).2

The pointwise convergence of utility functions is widely used in the literature; e.g. Jouini and

Napp (2004) and Larsen (2009). The pointwise convergence, restricted to the class of concave func-

tions (utility functions), implies a more economic meaningful mode of convergence: the pointwise

(and hence locally uniformly) convergence of their derivatives (marginal utilities); see (Rockafellar,

1970, pp. 90 and pp. 248). However the pointwise convergence is not enough for the stability of

utility maximization problem; see an counterexample in Larsen (2009). We further restrict each Uδ

to a class of utilities which are comparable to the exponential utility − 1
αδ

exp(−αδx).

Assumption 1.2. There exist constants 0 < R ≤ 1 ≤ R and (αδ)δ>0 with limδ↓0 αδ = 1 such that

R ≤ Rδ(x) :=
U ′δ(x)

exp(−αδx)
≤ R, for all δ > 0 and x ∈ R.

1A standard utility function is strictly increasing, strictly concave, and continuously differentiable.
2After appropriate scaling all results in this paper hold when U0 has other value of absolute risk aversion.
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Remark 1.3. This assumption implies that each Uδ is bounded from above. Indeed, integrating

R exp(−αδx) ≤ U ′δ(x) ≤ R exp(−αδx) on (0,∞) yields R/αδ + Uδ(0) ≤ Uδ(∞) ≤ R/αδ + Uδ(0)3.

Moreover, Uδ is sandwiched between two utilities with constant absolute risk aversion αδ. To

see this, integrating the previous bounds for U ′δ(x) on (x,∞) induces Uδ(∞) − 1
αδ
R exp(−αδx) ≤

Uδ(x) ≤ Uδ(∞) − 1
αδ
R exp(−αδx) for any x ∈ R. One can also derive from Assumption 1.2 that

each Uδ satisfies the Inada conditions, i.e., limx↓−∞ U
′
δ(x) = ∞ and limx↑∞ U

′
δ(x) = 0, and Uδ has

reasonable asymptotic elasticity, i.e.,

AE−∞(Uδ) := lim inf
x↓−∞

xU ′δ(x)

Uδ(x)
> 1 and AE∞(Uδ) := lim sup

x↑∞

xU ′δ(x)

U(x)
< 1.

Hence each Uδ is reasonable risk averse at high and low wealth limit; cf. (Kramkov and Schacher-

mayer, 1999, 2003).

To introduce the utility maximization problem considered, we denote by Ma (resp. M e) the class

of probability measures P̃ � P (resp. P̃ ∼ P) such that S is a local martingale under P̃. Consider

the convex conjugate Vδ : (0,∞) → R defined by Vδ(y) := supx∈R(Uδ(x) − xy). The generalized

entropy of P̃ ∈ Ma relative to P is defined as EP[Vδ(dP̃/dP)] ∈ (0,∞]. We denote by Ma
δ (resp.

Me
δ) the set of probability measures P̃ ∈Ma (resp. P̃ ∈M e) with finite generalized entropy. Even

though definition of Ma
δ (resp. Me

δ) depends on Vδ, Lemma 2.1 below shows that all Ma
δ (resp.

Me
δ) are the same for δ ≥ 0 under Assumption 1.2. Henceforth we drop the subscript δ and write

Ma (resp. Me) instead.

There is an agent whose preference is described by one of the utility function Uδ. She is able to

trade in the financial market and has a random endowment ξδ which is an FT -measurable random

variable. Following Owen and Žitković (2009), we assume that ξδ is potentially unbounded but can

be super-hedged.

Assumption 1.4. There exist xδ, x̃δ ∈ R and a predictable S-integrable process Gδ such that

xδ ≤ ξδ ≤ x̃δ +Gδ · ST , for each δ ≥ 0,

where Gδ ·S is P-a.s. uniformly bounded from below by a constant and Gδ ·ST stands for
∫ T

0 Gδ,tdSt.

When the utility function is defined on R, the class of wealth processes with uniform lower bound

is not large enough for the problem considered below; cf. Schachermayer (2001). Therefore we recall

the following class of permissible strategies from Owen and Žitković (2009): H is a permissible

trading strategy if it is inside

Hperm :=

{
H :

H is a predictable, S-integrable process such that

H · S is a P̃-supermartingale for all P̃ ∈Ma

}
.4

3These bounds can be made uniform in δ, since limδ↓0 Uδ(0) = −1 and limδ↓0 αδ = 1.
4Since Ma is the same for different δ, Hperm is independent of δ as well. Therefore even though the utility of the

agent may change with respect to δ, she always choose trading strategy from the same permissible class.
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Our agent chooses permissible strategies to maximize her utility on wealth and endowment at an

investment horizon T :

(1.1) uδ := sup
H∈Hperm

EP [Uδ (H · ST + ξδ)] .

In order to ensure the existence of the optimal strategy, we impose

Assumption 1.5. Me 6= ∅.

When Uδ has reasonable asymptotic elasticity, Ma 6= ∅, and Assumption 1.4 holds, Assumption

1.5 is actually the necessary and sufficient condition for the existence of optimal strategy for (1.1);

cf. (Owen and Žitković, 2009, Theorem 1.9). We further recall the following result from Owen and

Žitković (2009).

Proposition 1.6 (Owen-Žitković). Let Uδ be of reasonable asymptotic elastic and Assumptions 1.4

and 1.5 hold. Then there exists an optimal strategy Hδ ∈ Hperm for (1.1) such that Hδ · S is a

P̃-supermartingale for all P̃ ∈Ma and a Qδ-martingale for some Qδ ∈Me, whose density dQδ/dP
satisfies

yδ
dQδ

dP
= U ′δ (Hδ · ST + ξδ) , for some positive constant yδ.

In the previous result, Q0 is the the minimal entropy measure which minimizes EP[V0(dP̃/dP)],

with V0(y) = y log y − y, among all P̃ ∈ Ma. To simplify notation we drop the subscript 0 and

denote the minimal entropy measure by Q. In order to investigate the convergence of (1.1) and its

optimal strategy as δ ↓ 0. We assume the following convergence of random endowments.

Assumption 1.7. There exists a constant C ∈ R+ such that αδξδ − ξ0 ≥ −C, P-a.s. for all δ > 0.

Moreover limδ↓0 EQ[|αδξδ − ξ0|] = 0.

The previous assumption clearly holds when (ξδ)δ≥0 is uniformly bounded and Q− limδ↓0 ξδ = ξ0,

where Q− lim represents convergence in probability Q. Denote the optimal payoff by Xδ
T = Hδ ·ST

for δ ≥ 0. The first main result states the convergence of Xδ
T , its associated strategy, and uδ, as

δ ↓ 0.

Theorem 1.8. Let Assumptions 1.1, 1.2, 1.4, 1.5 and 1.7 hold. Then the following statements

hold:

i) limδ↓0 EQ[|Xδ
T −X0

T |] = 0;

ii) limδ↓0 uδ = u0;

iii) If S is continuous then

lim
δ↓0

EQ

[(∫ T

0
(Hδ −H0)>t d〈S〉t(Hδ −H0)t

)p/2]
= 0, for any p ∈ (0, 1).

Remark 1.9. When (Uδ)δ≥0 are defined on R+, the analogue result has been proved in Larsen (2009)

and Kardaras and Žitković (2011). Therein P − limδ↓0X
δ
T /X

0
T = 1 and limδ↓0 uδ = u0 are proved.

Define P via dP/dP = cU ′0(X0
T )X0

T for a normalization constant c. Then X0 has the numéraire
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property under P, i.e., Xδ/X0 is a P-supermartingale. Then limδ↓0 EP[|Xδ
T /X

0
T − 1|] = 0 and the

convergence of the associated strategies follow from (Kardaras, 2010, Theorem 2.5).

Remark 1.10. In Larsen (2009) and Kardaras and Žitković (2011), an uniform integrability as-

sumption is the key to stability. Assumption 1.2 implies an analogue condition is satisfied. Indeed,

Remark 1.3 implies that (Uδ)δ≥0 is uniformly bounded from above by

U∗(x) :=
R

α∗
+

R

α∗
(1− exp(−α∗x)) , where α∗ = min

δ≥0
αδ.

Since EP[V∗(dQ/dP)] <∞, where V∗ is the convex conjugate of U∗ and dominates all Vδ, {Vδ(dQ/dP)}δ≥0

is then clearly uniformly integrable under P. However the additional structure in Assumption 1.2

allows us to discuss the rate of convergence in what follows.

Let us describe rates of convergence for the ratio of marginal utilities, absolute risk aversion, and

random endowments via

f(δ) := sup
x∈R
|Rδ(x)− 1| , g(δ) := |αδ − 1|, and h(δ) := EQ

[
|ξδ − ξ0|2

]
, for δ ≥ 0.

Corollary 1.11. Let Assumptions 1.1, 1.2, and 1.5 hold. Suppose that ξδ is bounded uniform in

δ, moreover limδ↓0 f(δ) = limδ↓0 g(δ) = limδ↓0 h(δ) = 0. Then

EQ

[
|Xδ

T −X0
T |
]
∼ O

(
f(δ)2 + g(δ) + h(δ)

)
, for sufficiently small δ.

Remark 1.12. When Uδ is the exponential utility with risk aversion aδ and no random endowment

presnets, it is clear that Xδ
T = X0

T /αδ converges to X0
T at the rate of g(δ). When Uδ deviates from

exponential utility and random endowment presents, the rate of convergence for the optimal payoff

is determined by three components: convergence of the ratio of marginal utilities, convergence of

absolute risk aversions, and convergence of random endowments. Corollary 1.11 shows that the

rate of convergence is at least second order on the first component, first order on the second and

third components. This provides a quantitative measure on how far Xδ
T is away from X0

T .

The convergence rate for optimal strategies can also be determined. When S is continuous,

Corollary 1.11 and Burkholder-Davis-Gundy inequality combined imply

EQ

[(∫ T

0
(Hδ −H0)>t d〈S〉t(Hδ −H0)t

)p/2]
∼ O

(
f(δ)2 + g(δ) + h(δ)

)
,

for any p ∈ (0, 1) and small δ; see Lemma 2.4 and Corollary 2.5 below for more details. Here H0 is

the hedging strategy in the exponential hedging problem (cf. Delbaen et al. (2002), Kabanov and

Stricker (2002)).

Another application of Theorem 1.8 is the stability of utility-based prices with respect to agent’s

preference. Consider a contingent claim B ∈ L∞(FT ). An agent, endowed with utility Uδ and

endowment ξδ, takes her preference into account to price the claim B as

EQδ [B],
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where Qδ is introduced in Proposition 1.6. This price is called fair price (Davis price), cf. Davis

(1997). Theorem 1.8 implies the continuity of fair price with respect to agent’s preference.

Corollary 1.13. Let Assumptions 1.1, 1.2, 1.4, 1.5 and 1.7 hold. Then

lim
δ↓0

EQδ [B] = EQ[B].

Another utility-based pricing is the indifference price introduced into mathematical finance by

Hodges and Neuberger (1989); See Carmona (2009) and references therein for recent development

on this topic. Given an agent endowed with utility Uδ and an initial wealth x0 ∈ R, her indifference

buyer’s price, pδ = p(B, x, Uδ), of B is defined as the solution to the equation

uδ(x0 +B − pδ) = uδ(x0),

where uδ(ζ) is defined in (1.1) with ξδ = ζ. The existence and uniqueness of pδ is proved in (Owen

and Žitković, 2009, Proposition 7.2). Theorem 1.8 ii) allows us to establish the following stability

property of the indifference buyer’s price with respect to agent’s preference.

Corollary 1.14. Let Assumptions 1.1, 1.2, and 1.5 hold. Then limδ↓0 pδ = p0.

Remark 1.15. The continuity of Davis prices and indifference prices with respect to agent’s prefer-

ence has been investigated in Carassus and Rásonyi (2007) in a discrete time market with bounded

stock price processes.

1.2. Utilities defined on R+. We continue with our second main result, which concerns the con-

vergence of problems with utilities defined on R+ to the exponential utility maximization problem.

Consider a sequence of utility random fields Up : Ω× R+ → R, indexed by p < 0, each of which is

of the form

Up(x) = DUp(x), x ∈ R+,

where D is a FT -measurable positive random variable and Up : R+ → R is a standard utility

function. We assume that each Up is comparable to power utility xp/p in the following sense:

Assumption 1.16. There exist constants 0 < Rp ≤ 1 ≤ Rp such that

Rp ≤ Rp(x) :=
U ′p(x)

xp−1
≤ Rp, for all x ∈ R+.

Remark 1.17. The previous assumption implies that each Up is bounded from above. Indeed,

integrating U ′p(x) ≤ Rp x
p−1 on (1, x) yields Up(x) ≤ Up(1) + Rp(x

p/p − 1/p) ≤ Up(1) − Rp/p

for x ≥ 1 and p < 0. Moreover Up is sandwiched between two utilities with relative risk aversion

1 − p. To see this, integrating Rpx
p−1 ≤ U ′p(x) ≤ Rpx

p−1 on (1, x) when x ≥ 1 or on (x, 1) when

x < 1 yields cp(x
p/p − 1/p) + Up(1) ≤ Up(x) ≤ Cp(x

p/p − 1/p) + Up(1), for x > 0 and some

constants cp and Cp. Furthermore each Up satisfies the Inada condition, i.e., limx↓0 U
′
p(x) =∞ and

limx↑∞ U
′
p(x) = 0, and Uδ has reasonable asymptotic elasticity, i.e., AE∞(Uδ) < 1.
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The discounted prices of risky assets are specified to be stochastic exponential S = (E(R1), · · · , E(Rd)),

where R is an Rd-valued càdlàg locally bounded semimartingale with R0 = 0. The agent is endowed

with the utility random field Up and an initial capital x0 ∈ R+. A trading strategy is a predictable

R-integrable Rd-valued process π whose i-th component πi represents the fraction of current wealth

invested in the i-th risky asset. Then the associated wealth process X(π) satisfies

Xt = x0 +

∫ t

0
Xs−πs dRs, 0 ≤ t ≤ T.

A trading strategy is admissible if the associated wealth process is strictly positive. We denote by

A(x0) the class of admissible trading strategies. For an admissible strategy π, H i := πiX/Si−I{Si− 6=0}
corresponds to the number of shares invested in the i-th asset.

The agent chooses admissible trading strategies to maximize her utility of payoff:

(1.2) up(x0) := sup
π∈A(x0)

EP [DUp(XT (π))] .

The dependence of up on x0 will be omitted if no confusion is caused. Since Up is bounded from

above, up(x0) < ∞ whenever DT has finite P-expectation. We recall the following version of

Theorem 3.10 from Karatzas and Žitković (2003).

Proposition 1.18 (Karatzas-Žitković). Assume that the set of equivalent local martingale measures

for S is not empty, moreover there exist constants 0 < k1 ≤ k2 <∞ such that k1 ≤ D ≤ k2. Then

for each p < 0 there exists an optimal strategy πp ∈ A(x0) for (1.2). The associated wealth process

X(p) satisfies

ypY
(p)
T = DU ′p(X

(p)
T ),

where yp = u′p(x0) and Y (p) is some supermartingale deflator with Y
(p)

0 = 1. Moreover

yp x0 = EP

[
DU ′p(X

(p)
T )X

(p)
T

]
≥ EP

[
DU ′p(X

(p)
T )XT

]
,

for any admissible wealth process X.

To state our second main result, let us recall the exponential hedging problem. Given a contingent

claim B ∈ L∞(FT ), the agent choose permissible strategy to maximize the expected exponential

utility of the terminal wealth including the claim,

(1.3) sup
ϑ permissible

EP [− exp(B − x0 − ϑ ·RT )] .

Here ϑ is the monetary value invested in the risky assets. Its corresponding number of shares is

H i := ϑi/Si−I{Si− 6=0} which satisfies H ·S = ϑ ·R. The strategy ϑ is permissible if its corresponding

H ∈ Hperm. When S is locally bounded, (1.3) admits an optimal strategy ϑ̂; cf. (Kabanov and

Stricker, 2002, Theorem 2.1).

We impose the following assumption on filtration which is satisfied for the Brownian filtration.

Assumption 1.19. The filtration (Ft)t∈[0,T ] is continuous, i.e., all F-local martingales are contin-

uous.
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The previous assumption implies that S is continuous. Hence R satisfies the structure condition:

R = M +

∫
d〈M〉λ,

where M is a continuous local martingale with M0 = 0 and λ ∈ L2
loc(M); cf. Schweizer (1995).

Our second main result studies the asymptotic behavior of the optimal strategy πp for (1.1) as

p ↓ −∞.

Theorem 1.20. Let Assumptions 1.5, 1.16, and 1.19 hold. Set D = exp(B) for B ∈ L∞(FT ). If

Rp and Rp in Assumption 1.16 satisfy

(1.4) lim sup
p↓−∞

(1− p) (Rp − 1) <∞ and lim sup
p↓−∞

(1− p) (1−Rp) <∞,

then

P− lim
p↓−∞

∫ T

0

(
(1− p)πp − ϑ̂

)>
t
d〈M〉t

(
(1− p)πp − ϑ̂

)
t

= 0.

This result states that whenever the ratio of marginal utilities converges to 1 at least as fast as

the relative risk aversion converging to infinity, the optimal fraction invested in risky assets in the

power type problem, after scaled by 1− p, converges to the optimal monetary value invested in the

exponential hedging problem. Here (1− p)−1 can be considered as the rate of convergence.

Remark 1.21. Given a utility function U such that

R ≤ U ′(x)

xp0−1
≤ R, for all x > 0,

where 0 < R ≤ 1 ≤ R and p0 < 0, there exists a family of utilities (Up)p≤p0 such that Up0 = U

and (1.4) is satisfied for some sequences (Rp)p≤p0 and (Rp)p≤p0 . Indeed, take any function f :

(−∞, 0)→ (0, 1) such that f(p0) = 1 and lim supp↓−∞ (1− p) f(p) <∞. Set

U ′p(x) = f(p)xp−p0U ′(x) + (1− f(p))xp−1, for p ≤ p0.

One can check that Up is a standard utility function and

Rp := f(p)(R− 1) + 1 ≤
U ′p(x)

xp−1
≤ f(p)(R− 1) + 1 =: Rp,

where both lim supp↓−∞ (1− p) (1−Rp) and lim supp↓−∞(1− p) (Rp − 1) are finite.

Remark 1.22. Denote by π̃p the optimal strategy for (1.2) when Up = xp/p. Nutz proved a remark-

able result in (Nutz, 2012, Theorem 3.2) that (1 − p)π̃p → ϑ̂ in L2
loc(M); cf. (Nutz, 2012, Lemma

A.3) for characterization of this convergence. In particular the previous convergence implies

(1.5) P− lim
p↓−∞

∫ T

0
((1− p)π̃p − ϑ̂)>t d〈M〉t ((1− p)π̃p − ϑ̂)t = 0.

Therefore π̃p converges to ϑ̂ at the rate of (1− p)−1. We complement Nutz’s result by showing that

πp − π̃p converges to 0 at the rate (1− p)−1, when the ratio of marginal utilities converges to 1 at

least at the same rate. In particular, we prove

(1.6) P− lim
p↓−∞

∫ T

0
(1− p)(π̃p − πp)>t d〈M〉t (1− p)(π̃p − πp)t = 0.
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Then Theorem 1.20 follows from combining the previous two convergence.

Remark 1.23. One can assume that both S and the opportunity processes (L(p))p<0, recalled in

Section 3, are continuous instead of Assumption 1.19, which is the most important and easy to

check sufficient condition for the continuity of S and (L(p))p<0. Only the continuity of S is used to

prove (1.6), continuity of both S and L(p) for all p < 0 are needed for (1.5).

2. Stability for utilities defined on R

Theorem 1.8 and its corollaries will be proved in this section. Let us start with the following

property on the family (Ma
δ)δ≥0.

Lemma 2.1. Under Assumption 1.2, all Ma
δ (resp. Me

δ) are the same for δ ≥ 0.

Proof. Denote Ũδ(x) = − 1
αδ

exp(−αδx) and Ṽδ(y) = 1
αδ
y log y − y

αδ
to be its convex conjugate.

Here αδ converges to a0 := 1 as δ ↓ 0. Set y = U ′δ(x), which can take arbitrary value in (0,∞)

as x varies in R. It follows from Assumption 1.2 that y/R ≤ Ũ ′δ(−V ′δ (y)) ≤ y/R, which implies

Ṽ ′δ (y/R) ≤ V ′δ (y) ≤ Ṽ ′δ (y/R) for any y ∈ (0,∞). Integrating the previous inequalities on (0, y) and

utilizing Ṽδ(0) = Ũδ(∞) = 0, we obtain

R Ṽδ(y/R) + Vδ(0) ≤ Vδ(y) ≤ RṼδ(y/R) + Vδ(0).

Recall from Remark 1.3 that (Uδ(∞))δ>0 is uniformly bounded. Then there exists N such that

−N ≤ Vδ(0) = Uδ(∞) ≤ N for any δ. The previous two inequalities combined yield

1

αδ
Ṽ0(y)− 1

αδ
y logR−N ≤ Vδ(y) ≤ 1

αδ
Ṽ0(y)− 1

αδ
y logR +N, for any y.

Therefore EP[Vδ(dP̃/dP)] <∞ if and only if EP[Ṽ0(dP̃/dP)] <∞. �

To prove Theorem 1.8, observe that, without loss of generality all (αδ)δ≥0 in Assumption 1.2 can

be assumed to be 1. Indeed, define U δ(x) := αδUδ(x/αδ). Assumption 1.2 implies

R ≤ U
′
δ(x)

exp(−x)
≤ R, for any x ∈ R.

Moreover, U(x) converges to − exp(−x) pointwise, since αδ converges to 1 and Uδ(x) converges to

− exp(−x) locally uniformly; see (Rockafellar, 1970, pp. 90). Therefore (1.1) can be rewritten as

uδ =
1

αδ
sup

H∈Hperm
EP
[
U δ (αδH · ST + αδξδ)

]
=

1

αδ
sup

H∈Hperm
EP
[
U δ
(
H · ST + ξδ

)]
,

where ξδ := αδξδ. Therefore the optimal strategy Hδ for (1.1) is exactly Hδ/αδ where Hδ maximizes

the rightmost problem. Hence we can consider (1.1) with utility U δ and the random endowment

ξδ. In this case Assumption 1.2 holds with αδ = 1 for all δ ≥ 0.
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Now suppose that Theorem 1.8 holds for U δ, then the same statements hold for Uδ as well. For

example, if limδ↓0 EQ
[∣∣(Hδ −H0) · ST

∣∣] = 0, then

EQ [|(Hδ −H0) · ST |] =
1

αδ
EQ
[∣∣(Hδ − αδH0) · ST

∣∣]
≤ 1

αδ
EQ
[∣∣(Hδ −H0) · ST

∣∣]+
|αδ − 1|
αδ

EQ [|H0 · ST |]

→ 0, as δ ↓ 0,

(2.1)

where H0 = H0 and EQ[|H0 ·ST |] <∞ since H0 ·S is a Q-martingale. Therefore, due to the previous

change of variable, it suffices to prove Theorem 1.8 when

(2.2) αδ = 1, for all δ ≥ 0.

To this end, Theorem 1.8 i) will be proved in Corollary 2.3, ii) in Proposition 2.7, and iii) in

Corollary 2.5. In the rest of this section, Assumptions 1.1, 1.2, 1.4, 1.5 and 1.7 are enforced. To

simplify notation, we introduce

Xδ := Hδ · S, X δ := Xδ + ξδ, ∆ξδ := ξδ − ξ0, and ∆X δ := X δ −X 0, for δ ≥ 0.

Proof of Theorem 1.8 i) starts with the following estimate.

Lemma 2.2. It holds that

lim
δ↓0

EQ

[∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ ∣∣∣∆Xδ

T

∣∣∣] = 0.

Proof. Recall from Proposition 1.6 that X0 is a Qδ-supermartingale and Xδ is a Qδ-martingale,

where the density dQδ/dP is U ′δ(X δT ) up to a constant. Therefore U ′δ(X δT )X0
· is a P-supermartingale

and U ′δ(X δT )Xδ
· is a P-martingale. Since both these two processes have initial value zero, therefore

EP
[
U ′δ(X δT )X0

T

]
≤ 0 = EP

[
U ′δ(X δT )Xδ

T

]
, which induces

EP

[
U ′δ(X δT )(X0

T −Xδ
T )
]
≤ 0.

Similarly, the previous argument applied to Q gives

EP

[
U ′0(X 0

T )(Xδ
T −X0

T )
]
≤ 0.

Summing up the previous two inequalities and changing to the measure Q whose density is U ′0(X 0
T )

up to a constant, we obtain

EQ

[(
1−

U ′δ(X δT )

U ′0(X 0
T )

)(
Xδ
T −X0

T

)]
≤ 0.

Observe that the random variable in the expectation of the previous inequality is negative only

when X0
T ≥ Xδ

T ≥ Iδ
(
U ′0(X 0

T )
)
− ξδ or Iδ

(
U ′0(X 0

T )
)
− ξδ ≥ Xδ

T ≥ X0
T , where Iδ = (U ′δ)

−1. In either

cases, ((
1−

U ′δ(X δT )

U ′0(X 0
T )

)(
Xδ
T −X0

T

))
−
≤
(
U ′δ(X

0
T + ξδ)

U ′0(X0
T + ξ0)

− 1

)(
Iδ
(
U ′0(X 0

T )
)
− ξδ −X0

T

)
,
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where (·)− represents the negative part. Utilizing the fact that EQ[|A|] ≤ 2EQ[A−] for any random

variable A with EQ[A] ≤ 0, we obtain

EQ

[∣∣∣∣(1−
U ′δ(X δT )

U ′0(X 0
T )

)(
Xδ
T −X0

T

)∣∣∣∣] ≤ 2EQ

[(
U ′δ(X

0
T + ξδ)

U ′0(X0
T + ξ0)

− 1

)(
Iδ
(
U ′0(X 0

T )
)
− ξδ −X0

T

)]
.

Note that the left side of the previous inequality is EQ
[∣∣1−Rδ(X δT ) exp(−∆X δT )

∣∣ |∆Xδ
T |
]
. The

statement follows once the expectation on the right side converges to zero as δ ↓ 0.

To prove the desired convergence, let us first estimate the upper bound of |Iδ(U ′0(x))− x| on R.

Set y = U ′0(x). It follows

Iδ
(
U ′0(x)

)
− x = Iδ(y)− I0(y) = − log [exp (− (Iδ(y)− I0(y)))]

= − log

[
exp(−Iδ(y))

y

]
= log

[
U ′δ(Iδ(y))

U ′0(Iδ(y))

]
.

Assumption 1.2 then implies

sup
x∈R

∣∣Iδ(U ′0(x))− x
∣∣ ≤ max{logR, log 1/R} =: η.

As a result,
∣∣Iδ(U ′0(X 0

T ))−X0
T − ξδ

∣∣ ≤ η + |∆ξδ|. Assumptions 1.2 and 1.7 combined imply that

U ′δ(X
0
T + ξδ)

U ′0(X0
T + ξ0)

= Rδ(X
0
T + ξδ) exp(−∆ξδ) ≤ ReC .

The previous two estimates combined yield

(2.3)

∣∣∣∣U ′δ(X0
T + ξδ)

U ′0(X0
T + ξ0)

− 1

∣∣∣∣ ∣∣Iδ (U ′0(X 0
T )− ξδ −X0

T

)∣∣ ≤ (ReC + 1)(η + |∆ξδ|),

where the right side is uniformly integrable in δ under Q thanks to limδ↓0 EQ[|∆ξδ|] = 0 in Assump-

tion 1.7. On the other hand, the term on the left side of (2.3) converges to 0 in probability Q.

This follows from facts that lim supδ↓0 |Iδ(U ′0(X 0
T ))− ξδ −X0

T | is bounded and Q− limδ↓0 Rδ(X
0
T +

ξδ) exp(−∆ξδ) = 1. The previous convergence follows from

Q
(
|Rδ(X

0
T + ξδ) exp(−∆ξδ)− 1| ≥ ε

)
≤Q

(
|Rδ(X

0
T + ξδ) exp(−∆ξδ)− 1| ≥ ε, |ξδ| ≤ N, |X0

T | ≤ N
)

+ Q(|ξδ| > N) + Q(|X0
T | > N),

where the first term on the right converges to 0 as δ ↓ 0 since Rδ converges to 1 locally uniformly

and Q− limδ↓0∆ξδ = 0, both second and third terms can be made arbitrarily small for sufficiently

large N . The uniform integrability and convergence in probability combined imply

lim
δ↓0

EQ

[∣∣∣∣U ′δ(X0
T + ξδ)

U ′0(X0
T + ξ0)

− 1

∣∣∣∣ ∣∣Iδ (U ′0(X 0
T )− ξδ −X0

T

)∣∣] = 0,

hence the statement. �

The previous result provides a handle to study the L1(Q) convergence of Xδ
T −X0

T .

Corollary 2.3. It holds that

lim
δ↓0

EQ

[∣∣∣∆Xδ
T

∣∣∣] = 0.
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Proof. We will first prove

(2.4) lim
δ↓0

Q
(
|∆X δT | ≥ ε, |X δT | ≤ N

)
= 0, for any ε,N > 0.

To this end, for fixed ε and N , exp(−∆X δT ) ≤ e−ε when ∆X δT ≥ ε. Since U ′δ converges to U ′0 locally

uniformly, there exists a sufficiently small δ such that e−ε/2 ≤ Rδ(X δT ) ≤ eε/2 for |X δT | ≤ N . On

the other hand, |∆Xδ
T | ≥ ε/2 when |∆ξδ| ≤ ε/2 and |∆X δT | ≥ ε. The previous estimates combined

imply that on {∆X δT ≥ ε, |∆ξδ| ≤ ε/2, |X δT | ≤ N},∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ |∆Xδ

T | ≥ (1− eε/2e−ε)ε/2 > 0, for sufficiently small δ.

Similarly, on {∆X δT ≤ −ε, |∆ξδ| ≤ ε/2, |X δT | ≤ N},∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ |∆Xδ

T | ≥ (e−ε/2eε − 1)ε/2 > 0, for sufficiently small δ.

Set η = min{1− e−ε/2, eε/2− 1} · ε/2 > 0. Previous two inequalities and Lemma 2.2 combined yield

η ·Q
(
|∆X δT | ≥ ε, |∆ξδ| ≤ ε/2, |X δT | ≤ N

)
≤ EQ

[∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ |∆Xδ

T |
]
→ 0, as δ ↓ 0.

Therefore (2.4) follows from the previous inequality and limδ↓0 Q(|∆ξδ| > ε/2) = 0.

Second, we will prove

(2.5) lim
δ↓0

Q(|∆X δT | ≥ ε) = 0.

To this end, note that

Q(|X δT | ≥ N) ≤ Q(|X δT | ≥ N, |X 0
T | ≤ N/2) + Q(|X 0

T | ≥ N/2)

≤ Q(|∆X δT | ≥ N/2) + Q(|X 0
T | ≥ N/2), for any N.

(2.6)

Let us prove in what follows

(2.7) lim
δ↓0

Q(|∆X δT | ≥ N/2) = 0, for sufficiently large N.

Take N/2 > max{2, log 1/R, logR} and set M δ = N/2 ∨ (|∆ξδ| + 1). On {∆X δT ≤ −M δ},
Rδ(X δT ) exp(−∆X δT ) ≥ R exp(N/2) > 1 and |∆Xδ

T | = |∆X δT − ∆ξδ| ≥ 1. Hence on the same

set, ∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ |∆Xδ

T | ≥ R exp (N/2)− 1.

On {∆X δT ≥ M δ}, Rδ(X δT ) exp(−∆X δT ) ≤ R exp(−N/2) < 1 and |∆Xδ
T | ≥ 1. Hence on the same

set, ∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ |∆Xδ

T | ≥ 1−R exp (−N/2) .

Set η = min{R exp(N/2)− 1, 1−R exp(−N/2)} > 0. The previous two inequalities combined yield

η ·Q
(
|∆X δT | ≥M δ

)
≤ η EQ

[
|∆Xδ

T | I{|∆X δT |≥Mδ}

]
≤ EQ

[∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ |∆Xδ

T | I{∆X δT≥Mδ}

]
→ 0, as δ ↓ 0,

(2.8)
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where the convergence follows from Lemma 2.2. Therefore (2.7) follows from

Q
(
|∆X δT | ≥ N/2

)
≤ Q

(
|∆X δT | ≥ N/2, |∆ξδ| ≤ 1

)
+ Q (|∆ξδ| > 1)

= Q
(
|∆X δT | ≥M δ, |∆ξδ| ≤ 1

)
+ Q (|∆ξδ| > 1)

→ 0, as δ ↓ 0.

Switch our attention to Q(|X 0
T | ≥ N/2). Assumption 1.4 yields x0 ≤ EQ[ξ0] ≤ x̃0 +EQ[G0 ·ST ] ≤

x̃0, where G0 ·S is a Q-local martingale bounded from below hence a Q-supermartingale. Moreover

recall that X0 is a Q-martingale. Therefore Q(|X 0
T | ≥ N/2) ≤ 2EQ[|X 0

T |]/N which can be made

arbitrarily small for sufficiently large N . The previous inequality combined with (2.6) and (2.7)

yields that lim supδ↓0 Q(|X δT | ≥ N) is sufficiently small for large N . Hence (2.5) follows from

combining the previous limit superior with (2.4).

Finally, let us prove

lim
δ↓0

EQ

[∣∣∣∆Xδ
T

∣∣∣] = 0.

To this end, we have seen in (2.8) that limδ↓0 EQ

[∣∣∆Xδ
T

∣∣ I{|∆X δT |≥Mδ}

]
= 0. On the other hand,

EQ

[
|∆Xδ

T | I{|∆Xδ
T |<Mδ}

]
≤ EQ

[
|∆Xδ

T | I{|∆Xδ
T |<Mδ,|∆ξδ|≤1}

]
+ EQ

[
|∆Xδ

T | I{|∆Xδ
T |<Mδ,|∆ξδ|>1}

]
.

Here the second term on the right is bounded from above by N
2 Q(|∆ξδ| > 1)+EQ

[
(|∆ξδ|+ 1) I{|∆ξδ|>1}

]
which converges to 0 as δ ↓ 0 due to Assumption 1.7. The first term converges to 0 as well. Indeed,

since |∆Xδ
T | ≤ N/2 + 1 when |∆X δT | < M δ and |∆ξδ| ≤ 1, the bounded convergence theorem

implies that limδ↓0 EQ

[
|∆Xδ

T | I{|∆Xδ
T |<Mδ,|∆ξδ|≤1}

]
= 0 along any subsequence of δ such that ∆Xδ

T

converges to 0 Q-a.s.. Since for any sequence, there is a subsequence along which ∆Xδ
T converges

Q-a.s., the previous convergence in expectation also holds along the entire sequence of δ. This

argument, which combines convergence in probability with the bounded convergence theorem, will

be used frequently later without mentioned explicitly. �

Now Theorem 1.8 iii) follows from Corollary 2.3 and the following result.

Lemma 2.4. For any supermartingale Z with Z0 = 0,5

E

[
sup

0≤t≤T
|Zt|p

]
≤ 1

1− p
2p E [|ZT |]p , for any p ∈ (0, 1).

Proof. It follows from Doob’s maximal inequality (cf. (Karatzas and Shreve, 1991, Chapter 1,

Theorem 3.8))that

λP

(
sup

0≤t≤T
|Zt| ≥ λ

)
≤ 2E[|ZT |].

5This result holds for any probability measure which is denoted by P in the proof.
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Set Z∗ = sup0≤t≤T |Zt|. It then follows

E

[
sup

0≤t≤T
|Zt|p

]
= E

[∫ ∞
0

I{Z∗>x}px
p−1 dx

]
=

∫ ∞
0

P(Z∗ > x)pxp−1 dx

≤
∫ ∞

0
min

{
1,

2E[|ZT |]
x

}
p xp−1 dx =

1

1− p
2p E[|ZT |]p.

Compare to the standard Doob’s Lp-inequality where p > 1, the only difference in proof is the last

inequality. �

Applying the previous lemma to the Q-supermartingale ∆Xδ and utilizing Corollary 2.3, we

obtain limδ↓0 EQ
[
sup0≤t≤T |∆Xδ

t |p
]

= 0. Hence Theorem 1.8 iii) follows from Burkholder-Davis-

Gundy inequality, cf. (Rogers and Williams, 1987, Chapter IV, Theorem 42.1):

Corollary 2.5. If S is continuous, then

lim
δ↓0

EQ

[[
∆Xδ,∆Xδ

]p/2
T

]
= 0, for any p ∈ (0, 1).

The following result prepares the proof of Theorem 1.8 ii).

Lemma 2.6. It holds that

lim
δ↓0

EP
[
exp

(
−X δT

)]
EP
[
exp

(
−X 0

T

)] = 1.

Proof. Proposition 1.6 implies that

dQ
dP

=
exp(−X 0

T )

EP[exp(−X 0
T )]

.

After changing to the measure Q, the statement is equivalent to

(2.9) lim
δ↓0

EQ[exp(−∆X δT )] = 1.

Fix N > max{C, log 1/R} where C is the constant in Assumption 1.7. It follows from (2.5) that

(2.10) lim
δ↓0

EQ

[
exp(−∆X δT ) I{∆X δT≥−N}

]
= 1.

On the other hand, when ∆X δT ≤ −N , ∆Xδ
T = ∆X δT −∆ξδ ≤ −N + C < 0, then∣∣∣1−Rδ(X δT ) exp(−∆X δT )

∣∣∣ |∆Xδ
T | = exp(−∆X δT )

∣∣∣exp(∆X δT )−Rδ(X δT )
∣∣∣ |∆Xδ

T |

≥ exp(−∆X δT ) (R− exp(−N)) (N − C).

Set η = (R− exp(−N)) (N − C) > 0. It then follows from Lemma 2.2 that

(2.11)

η·EQ

[
exp(−∆X δT ) I{∆X δT≤−N}

]
≤ EQ

[∣∣∣1−Rδ(X δT ) exp(−∆X δT )
∣∣∣ |∆Xδ

T | I{∆X δT≤−N}
]
→ 0, as δ ↓ 0.

As a result, (2.9) follows from combining (2.10) and (2.11). �

Now we are ready to prove Theorem 1.8 ii).
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Proposition 2.7. It holds that

lim
δ↓0

uδ = u0.

Proof. After changing to the measure Q, the statement is equivalent to

1 = lim
δ↓0

EP
[
Uδ(X δT )

]
EP
[
U0(X 0

T )
] = lim

δ↓0
EQ

[
Uδ(X δT )

U0(X 0
T )

]
.

In what follows, we will prove

(2.12) lim sup
δ↓0

EQ

[
Uδ(X δT )

U0(X 0
T )

]
≤ 1;

while lim infδ↓0 EQ

[
Uδ(X δT )

U0(X 0
T )

]
≥ 1 can be proved similarly. To prove (2.12), we will estimate the limit

superior of the expectation on sets {−N ≤ X δT ≤ N}, {X δT > N}, and {X δT < −N} separately, for

a fixed sufficiently large N , in the following three steps.

Step 1: on {−N ≤ X δT ≤ N}. For any ε,N > 0, there exists δε,N such that 1− ε ≤ U ′δ(x)

U ′0(x)
≤ 1+ ε for

x ∈ (−N,N) and δ ≤ δε,N . Integrating U ′δ(x) ≤ (1+ ε)U ′0(x) on (x,N) gives Uδ(x) ≥ (1+ ε)U0(x)−
(1 + ε)U0(N) + Uδ(N), which yields

Uδ(x)

U0(x)
≤ 1 + ε+

Uδ(N)− (1 + ε)U0(N)

U0(x)
, for x ∈ [−N,N ] and δ ≤ δε,N .

It then follows

EQ

[
Uδ(X δT )

U0(X 0
T )

I{−N≤X δT≤N}

]
= EQ

[
Uδ(X δT )

U0(X δT )
exp(−∆X δT ) I{−N≤X δT≤N}

]

≤ (1 + ε)EQ

[
exp(−∆X δT ) I{−N≤X δT≤N}

]
+ (Uδ(N)− (1 + ε)U0(N))EQ

[
I{−N≤X δT≤N}
U0(X 0

T )

]

= (1 + ε)EQ

[
exp(−∆X δT ) I{−N≤X δT≤N}

]
+ (Uδ(N)− (1 + ε)U0(N))

P(−N ≤ X δT ≤ N)

EP
[
U0(X 0

T )
] .

(2.13)

In what follows the two terms on the right side of the previous inequality will be estimated separately.

Let us first prepare

(2.14)

Q(−N < X 0
T < N) ≤ lim inf

δ↓0
Q(−N ≤ X δT ≤ N) ≤ lim sup

δ↓0
P(−N ≤ X δT ≤ N) ≤ Q(−N ≤ X 0

T ≤ N).

Indeed, for any ε,

Q(−N ≤ X δT ≤ N)

= Q(−N −∆X δT ≤ X 0
T ≤ N −∆X δT , |∆X δT | ≤ ε) + Q(−N −∆X δT ≤ X 0

T ≤ N −∆X δT , |∆X δT | > ε).

Here the second term converges to 0 due to (2.5), and the first term is bounded from below by

Q(−N + ε ≤ X 0
T ≤ N − ε, |∆X δT | ≤ ε) whose limit, as δ ↓ 0, is Q(−N + ε ≤ X 0

T ≤ N − ε). Hence the

first inequality in (2.14) follows since ε is chosen arbitrarily. The third inequality in (2.14) can be

proved similarly.
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Now to estimate the first term on the right side of (2.13), note

EQ

[
exp(−∆X δT )I{−N≤X δT≤N,X 0

T≤2N}

]
= EQ

[(
exp(−∆X δT )− 1

)
I{−N≤X δT≤N,X 0

T≤2N}

]
+ Q

(
−N ≤ X δT ≤ N,X 0

T ≤ 2N
)
.

Here, since ∆X δT ≥ −3N when −N ≤ X δT ≤ N and X 0
T ≤ 2N , then the first term on the right

hand side converges to zero by the bounded convergence theorem and (2.5). For the second term,

we employ the same estimate as in (2.14). Combining estimates for both terms, we obtain

Q(−N < X 0
T < N) ≤ lim inf

δ↓0
EQ

[
exp(−∆X δT )I{−N≤X δT≤N,X 0

T≤2N}

]
≤ lim sup

δ↓0
EQ

[
exp(−∆X δT )I{−N≤X δT≤N,X 0

T≤2N}

]
≤ Q(−N ≤ X 0

T ≤ N).

On the other hand, ∆X δT ≤ −N when −N ≤ X δT ≤ N and X 0
T > 2N . Therefore

lim sup
δ↓0

EQ

[
exp(−∆X δT ) I{−N≤X δT≤N,X 0

T>2N}

]
≤ lim

δ↓0
EQ

[
exp(−∆X δT ) I{∆X δT≤−N}

]
= 0, as δ ↓ 0,

where the last convergence holds owing to (2.11). The previous two convergence combined imply

Q(−N < X 0
T < N) ≤ lim inf

δ↓0
EQ

[
exp(−∆X δT ) I{−N≤X δT≤N}

]
≤ lim sup

δ↓0
EQ

[
exp(−∆X δT ) I{−N≤X δT≤N}

]
≤ Q(−N ≤ X 0

T ≤ N).
(2.15)

To estimate the second term on the right of (2.13), note Uδ(N)−(1+ε)U0(N) < 0, for sufficiently

small δ, and EP[U0(X 0
T )] < 0. The third inequality in (2.14) (where Q can be replaced by P, since

Q ∼ P) yields

(2.16) lim sup
δ↓0

(Uδ(N)− (1 + ε)U0(N))
P(−N ≤ X δT ≤ N)

EP[U0(X 0
T )]

≤ −ε U0(N)
P(−N ≤ X 0

T ≤ N)

EP[U0(X 0
T )]

.

Step 2: on {X δT > N}. Integrating RU ′0(x) ≤ U ′δ(x) on (N, x) yields that RU0(x) − RU0(N) +

Uδ(N) ≤ Uδ(x) for x > N . This implies

(2.17) EQ

[
Uδ(X δT )

U0(X 0
T )

I{X δT>N}

]
≤ REQ

[
exp(−∆X δT ) I{X δT>N}

]
+ (Uδ(N)−RU0(N))

P(X δT > N)

EP[U0(X 0
T )]

.

Lemma 2.6 and the first inequality in (2.15) combined give

(2.18) lim sup
δ↓0

EQ

[
exp(−∆X δT ) I{X δT>N,X δT<−N}

]
≤ Q(X 0

T ≥ N,X 0
T ≤ −N).

On the other hand, RU0(N) ≤ Uδ(N) ≤ RU0(N) < 0 for sufficiently small δ. Combining the

previous inequality with Uδ(N) −RU0(N) ≥ Uδ(0) −RU0(0), we obtain 0 ≥ Uδ(N) −RU0(N) ≥
Uδ(0)−RU0(0), where the right side is bounded uniformly in δ. Utilizing the similar argument as

in (2.14), we obtain lim supδ↓0 P(X δT > N) ≤ P(X 0
T ≤ N). Combining above estimates for the right

side of (2.17),

(2.19) lim sup
δ↓0

EQ

[
Uδ(X δT )

U0(X 0
T )

I{X δT>N}

]
≤ RQ(X 0

T ≥ N,X 0
T ≤ −N) + (1−R)U0(0)

P(X 0
T ≥ N)

EP[U0(X 0
T )]

.
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Step 3: on {X δT < −N}. Integrating U ′δ(x) ≤ RU ′0(x) on (x,−N) gives Uδ(x) ≥ RU0(x)+Uδ(−N)−
RU0(−N) ≥ RU0(x), where the second inequality holds since Uδ(−N) ≥ RU0(−N) for sufficiently

small δ. As a result, we have from (2.18) that

(2.20)

lim sup
δ↓0

EQ

[
Uδ(X δT )

U0(X 0
T )

I{X δT<−N}

]
≤ R lim sup

δ↓0
EQ

[
exp(−∆X δT ) I{X δT<−N}

]
≤ RQ(X 0

T ≥ N,X 0
T ≤ −N).

Finally combining (2.15), (2.16), (2.19), and (2.20), (2.12) follows after sending ε ↓ 0 then N ↑
∞. �

Proof of Corollary 1.11. Following the discussion after Lemma 2.1, we consider problem (1.1) for

U δ(αδx) and ξδ = αδx0. After the previous change of variable, f(δ) = supx∈R |Rδ(x) − 1| where

Rδ(x) = U
′
δ(x)/ exp(−x). In what follows, we add a bar to random variables and processes associ-

ated to the problem for U δ. In the rest of the proof, C represents a constant which may be different

in different places.

First, we utilize the argument in Lemma 2.2 to prove

(2.21)

EQ

[∣∣∣1−Rδ(X
δ
T ) exp(−∆X δT )

∣∣∣ |∆Xδ
T |
]
≤ C

(
f(δ)2 + g(δ)2 + h(δ)

)
, for sufficiently small δ.

To this end, we have seen in Lemma 2.2 that the left side is bounded from above by

(2.22) 2EQ

[∣∣∣Rδ(X
0
T + αδξδ) exp(−∆ξδ)− 1

∣∣∣ ∣∣∣Iδ (U ′0(X 0
T )
)
−X 0

T −∆ξδ

∣∣∣] ,
where ∆ξδ = αδξδ− ξ0. To estimate the expectation above, note that |∆ξδ| ≤ Cg(δ) + |∆ξδ|, where

the constant C depends on the uniform bound of |∆ξδ| (cf. assumptions of Corollary 1.11). Then

1−C (g(δ) + |∆ξδ|) ≤ exp (−Cg(δ)− |∆ξδ|) ≤ exp(−∆ξδ) ≤ exp (Cg(δ) + |∆ξδ|) ≤ 1+C (g(δ) + |∆ξδ|) ,

where the first inequality follows from e−y ≥ 1 − y for y > 0 and the fourth inequality holds due

to ey = 1 +
∫ y

0 e
z dz ≤ 1 + Cy when ey ≤ C. On the other hand, 1 − f(δ) ≤ Rδ ≤ 1 + f(δ) for

sufficiently small δ. Therefore∣∣∣Rδ(X
0
T + αδξ0) exp(−∆ξδ)− 1

∣∣∣ ≤ f(δ) + C (g(δ) + |∆ξδ|) + Cf(δ) (g(δ) + |∆ξδ|)

≤ C (f(δ) + g(δ) + |∆ξδ|) , Q− a.s.,
(2.23)

for sufficiently small δ. On the other hand, we have seen in Lemma 2.2 that Iδ(U
′
0(x)) − x =

logRδ(Iδ(y)) where y = U
′
0(x). It then follows −2f(δ) ≤ Iδ(U

′
0(x)) − x ≤ 2f(δ), where we use

log(1− y) = −
∫ 0
−y(1 + z)−1dz ≥ −2y for 0 < y < 1/2 and log(1 + y) ≤ y for y > 0. As a result

(2.24)
∣∣∣Iδ (U ′0(X 0

T )
)
−X 0

T −∆ξδ

∣∣∣ ≤ 2f(δ) + Cg(δ) + |∆ξδ|, Q− a.s.,

for sufficiently small δ. Combining (2.23) and (2.24), we obtain that the expectation in (2.22) is

bounded from above by

C EQ
[
(f(δ) + g(δ) + |∆ξδ|)2

]
≤ C

(
f(δ)2 + g(δ)2 + EQ[|∆ξδ|2]

)
, for sufficiently small δ.

This confirms (2.21).
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In the next step, we will prove

(2.25) EQ

[
|∆Xδ

T |
]
≤ C

(
f(δ)2 + g(δ)2 + h(δ)

)
, for sufficiently small δ.

Indeed, an argument similar to that in Corollary 2.3 implies that there exists N, η > 0 such that

η EQ

[∣∣∣∆Xδ
T

∣∣∣ I{|∆Xδ
T |≥Mδ}

]
≤ EQ

[∣∣∣1−Rδ(X
δ
T ) exp(−∆X δT )

∣∣∣ |∆Xδ
T | I{|∆Xδ

T |≥Mδ}

]
,

where M δ = N/2 ∨ (|∆ξδ|+ 1) The previous inequality, combined with (2.21), yields

EQ

[
|∆Xδ

T | I{|∆Xδ
T |≥Mδ}

]
≤ C

(
f(δ)2 + g(δ)2 + h(δ)

)
, for sufficiently small δ.

Now (2.25) follows after noticing EQ

[
|∆Xδ

T |I{|∆Xδ
T |≤Mδ}

]
≤ EQ

[
|∆Xδ

T |I{|∆Xδ
T |≥Mδ}

]
.

Finally, come back to the problem before changing of variable,

EQ

[
|∆Xδ

T |
]
≤ 1

αδ
EQ

[
|∆Xδ

T |
]

+
|αδ − 1|
αδ

EQ[|X0
T |]

≤ C
[
f(δ)2 + g(δ)2 + h(δ) + g(δ)

]
≤ C

(
f(δ)2 + g(δ) + h(δ)

)
, for sufficiently small δ.

�

Let us now prove implications of Theorem 1.8 on utility-based prices.

Proof of Corollary 1.13. Following the change of variable after Lemma 2.1, we can assume without

loss of generality that αδ = 1 for all δ ≥ 0 throughout this proof. Since B ∈ L∞(FT ), it suffices

to prove limδ↓0 EQ [|dQδ/dQ− 1|] = 0, which follows from Q − limδ↓0 dQδ/dQ = 1 in virtual by

Scheffe’s lemma.

To prove the convergence in probability, the following form of dQδ/dQ can be read from Propo-

sition 1.6:
dQδ

dQ
=
U ′δ(X δT )

U ′0(X 0
T )

EP[U ′0(X 0
T )]

EP[U ′δ(X δT )]
.

In what follows, both factors on the right side will be proved converging to 1.

Let us estimate the first factor. For any given N and ε, there exists a sufficiently small δ such

that |Rδ(x)− 1| ≤ ε for |x| ≤ N . Then Q(|Rδ(X δT )− 1| ≥ ε, |X δT | ≤ N) = 0 for sufficiently small δ.

Hence

lim sup
δ↓0

Q(|Rδ(X δT )− 1| ≥ ε) ≤ lim sup
δ↓0

Q(|Rδ(X δT )− 1| ≥ ε, |X δT | ≤ N) + lim sup
δ↓0

Q(|X δT | > N)

≤ Q(|X 0
T | ≥ N),

which can be made arbitrarily small for sufficiently large N . Therefore Q − limδ↓0 Rδ(X δT ) = 1,

which combined Q− limδ↓0 exp(−∆X δT ) = 1 from (2.5), implies

Q− lim
δ↓0

U ′δ(X δT )

U ′0(X 0
T )

= Q− lim
δ↓0

Rδ(X δT ) exp(−∆X δT ) = 1.

In this paragraph, we will prove

lim
δ↓0

EP[U ′δ(X δT )]

EP[U ′0(X 0
T )]

= 1.
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Changing to the measure Q, the previous convergence is equivalent to

(2.26) lim
δ↓0

EQ

[
U ′δ(X δT )

U ′0(X 0
T )

]
= 1,

which we will prove next. For any ε and N , there exists a sufficiently small δ such that |Rδ(X δT )−1| ≤
ε when |X δT | ≤ N . The previous inequality combined with (2.15) yield

lim sup
δ↓0

EQ

[
U ′δ(X δT )

U ′0(X 0
T )

I{|X δT |≤N}

]
= lim sup

δ↓0
EQ

[
Rδ(X δT ) exp(−∆X δT ) I{|X δT |≤N}

]
≤ (1 + ε) lim sup

δ↓0
EQ

[
exp(−∆X δT ) I{|X δT |≤N}

]
≤ (1 + ε)Q(|X 0

T | ≤ N).

Similar argument also gives lim infδ↓0 EQ

[
U ′δ(X δT )/U ′0(X 0

T ) I{|X δT |≤N}
]
≥ (1 − ε)Q(|X 0

T | < N). On

the other hand, it follows from (2.18) that

lim sup
δ↓0

EQ

[
Rδ(X δT ) exp(−∆X δT ) I{|X δT |>N}

]
≤ R lim sup

δ↓0
EQ

[
exp(−∆X δT ) I{|X δT |>N}

]
≤ RQ(|X 0

T | ≥ N).

Combining the previous two convergence and sending N ↑ ∞ then ε ↓ 0, we confirm (2.26), hence

the statement of the corollary. �

Proof of Corollary 1.14. It follows from (Owen and Žitković, 2009, Proposition 7.2 (i)) that (pδ)δ≥0

is uniformly bounded since B ∈ L∞(FT ). Therefore in every subsequence of (pδ)δ≥0 there exists

a further subsequence (pδn)n≥0 converging to some limit, say p̃0. In the next paragraph, we will

prove p̃0 = p0. This implies that the entire sequence of (pδ)δ≥0 converges to p0 as well, since the

choice of subsequence is arbitrary.

For the subsequence (δn)n≥0, Assumption 1.7 holds for ξn = x0 +B − pδn and ξ0 = x0 +B − p̃0

when B is bounded. It then follows from Theorem 1.8 ii) that

lim
δn↓0

uδn(x0 +B − pδn) = u0(x0 +B − p̃0).

Apply Theorem 1.8 ii) with ξn = x0,

lim
δn↓0

uδn(x0) = u0(x0).

Since uδn(x0 +B−pδn) = uδn(x0), the previous two convergence combined imply u0(x0 +B− p̃0) =

u0(x0). Then p0 = p̃0 follows from the uniqueness of the indifference price p0. �

3. Stability for utilities defined on R+

We will prove Theorem 1.20 in this section. To this end, we can assume without loss of generality

that D = 1 P-a.s.. Otherwise, we can define PD ∼ P via dPD/dP = D/EP[D] and work with PD
instead of P throughout this section. Assumptions 1.5, 1.16, and 1.19 are enforced throughout this

section, (1.4) is satisfied as well. To simplify notation, denote Ũp(x) = xp/p and X̃(p), Ỹ (p), and ỹp

quantities in Proposition 1.18 when Up is chosen as Ũp.
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Denote the ratio of optimal wealth processes as

r(p) =
X(p)

X̃(p)

and introduce a sequence of auxiliary probability measures (Pp)p<0 via

dPp
dP

=

(
X̃

(p)
T

)p
EP

[(
X̃

(p)
T

)p] , for each p < 0.

It follows from Proposition 1.18 that (X
(p)
T )p > 0, P-a.s., therefore Pp ∼ P for each p < 0. This

sequence of auxiliary measures will facilitate various estimates in this section. Another important

observation is that X̃(p) has the numéraire property under Pp, i.e., EPp [XT /X̃
(p)
T ] ≤ 1 for any

admissible wealth process X. Indeed, Proposition 1.18 implies EP

[
(X̃

(p)
T )p−1(XT − X̃(p)

T )
]
≤ 0

for any admissible X. The claim then follows from changing the measure to Pp in the previous

inequality. As a result, every admissible wealth process X deflated by X̃(p) is a Pp-supermartingale;

see (Guasoni et al., 2014, Equation (3.10)). In particular, r(p) is a Pp-supermartingale.

As the last section, we start our analysis with the following estimate.

Lemma 3.1. It holds that

lim
p↓−∞

EPp

[
|p|
∣∣∣R(X

(p)
T )(r

(p)
T )p−1 − 1

∣∣∣ ∣∣∣1− r(p)
T

∣∣∣] = 0.

Proof. Throughout this proof we omit the superscript (p) inX(p), X̃(p), and r(p) to simplify notation.

Applying Proposition 1.18 to Up and Ũp, respectively, yields

EP

[
U ′p(XT )(X̃T −XT )

]
≤ 0 and EP

[
X̃p−1
T (XT − X̃T )

]
≤ 0.

Summing up the previous two inequalities and changing to the measure Pp, we obtain

EPp

[(
U ′p(XT )

X̃p−1
T

− 1

)(
1− XT

X̃T

)]
≤ 0.

Similar to Lemma 2.2, (U ′p(XT )X̃1−p
T − 1)(1 − XT /X̃T ) ≤ 0 only when Ip(X̃

p−1
T ) ≤ XT ≤ X̃T or

X̃T ≤ XT ≤ Ip(X̃p−1), where Ip = (U ′p)
−1. In either cases,((

U ′p(XT )

X̃p−1
T

− 1

)(
1− XT

X̃T

))
−

≤

(
1−

U ′p(X̃T )

X̃p−1
T

)(
1−

Ip(X̃
p−1
T )

X̃T

)
.

Therefore,

EPp

[∣∣∣∣∣
(
U ′p(XT )

X̃p−1
T

− 1

)(
1− XT

X̃T

)∣∣∣∣∣
]
≤ 2EPp

[(
1−R(X̃T )

)(
1−

Ip(X̃
p−1
T )

X̃T

)]
.

Note that

Ip(x
p−1)

x
=
Ip(y)

y
1
p−1

=

(
Ip(y)p−1

U ′p(Ip(y))

) 1
p−1

= Rp(Ip(y))
1

1−p ,
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where y = xp−1. Utilizing the previous identity, we obtain from the previous inequality and As-

sumption 1.16 that

(3.1) EPp

[∣∣∣∣∣
(
U ′p(XT )

X̃p−1
T

− 1

)(
1− XT

X̃T

)∣∣∣∣∣
]
≤ 2 max

{
(Rp − 1)(R

1
1−p
p − 1), (1−Rp)(1−R

1
1−p
p )

}
.

Since lim supp↓−∞ |p|(Rp − 1) < ∞ from (1.4), limp↓−∞R
1

1−p
p = limp↓−∞ exp( 1

1−p logRp) = 1.

Therefore the first term on the right side of (3.1), after multiplying by |p|, converges to 0 as

p ↓ −∞. Similar argument applies to the second term as well. As a result, the left side expectation,

after multiplying |p|, converges to 0 as p ↓ −∞. �

The previous estimate induces the convergence of r
(p)
T in the following sense.

Corollary 3.2. It holds that

lim
p↓−∞

Pp
(∣∣∣(r(p)

T )p − 1
∣∣∣ ≥ ε) = 0, for any ε > 0.

Proof. Throughout this proof we still omit the superscript (p). When rpT ≥ 1 + ε, 1 − rT ≥
1 − (1 + ε)1/p. Note that (1 + ε)1/p = exp(p−1 log(1 + ε)) = 1 + p−1 log(1 + ε) + o(p−1). Hence

limp↓−∞−p(1−(1+ε)1/p) = log(1+ε) > 0. Therefore when rpT ≥ 1+ε, −p(1−rT ) ≥ 1
2 log(1+ε) > 0

for sufficiently small p. When rpT ≤ 1− ε, we can similarly obtain −p(rT − 1) ≥ −1
2 log(1− ε) > 0

for sufficiently small p. Set η = min{1
2 log(1 + ε),−1

2 log(1 − ε)} > 0. The previous two estimates

combined yield

−p |rT − 1| ≥ η when |rpT − 1| ≥ ε for sufficiently small p.

On the other hand, when rpT ≥ 1 + ε, rp−1
T ≥ 1 + ε/2 for sufficiently small p. Moreover (1.4) and

Assumption 1.16 combined imply that Rp(XT ) ≥ Rp ≥ (1 + ε/2)−
1
2 for sufficiently small p. As a

result,

Rp(XT )rp−1
T −1 ≥ (1+ε/2)−

1
2 (1+ε/2)−1 = (1+ε/2)

1
2−1 > 0, when rpT−1 ≥ ε for sufficiently small p.

Similarly,

1−R(XT )rp−1
T ≥ 1− (1− ε/2)

1
2 > 0, when rpT − 1 ≤ −ε, for sufficiently small p.

Combining estimates in the last two paragraphs, we obtain

|p|
∣∣∣R(XT )rp−1

T − 1
∣∣∣ |1− rT | ≥ η ·min

{
(1 + ε/2)

1
2 − 1, 1− (1− ε/2)

1
2

}
> 0, when |rpT − 1| ≥ ε,

for for sufficiently small p. The statement then follows from the previous inequality and Lemma

3.1. �

The previous convergence in probability implies that (r
(p)
T )p converges to 1 in expectation.

Proposition 3.3. It holds that

lim
p↓−∞

EPp

[∣∣∣(r(p)
T

)p
− 1
∣∣∣] = 0.
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Proof. Throughout this proof we omit the superscript (p). The proof is split into two steps. The

first step proves

(3.2) lim
p↓−∞

EPp [r
p
T ] = 1.

The second step confirms the statement.

Step 1: After the measure Pp is changed to P, (3.2) is equivalent to

(3.3) lim
p↓−∞

EP[Xp
T ]

EP[X̃p
T ]

= 1,

which will be proved in this step. We have seen in Proposition 1.18 that

Rp

yp
EP[Xp

T ] ≤ x0 =
1

yp
EP
[
U ′p(XT )XT

]
≤ Rp

yp
EP[Xp

T ],

where Assumption 1.16 is used to obtain two inequalities. Sending p ↓ −∞ in previous inequalities,

we obtain from Rp,Rp → 1,

lim
p↓−∞

1

yp
EP[Xp

T ] = x0.

The optimality of X̃ gives EP[Xp
T ]/p ≤ EP[X̃p

T ]/p = x0ỹp/p. The previous convergence and p < 0

then yields

lim sup
p↓−∞

ỹp
yp
≤ 1.

The reverse inequality on the limit inferior will be proved in the next paragraph.

Note that y
Ip(y)p−1 =

U ′p(x)

xp−1 for x = Ip(y). Then Assumption 1.16 gives Rp ≤
y

Ip(y)p−1 ≤ Rp, hence

R
1

1−p
p ≤ Ip(y)

y
1
p−1

≤ R
1

1−p
p , for y > 0.

Proposition 1.18 then yields

x0 = EP [YT Ip (ypYT )] ≤ R
1

1−pEP

[
YT (ypYT )

1
p−1

]
= R

1
1−p y

1
p−1
p EP

[
Y q
T

]
,

where q := p/(p − 1). Note EP[Y q
T ]1−p ≤ EP[X̃p

T /x
p
0] follows from EP[YT X̃T /x0] ≤ 1 and Hölder’s

inequality (see e.g. (Guasoni and Robertson, 2012, Lemma 5)). The previous two inequalities

combined yield x0yp ≤ RpEP[X̃p
T ] = Rp x0ỹp. Sending p ↓ −∞ and utilizing limp↓−∞Rp = 1, we

obtain from the previous inequality

lim inf
p↓−∞

ỹp
yp
≥ 1.

Estimates from the last two paragraphs yield limp↓−∞ yp/ỹp = 1, which is equivalent to

lim
p↓−∞

EP
[
U ′p(XT )XT

]
EP

[
X̃p
T

] = 1.

Since RpEP[Xp
T ] ≤ EP[U ′p(XT )XT ] ≤ RpEP[Xp

T ], (3.3) follows from dividing by EP[X̃p
T ] on both

sides of the previous inequality and sending p ↓ −∞.
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Step 2: For any N > 1, limp↓−∞ EPp

[
|rpT − 1| I{rpT≤N}

]
= 0 is proved in this paragraph. To this

end, for any ε > 0,

EPp

[
|rpT − 1| I{rPT ≤N}

]
= EPp

[
|rpT − 1| I{rPT ≤N,|rpT−1|≤ε}

]
+ EPp

[
|rpT − 1| I{rPT ≤N,|rpT−1|>ε}

]
≤ ε+ (N − 1)Pp(|rpT − 1| > ε)

→ ε, as p ↓ −∞,

where the convergence follows from Corollary 3.2. Therefore the claim is confirmed since the choice

of ε is arbitrary in the previous inequality.

Now limp↓−∞ EPp

[
|rpT − 1| I{rpT>N}

]
= 0 is proved in this paragraph. Combining this convergence

and the one in the last paragraph confirm limp↓−∞ EPp
[
|rpT − 1|

]
= 0. To prove the claim,

EPp

[
|rpT − 1| I{rpT>N}

]
≤ EPp

[
rpT I{rpT>N}

]
= EPp [r

p
T ]− EPp

[
(rpT − 1) I{rpT≤N}

]
− Pp(rpT ≤ N)

→ 1− 0− 1 = 0, as p ↓ −∞,

where the convergence of three terms follow from the result in Step 1, the result in the last paragraph,

and Corollary 3.2, respectively. �

The convergence of optimal payoffs in Proposition 3.3 implies the ratio of optimal wealth processes

converges uniformly in probability. The proof of the following two results adapt arguments in

(Kardaras, 2010, Theorem 2.5) into our context.

Corollary 3.4. It holds that

lim
p↓−∞

Pp

(
sup
t∈[0,T ]

∣∣∣(r(p)
T )p − 1

∣∣∣ ≥ ε) = 0.

Proof. The superscript (p) is still omitted throughout to simplify notation. Recall that r is a

Pp-supermartingale; see the discussion before Lemma 3.1. Then p < 0 implies that rp is a Pp-
submartingale. Indeed, EPp [rpt | Fs] ≥

(
EPp [rt | Fs]

)p ≥ rps for any s ≤ t, where the Jensen’s

inequality is applied to obtain the first inequality.

In the next two paragraphs, we will prove

(3.4) lim
p↓−∞

Pp

(∣∣∣∣∣ sup
t∈[0,T ]

rpt − 1

∣∣∣∣∣ ≥ ε
)

= 0 and lim
p↓−∞

Pp
(∣∣∣∣ inf

t∈[0,T ]
rpt − 1

∣∣∣∣ ≥ ε) = 0,

for any fixed ε > 0. These two convergence combined confirm the statement.

To prove the first convergence in (3.4), define τp := inf{t ≥ 0 | rpt ≥ 1 + δ} ∧ T for p < 0 and

δ > 0. It then suffices to prove

lim
p↓−∞

Pp (τp < T ) = 0,

since δ is arbitrarily chosen. Suppose the previous convergence does not hold. Then there exists

η > 0 and a subsequence, which we still denote by τp, such that limp↓−∞ Pp (τp < T ) = η. It then
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follows from Proposition 3.3 that∣∣EPp
[
rpT I{τp=T}

]
− Pp(τp = T )

∣∣ =
∣∣EPp

[
(rpT − 1) I{τp=T}

]∣∣ ≤ EPp [|r
p
T − 1|]→ 0, as p ↓ −∞.

This implies limp↓−∞ EPp
[
rpT I{τp=T}

]
= 1− η. On the other hand, the Pp-submartingale property

of rp implies

1 ≤ EPp [r
p
τp ] ≤ EPp

[
rpT
]
→ 1, as p ↓ −∞,

where the last convergence follows from (3.2). Hence limp↓−∞ EPp
[
rpτp
]

= 1. Therefore

1 = lim
p↓−∞

EPp [r
p
τp ] ≥ lim inf

p↓−∞
EPp

[
rpτp I{τp<T}

]
+ lim
p↓−∞

EPp

[
rpτp I{τp=T}

]
≥ (1 + δ)η + (1− η) = 1 + δη > 1,

which is a contradiction. The proof of the second convergence in (3.4) is similar. �

Our next goal is to pass from convergence of optimal payoffs to convergence of optimal strategies.

Proposition 3.5. If S is continuous, then the following statements hold for any ε > 0:

i) limp↓−∞ Pp
([(

r(p)
)p
,
(
r(p)
)p]

T
≥ ε
)

= 0;

ii) limp↓−∞ Pp
([
L(p),L(p)

]
T
≥ ε
)

= 0, where L(p) :=
∫ ·

0

(
1/(r

(p)
t )p

)
d(r

(p)
t )p, i.e., L(p) is the

stochastic logarithm of (r(p))p.

Remark 3.6. Under the structure condition, [L(p),L(p)]T =
∫ T

0 p(πp− π̃p)t d〈M〉t p(πp− π̃p)t, which

measures how far p(πp − π̃p) is away from 0.

Proof. The superscript (p) on r and L is omitted throughout this proof. Note that [rp, rp]· =∫ ·
0 |r

p|2 d[L,L]t. Statement ii) then follows from statement i) and Corollary 3.2 directly. We will

prove statement i) in what follows.

Define τp = inf{t ≥ 0 | rpt ≥ 2} ∧ T . It follows from Corollary 3.4 that limp↓−∞ Pp (τp = T ) = 1.

Therefore it suffices to prove

(3.5) lim
p↓−∞

Pp
(

[rp, rp]T∧τp ≥ ε
)

= 0.

Set Z
(p)
· = rp·∧τp . Since rp is a Pp-submartingale, so is Z(p). Therefore (3.2) induces limp↓−∞ EPp [Z

(p)
T ] =

1. On the other hand, the continuity of S implies the continuity of rp, hence Z(p) is bounded from

above by 2 for all p < 0. The Doob-Meyer decomposition gives Z(p) = M (p) + B(p) where M (p)

is a Pp-martingale and B(p) is a continuous nondecreasing process with B
(p)
0 = 0. The continuity

of B(p) follows from (Karatzas and Shreve, 1991, Theorem 1.4.14). Note supt∈[0,T ]|Z
(p)
t − 1| ≤

supt∈[0,T ] |M
(p)
t − 1|+B

(p)
T . Hence

EPp

[
sup
t∈[0,T ]

|M (p)
t − 1|

]
≤ EPp

[
sup
t∈[0,T ]

|Z(p)
t − 1|

]
+ EPp [B

(p)
T ]

= EPp

[
sup
t∈[0,T ]

|Z(p)
t − 1|

]
+ EPp [Z

(p)
T ]− EPp [M

(p)
T ]

→ 0 + 1− 1 = 0, as p ↓ −∞,
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where EPp

[
supt∈[0,T ] |Z

(p)
t − 1|

]
→ 0 holds owing to |Z(p)− 1| ≤ 1 and Corollary 3.4, EPp [M

(p)
T ] = 1

holds becauseM (p) is a Pp-martingale. Therefore the Davis inequality yields limp↓−∞ EPp [[M
(p),M (p)]

1/2
T ] =

0, which implies limp↓−∞ Pp([M (p),M (p)]T ≥ ε) = 0. Hence (3.5) is confirmed, since B(p) is a con-

tinuous increasing process.

�

Last step to prove Theorem 1.20, we are going to identify limit of Pp as p ↓ −∞. To this end,

we recall the opportunity process for power utility. The càdlàg semimartingale L(p) is called the

opportunity process for the power utility xp/p if it satisfies

L
(p)
t

1

p
(Xt(π))p = esssupπ̃∈A(π)EP

[
1

p
(X(π̃)T )p

∣∣∣∣ Ft] ,
for any t ∈ [0, T ] and π ∈ A, where A(π) = {π̃ ∈ A : π̃ = π on [0, t]}. The existence and uniqueness

of L(p) have been proved in (Nutz, 2010, Proposition 3.1). Thanks to the scaling property of power

utility, L(p) can be viewed as a dynamic version of the reduced value function. In particular, the

definition above implies that L
(p)
0 xp0/p = ũp(x0), where ũp(x0) is defined in (1.2) with Up(x) = xp/p,

and L
(p)
0 xp−1

0 = ỹp = ũ′p(x0). As a result, the density of Pp can be rewritten as

dPp
dP

=

(
ỹpỸ

(p)
T

)q
pũp(x0)

=

(
L

(p)
0 Ỹ

(p)
T

)q
L

(p)
0

=

(
Ỹ

(p)
T

)q
(
L

(p)
0

)1−q ,

where q = p/(p− 1). As p ↓ −∞, using convergence results in Nutz (2012), we will show that the

denominator in the rightmost equality above converges to 1 and the numerator converges to the

density of the minimal entropy measure Q. Therefore convergence under the sequence of measures

(Pp)p<0 in Proposition 3.5 can be replaced by convergence in probability Q. This, combined with

(Nutz, 2012, Theorem 3.2), concludes the proof of Theorem 1.20.

Proof of Theorem 1.20. Let us first prove

(3.6) lim
p↓−∞

EP

[∣∣∣∣dPpdP − dQ
dP

∣∣∣∣] = 0.

To this end, when S is continuous, it follows from (Nutz, 2012, Theorem 6.6) that limp↓−∞ L
(p)
0 =

Lexp
0 , where Lexp is the opportunity process for exponential utility − exp(−x) defined in the similar

fashion as that for power utility; cf. (Nutz, 2012, equation (6.3)). Since q → 1 as p ↓ −∞, then

limp↓−∞(L
(p)
0 )1−q = 1. On the other hand, when S and (L(p))p<0 are continuous, (Nutz, 2012,

Proposition 6.13) proved that Ỹ (p) converges in the semimartingale topology to the density of Q
as p ↓ −∞. In particular, P− limp↓−∞ Ỹ

(p)
T = dQ/dP. Hence P− limp↓−∞(Ỹ

(p)
T )q = dQ/dP, which,

after combined with limp↓−∞(L
(p)
0 )1−q = 1, implies

P− lim
δ↓−∞

dPp
dP

=
dQ
dP

.

Hence the L1(P) convergence in (3.6) follows from the previous convergence and Scheffe’s lemma.

The assumptions on the continuity of S and (L(p))p<0 are ensured by Assumption 1.19; cf. (Nutz,

2012, Remark 4.2).
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Proposition 3.5 ii) and (3.6) combined yield Q−limp↓−∞ [p(πp − π̃p) ·R]T = 0, where [Z] := [Z,Z]

is the quadratic variation for the semimartingale Z. Hence

(3.7) P− lim
p↓−∞

[(1− p)(πp − π̃p) ·R]T = 0,

since Q ∼ P. On the other hand, (Nutz, 2012, Theorem 3.2) proved that (1− p)π̃p → ϑ̂ in L2
loc(M)

as p ↓ −∞. This implies P− limp↓−∞[((1− p)π̃p − ϑ̂) ·R]T∧τn = 0, for a sequence of stopping time

(τn) with limn↑∞ τn =∞; cf. (Nutz, 2012, Lemma A.3). The previous convergence then yields

(3.8) P− lim
p↓−∞

[
((1− p)π̃p − ϑ̂) ·R

]
T

= 0.

Finally, the statement is confirmed via[
((1− p)πp − ϑ̂) ·R

]
T

=
[
(1− p)(πp − π̃p) ·R+ ((1− p)π̃p − ϑ̂) ·R

]
T

≤ 2 [(1− p)(πp − π̃p) ·R]T + 2
[
((1− p)π̃p − ϑ̂) ·R

]
T
,

where both terms in the right side converge in probability P to zero as we have seen in (3.7) and

(3.8). �
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