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Multiple change-point detection for high-dimensional time series via

Sparsified Binary Segmentation

Haeran Cho ∗and Piotr Fryzlewicz †

April 1, 2014

Abstract

Time series segmentation, a.k.a. multiple change-point detection, is a well-established prob-

lem. However, few solutions are designed specifically for high-dimensional situations. In this

paper, our interest is in segmenting the second-order structure of a high-dimensional time series.

In a generic step of a binary segmentation algorithm for multivariate time series, one natural so-

lution is to combine CUSUM statistics obtained from local periodograms and cross-periodograms

of the components of the input time series. However, the standard “maximum” and “average”

methods for doing so often fail in high dimensions when, for example, the change-points are

sparse across the panel or the CUSUM statistics are spuriously large.

In this paper, we propose the Sparsified Binary Segmentation (SBS) algorithm which aggre-

gates the CUSUM statistics by adding only those that pass a certain threshold. This “sparsify-

ing” step reduces the impact of irrelevant, noisy contributions, which is particularly beneficial

in high dimensions.

In order to show the consistency of SBS, we introduce the multivariate Locally Stationary

Wavelet model for time series, which is a separate contribution of this work.

1 Introduction

Detecting multiple change-points in univariate time series has been widely discussed in various

contexts, see Inclán and Tiao (1994), Chen and Gupta (1997), Lavielle and Moulines (2000), Ombao

et al. (2001), Davis et al. (2006) and Davis et al. (2008) for some recent approaches. In this

article, we use the term “multiple change-point detection” interchangeably with “segmentation”.

By contrast, segmentation of the second-order structure of multivariate time series, especially those

of high dimensionality, is yet to receive much attention despite the fact that multivariate time series

observed in practical problems often appear second-order nonstationary. For example, in financial

time series, large panels of asset returns routinely display such nonstationarities (see e.g. Fan et al.

(2011) for a comprehensive review of challenges of high-dimensionality in finance and economics).

Another example can be found in neuroscience, where electroencephalograms (EEG) recorded at

multiple channels exhibit nonstationarity and high correlations as well as being massive in volume
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(Ombao et al. 2005). Vert and Bleakley (2010) describe other interesting examples of multivariate,

nonstationary time series in many other fields, such as signal processing, biology and medicine.

As arguably one of the simplest forms of departure from stationarity, we consider a class of piecewise

stationary, multivariate (possibly high-dimensional) time series with a time-varying second-order

structure, where the autocovariance and cross-covariance functions are asymptotically piecewise

constant and hence the time series is approximately stationary between change-points in these

functions.

We first list some existing approaches to the problem of multiple change-point detection in mul-

tivariate (not necessarily high-dimensional) time series. Ombao et al. (2005) employed the SLEX

(smooth localized complex exponentials) basis for time series segmentation, originally proposed by

Ombao et al. (2002). The choice of SLEX basis leads to the segmentation of the time series, achieved

via complexity-penalized optimization. Lavielle and Teyssière (2006) introduced a procedure based

on penalized Gaussian log-likelihood as a cost function, where the estimator was computed via dy-

namic programming. The performance of the method was tested on bivariate examples. Vert and

Bleakley (2010) proposed a method for approximating multiple signals, with independent noise,

via piecewise constant functions, where the change-point detection problem was re-formulated as a

penalized regression problem and solved by the group Lasso (Yuan and Lin 2006). Note that in Cho

and Fryzlewicz (2011), we argued that the l1-penalty was sub-optimal for change-point detection.

CUSUM-type statistics have been widely used in time series segmentation. In the context of

multivariate time series segmentation, Groen et al. (2011) studied the average and the maximum

of d CUSUM statistics, each obtained from one component of a d-dimensional time series, and

compared their theoretical properties as well as finite sample performance. The average test statistic

was also adopted in Horváth and Hušková (2012) for detecting a single change in the mean of a

panel data model, and both papers allowed the dimensionality to increase under the constraint

d2/T → 0, where T denoted the sample size. In Aue et al. (2009), a CUSUM statistic was proposed

for detecting and locating a single change-point in the covariance structure of multivariate time

series, where its extension to the detection of multiple change-points via binary segmentation was

discussed heuristically.

In this paper, we propose a CUSUM-based binary segmentation algorithm, termed “Sparsified

Binary Segmentation” (SBS), for identifying multiple change-points in the second-order structure of

a multivariate (possibly high-dimensional) time series. The input to the SBS algorithm is {Y (k)
t,T , k =

1, . . . , d}, a d-dimensional sequence of localized periodograms and cross-periodograms computed

on the original multivariate time series, where the dimensionality d is allowed to diverge with the

number of observations T at a certain rate.

A key ingredient of the SBS algorithm is a “sparsifying” step, where, instead of blindly aggregating

all the information about the change-points from the d sequences Y
(k)
t,T , we apply a threshold to the

individual CUSUM statistics computed on each Y
(k)
t,T , and only those temporal fragments of the

CUSUMs that survive after the thresholding are aggregated to have any contribution in detecting

and locating the change-points. In this manner, we reduce the impact of those sequences that do
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not contain any change-points so that the procedure is less affected by them, which can be par-

ticularly beneficial in a high-dimensional context. Therefore, we can expect improved performance

in comparison to methods without a similar dimension-reduction step, and this point is explained

in more detail in Section 2.1. Further, due to the aggregation of the CUSUM statistics, the algo-

rithm automatically identifies common change-points, rather than estimating single change-points

at different locations in different components of the time series, which removes the need for post-

processing across the d-dimensional sequence. This latter characteristic is particularly attractive

in a high-dimensional situation.

As well as formulating the complete SBS algorithm, we show its consistency for the number and

the locations of the change-points. One theoretical contribution of this work is that our rates of

convergence of the location estimators improve on those previously obtained for binary segmentation

for univariate time series (Cho and Fryzlewicz 2012) and are near-optimal in the case of the change-

points being separated by time intervals of length ≍ T , where aT ≍ bT if a−1
T bT → C as T →∞ for

some constant C. This was achieved by adapting, to the high-dimensional time series context, the

proof techniques from Fryzlewicz (2013) for the univariate signal plus i.i.d. Gaussian noise model.

As a theoretical setting for deriving the consistency results, we introduce the multivariate Locally

Stationary Wavelet (LSW) model for time series. This, we believe, is a separate contribution of the

current work, and provides a multivariate extension of the univariate LSW model of Nason et al.

(2000) and of the bivariate LSW model of Sanderson et al. (2010).

The rest of the paper is organized as follows. In Section 2, we introduce the SBS algorithm for

segmenting a possibly large number of multiplicative sequences. In Section 3, we introduce a class

of piecewise stationary, multivariate time series and discuss the specifics of applying the SBS from

Section 2 to detect change-points in its second-order structure (the version of SBS specifically

applicable to multivariate time series is labeled SBS-MVTS in the paper). Section 4 illustrates the

performance of the proposed methodology on a set of simulated examples, and Section 5 applies

it to the multivariate series of S&P 500 components, observed daily between 2007 and 2011. The

proofs are in the Appendix.

2 The SBS algorithm in a generic setting

In this section, we outline the SBS algorithm for change-point detection in a panel of multiplicative

sequences, which may share common change-points in their expectations. We later consider a

piecewise stationary, multivariate time series model and use it to derive a set of statistics, which

contain information about the change-points in its second-order structure. Those statistics are

shown to follow the multiplicative model considered so that SBS can be applied to them. This will

enable us to segment the original time series using the SBS methodology.

The multiplicative model in question is

Y
(k)
t,T = σ(k)(t/T ) · Z(k)2

t,T , t = 0, . . . , T − 1; k = 1, . . . , d, (1)
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where Z
(k)
t,T is a sequence of (possibly) autocorrelated and nonstationary standard normal variables

such that EY (k)
t,T = σ(k)(t/T ), which implies that each Y

(k)
t,T is a scaled χ2

1 variable. Extensions to

some other distributions are possible but technically involved and we do not pursue them here. Each

σ(k)(t/T ) is a piecewise constant function, and we aim to detect any change-points in σ(k)(t/T ) for

k = 1, . . . , d. It is assumed that there are N change-points 0 < η1 < η2 < . . . < ηN < T −1 possibly

shared by the d functions σ(k)(t/T ), in the sense that for each ηq, there exists one or more σ(k)(t/T )

satisfying σ(k)(ηq/T ) ̸= σ(k)((ηq + 1)/T ). We impose the following conditions on ηq, q = 1, . . . , N .

(A1) (i) The distance between any two adjacent change-points is bounded from below by δT ≍ TΘ

for Θ ∈ (3/4, 1].

(ii) The spacings between any three consecutive change-points are not too “unbalanced” in

the sense that they satisfy

max

(
ηq − ηq−1 + 1

ηq+1 − ηq−1 + 1
,

ηq+1 − ηq
ηq+1 − ηq−1 + 1

)
≤ c∗, (2)

where c∗ is a constant satisfying c∗ ∈ [1/2, 1).

Note that (A1.i) determines the upper bound on the total number of change-points, which is allowed

to diverge with T as long as Θ < 1, and is unknown by the user. Cho and Fryzlewicz (2012)

proposed a change-point detection method for a single sequence Yt,T following model (1). The

main ingredient of the method proposed in that work was a binary segmentation algorithm which

simultaneously located and tested for change-points in a recursive manner. Below we provide a

sketch of that algorithm, which is referred to as Univariate Binary Segmentation (UBS) throughout

the present paper.

Firstly, the likely position of a change-point in the interval [0, T − 1] is located as the point where

the following CUSUM-type statistic is maximized over t;

Y0,t,T−1 = Y0,t,T−1(Yu,T ) =

(
1

T

T−1∑
u=0

Yu,T

)−1

·

∣∣∣∣∣
√
T − t
T · t

t−1∑
u=0

Yu,T −

√
t

T · (T − t)

T−1∑
u=t

Yu,T

∣∣∣∣∣ . (3)

A discussion of the properties of Y0,t,T−1 can be found in Cho and Fryzlewicz (2012); we only remark

here that the first term of the product in (3) is a normalizing term essential in multiplicative settings,

which makes our results independent of the level of σ(k)(t/T ) in (1). Next, for b = argmaxt Y0,t,T−1,

if Y0,b,T−1 < πT with a suitably chosen threshold πT , then we stop; otherwise we add b to the set of

estimated change-points and continue recursively in the same manner to the left and to the right

of b. Details of the UBS algorithm and the theoretical result on its consistency for the number and

the locations of the change-points can be found in the above work.

2.1 Binary segmentation for high-dimensional data

In this section, we extend the UBS algorithm to one which is applicable to a panel of multiplicative

sequences (1) even if its dimensionality d diverges as T →∞. The resulting SBS algorithm contains
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a crucial “sparsifying” step as detailed below.

We firstly note that in the multivariate case d > 1, we could proceed by applying the UBS algo-

rithm to each sequence Y
(k)
t,T separately, and then pruning the estimated change-points by identi-

fying those corresponding to each true change-point. However, it is conceivable that such pruning

may not be straightforward, particularly in high dimensions. We propose to circumvent this dif-

ficulty by segmenting the d sequences Y
(k)
t,T at the same time by examining the CUSUM statistics

Y0,t,T−1(Y
(k)
u,T ) ≡ Y

(k)
0,t,T−1 in (3) simultaneously over k, rather than separately for each k.

A number of ways of aggregating information from multiple CUSUM statistics have been proposed

in the literature. Groen et al. (2011) discussed two popular methods: the point-wise average, and

the point-wise maximum. Specifically, using our notation, they are respectively defined as

ỹavgt =
1

d

d∑
k=1

Y(k)
0,t,T−1, ỹmax

t = max
1≤k≤d

Y(k)
0,t,T−1. (4)

To determine whether b = argmax ỹavgt (ỹmax
t ) is regarded as an estimated change-point, ỹavgb (ỹmax

b )

needs to be compared against a threshold which takes into account the aggregation step.

In the SBS algorithm, we propose another way of simultaneously considering multiple CUSUM

statistics, which integrates a thresholding step that enables us to bypass some difficulties in dealing

with high-dimensional data which we describe later on. For each k, the CUSUM statistic Y(k)
0,t,T−1

is compared with a threshold, say πT (to be specified later in Section 3), and only the contributions

from the time intervals where Y(k)
0,t,T−1 > πT are taken into account in detecting and locating a

change-point. Thus ỹthrt , the main statistic of interest in the SBS algorithm, is defined as

ỹthrt =
d∑

k=1

Y(k)
0,t,T−1 · I

(
Y(k)
0,t,T−1 > πT

)
, (5)

where I(·) is an indicator function returning I(A) = 1 if the event A is true and I(A) = 0 otherwise.

In this manner, ỹthrt is non-zero only when at least one of Y(k)
0,t,T−1 is greater than the threshold,

i.e. a change-point is detected in Y
(k)
t,T for such k. Therefore we can conclude that a change-point

is detected in the d-dimensional multiplicative sequences and, without applying any pruning, its

location is estimated as b = argmaxt ỹ
thr
t .

While the empirical study conducted in Groen et al. (2011) shows the effectiveness of both ỹavgt

and ỹmax
t in detecting the presence of a single change-point, there exist high-dimensional scenarios

where these two estimators fail. Below we provide examples of high-dimensional situations where

ỹthrt exhibits better performance than the other two.

(A) Sparse change-points.
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We first independently generate two time series X
(k)
t , k = 1, 2 as

X
(1)
t,T = aX

(1)
t−1,T + ϵ

(1)
t,T

X
(2)
t,T =

{
0.95X

(2)
t−1,T + ϵ

(2)
t,T for 1 ≤ t ≤ ⌊T/2⌋,

0.3X
(2)
t−1,T + ϵ

(2)
t,T for ⌊T/2⌋+ 1 ≤ t ≤ T,

with T = 1024. The parameter a is randomly generated from a uniform distribution U(0.5, 0.99)
and ϵ

(k)
t,T are i.i.d. standard normal variables for k = 1, 2. We further produce the sequences

Y
(1)
t,T and Y

(2)
t,T as Y

(k)
t,T = 2−1(X

(k)
t,T − X

(k)
t−1,T )

2, k = 1, 2, such that Y
(1)
t,T does not have any

change in EY (1)
t,T , while EY (2)

t,T has one change-point at t = ⌊T/2⌋. The rationale behind

the choice of Y
(k)
t,T as well as its relationship to the multiplicative model (1) are discussed in

detail in Section 3. As can be seen from the top panel of Figure 1, all three of the corre-

sponding statistics ỹavgt , ỹmax
t and ỹthrt are able to correctly identify the location of the true

change-point.

Now, consider the case with d = 100 time series where the additional time series X
(k)
t,T , k =

3, . . . , d are independently generated as X
(1)
t,T such that, overall, there is only one change-

point coming from X
(2)
t,T in the entire panel. Then, in obtaining the point-wise average of

the d CUSUM statistics in ỹavgt , the Y(k)
0,t,T−1 for k ̸= 2 corrupt the peak that is achieved

around t = ⌊T/2⌋ for Y(2)
0,t,T−1, and hence the maximum of ỹavgt is attained far from the true

change-point. On the other hand, both ỹthrt and ỹmax
t are successful in maintaining the peak

achieved by Y(2)
0,t,T−1 by disregarding most or all of the Y(k)

0,t,T−1, k ̸= 2.

(B) Spuriously large CUSUM statistics.

Again, we first independently generate d = 2 time series X
(k)
t,T , k = 1, 2, with T = 1024, where

X
(1)
t,T is identical to that in (A), and

X
(2)
t,T =

{
0.3X

(2)
t−1,T + ϵ

(2)
t,T for 1 ≤ t ≤ 100,

−0.75X(2)
t−1,T + ϵ

(2)
t,T for 101 ≤ t ≤ T.

X
(2)
t,T is composed of two stationary segments, where the first segment is relatively short and

(weekly) positively autocorrelated, and the second one is long and negatively autocorrelated.

The negative autocorrelation in X
(2)
t,T for t ≥ 101 leads to Y

(2)
t,T being highly autocorrelated,

which in turn results in spuriously large values of Y(2)
0,t,T−1 for t ≥ 101 even when t is far

from the true change-point. However, when d = 2, all three statistics ỹthrt , ỹmax
t and ỹavgt still

manage to locate the true change-point around t = 100, which is illustrated in the top panel

of Figure 2.

Now, let d = 100 and independently generate 50 time series distributed as X
(1)
t,T and 50 as X

(2)
t,T

such that the change-point is not sparse across the panel. Since there are d/2 = 50 sequences

Y
(k)
t,T for which the CUSUM statistics Y(k)

0,t,T−1 can take spuriously large values anywhere over
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Figure 1: Top: ỹavgt (left), ỹmax
t (center), and ỹthrt (right) from model (A) in Section 2.1 when d = 2;

bottom: d = 100; the broken vertical lines: location of the maximum of each of these sequences; the
dotted vertical lines: location of the true change-point; the broken horizontal lines: the threshold
πT .

t ∈ [101, T ], the statistic ỹmax
t becomes corrupted and is no longer able to identify the true

change-point.

On the other hand, ỹthrt not only disregards the contribution from the segments containing no

change-points, but also aggregates the contribution from those containing the change-point,

and therefore is able to identify the change-point very clearly. In this example, the aggregation

effect also causes ỹavgt to work well.

To summarize, ỹthrt is shown to be better at dealing with some difficulties arising from the high-

dimensionality of the data than either ỹavgt or ỹmax
t in these two examples. In addition, the superior

performance of ỹthrt is attributed to different features of the sparsifying step in the two cases.

Motivated by the above discussion, we now introduce our SBS algorithm for segmenting d-dimensional

series below. We use j to denote the level index (indicating the progression of the segmentation

procedure) and l to denote the location index of the node at each level.

SBS algorithm
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Figure 2: Top: ỹavgt (left), ỹmax
t (center), and ỹthrt (right) from (B) in Section 2.1 when d = 2;

bottom: d = 100; the broken vertical lines: location of the maximum of each of these sequences;
the dotted vertical lines: location of the true change-point; the broken horizontal lines: the threshold
πT .

Step 0 Start with (j, l) = (1, 1), setting s1,1 = 0, e1,1 = T − 1 and n1,1 = e1,1 − s1,1 + 1.

Step 1 Compute the CUSUM statistics Y(k)
sj,l,t,ej,l

as in (3) for all k = 1, . . . , d over t ∈ (sj,l, ej,l),

and obtain ỹthrt as

ỹthrt =

d∑
k=1

Y(k)
sj,l,t,ej,l

· I
(
Y(k)
sj,l,t,ej,l

> πT

)
,

with a threshold πT .

Step 2

Step 2.1 If ỹthrt = 0 for all t ∈ (sj,l, ej,l), stop the algorithm for the interval [sj,l, ej,l].

Step 2.2 If not, find t that maximizes the corresponding ỹthrt while satisfying

max

(
t− sj,l + 1

nj,l
,
ej,l − t
nj,l

)
≤ c∗, (6)
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where c∗ is identical to the one in (A1).

Step 2.3 If there exists any u ∈ [t−∆T , t+∆T ] for which ỹ
thr
u = 0, go back to Step 2.2 and

find t attaining the next largest ỹthrt while satisfying (6). Repeat the above until a t is

found that satisfies ỹthru > 0 for all u ∈ [t−∆T , t+∆T ], set such t as bj,l and proceed to

Step 3. If such t does not exist, stop the algorithm for the interval [sj,l, ej,l].

Step 3 Set bj,l as an estimated change-point and divide the interval [sj,l, ej,l] into two subintervals

(sj+1,2l−1, ej+1,2l−1) ← (sj,l, bj,l) and (sj+1,2l, ej+1,2l) ← (bj,l + 1, ej,l). Update the level j as

j ← j + 1 and go to Step 1.

Condition (6) is imposed to prevent the algorithm from detecting a change-point that is too close

to previously detected ones; note that in (A1), a similar condition is imposed on the locations of

the true change-points.

As seen in Section 2.1 with two motivating examples, the performance of a change-point detection

method for high-dimensional time series depends on many factors besides the underlying dimension,

and we cannot set πT to uniformly increase or decrease with d. Instead, to handle the false

alarms in multiple testing procedure, the threshold πT is derived such that on any segment [s, e]

containing previously undetected true change-points for at least one k = 1, . . . , d, the test statistic

maxt∈(s,e) Y
(k)
s,t,e exceeds πT with probability converging to one for all such k, while Y(k)

s,t,e < πT for

the remaining k’s, as long as d satisfies (A4).

Also, as the CUSUM statistic Y(k)
sj,l,t,ej,l

is expected to increase and then decrease smoothly around

true change-points without discontinuities, Step 2.3 ensures that the algorithm disregards any

spurious spikes in Y(k)
sj,l,t,ej,l

. Section 3.3 provides a detailed discussion on the practical selection of

the parameters of SBS, including πT and ∆T . Steps 2.1 and 2.3 provide a stopping rule for the

algorithm on those intervals [sj,l, ej,l] where either no CUSUM statistic Y(k)
sj,l,t,ej,l

exceeds πT (Step

2.1), or the exceedance is judged to be spurious (Step 2.3).

As an aside, we note that the mechanics of the SBS algorithm can be applicable in more general

situations too, beyond the particular model (1).

2.2 Consistency of the SBS algorithm

In order to show the consistency of the change-points detected by the SBS algorithm in terms of

their total number and locations, we impose the following assumptions in addition to (A1).

(A2) {Z(k)
t,T }

T−1
t=0 is a sequence of standard normal variables and maxk ϕ

(k)1
∞ <∞, where

ϕ(k)(τ) = sup
t,T
|cor(Z(k)

t,T , Z
(k)
t+τ,T )| and ϕ(k)r∞ =

∑
τ

|ϕ(k)(τ)|r.

(A3) There exist constants σ∗, σ∗ > 0 such that maxk,t,T σ
(k)(t/T ) ≤ σ∗, and given any change-
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point ηq in σ(k)(t/T ), ∣∣∣∣σ(k)(ηq + 1

T

)
− σ(k)

(ηq
T

)∣∣∣∣ > σ∗

uniformly for all k = 1, . . . , d.

(A4) d and T satisfy d · T− log T → 0.

In particular, condition (A4) specifies the maximum rate at which the dimensionality d of model

(1) is permitted to increase with the sample size T . Denoting the estimated change-points (sorted

in increasing order) by η̂q, q = 1, . . . , N̂ , we have the following result.

Theorem 1. Let ∆T ≍ ϵT in the SBS algorithm. Under (A1)–(A4), there exists C1 > 0 such that

η̂q, q = 1, . . . , N̂ satisfy

P
{
N̂ = N ; |η̂q − ηq| < C1ϵT for q = 1, . . . , N

}
→ 1

as T →∞, where

• if δT ≍ T , there exists some positive constant κ such that we have ϵT = log2+ϑ T with

πT = κ log1+ω T for any positive constants ϑ and ω > ϑ/2.

• if δT ≍ TΘ for Θ ∈ (3/4, 1), we have ϵT = T θ for θ = 2− 2Θ with πT = κT γ for some κ > 0

and any γ ∈ (1−Θ,Θ− 1/2).

We may define the optimality in change-point detection as when each of the true change-points

and the corresponding estimated change-point are within the distance of Op(1), see e.g. Korostelev

(1987). In this sense, when δT ≍ T , the rate of ϵT is near-optimal up to a logarithmic factor.

2.3 Post-processing of the change-points

We further equip the SBS algorithm with an extra step aimed at reducing the risk of over-estimating

the number of change-points. The step is completely analogous to the corresponding step in the

UBS algorithm (see Cho and Fryzlewicz (2012), Section 3.2.1), except it now involves checks of the

form

∃ k Y(k)
η̂q−1+1,η̂q ,η̂q+1

> πT , (7)

with the convention η̂0 = 0, η̂
N̂+1

= T − 1. In other words, we compute the CUSUM statistic Y(k)
·,·,·

on each triple of neighboring change-point estimates for each k and only retain those η̂q’s for which

that statistic exceeds the threshold πT for at least one k. The reader is referred to the above work

for details. As in the UBS algorithm, the consistency result of Theorem 1 is preserved even after

performing this extra post-processing.

10



3 The SBS algorithm in the multivariate LSW model

In this section, we demonstrate how the SBS algorithm can be used for detecting multiple change-

points in the second-order (i.e. auto-covariance and cross-covariance) structure of multivariate,

possibly high-dimensional time series.

For this purpose, we first define the multivariate LSW model, in which wavelets act as building

blocks analogous to the Fourier exponentials in the classical Cramér representation for stationary

processes. Our choice of the LSW model as the theoretical setting is motivated by the attractive

features of the univariate LSW model, listed in Cho and Fryzlewicz (2012).

As the simplest example of a wavelet system, we consider Haar wavelets defined as

ψH
i,k = 2i/2I(0 ≤ k ≤ 2−i−1 − 1)− 2i/2I(2−i−1 ≤ k ≤ 2−i − 1),

where i ∈ {−1,−2, . . .} and k ∈ Z denote scale and location parameters, respectively. Small

negative values of the scale parameter i denote “fine” scales where the wavelet vectors are the

most localized and oscillatory, while large negative values denote “coarser” scales with longer, less

oscillatory wavelet vectors. For a more detailed introduction to wavelets, see e.g. Nason and

Silverman (1995) and Vidakovic (1999). With such wavelets as building blocks, we define the

p-variate, piecewise stationary LSW model as follows.

Definition 1. The p-variate LSW process {Xt,T = (X
(1)
t,T , . . . , X

(p)
t,T )

′}T−1
t=0 for T = 1, 2, . . ., is a

triangular stochastic array with the following representation:

X
(j)
t,T =

−1∑
i=−∞

∞∑
k=−∞

W
(j)
i (k/T )ψi,t−kξ

(j)
i,k for each j = 1, . . . , p, (8)

where ξi,k = (ξ
(1)
i,k , ξ

(2)
i,k , . . . , ξ

(p)
i,k )

′ are independently generated from multivariate normal distribu-

tions Np (0,Σi(k/T )), with Σ
(j,j)
i (k/T ) ≡ 1 and

cov(ξ
(j)
i,k , ξ

(l)
i′,k′) =

{
δi,i′δk,k′ · Σ

(j,j)
i (k/T ) = δi,i′δk,k′ when j = l,

δi,i′δk,k′ · Σ
(j,l)
i (k/T ) when j ̸= l.

The parameters i ∈ {−1,−2, . . .} and k ∈ Z denote scale and location, respectively, and the

Kronecker delta function δi,i′ returns 1 when i = i′ and 0 otherwise. For each i and j, l = 1, . . . , p,

the functions W
(j)
i (k/T ) : [0, 1] → R and Σ

(j,l)
i (k/T ) : [0, 1] → R are piecewise constant with an

unknown number of change-points, and we denote the sets of change-points as

B(j)
i = {z ∈ (0, 1) : lim

u→z−
W

(j)
i (u) ̸= lim

u→z+
W

(j)
i (u)}, and

B(j,l)
i = {z ∈ (0, 1) : lim

u→z−
Σ
(j,l)
i (u) ̸= lim

u→z+
Σ
(j,l)
i (u)}.
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In comparison to the Cramér representation for stationary processes, the functions W
(j)
i (k/T ) can

be thought of as scale- and location-dependent transfer functions, while the wavelet vectors ψi can

be thought of as building blocks analogous to the Fourier exponentials.

The autocovariance and the cross-covariance functions of X
(j)
t,T , j = 1, . . . , p, defined in Section

3.1.1 below, inherit the piecewise-constancy of W
(j)
i (·) and Σ

(j,l)
i (·), with identical change-point

locations. We denote the set of those change-points by

B =
{
∪pj=1B

(j)
}
∪
{
∪pj,l=1B

(j,l)
}
≡ {νr, r = 1, . . . , N}. (9)

3.1 Wavelet periodograms and cross-periodograms

In this section, we construct particular wavelet-based local periodogram sequences from the LSW

time series Xt,T in (8), to which the SBS algorithm of Section 2.1 will be applied in order to detect

the change-points in the second-order structure of Xt,T .

Recall that in examples (A)–(B) of Section 2.1, the multiplicative sequences were constructed as

Y
(k)
t,T = 2−1(X

(k)
t+1,T−X

(k)
t,T )

2. Note that each element of Y
(k)
t,T is simply the squared wavelet coefficient

of X
(k)
t,T with respect to Haar wavelets at scale −1, i.e.

Y
(k)
t,T = 2−1(X

(k)
t,T −X

(k)
t−1,T )

2 =

(∑
u

X
(k)
u,Tψ

H
−1,t−u

)2

,

or the (Haar) wavelet periodogram of X
(k)
t,T at scale −1. In the two examples, it was shown that

the change-points in the AR coefficients of X
(k)
t,T (and hence in its second-order structure) were

detectable from the wavelet periodograms. In this section, we study the properties of the wavelet

periodogram and cross-periodogram sequences, and discuss the applicability of the SBS algorithm

to the segmentation of Xt,T defined as (8), with the wavelet periodograms and cross-periodograms

of Xt,T as an input.

3.1.1 Definitions and properties

Given a p-variate LSW time series Xt,T = (X
(1)
t,T , . . . , X

(p)
t,T )

′, its empirical wavelet coefficients at

scale i are denoted by w
(j)
i,t,T =

∑
uX

(j)
u,Tψi,t−u for each X

(j)
t,T , j = 1, . . . , p. Then, the wavelet

periodogram of X
(j)
t,T and the wavelet cross-periodogram between X

(j)
t,T and X

(l)
t,T at scale i are defined

as

I
(j,j)
i,t,T ≡ I

(j)
i,t,T = |w(j)

i,t,T |
2 and I

(j,l)
i,t,T = w

(j)
i,t,T · w

(l)
i,t,T ,
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respectively. The Gaussianity of X
(j)
t,T implies the Gaussianity of w

(j)
i,t,T , and hence I

(j)
i,t,T and I

(j,l)
i,t,T

admit the following decompositions:

I
(j)
i,t,T = EI(j)i,t,T · Z

(j)2
t,T , t = 0, . . . , T − 1, (10)

I
(j,l)
i,t,T = EI(j,l)i,t,T · Z

(j)
t,TZ

(l)
t,T , t = 0, . . . , T − 1, (11)

where {Z(j)
t,T }

T−1
t=0 is a sequence of (correlated and nonstationary) standard normal variables for each

j = 1, . . . , p. Therefore each I
(j)
i,t,T follows a scaled χ2

1 distribution.

It has been shown in the literature that for a univariate LSW process Xt,T , there exists an

asymptotic one-to-one correspondence between its time-varying autocovariance functions cT (z, τ) =

cov(X⌊zT ⌋,T , X⌊zT ⌋+τ,T ), τ = 0, 1, . . ., transfer functions W 2
i (z), and the expectations of wavelet

periodograms EIi,t,T at multiple scales (see e.g. Cho and Fryzlewicz (2012)). That is, any change-

points in the set of piecewise constant functions {W 2
i (z)}i correspond to change-points in the

(asymptotic limits of the) autocovariance functions {cT (z, τ)}τ , which in turn correspond to the

change-points in the (asymptotic limits of the) functions {EIi,t,T }i, and thus are asymptotically

detectable by examining Ii,t,T , i = −1,−2, . . .. For a multivariate LSW process Xt,T , its autoco-

variance and cross-covariance functions are defined as

c
(j,j)
T (z, τ) = c

(j)
T (z, τ) = cov(X

(j)
⌊zT ⌋,T , X

(j)
⌊zT ⌋+τ,T ) and c

(j,l)
T (z, τ) = cov(X

(j)
⌊zT ⌋,T , X

(l)
⌊zT ⌋+τ,T ). (12)

In the multivariate LSW model, analogous one-to-one correspondence can be shown for any pair of

X
(j)
t,T and X

(l)
t,T between the following quantities: the autocovariance and cross-covariance functions

c
(j)
T (z, τ), c

(l)
T (z, τ) and c

(j,l)
T (z, τ) at lags τ = 0, 1, . . ., piecewise constant functions {W (j)

i (z)}2,
{W (l)

i (z)}2 and Σ
(j,l)
i (z), and the expectations of wavelet periodograms and cross-periodograms

EI(j)i,t,T , EI
(l)
i,t,T and EI(j,l)i,t,T at scales i = −1,−2, . . .. Therefore, any change-points in the second-

order structure of the multivariate time series Xt,T are detectable from the wavelet periodograms

and cross-periodograms at multiple scales. Formal derivation of this one-to-one correspondence is

provided in Appendix B.

Thus we now focus on wavelet periodogram I
(j)
i,t,T and cross-periodogram I

(j,l)
i,t,T as the input to the

SBS algorithm. We firstly note that EI(j)i,t,T are piecewise constant except for negligible biases around

the change-points (which are accounted for in our results, see Section B.1 in the Appendix), and

thus I
(j)
i,t,T “almost” follow the multiplicative model (1). However, I

(j,l)
i,t,T is not of the form specified

in (1) and the next section introduces an alternative to I
(j,l)
i,t,T which does follow (1) (again, up to

the negligible biases) and contains the same information about the change-points as does I
(j,l)
i,t,T .

3.1.2 Non-negative multiplicative alternative to the cross-periodogram

To gain an insight into obtaining a possible alternative to I
(j,l)
i,t,T , we first present a toy example.

Consider two sequences of zero-mean, serially independent normal variables {at}Tt=1 and {bt}Tt=1

where the correlation between at and bt satisfies cor(at, bt) = 0 for t ≤ ⌊T/2⌋ and cor(at, bt) = 0.9
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for t ≥ ⌊T/2⌋+1, while var(at) and var(bt) are constant over time. The change in the second-order

structure of (at, bt)
′ originates solely from the change in the correlation between the two sequences,

and thus cannot be detected from {a2t }Tt=1 and {b2t }Tt=1 alone. Figure 3 confirms this, and it is

the sequence {(at − bt)2}Tt=1 that exhibits the change-point more prominently than {atbt}Tt=1 or

{(at + bt)
2}Tt=1.
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Figure 3: Top left: a2t (solid) and b2t (broken) from the example of Section 3.1.2; top right: at · bt;
bottom left: (at + bt)

2; bottom right (at − bt)2; dotted vertical lines denote where (at, bt)
′ have

change-points.

Identifying at with w
(j)
i,t,T and bt with w

(l)
i,t,T , it becomes apparent that we may detect any change

in the covariance structure between w
(j)
i,t,T and w

(l)
i,t,T by examining I

(j)
i,t,T , I

(l)
i,t,T , and either (w

(j)
i,t,T +

w
(l)
i,t,T )

2 or (w
(j)
i,t,T − w

(l)
i,t,T )

2 instead of I
(j,l)
i,t,T = w

(j)
i,t,Tw

(l)
i,t,T . Since each variable w

(j)
i,t,T is zero-mean

normal, both (w
(j)
i,t,T ± w

(l)
i,t,T )

2 are scaled χ2
1 variables, and so either of these sequences can serve

as an input to the SBS algorithm. While both lead to identical results theoretically, there remains

the choice between the signs ± to optimize finite-sample performance. Our empirical observation

is that the choice

Ĩ
(j,l)
i,t,T =

(
w

(j)
i,t,T − sign

(
ĉor(w

(j)
i,t,T , w

(l)
i,t,T )

)
· w(l)

i,t,T

)2
, (13)

where ĉor(·, ·) is the sample correlation computed separately on each current segment, performs

well, and we adopt it in practice. In summary, the multiplicative sequences that comprise the input

to the SBS algorithm are I
(j)
i,t,T and Ĩ

(j,l)
i,t,T for j, l = 1, . . . , p.
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3.2 Application of the SBS algorithm to multivariate time series

We expect I
(j)
i,t,T (Ĩ

(j,l)
i,t,T ) at finer scales to provide more accurate information on the presence and

locations of the change-points in EI(j)i,t,T (EĨ(j,l)i,t,T ), while those at coarser scales to be of limited

use. This is due to the increasing length Li of the support of the wavelet vectors ψi at coarser

scales, as well as the resulting increasing autocorrelation in {w(j)
i,t,T }

T−1
t=0 . In addition, since the

number of periodogram and cross-periodogram sequences increases by p(p + 1)/2 with each scale

added, limiting the number of scales also carries clear computational benefits, especially in high

dimensions. Therefore we propose to consider I
(j)
i,t,T and Ĩ

(j,l)
i,t,T scale by scale, starting from the finest

scale i = −1 and ending with scale I∗T = −⌊α log log T ⌋ with α ∈ (0, 2 + ϑ], with the latter choice

being made to guarantee consistency of our procedure.

Having detected the change-points at each scale separately, we then reduce the set of estimated

change-points such that those estimated on different scales yet indicating the same change-point,

are combined into one with high probability. This is done in the same way as in the univariate

case and is described in detail in Cho and Fryzlewicz (2012). Here, we only mention that this

across-scales post-processing procedure involves a parameter ΛT which determines the maximum

diameter of the initial clusters of change-points originating from different scales.

Summarizing the above arguments, we propose the following algorithm for the segmentation of

multivariate time series with piecewise constant second-order structure. We label it SBS-MVTS

(Sparsified Binary Segmentation for MultiVariate Time Series). Its core ingredient is the SBS

algorithm, described in Section 2.1.

SBS-MVTS algorithm

Step 0 Set the scale parameter to i = −1 (the finest scale).

Step 1 Apply the SBS algorithm as well as the post-processing step of Section 2.3 to the d ≡
p(p + 1)/2 sequences I

(j)
i,t,T , j = 1, . . . , p and Ĩ

(j,l)
i,t,T , j ̸= l; j, l = 1, . . . , p, and denote the

detected change-points by ν̂i,r, r = 1, . . . , N̂i.

Step 2 Update i ← i − 1 and repeat Step 1 until i reaches I∗T . Apply the across-scales post-

processing (described earlier in this section) to the change-points ν̂i,r, r = 1, . . . , N̂i detected

from the scales i = −1, . . . , I∗T , and obtain the final set of estimated change-points ν̂r, r =

1, . . . , N̂ .

The following theorem demonstrates that the consistency of the SBS algorithm for the multiplicative

sequences in (1) carries over to that of the SBS-MVTS algorithm, provided that the p-variate LSW

time series Xt,T on input satisfies conditions (B1)–(B5) (in Appendix B), which are analogues of

conditions (A1)–(A4) but phrased in the specific context of LSW processes. In particular, condition

(B5) states that the dimensionality p of the input time series Xt,T is permitted to increase with T

as long as p2T− log T → 0.
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Theorem 2. Let ∆T ≍ ϵT in the SBS algorithm and ΛT ≍ ϵT in the across-scales post-processing.

Under (B1)–(B5), there exists C2 > 0 such that ν̂r, r = 1, . . . , N̂ estimated with I∗T = −⌊α log log T ⌋
for α ∈ (0, 2 + ϑ], satisfy

P
{
N̂ = N ; |ν̂r − νr| < C2ϵT for r = 1, . . . , N

}
→ 1

as T →∞, where

• if δT ≍ T , there exists some positive constant κ such that we have ϵT = log2+ϑ T with

πT = κ log1+ω T for any positive constants ϑ and ω > ϑ/2.

• if δT ≍ TΘ for Θ ∈ (3/4, 1), we have ϵT = T θ for θ = 2− 2Θ with πT = κT γ for some κ > 0

and any γ ∈ (1−Θ,Θ− 1/2).

3.3 Practical choice of threshold and other quantities

The aim of this section is to provide some practical guidance as to the choice of various parameters

of the SBS-MVTS algorithm. We provide heuristic justification for the chosen values below. They

have been found to work well in our extensive simulation studies across a range of models; however,

we do not claim that other values would not work equally well or better in practice.

Importantly, we also note that the necessity of calibrating these parameters is not specific to the

SBS-MVTS algorithm in the sense that they would also need to be set if, for example, ỹavgt or ỹmax
t

were used instead of ỹthrt in a binary segmentation framework.

From the conditions of Theorem 1, we have γ ∈ (1−Θ,Θ− 1/2) in the threshold πT = κT γ when

Θ ∈ (3/4, 1), while ω is any positive constant greater than ϑ/2 in πT = κ log1+ω T when Θ = 1.

We propose to set γ as conservatively as γ = 0.499 and focus on the choice the constant κ for each

X
(j)
t,T , by simulating wavelet periodograms under the null hypothesis of no change-points as below.

With this approach to the selection of κ, finite sample performance is little affected by whether T γ

or log1+ω T is used as the rate of πT , and thus we do not expand on the choice of ω here.

For each univariate process X
(j)
t,T , we estimate âj , its lag-one autocorrelation. Then, generating

AR(1) time series of length T with the AR parameter âj repeatedly R times, we compute the

following statistic for each realization m:

J(j,m)
i = max

t

(
1

T

T∑
u=1

I
(j,m)
i,u

)−1 ∣∣∣∣∣
√
T − t
T · t

t∑
u=1

I
(j,m)
i,u −

√
t

T (T − t)

T∑
u=t+1

I
(j,m)
i,u

∣∣∣∣∣ ,
where I

(j,m)
i,t denotes the scale i wavelet periodogram of the mth AR(1) process generated with the

AR parameter âj . Note that J
(j,m)
i is of the same form as the test statistic used in the SBS algorithm.

Since the AR processes have been generated under the null hypothesis of no change-points in their

second-order structure, T−γJ(j,m)
i may serve as a proxy for κ for the wavelet periodograms generated

from X
(j)
t,T . We have observed that the values of J(j,m)

i tend to increase at coarser scales due to the

increasing support of the wavelet vector ψi. Therefore, we select κ to be scale-dependent as κ
(j)
i for
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each i = −1,−2, . . . and j = 1, . . . , p. In the SBS algorithm, we choose it to be the 99%-quantile

of T−γJ(j,m)
i over all m = 1, . . . , R. In the case of wavelet cross-periodograms, we use the first-lag

sample autocorrelation of X
(j)
t,T − sign{ĉor(w(j)

i,t,T , w
(l)
i,t,T )}X

(l)
t,T in place of âj .

As for the choice of ∆T in Step 2.3 of the SBS algorithm, since ∆T ≍ ϵT , we choose ∆T = ⌊
√
T/2⌋

to be on conservative side and use it in our implementation for the simulations study reported in

the next section. Also we use α = 2 and ΛT = ⌊
√
T/2⌋. Finally, rather than choosing a fixed

constant as c∗, we make sure that a newly detected change-point is distanced from the previously

detected change-points by at least ∆T .

4 Simulation study

In this section, we study the performance of the SBS-MVTS algorithm on simulated multivariate

time series with time-varying second-order structure. All simulated datasets are generated with

T = 1024, and the sparsity of the change-points across the p-dimensional time series is controlled

such that ⌊ϱp⌋ processes out of the p have at least one change-point, from a sparse case (ϱ = 0.05)

through moderate cases (ϱ = 0.25, 0.5) to a dense case (ϱ = 1).

(M1) Autoregressive (AR) time series.

We simulate the p time series as AR(1) processes

X
(j)
t = α(j)X

(j)
t−1 + σ(j)ϵ

(j)
t , j = 1, . . . , p. (14)

The AR coefficients are independently generated from the uniform distribution U(−0.5, 0.999),
and σ(j) from U(1/2, 2). The error terms ϵt = (ϵ

(1)
t , . . . , ϵ

(p)
t )′ are generated from Np(0,Σϵ)

with Σϵ specified below. There are three change-points located at t = 341, 614, 838 which

occur in the following ways.

(M1.1) At each change-point, both α(j) and σ(j) are re-generated for randomly chosen ⌊ϱp⌋
time series X

(j)
t , while Σϵ = 4 · Ip and remains unchanged throughout.

(M1.2) Originally, ϵt is generated with a block-diagonal variance-covariance matrix Σϵ =

(Σj,l)
p
j,l=1, where Σj,j = 4 for j = 1, . . . , p, and Σj,l = 4(−0.95)|j−l| for j, l = 1, . . . , p/2

and zero elsewhere. The cross-correlation structure of ϵt changes at each change-point

as the locations of randomly chosen ⌊ϱp/2⌋ elements of ϵt are swapped with those of

other ⌊ϱp/2⌋ randomly chosen elements on each stationary segment.

This model has been chosen for the simplicity of the AR(1) dependence structure and for the

fact that it permits easy manipulation of the cross-dependence between the component series.

(M2) Factor models.

The p time series are generated from a factor model

Xt = Aηt + εt,
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where A is a p × 5 factor loading matrix with each element Aj,l generated from a uniform

distribution U(0.5, 1.5). The vector ηt contains five factors, each of which is an independent

AR(1) time series generated as X
(j)
t in (14) with Σϵ = 4 · Ip. The error terms εt follow

Np(0,Σε) with the same covariance matrix as that in (M1.2). There are three change-points

located at t = 341, 614, 838 which occur in the following ways.

(M2.1) At each change-point, ⌊ϱp⌋ randomly chosen rows of the factor loading matrix A are

re-generated, each from N (0, 1).

(M2.2) The cross-correlation structure of εt changes as in (M1.2).

The aim of this model is to investigate the performance of our algorithm when the dependence

structure is governed by a factor model, a popular dimensionality reduction tool for high-

dimensional time series.

(M3) AR(1)+MA(2) model.

In this example, the p-variate time series Xt is generated such that,

X
(j)
t =

{
ϵ
(j)
t + β

(j)
1 ϵ

(j)
t−1 + β

(j)
2 ϵ

(j)
t−2 for 1 ≤ t ≤ 512,

α(j)X
(j)
t + σ(j)ϵ

(j)
t for 513 ≤ t ≤ 1024,

for j = 1, . . . , ⌊ϱp⌋, and X
(j)
t , j = ⌊ϱp⌋ + 1, . . . , p are stationary AR(1) processes with the

AR parameters generated from U(−0.5, 0.999) and var(ϵ
(j)
t ) = 1. The coefficients β

(j)
1 , β

(j)
2 ,

α(j) and σ(j) are generated such that for X
(j)
t , j = 1, . . . , ⌊ϱp⌋, the variance and the first-

lag autocorrelation remain constant before and after the change-point at t = 512, while

autocorrelations at other lags have a change-point at t = 512. The purpose of this model is

to investigate whether the SBS-MVTS algorithm can perform well when the change-points

are not detectable at the finest scale i = −1.

(M4) Short segment.

Inspired by the example (B) of Section 2.1, the p-variate time series Xt is generated such that

the first ⌊ϱp⌋ processes follow

X
(j)
t =

{
α(j)X

(j)
t + ϵ

(j)
t for 1 ≤ t ≤ 100,

β(j)X
(j)
t + ϵ

(j)
t for 101 ≤ t ≤ 1024,

with α(j) drawn from U(0.5, 0.59) and β(j) from U(−0.79,−0.5). The remaining (p − ⌊ϱp⌋)
time series are generated as stationary AR(1) processes with the AR parameters drawn from

the same distribution as β(j). The purpose of this model is to investigate if the SBS-MVTS

algorithm performs well when the finest scale wavelet periodograms suffer from high autocor-

relation while at the same time, the two stationary segments defined by the change-point are

of substantially different lengths.
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Most methods for multivariate time series segmentation proposed in the literature, such as those

cited in the Introduction, have not been designed for data of the dimensionality or size considered

in this paper, which are p = 50, 100 and T = 1024, respectively (recall that d is quadratic in p).

In what follows, we compare the performance of the SBS-MVTS algorithm to that of identical

binary segmentation algorithms but constructed using ỹavgt and ỹmax
t in (4) instead of ỹthrt . For

clarity, in the remainder of this section, we refer to the three algorithms as THR (=SBS-MVTS),

AVG and MAX. Identical thresholds πT are applied in the THR and MAX. As for the AVG, we test

ỹavgt using a scaled threshold d−1
∑d

k=1 I(maxt∈(s,e) Y
(k)
s,t,e > πT ) · πT to ensure fairer comparison.

As an aside, we note that the threshold selection via simulation is easier for the THR and MAX

algorithms than for the AVG algorithm, the reason being that in the former two cases it can be

reduced to the problem of threshold selection for univariate time series, which is not the case for

AVG.

Tables 1–4 report the results of applying the three segmentation algorithms to the simulated

datasets from (M1)–(M4). Each table reports the mean and standard deviation of the total number

of detected change-points over 100 simulated time series, and the percentage of “correctly” identi-

fying each change-point in the time series (in the sense that it lies within the distance of ⌊
√
T/2⌋

from the true change-points).

Overall, it is evident that the THR algorithm outperforms the other two. In particular, the perfor-

mance of AVG does not match that of THR or MAX especially when the change-points are sparse:

in some of the models, there is a tendency for AVG to overestimate the number of change-points.

Besides, the standard deviation of the number of change-points detected by AVG tends to be larger

than those for the other two algorithms.

In terms of the number of detected change-points, THR and MAX perform similarly well. However,

the accuracy of the detected change-point locations is significantly better for THR than for MAX,

especially in models (M3)–(M4). This is unsurprising as effectively, the MAX algorithm locates

change-points based on one individual component of the input time series, while THR typically

averages information across many components. We also note that the performance of the THR

algorithm does not differ greatly between the cases when p = 50 and when p = 100.

As noted earlier, the input sequences to the segmentation algorithms, I
(j)
i,t,T and Ĩ

(j,l)
i,t,T , have ex-

pectations which are almost piecewise constant but not completely so, due to negligible biases

around the change-points (see Appendix B.1). In deriving Theorem 2, these biases have fully been

taken into account, which implies that the consistency of SBS-MVTS is extended to the case where

changes occur in the second-order structure of Xt,T within a short period of time (to be precise,

of length C(log T )α for some C > 0 and α from I∗T ), but not entirely synchronized. To confirm

this, we performed a further simulation study where the p-variate time series was generated from

(M3), except that the change-points were allowed to be anywhere within an interval of length

⌊2 log T ⌋ around t = 512. Although not reported here, we obtained the change-point detection

results with T = 1024 and varying ϱ and p, which were comparable to those reported in Table 3.

More specifically, while the number of detected change-points had greater variance, the accuracy
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Table 1: Summary of the change-points detected from (M1): mean and standard deviation of the
total number of detected change-points, and the percentage of correctly identifying each change-
point at t = 341, 614, 838 over 100 simulated time series.

p = 50 p = 100
(M1.1) (M1.2) (M1.1) (M1.2)

ϱ THR AVG MAX THR AVG MAX THR AVG MAX THR AVG MAX

0.05

mean 3.03 2.61 3.01 2.81 3.78 2.8 3.06 3 3.02 3.33 4.97 3.34
sd 0.17 0.71 0.1 0.44 1.34 0.45 0.24 0.83 0.14 0.55 1.23 0.54

t = 341 98 71 95 91 65 88 97 55 96 97 55 96
t = 614 89 75 92 91 67 92 99 55 91 99 55 91
t = 838 92 76 91 93 60 91 94 50 87 94 50 87

0.25

mean 3.03 3.23 3.07 3.01 4.8 3.03 3.08 3.27 3.14 3.02 4.92 3.01
sd 0.17 0.58 0.26 0.1 1.13 0.17 0.27 0.57 0.4 0.14 1.24 0.1

t = 341 100 100 86 100 73 89 98 100 84 100 65 87
t = 614 89 100 91 100 57 88 89 99 88 100 66 93
t = 838 99 99 95 100 55 92 99 100 92 100 66 88

0.5

mean 3.05 3.21 3.05 3.01 4.66 3 3.15 3.48 3.24 3.04 4.9 3.06
sd 0.22 0.52 0.22 0.1 1.02 0 0.36 0.64 0.51 0.2 1.14 0.24

t = 341 100 100 85 99 70 90 100 100 80 100 67 88
t = 614 91 100 83 100 69 88 100 100 82 100 68 91
t = 838 98 100 80 100 58 86 100 100 84 100 65 87

1

mean 3.07 3.25 3.13 3.01 4.76 3.04 3.11 3.59 3.24 3.04 5.03 3.09
sd 0.26 0.52 0.37 0.1 1.1 0.2 0.31 0.81 0.45 0.24 1.27 0.29

t = 341 98 100 72 100 61 88 100 100 65 100 75 84
t = 614 99 100 82 100 65 83 100 100 79 100 73 88
t = 838 100 100 89 100 63 85 100 100 88 100 67 84

Table 2: Summary of the change-points detected from (M2).
p = 50 p = 100

(M2.1) (M2.2) (M2.1) (M2.2)
ϱ THR AVG MAX THR AVG MAX THR AVG MAX THR AVG MAX

0.05

mean 3.04 1.86 3.11 2.81 3.07 2.79 2.98 3.01 2.95 3.27 3.94 3.29
sd 0.2 0.96 0.35 0.44 1.28 0.46 0.28 1 0.3 0.57 1.04 0.59

t = 341 91 44 88 91 61 92 90 67 81 99 50 86
t = 614 89 35 90 92 55 87 89 52 77 96 44 84
t = 838 95 41 85 89 59 83 86 52 79 96 43 88

0.25

mean 3.02 3.07 3.05 3 4.11 3.01 3.01 3.43 3.05 3.01 4.42 3.01
sd 0.14 0.76 0.22 0 0.96 0.1 0.1 0.78 0.22 0.1 1.16 0.1

t = 341 95 66 93 98 70 95 93 77 80 100 71 88
t = 614 95 66 91 100 74 86 90 69 84 100 79 92
t = 838 93 58 85 100 70 93 94 74 84 100 70 91

0.5

mean 3.01 3.07 3.02 3 4.43 3.02 3.03 3.11 3.07 3 4.32 3.04
sd 0.1 0.48 0.14 0 1.08 0.14 0.17 0.31 0.26 0 1.07 0.2

t = 341 97 82 86 97 75 85 96 88 83 100 79 93
t = 614 93 80 87 100 76 94 92 98 77 100 73 89
t = 838 93 90 80 98 67 87 95 95 82 99 70 93

1

mean 3 3.1 3.01 3.01 4.05 3.02 3 3.2 3.03 3 4.27 3.05
sd 0 0.36 0.1 0.1 1.08 0.14 0 0.57 0.17 0 1.12 0.22

t = 341 99 71 94 99 71 94 94 100 84 98 70 86
t = 614 99 72 89 99 72 89 93 100 89 100 78 86
t = 838 100 69 91 100 69 91 94 100 81 100 66 80

in their locations was preserved even when the change-points were not aligned. Also, overall, the

THR algorithm still outperformed the two other competitors in terms of both the total number of

the detected change-points and their locations.

(We now abandon the THR notation and revert to the SBS-MVTS notation in the remainder of

the paper.)
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Table 3: Summary of the change-points detected from (M3).
p = 50 p = 100

ϱ THR AVG MAX THR AVG MAX

0.05
mean 0.63 0.03 0.69 1.08 0.09 0.98
sd 0.53 0.17 0.49 0.46 0.32 0.62

t = 512 51 1 49 72 3 64

0.25
mean 1.01 0.11 1.04 1.02 0.32 0.99
sd 0.22 0.31 0.28 0.2 0.51 0.33

t = 512 92 9 73 92 25 75

0.5
mean 1.01 0.31 1 1.05 0.47 1.07
sd 0.17 0.51 0.28 0.22 0.56 0.29

t = 512 92 29 77 90 39 68

1
mean 1.02 0.36 1.03 1.13 0.68 1.22
sd 0.14 0.5 0.22 0.34 0.65 0.46

t = 512 95 34 67 95 53 66

Table 4: Summary of the change-points detected from (M4).
p = 50 p = 100

ϱ THR AVG MAX THR AVG MAX

0.05
mean 0.99 1.03 0.98 0.88 4.12 0.89
sd 0.52 1.49 0.51 0.38 2.06 0.37

t = 100 80 35 73 80 87 78

0.25
mean 1.04 1.72 0.98 1.06 4.74 1.12
sd 0.24 1.58 0.51 0.34 1.98 0.67

t = 100 91 74 73 93 97 73

0.5
mean 1.14 2.1 1.03 1.09 5.56 1.09
sd 0.47 1.64 0.41 0.32 2.26 0.38

t = 100 92 92 74 97 100 62

1
mean 1.09 2.94 1.01 1.28 0.02 1.05
sd 0.32 1.9 0.41 0.73 0.14 0.39

t = 100 94 99 50 97 2 49

5 Detecting change-points in the component processes of S&P 500

We further study the performance of the SBS-MVTS algorithm by applying it to the multivariate

time series of daily closing prices of the constituents of the S&P 500 stock market index. The

period considered is between 1 January 2007 and 31 December 2011, overlapping with the period of

the recent financial crisis. We have chosen only those 456 constituents that remained in the index

over the entire period; the resulting time series is of dimensionality p = 456 and length T = 1260

(we recall that d is quadratic in p and therefore much larger than T in this example).

Before presenting the change-point detection results, we briefly mention the rationale behind our

approach to this dataset. As noted in Section 3.1, the wavelet periodograms computed with Haar

wavelets at scale i = −1 take the form Ii,t,T = 2−1(Xt+1,T −Xt,T )
2 and thus reflect the behaviour of

return series, and these periodograms comprise the input multiplicative sequences to SBS-MVTS.

Mikosch and Stărică (2004) discussed that the “stylized facts” observable in financial time series,

such as long range dependence of the absolute returns, might be artifacts induced by change-points

in the second-order structure of the series. It was further discussed in Fryzlewicz (2005) where a

class of Gaussian LSW time series was shown to embed these stylized facts.

When first applied to the first 100 component processes, the algorithm returns t = 67, 129, 198,

276, 427, 554, 718, 864, 1044, 1147 as change-points. We then apply the algorithm to the first 200
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processes to obtain t = 67, 126, 198, 270, 333, 427, 554, 652, 718, 867, 1022, 1086, 1148 as change-

points. Comparing the two sets of detected change-points, it is reassuring to see that those from

the former set also appear to have their counterparts in the latter, as expected, since the latter

dataset contains the former. When applied to the entire p-variate time series, the SBS-MVTS

algorithm returns the change-points summarized in Table 5, which also lists some historical events

that occurred close to some of the detected change-points.

The TED spread is the difference between the interest rate at which the US Government is able to

borrow over a three month period (T-bill) and the rate at which banks lend to each other over the

same period (measured by the Libor), and therefore can serve as an indicator of perceived credit

risk in the general economy. During 2007, the TED spread rapidly increased to around 150–200

basis points (bps), which coincided with the “subprime” mortgage crisis, and in mid-September

2008, it exceeded 300 bps. In 2010, it returned to its long-term average of 30 bps. However, it

started rising again with the beginning of the European debt crisis, and reached above 45 bps by

mid-June. The volatile behaviour of the TED spread during 2007–2011 is reflected in some of the

change-points detected by the SBS-MVTS algorithm as shown in Figure 4.

To further check the validity of the detected change-points, we tested the stationarity of the series

within the segments examined at each iteration of the SBS-MVTS algorithm. The problem of

testing stationarity for multivariate time series has not been widely studied; Jentsch and Subba

Rao (2013) note that only few procedures exist for such a purpose and those existing ones are not

easily applicable to the current dataset with dimensionality as large as p = 456.

Instead, we chose to examine the stationarity of first few principal component series obtained

over each segment. Various methods have been proposed for testing second-order stationarity of

univariate time series and among them, the multiple testing procedure proposed in Nason (2013)

is available in the format of an R package. However, since its test statistics are close to ours except

that they are computed at the locations which are power of two, we concluded that performing this

procedure would not be suitable for our purpose.

Alternatively, we adopted the stationarity test proposed in Dwivedi and Subba Rao (2011) (R

code is available on http://www.stat.tamu.edu/~suhasini/Rcode.html), which tests whether the

correlations between the discrete Fourier transforms of the series are close to zero. We applied

the testing procedure to each segment examined as the SBS-MVTS algorithm proceeded. That is,

since change-points were detected in the order 550, {426, 1148}, {199, 1017}, {126, 274, 711, 1088},
{66, 864} (those detected at the same “level” were grouped together), we investigated the segments

[1, 1260], [1, 549], [550, 1260], [1, 425], [426, 549] and so forth. Within each segment [s, e], principal

component analysis was performed on Xt, producing two factor series as the first two principal

components. As these factors often exhibited high autocorrelations (which might falsely lead to

rejecting the null hypothesis), we fit an AR(1) process to each factor and tested the stationarity of

these residual series.

Furthermore, we checked whether the resulting residuals behaved like Gaussian white noise. It

may be expected that if Xt is stationary within t ∈ [s, e], the residuals behave like Gaussian white
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Table 5: Summary of the change-points detected from the component processes of S&P 500; refer
to the TED spread in Figure 4 for the change-points marked by †.

t date historical event
66 2007/04/09
126 2007/07/03 TED spread†

199 2007/10/16 US stock market peaked in October 2007.
274 2008/02/04
426 2008/09/10 TED spread†

550 2009/03/10
The Dow Jones average index reached a trough of around 6600 by March 2009;
identified by the New York Times as the “nadir of the crisis”.

711 2009/10/27
864 2010/06/08 TED spread†

1017 2011/01/13
1088 2011/04/27
1148 2011/07/22 Global stock markets fell due to fears of contagion of the European sovereign debt crisis.

noise under our LSW model, whereas if its second-order structure undergoes a change, departure

from Gaussianity is observable from the distribution of the residuals. To do so, we adopted the

normality tests which were implemented on R (packages tseries and nortest), namely Lilliefors,

Anderson-Darling, Pearson, Shapiro-Francia and Jarque-Bera tests. While failing to reject the null

hypothesis via these tests do not guarantee that the residual series follows a normal distribution,

they can serve as an indicator that certain moments and quantiles of the residuals behave like those

of Gaussian random variables.

Adopting the Bonferroni correction as in Nason (2013), we rejected the null hypothesis of sta-

tionarity or normality when the corresponding p-value was smaller than α∗ = 0.05/23 = 0.00212

(dependence in the test statistics was not taken into account). For most of the segments containing

any change-points, the p-values were smaller than α∗ for at least one of the factors, except for

[119, 425] (for normality tests) and [1017, 1147] (for both tests). On the other hand, p-values were

generally greater than α∗ over the segments which did not contain any change-point, indicating that

the residuals over these segments behaved similarly as Gaussian white noise. Some segments, such

as [1, 65], both of the null hypotheses were rejected which implies that further change-points could

have been detected but the restriction imposed on change-point dispersion in the SBS algorithm

prevented them from being detected.

Overall, the findings support the use of the SBS-MVTS methodology in this case study.
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Figure 4: TED spread between 2007 and 2011 with the estimated change-points (vertical lines)
marked by † in Table 5.

A Proof of Theorem 1

We first prove a set of lemmas that are essential in proving Theorem 1 for a single multiplicative

sequence following model (1). Note that when d = 1, the algorithm returns identical change-points

no matter if ỹthrt or the raw CUSUM statistic Y(1)
s,t,e are used. In this section, the superscripts are

suppressed where there is no confusion. Define Ys,b,e as

Ys,b,e =

∣∣∣∣∣
√

e− b
n · (b− s+ 1)

b∑
t=s

Yt,T −

√
b− s+ 1

n · (e− b)

e∑
t=b+1

Yt,T

∣∣∣∣∣ .
for n = e− s+ 1, and Ss,b,e is defined similarly with σ(t/T ) replacing Yt,T . Further, let η1 < η2 <

. . . < ηN be the change-points in σ(t/T ) (with the convention of η0 = 0 and ηN+1 = T − 1). In

what follows, ci, i = 1, 2, . . . are used to denote specific positive constants and C,C ′ to denote

generic ones.

Let s and e denote the “start” and the “end” of a segment to be examined at some stage of the

algorithm. Further, we assume that s and e satisfy

ηq1 ≤ s < ηq1+1 < . . . < ηq2 < e ≤ ηq2+1

for 0 ≤ q1 < q2 ≤ N . In Lemmas 1–5, we impose at least one of following conditions:

s < ηq1+q − c1δT < ηq1+q + c1δT < e for some 1 ≤ q ≤ q2 − q1, (15)

{(ηq1+1 − s) ∧ (s− ηq1)} ∨ {(ηq2+1 − e) ∧ (e− ηq2)} ≤ c2ϵT , (16)
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where ∧ and ∨ are the minimum and maximum operators. We later show that under (A1)–

(A4), both conditions (15) and (16) hold throughout the algorithm for all those segments which

contain change-points still to be detected. Finally, throughout the following proofs, δT and ϵT

are as assumed in Theorem 1 along with the threshold πT and other quantities involved in their

definitions, i.e. θ, ϑ, κ, γ and ω.

Lemma 1. Let s and e satisfy (15). Then there exists 1 ≤ q∗ ≤ q2 − q1 such that∣∣∣Ss,ηq1+q∗ ,e

∣∣∣ ≥ c3 δT√
T
. (17)

Proof. When there exists a single change-point in σ(z) over (s, e), we have q∗ = 1 and thus use

the constancy of σ(z) to the left and the right of ηq1+q∗ to show that

∣∣∣Ss,ηq1+q∗ ,e

∣∣∣ =√(ηq1+q∗ − s+ 1)(e− ηq1+q∗)

n

∣∣∣∣σ(ηq1+q∗ + 1

T

)
− σ

(ηq1+q∗

T

)∣∣∣∣ ,
which is bounded from below by σ∗c1δT /

√
T from (A1) and (A3). In the case of multiple change-

points, we remark that for any q satisfying (15), there exists at least one q∗ for which∣∣∣∣∣∣ 1

ηq1+q∗ − s+ 1

ηq1+q∗∑
t=s

σ

(
t

T

)
− 1

e− ηq1+q∗

e∑
t=ηq1+q∗+1

σ

(
t

T

)∣∣∣∣∣∣ (18)

is bounded away from zero under (A3). Therefore, the same arguments apply as in the case of a

single change-point and (17) follows. �

Lemma 2. Suppose (15) holds. Then there exists c0 ∈ (0,∞) such that for b satisfying |ηq1+q−b| ≥
c0ϵT and Ss,b,e < Ss,ηq1+q ,e for some q, we have Ss,ηq1+q ,e ≥ Ss,b,e + CϵT /

√
T .

Proof. Without loss of generality, let η ≡ ηq1+q < b. Then we have

Ss,b,e =
√
η − s+ 1

√
e− b

√
e− η

√
b− s+ 1

Ss,η,e,

and therefore using the Taylor expansion and Lemma 1,

Ss,η,e − Ss,b,e =
(
1−
√
η − s+ 1

√
e− b

√
e− η

√
b− s+ 1

)
· Ss,η,e =

√
1 + b−η

η−s+1 −
√

1− b−η
e−η√

1 + b−η
η−s+1

· Ss,η,e

≥

(
1 + c0ϵT

2c1δT

)
−
(
1− c0ϵT

2c1δT

)
+ o

(
c0ϵT
n

)
√
2

· Ss,η,e ≥
c0ϵT

c1
√
2δT
· c3

δT√
T

= C
ϵT√
T
. �
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Lemma 3. Define

D =

{
1 ≤ s < b < e ≤ T ; n ≡ e− s+ 1 ≥ δT and max

(
b− s+ 1

n
,
e− b
n

)
≤ c∗

}
for the same c∗ as that used in (2). Then as T →∞,

P
(

max
(s,b,e)∈D

|Ys,b,e − Ss,b,e| > log T

)
→ 0. (19)

Proof. We first study the probability of the following event

1√
n

∣∣∣∣∣
e∑

t=s

ct · σ(t/T )(Z2
t,T − 1)

∣∣∣∣∣ > log T, (20)

where ct =
√

(e− b)/(b− s+ 1) for s ≤ t ≤ b and ct = −
√
(b− s+ 1)/(e− b) for b + 1 ≤ t ≤ e.

Note that from the definition of D, we have |ct| ≤ c∗ ≡
√

c∗
1−c∗

< ∞. Let {Ui}ni=1 denote i.i.d.

standard normal variables, V = (vi,j)
n
i,j=1 with vi,j = cor (Zi,T , Zj,T ), and W = (wi,j)

n
i,j=1 be a

diagonal matrix with wi,i = ct ·σ(t/T ) where t = i+s−1. By standard results (see e.g. Johnson and

Kotz (1970), page 151), the probability of the event (20) equals P(n−1/2|
∑n

i=1 λi(U
2
i −1)| > log T ),

where λi are eigenvalues of the matrix VW. Due to the Gaussianity of Ui, it follows that λi(U
2
i −1)

satisfy the Cramér’s condition, i.e., there exists a constant C > 0 such that

E
∣∣λi(U2

i − 1)
∣∣k ≤ Ck−2k! · E

∣∣λi(U2
i − 1)

∣∣2 , k = 3, 4, . . . .

Therefore we can apply the Bernstein inequality (Bosq 1998) and obtain

P

(∣∣∣∣∣
e∑

t=s

ct · σ(t/T )(Z2
t,T − 1)

∣∣∣∣∣ > √n log T
)
≤ 2 exp

(
− n log2 T

4
∑n

i=1 λ
2
i + 2maxi |λi|C

√
n log T

)
.

It holds that
∑n

i=1 λ
2
i = tr(VW)2 ≤ c∗2maxz σ

2(z)nϕ2∞. We also note that maxi |λi| ≤ c∗maxz σ(z)∥V∥2,
where ∥ · ∥2 denotes the spectral norm of a matrix, and that ∥V∥2 ≤ ϕ1∞. Then, the probability in

(19) is bounded from above by

∑
(s,b,e)∈D

2 exp

(
− n log2 T

4c∗2maxz σ2(z)nϕ2∞ + 2c∗maxz σ(z)
√
n log Tϕ1∞

)
≤ 2T 3 exp

(
−C ′ log2 T

)
which converges to 0, since ϕ1∞ <∞ from (A2), n ≥ δT > log T and c∗ <∞. �

Lemma 4. Under (15) and (16), define an interval Ds,e = {t ∈ (s, e); max{(t−s+1)/n, (e−t)/n} ≤
c∗} ⊂ [s, e]. Then there exists 1 ≤ q∗ ≤ q2 − q1 such that ηq1+q∗ ∈ Ds,e and |η̂ − ηq1+q∗ | < c0ϵT for

η̂ = argmaxt∈Ds,e |Ys,t,e|.
Proof. The following proof is an adaptation of the proof of Theorem 3.1 in Fryzlewicz (2013) to

non-Gaussian and non-i.i.d. noise.
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We note that the model (1) can be re-written as

Yt,T = σ(t/T ) + σ(t/T )(Z2
t,T − 1), t = 0, . . . , T − 1,

which in turn can be regarded as a generic additive model yt = ft + εt with a piecewise-constant

signal ft by setting yt = Yt,T , ft = σ(t/T ) and εt = σ(t/T )(Z2
t,T − 1).

On a given segment [s, e], detecting a change-point is equivalent to fitting the best step function

(i.e. a piecewise constant function with one change-point) f̂t which minimizes
∑e

t=s(yt−gt)2 among

all step functions gt defined on [s, e]. Let f0t denote the best step function approximation to ft with

its change-point located within Ds,e, i.e. any gt which has its change-point in Ds,e and minimizes∑e
t=s(ft − gt)2 (f0t may or may not be unique). Under (A1) and (15)–(16), Lemmas 2.2–2.3 in

Venkatraman (1992) imply that the single change-point in f0t coincides with one of any undetected

change-points of ft in Ds,e, and we denote such a change-point by η.

Let us assume that f̂t has a change-point at t = η̂ and it satisfies |η̂ − η| = c0ϵT . Then if we show

e∑
t=s

(yt − f0t )2 −
e∑

t=s

(yt − f̂t)2 < 0, (21)

it would prove that η̂ must be within the distance less than c0ϵT from η. Expanding the left-hand

side of (21), we obtain

e∑
t=s

(εt + ft − f0t )2 −
e∑

t=s

(εt + ft − f̂t)2 = 2

e∑
t=s

εt(f̂t − f0t ) +
e∑

t=s

{(ft − f0t )2 − (ft − f̂t)2} ≡ I + II.

From the definition of f0t , it is clear that II < 0. Let F be the set of vectors that are initially

constant and positive, then contain a change-point, following which are constant and negative;

moreover, they sum to zero and to one when squared. Let f̄ be the mean of ft on t ∈ [s, e], and

the vector ψ0 ∈ F satisfy f0t = f̄ + ⟨f, ψ0⟩ψ0. Then we have

e∑
t=s

(ft − f0t )2 =

e∑
t=s

(ft − f̄)2 − 2⟨f, ψ0⟩
e∑

t=s

(ft − f̄)ψ0 + ⟨f, ψ0⟩2
e∑

t=s

(ψ0)2

=
e∑

t=s

(ft − f̄)2 − ⟨f, ψ0⟩2. (22)

Let a step function f̃t be chosen so as to minimize
∑e

t=s(ft − gt)2 under the constraint that gt

shares the same change-point as f̂t. Then we have

e∑
t=s

(ft − f̃t)2 ≤
e∑

t=s

(ft − f̂t)2 (23)
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Representing f̃t = f̄ + ⟨f, ψ̃⟩ψ̃ for another vector ψ̃ ∈ F and using (22) and (23),

e∑
t=s

{(ft − f0t )2 − (ft − f̂t)2} ≤
e∑

t=s

{(ft − f0t )2 − (ft − f̃t)2} = ⟨f, ψ̃⟩2 − ⟨f, ψ0⟩2

= (|⟨f, ψ̃⟩| − |⟨f, ψ0⟩|)(|⟨f, ψ̃⟩|+ |⟨f, ψ0⟩|) ≤ (|⟨f, ψ̃⟩| − |⟨f, ψ0⟩|)|⟨f, ψ0⟩|.

Since |⟨f, ψ0⟩| = Ss,η,e and |⟨f, ψ̃⟩| = Ss,η̂,e with the distance between η and η̂ being at least c0ϵT ,

the above is bounded from above by −CδT /
√
T · ϵT /

√
T = −CϵT δT /T from Lemmas 1–2.

Turning to I, we can decompose the term as

e∑
t=s

εt(f̂t − f0t ) =
e∑

t=s

εt(f̂t − f̃t) +
e∑

t=s

εt(f̃t − f0t ),

and each of the two sums are split into sub-sums computed over the intervals of constancy of f̂t− f̃t
and f̃t − f0t , respectively. Assume η̂ ≥ η without loss of generality, we have

e∑
t=s

εt(f̃t − f0t ) =

 η∑
t=s

+

η̂∑
t=η+1

+
e∑

t=η̂+1

 εt(f̃t − f0t ) ≡ III + IV + V.

As T →∞, we have with probability tending to 1 (Lemma 3)

|III| =

∣∣∣∣∣ 1√
η − s+ 1

η∑
t=s

εt

∣∣∣∣∣ ·√η − s+ 1 ·

∣∣∣∣∣∣ 1

η̂ − s+ 1

η̂∑
t=s

fi −
1

η − s+ 1

η∑
t=s

fi

∣∣∣∣∣∣
≤ C log T

√
η − s+ 1 · c0ϵT

η̂ − s+ 1
≤ C ′ϵT δ

−1/2
T log T.

|V | is of the same order as |III| and similarly |IV | is bounded by Cϵ
1/2
T log T .

As for
∑e

t=s εt(f̂t − f̃t), we have

e∑
t=s

εt(f̂t − f̃t) =

 η̂∑
t=s

+

e∑
t=η̂+1

 εt(f̂t − f̃t) ≡ V I + V II.

Note that V I and V II are of the same order, and with probability converging to 1 as T →∞,

|V I| = 1

η̂ − s+ 1

 η̂∑
t=s

εt

2

= log2 T.

Putting together all the above requirements, as long as

ϵT δT
T

> (ϵT δ
−1/2
T log T ) ∨ (ϵ

1/2
T log T ) ∨ (log2 T ), (24)
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the dominance of the term II over I holds and thus we prove the lemma.

From (24), it is derived that Θ > 2/3 and ϵT > δ−2
T ·T 2 log2 T , i.e. letting ϵT = max(T θ, log2+ϑ T ),

it is sufficient to have θ ≥ 2− 2Θ and ϑ > 0. Also the proof of Lemmas 5–6 require δ−1
T T log T ≪

√
ϵT ≪ πT ≪ δT (T log T )−1/2, which is satisfied by θ = 2 − 2Θ and πT = κT γ with any γ ∈

(1−Θ,Θ− 1/2) when Θ ∈ (3/4, 1), and by πT = κ log1+ω T with any ω > ϑ/2 when Θ = 1. �

Lemma 5. Under (15) and (16), we have

P

(
|Ys,b,e| < πT · n−1

e∑
t=s

Yt,T

)
→ 0 (25)

for b = argmaxt∈Ds,e |Ys,t,e|, as T →∞.

Proof. Define the two events A and B as

A =

{
|Ys,b,e| < πT ·

1

n

e∑
t=s

Yt,T

}
and B =

{
1

n

∣∣∣∣∣
e∑

t=s

Yt,T −
e∑

t=s

σ(t/T )

∣∣∣∣∣ < σ̄ ≡ 1

2n

e∑
t=s

σ(t/T )

}
.

We can show that P(B)→ 1 as T →∞ using the Bernstein inequality as in the proof of Lemma 3 and

that the convergence rate is faster than that of (19). Hence P(n−1
∑e

t=s Yt,T ∈ (σ̄/2, 3σ̄/2)) → 1.

Since the probability in (25) is bounded from above by P(A ∩ B) + P(Bc), we only need to show

that P(A ∩ B) → 0. From Lemma 4, we have some η ≡ ηq1+q satisfying |b − η| < c0ϵT . Without

loss of generality, let η < b and define σ1 ≡ σ
( η
T

)
̸= σ

(
η+1
T

)
≡ σ2. From Lemma 3, (15)–(16) and

(A1), the following holds with probability tending to 1 as γ < Θ− 1/2:

|Ys,b,e| ≥ |Ss,b,e| − log T

=

√
(b− s+ 1)(e− b)

n

∣∣∣∣σ1(η − s+ 1) + σ2(b− η)
b− s+ 1

− σ2
∣∣∣∣− log T

≥

√
e− b

n(b− s+ 1)
· σ∗(η − s+ 1)− log T ≥

√
1− c∗
nc∗

· σ∗(η − s+ 1)− log T

≥ CδT

c∗
√
T
− log T > πT ·

3σ̄

2
.

�

Lemma 6. For some positive constants C, C ′, let s, e satisfy either

(i) ∃ 1 ≤ q ≤ N such that s ≤ ηq ≤ e and (ηq − s+ 1) ∧ (e− ηq) ≤ CϵT or

(ii) ∃ 1 ≤ q ≤ N such that s ≤ ηq < ηq+1 ≤ e and (ηq − s+ 1) ∨ (e− ηq+1) ≤ C ′ϵT .

Then as T →∞,

P

(
|Ys,b,e| > πT · n−1

e∑
t=s

Yt,T

)
→ 0 (26)
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for b = argmaxt∈Ds,e |Ys,t,e|.
Proof. First we assume (i). We define the event A′ as A′ = {|Ys,b,e| > πT · n−1

∑e
t=s Yt,T }

and adopt the event B from the proof of Lemma 5. Since P(B) → 1, the probability in (26) is

bounded from above by P(A′ ∩ B) + P(Bc) and it only remains to show P(A′ ∩ B)→ 0. Assuming

ηq − s+ 1 ≤ CϵT leads to b > ηq ≡ η, and using the same notation as in Lemma 5 we have

|Ys,b,e| ≤ |Ss,b,e|+ log T

≤
√

(b− s+ 1)(e− b)
n

∣∣∣∣σ1(η − s+ 1) + σ2(b− η)
b− s+ 1

− σ2
∣∣∣∣+ log T

≤

√
e− b

n(b− s+ 1)
· 2σ∗(η − s+ 1) + log T ≤

√
e− η

n(η − s+ 1)
· 2σ∗(η − s+ 1) + log T

≤ 2σ∗
√
CϵT + log T < πT ·

σ̄

2
.

The proof in the case of (ii) takes similar arguments and thus Lemma 6 follows. �

When applying the algorithm to a single sequence with N change-points, Lemmas 1–6 shows the

consistency of the algorithm as follows. At the start of the binary segmentation algorithm, we

have s = 0 and e = T − 1, and thus all the conditions required by Lemma 5 are met. Then

the algorithm detects and locates a change-point which is within the distance of c0ϵT from a true

change-point (Lemma 4) such that any segments defined by the detected change-points also satisfy

the conditions in Lemma 5, from the assumptions on the spread of ηq, q = 1, . . . , N in (A1). The

algorithm iteratively proceeds in this manner until all the N change-points are detected, and since

thus-determined segments meet either of the two conditions in Lemma 6, change-point detection is

completed.

Now we turn our attention to the case of d > 1 sequences and prove Theorem 1. When necessary

to highlight the dependence of Y
(k)
t,T on k in deriving Ss,t,e and Ys,t,e, we use the notations S

(k)
s,t,e and

Y(k)
s,t,e. The index set {1, . . . , d} is denoted by K. From Lemma 3, we have maxk max(s,t,e)∈D |Y

(k)
s,t,e−

S(k)s,t,e| ≤ log T with the probability bounded from below by 1− CdT 3 exp
(
−C ′ log2 T

)
→ 1 under

(A4). Therefore, the following arguments are made conditional on this event.

Let Ks,e ⊂ K denote the index set corresponding to those Y
(k)
t,T with at least one change-points in

σ(k)(t/T ) on t ∈ (s, e). Lemma 6 shows that Y(k)
s,t,e, k ∈ K\Ks,e do not pass the thresholding at any

t ∈ (s, e), i.e. I(k)s,t,e = I(Y(k)
s,t,e > πT ) = 0 for all t ∈ (s, e). On the other hand, Lemma 5 indicates

that all Y(k)
s,t,e, k ∈ Ks,e survive after thresholding in the sense that I(k)s,t,e = 1 over the intervals

around the true change-points. Besides, in Venkatraman (1992), each S(k)s,t,e is shown to be of the

functional form g(k)(x) = (x(1 − x))−1/2(α
(k)
x x + β

(k)
x ) for x = (t − s + 1)/n ∈ (0, 1), where α

(k)
x

and β
(k)
x are determined by the magnitude of the jumps at the change-points of σ(k)(t/T ) as well

as their locations, and constant between any two adjacent change-points. Note that scaling of S(k)s,t,e

by n−1
∑e

t=s Y
(k)
t,T scales the values of αx and βx only, and does not change the shape of g(k)(x).

Each function g(k)(x)

(a) is either monotonic or decreasing and then increasing on any interval defined by two adjacent
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change-points of σ(k)(t/T ), and

(b) achieves the maximum at one of the change-points of σ(k)(t/T ) in (s, e),

see Lemma 2.2 of Venkatraman (1992). Since the point-wise summation of g(k)(·) over k ∈ Ks,e takes

the functional form g(x) = (x(1 − x))−1/2(αxx + βx) which is identical to that of each individual

g(k)(·), it satisfies the above (a)–(b) as well.

Denoting Ȳs,e =
1
n

∑e
u=s Y

(k)
u,T , we decompose ỹthrt as

ỹthrt∑
k∈K I

(k)
s,t,e

=

∑
k∈K Ȳ

−1
s,e · Y

(k)
s,t,e · I

(k)
s,t,e∑

k∈K I
(k)
s,t,e

=

∑
k∈Ks,e

Ȳ −1
s,e · S

(k)
s,t,e · I

(k)
s,t,e

|Ks,e|
+

∑
k∈Ks,e

Ȳ −1
s,e

(
Y(k)
s,t,e − S(k)s,t,e

)
· I(k)s,t,e

|Ks,e|
= I + II

where II ≤ C log T (Lemma 3). Note that we can construct an additive model yt = ft + εt

over t ∈ [s, e] as the one introduced in Lemma 4, such that the CUSUM statistic of the piecewise

constant signal ft (i.e. Ss,t,e with ft replacing σ(t/T )) is equal to |Ks,e|−1
∑

k∈Ks,e
Ȳ −1
s,e ·S

(k)
s,t,e. Since

thresholding does not have any impact on the peak formed around the change-points within the

distance of CϵT , I is of the same functional form as the CUSUM statistic of ft in that region around

the change-points. Therefore from Lemma 4, b = argmaxt∈(s,e) ỹ
thr
t satisfies |b−ηq| < c0ϵT for some

q = 1, . . . , N .

The SBS algorithm continues the change-point detection procedure on the segments defined by

previously detected change-points, which satisfy both (15) and (16) for at least one of k ∈ K until

every change-point is detected (as in the case of d = 1). Once all η1, . . . , ηN are identified, each of

the resulting segments satisfies either (i) or (ii) in Lemma 6 for all k ∈ K such that the termination

condition of the SBS algorithm (Step 2.1) is met.

Note that for any k ∈ Ks,e, a simple modification of the proof of Lemma 2 leads to the existence of

a positive constant C satisfying S(k)s,t,e > πT for |t− η| ≤ CϵT , where η is any of the change-points of

Y
(k)
t,T within (s, e) at which (18) is not equal to zero. Then, the corresponding Y(k)

s,t,e is also greater

than πT within the distance of ∆T ≍ ϵT from b = argmaxt∈[s,e] Y
(k)
s,t,e, and hence the condition on

the change-point estimates in Step 2.3 is justified with the choice of ∆T = ⌊
√
T/2⌋.

B Multivariate LSW time series

The LSW model enables a time-scale decomposition of a multivariate, possibly high-dimensional

process and thus permits a rigorous estimation of its second-order structure as shown in this section.

The following conditions are imposed on the piecewise constant functions W
(j)
i (z) and Σ

(j,l)
i (k/T ),

as well as on the change-points in the second-order structure for the p-variate LSW time series

defined in Definition 1.

(B1) The following holds for each of the piecewise constant functions W
(j)
i (z) and Σ

(j,l)
i (z) for
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j, l = 1, . . . , p; i = −1,−2, . . ..

• Denoting by L
(j)
i the total magnitude of jumps in {W (j)

i (z)}2, the variability of the

functions W
(j)
i (z), i = −1,−2, . . . is controlled such that

∑−1
i=−IT

2−iL
(j)
i = O(log T )

uniformly in j where IT = ⌊log T ⌋. Also, there exists a positive constant C > 0 such

that |W (j)
i (z)| ≤ C2i/2 uniformly over all i ≤ −1 and j = 1, . . . , p.

• Denoting the total magnitude of jumps in Σ
(j,l)
i (z) by R

(j,l)
i , the variability of the func-

tions Σ
(j,l)
i (z), i = −1,−2, . . . is controlled such that

∑−1
i=−IT

2−iR
(j,l)
i = O(log T ) uni-

formly in j ̸= l.

(B2) Recall B, the set of all change-points in the second-order structure of Xt,T defined in (9).

Then νr ∈ B, r = 1, . . . , N satisfy the conditions in (A1) in place of ηq, q = 1, . . . , N .

The quantity of interest in modelling a multivariate LSW time series is the Evolutionary Wavelet

Spectrum (EWS) and the Evolutionary Wavelet Cross-spectrum (EWCS), which are defined as

S
(j)
i (z) = S

(j,j)
i (z) = (W

(j)
i (z))2 for j = 1, . . . , p,

S
(j,l)
i (z) = W

(j)
i (z)W

(l)
i (z)Σ

(j,l)
i (z) for j ̸= l; j, l = 1, . . . , p.

To study the connection between EWS and the second-order structure of Xt,T , we adopt the

following quantities from Nason et al. (2000): with the same wavelet system as that used in the

definition of Xt,T , we define the autocorrelation wavelets as Ψi(τ) =
∑

k ψi,kψi,k+τ , the cross-

scale autocorrelation wavelets as Ψi,i′(τ) =
∑

k ψi,kψi′,k+τ , and the autocorrelation wavelet inner

product matrix as A =
(
Ai,i′

)
i,i′<0

with Ai,i′ =
∑

τ Ψi(τ)Ψi′(τ) =
∑

τ Ψ
2
i,i′(τ) > 0. Then, the local

autocovariance and cross-covariance functions of Xt,T are defined as

c(j)(z, τ) = c(j,j)(z, τ) =

−1∑
i=−∞

S
(j)
i (z)Ψi(τ) (from Nason et al. (2000)),

c(j,l)(z, τ) =

−1∑
i=−∞

S
(j,l)
i (z)Ψi(τ) (from Sanderson et al. (2010)).

Recalling the definition of time-varying autocovariance and cross-covariance functions, the functions

c(j,l)(z, τ) and c
(j,l)
T (z, τ) are close to each other in the following sense.

Proposition 1. Under (B1)–(B2), c
(j,l)
T (z, τ) converges to c(j,l)(z, τ) as

1

T

T−1∑
t=0

∣∣∣c(j,l)T (t/T, τ)− c(j,l)(t/T, τ)
∣∣∣ = o(1) (27)

for all j, l = 1, . . . , p.

The proof is provided in Appendix B.2. From (27), we can see that there exists an asymptotic one-

to-one relationship between the EWS (EWCS) S
(j,l)
i (z) and the autocovariance (cross-covariance)
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functions c
(j,l)
T (z, τ), τ ∈ Z for all j, l = 1, . . . , p such that, if there is a change-point in c

(j,l)
T (z, τ)

at some lag τ , at least one of the corresponding S
(j,l)
i (z), i = −1,−2, . . . has a change-point at the

same location z, and vice versa.

Furthermore, we can also show an one-to-one correspondence between the EWS (EWCS) and

the wavelet periodograms (cross-periodograms). Let β
(j,l)
i (z) be a linear transformation of the

EWS (EWCS) defined as β
(j,l)
i (z) =

∑−1
i′=−∞ S

(j,l)
i′ (z)Ai,i′ . Then, the function β

(j,l)
i (z) is piecewise

constant with its change-points corresponding to those of {S(j,l)
i′ (z)}i′ due to the invertibility of A.

Proposition 2. Under (B1)–(B2), EI(j,l)i,t,T satisfies

1

T

T−1∑
t=0

∣∣∣∣EI(j,l)i,t,T − β
(j,l)
i

(
t

T

)∣∣∣∣2 = 2−iO(T−1) + b
(j,l)
i,T , (28)

where b
(j,l)
i,T depends on the corresponding sequence {L(j)

i }i or {R
(j,l)
i }i.

The proof of (28) is a direct modification of that of Proposition 2.1 of Fryzlewicz and Nason (2006)

and thus is omitted. In summary, from Propositions 1–2 and the invertibility of A, there exists an

asymptotic one-to-one correspondence between the autocovariance (cross-covariance) functions and

the expectations of wavelet periodograms (cross-periodograms) as noted in Section 3. Therefore,

any change-points in the autocovariance (cross-covariance) functions are detectable by examining

the corresponding wavelet periodogram (cross-periodogram) sequences.

B.1 Proof of Theorem 2

From its construction, EI(j,l)i,t,T is piecewise constant and “almost” satisfies (A1) and (A3) in the

sense that, for any change-point ν in β
(j,l)
i (t/T ),

(a) EI(j,l)i,t,T is piecewise constant apart from the intervals [ν −K2−i, ν +K2−i] for some K > 0,

where it shows smoother transitions, and

(b) EI(j,l)i,t,T has at least one change-point within the intervals [ν − K2−i, ν + K2−i], such that

|EI(j,l)i,t1,T
− EI(j,l)i,t2,T

| is bounded away from zero for t1 = ν −K2−i − 1 and t2 = ν +K2−i + 1.

Note that (a) and (b) also hold for EĨ(j,l)i,t,T for j ̸= l defined as in (13). To accommodate these

features of I
(j)
i,t,T and Ĩ

(j,l)
i,t,T , we propose a modification of the multiplicative model (1),

Ỹ
(k)
t,T = σ

(k)
t,T · Z̃

(k)2
t,T , t = 0, . . . , T − 1; k = 1, . . . , d. (29)

The difference between the two models (1) and (29) comes from the function EỸ (k)
t,T = σ

(k)
t,T which

is close to a piecewise constant function σ(k)(t/T ) as EI(j,l)i,t,T is close to β
(j,l)
i (z) (see (28)).

We also adapt the assumptions (A2)–(A4) to the multivariate time series set-up, and denote their

analogues in this setting by (B3)–(B5). The latter assumptions are imposed on I
(j)
i,t,T , j = 1, . . . , p
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and Ĩ
(j,l)
i,t,T , j ̸= l; j, l = 1, . . . , p at scales i = −1, . . . , I∗T , using the representation of these quantities

as in (29) (the notation below refers to that representation).

(B3) {Z̃(k)
t,T }

T−1
t=0 is a sequence of standard normal variables and maxk ϕ

(k)1
∞ < ∞, where ϕ(k)(τ) =

supt,T |cor(Z̃
(k)
t,T , Z̃

(k)
t+τ,T )| and ϕ

(k)r
∞ =

∑
τ |ϕ(k)(τ)|r.

(B4) There exist positive constants σ∗, σ∗ > 0 such that {maxk,t,T σ
(k)(t/T ) ∨maxk,t,T σ

(k)
t,T } ≤ σ∗,

and given any change-point ηq in σ(k)(t/T ), we have |σ(k)((ηq + 1)/T ) − σ(k)(ηq/T )| > σ∗

uniformly for all k.

(B5) p and T satisfy p2 · T− log T → 0.

The following proposition shows that applying the SBS algorithm to Ỹ
(k)
t,T instead of Y

(k)
t,T also leads

to consistent change-point estimates η̃q, q = 1, . . . , Ñ .

Proposition 3. Under (A1), (A4) and (B3)–(B4), letting ∆T ≍ ϵT , we have that η̃q, q = 1, . . . , Ñ

satisfy

P
{
Ñ = N ; |η̃q − ηq| < C3ϵT for q = 1, . . . , N

}
→ 1

as T →∞ for some C3 > 0, where ϵT and πT are identical to those in Theorem 1.

For proof, see Appendix B.3.

We are now ready to prove Theorem 2. Proposition 3 implies that the SBS algorithm is consistent in

detecting change-points from wavelet periodograms and cross-periodograms at a single scale i, i.e.

all the change-points that are detectable from scale i are identified by applying the SBS algorithm

to the wavelet periodograms and cross-periodograms at the same scale. Besides, coupled with (B4),

the condition on the magnitude of |W (j)
i (z)| in (B1) implies that for each change-point, the finest

scale i at which it is detected satisfies i ≥ I∗T = −⌊α log log T ⌋. Suppose t = ν is a change-point in

S
(j)
i (t/T ) which can be detected only at the scales coarser than I∗T . Then, the corresponding jump

in β
(j)
i (t/T ) is of the magnitude bounded from above by∣∣∣∣∣∣

I∗T−1∑
i′=−∞

{
S
(j)
i

(
ν + 1

T

)
− S(j)

i

( ν
T

)}
Ai,i′

∣∣∣∣∣∣ ≤ C
I∗T−1∑
i′=−∞

2i
′
Ai,i′ → 0,

since Ai,i′ > 0 and
∑−1

i′=−∞ 2i
′
Ai,i′ = 1 from Fryzlewicz et al. (2003), and thus (B4) is violated. We

conclude that there exists I∗T such that all the change-points νr, r = 1, . . . , N are detectable from

examining the scales i = −1, . . . , I∗T . Since the SBS-MVTS algorithm repeatedly applies the SBS

algorithm to the finest |I∗T | scales, its consistency with the required rates is a simple consequence

of the argument about across-scales post-processing from Cho and Fryzlewicz (2012).
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B.2 Proof of Proposition 1

Let t = ⌊zT ⌋. Then we have

c
(j)
T (z, τ) = E

{ −1∑
i=−∞

∞∑
k=−∞

W
(j)
i

(
k

T

)
ψi,t−kξ

(j)
i,k

−1∑
i′=−∞

∞∑
k′=−∞

W
(j)
i′

(
k′

T

)
ψi′,t+τ−k′ξ

(j)
i′,k′

}

=

−1∑
i=−∞

∞∑
k=−∞

S
(j)
i

(
k

T

)
ψi,t−kψi,t+τ−k.

Therefore

1

T

T−1∑
t=0

∣∣∣c(j)T (z, τ)− c(j)(z, τ)
∣∣∣ ≤ 1

T

T−1∑
t=0

∣∣∣∣∣
−1∑

i=−∞

∞∑
k=−∞

{
S
(j)
i

(
k

T

)
− S(j)

i

(
t

T

)}
ψi,t−kψi,t+τ−k

∣∣∣∣∣
=

1

T

T−1∑
t=0

∣∣∣∣∣∣
−1∑

i=−JT

+

−JT−1∑
i=−∞

[ ∞∑
k=−∞

{
S
(j)
i

(
k

T

)
− S(j)

i

(
t

T

)}
ψi,t−kψi,t+τ−k

]∣∣∣∣∣∣ ≡ I + II,

where the cut-off index is set as JT = ϱ log2 T for ϱ ∈ (0, 1). For all i = −1, . . . ,−JT , the length of

support of ψi,t−kψi,t+τ−k is bounded from above by K2JT uniformly for some K > 0. Therefore,

the summands of I are equal to 0 except for those t which are within the distance of K2JT from

any change-point of S
(j)
i (z), i = −1, . . . ,−JT . Then from (B1)–(B2), term I is bounded by

NK2JT

T

∣∣∣∣∣∣
−1∑

i=−JT

L
(j)
i

∞∑
k=−∞

ψi,t−kψi,t+τ−k

∣∣∣∣∣∣ = NK2JT

T

∣∣∣∣∣∣
−1∑

i=−JT

L
(j)
i Ψi(τ)

∣∣∣∣∣∣
≤ NK2JT

T

∣∣∣∣∣∣
−1∑

i=−JT

L
(j)
i

∣∣∣∣∣∣ = O

(
N2JT log T

T

)
, (30)

where the first inequality comes from the fact that Ψi(τ) = O(1) uniformly in τ . The term II

is bounded by T−1
∑T−1

t=0 |
∑−JT−1

i=−∞ L
(j)
i Ψi(τ)| ≤ |

∑−JT−1
i=−∞ L

(j)
i |. Due to the bound imposed on

W
(j)
i (z), (B1) implies that |L(j)

i | ≤ C2i and therefore
∑−JT

i=−∞ L
(j)
i ≤ C2−JT → 0, and combined

with (30) we have I + II = o(1).

As for the relationship between c
(j,l)
T (z, τ) and c(j,l)(z, τ), we note (B1)–(B2) implies that the to-

tal magnitude of jumps in S
(j,l)
i (z, τ) = W

(j)
i (z, τ)W

(l)
i (z, τ)Σ

(j,l)
i (z, τ) is bounded from above by

K ′max(L
(j)
i , L

(l)
i , R

(j,l)
i ) for some positive constant K ′. Then the proof follows exactly the same

arguments as above and thus is omitted.

B.3 Proof of Proposition 3

Proposition 3 can be proved by showing that any change-point in σ(k)(t/T ) is detectable from Ỹ
(k)
t,T

within the distance of O(ϵT ). Let σ
(k)(t/T ) have a change-point at t = ηq1+q ≡ η within a segment

(s, e), where s, ηq1+q and e satisfy (15) and (16). From the compactness of wavelet vector ψi,
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the sequence σ
(k)
t,T also has a change-point within the interval containing η, such that there exists

η̄ ∈ [η −K2−I∗T , η +K2−I∗T ] where |σ(k)η̄,T − σ
(k)
η̄+1,T | > 0 although it may not be unique. Let η̄ < η.

Since such η̄ still satisfies (15) in place of η, Proposition 2 implies that
∣∣∣∣∣∣ 1

η̄ − s+ 1

η̄∑
t=s

σ
(k)
t,T −

1

e− η̄

e∑
t=η̄+1

σ
(k)
t,T

∣∣∣∣∣∣−
∣∣∣∣∣∣ 1

η − s+ 1

η∑
t=s

σ(k)
(
t

T

)
− 1

e− η

e∑
t=η+1

σ(k)
(
t

T

)∣∣∣∣∣∣


2

≤ Cδ−2
T

∣∣∣∣∣∣
η̄∑

t=s

{
σ
(k)
t,T − σ

(k)

(
t

T

)}
−

e∑
t=η+1

{
σ
(k)
t,T − σ

(k)

(
t

T

)}
−

η∑
t=η̄+1

{
σ
(k)
t,T + σ(k)

(
t

T

)}∣∣∣∣∣∣
2

≤ Cδ−1
T

e∑
t=s

|σ(k)t,T − σ
(k)(t/T )|2 + C ′δ−2

T σ∗22−2I∗T → 0.

That is, the CUSUM statistics computed from Ỹ
(k)
t,T are of the same order as those from Y

(k)
t,T around

t = η. Therefore, the arguments used in Lemmas 1–5 also apply to Ỹ
(k)
t,T , and η̂ = argmaxt∈(s,e) Ỹs,t,e

satisfies |η̂ − η̄| ≤ c0ϵT . Then with I∗T = −⌊α log log T ⌋, we have |η̂ − η| ≤ |η̂ − η̄| + |η̄ − η| ≤
c0ϵT + C log2+ϑ T . Besides, once a change-point is detected within such an interval, the condition

(6) in Step 2.2 does not allow any more change-points to be detected too close to previously detected

change-points, and therefore any t ∈ [η−K2−I∗T , η+K2−I∗T ] is disregarded from future change-point

detection. Hence despite the bias between σ
(k)
t,T and σ(k)(t/T ), the consistency of the SBS algorithm

still holds for Ỹ
(k)
t,T in place of Y

(k)
t,T .
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