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Abstract

Models with random effects/latent variables are widely used for capturing unobserved

heterogeneity in multilevel/hierarchical data and account for associations in multivari-

ate data. The estimation of those models becomes cumbersome as the number of latent

variables increases due to high-dimensional integrations involved. Composite likelihood

is a pseudo-likelihood that combines lower-order marginal or conditional densities such

as univariate and/or bivariate; it has been proposed in the literature as an alternative

to full maximum likelihood estimation. We propose a weighted pairwise likelihood es-

timator based on estimates obtained from separate maximizations of marginal pairwise

likelihoods. The derived weights minimize the total variance of the estimated parameters.

The proposed weighted estimator is found to be more efficient than the one that assumes

all weights to be equal. The methodology is applied to a multivariate growth model for

binary outcomes in the analysis of four indicators of schistosomiasis before and after drug

administration.

Keywords composite likelihood; generalized linear latent variable models; longitu-

dinal data; categorical data.

1. INTRODUCTION

Models with random effects known as mixed effects models or multilevel models,

as well as factor analysis models and structural equation models (SEM) are widely used

in Social Sciences, Health Sciences and Economics for analyzing associations among vari-

ables in cross-sectional and longitudinal studies. Random effects are unobserved random

variables employed to capture associations and heterogeneity above the one explained by

explanatory variables. In cross-sectional studies, random effects are often used with nested

data (e.g students (low level) nested within schools (high level)) to allow for higher-level

heterogeneity as well as higher-level covariates. In multivariate longitudinal studies such

as the one that will be examined here, four indicators/items/variables of schistosomiasis

are measured on children in Tanzania at three occasions before and after the administra-

tion of drugs. In this set up, item-specific correlated random effects are used to account

for the serial correlation of the same variables across time and correlations of the four

indicators within time.

Estimation of random effects and factor analysis models entail heavy integrations

that make the use of full information maximum likelihood (FIML) infeasible in practice.

Composite likelihood estimation provides a feasible alternative to FIML. It simplifies the

likelihood to be maximised and provides estimates with desirable statistical properties. For

an excellent review of recent methodological developments and applications of composite
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likelihood methods see Varin, Reid, and Firth (2011) and the special issue of Statistica

Sinica published in 2011. Composite likelihood estimation is based upon lower-order

densities - marginal or conditional likelihoods - (Lindsay, 1988; Arnold & Strauss, 1991;

Geys, Molenberghs, & Ryan, 1999; Cox & Reid, 2004; Varin, 2008).

In particular, composite likelihood estimation has been shown to work satisfactorily

and be computationally attractive over FIML for SEM for binary, ordinal and ranking

variables when the underlying variable approach (each categorical variable is assumed to

be a manifestation of a normally distributed variable) is adopted (Jöreskog & Moustaki,

2001; Liu, 2007; Katsikatsou, Moustaki, Yang-Wallentin, & Jöreskog, 2012; Katsikatsou,

2013) and for factor analysis models for longitudinal data where both latent variables and

random effects are used to account for dependencies (Vasdekis, Cagnone, & Moustaki,

2012). In all aforementioned papers, composite likelihood is defined as the sum of all

log pairwise likelihoods. Furthermore, Chan and Bentler (1998) and Fieuws and Verbeke

(2006) used the composite likelihood for a covariance structure analysis for ranking data

and for estimating mixed effects models for multivariate longitudinal outcomes respec-

tively. In their implementation of the composite likelihood, each pairwise likelihood is

maximized separately and the final parameter estimates are obtained as a simple average

of the estimates produced by the separate bivariate maximizations.

However, in some cases, lower-order margins provide no information for some of

the model parameters and the amount of information available for estimating a single

parameter may vary according to data availability or data characteristics. That provided

the motivation to propose a weighted estimator for a general class of random effects and

factor analysis models under a pairwise likelihood estimation. The proposed estimator is

shown through simulations and the data application to have greater efficiency.

The paper is organized as follows. Section 2 provides a description of the data,

Section 3 presents a general model framework that includes both random effects and latent

variables; Section 4 discusses composite likelihood estimation and the weighted estimator

and Section 5 presents results from simulations that show the effectiveness of the proposed

methodology. The results and discussion of the data obtained from the Schistosomiasis

Control Initiative based at Imperial College London are given in Section 6 and the paper

concludes in Section 7.

2. EXAMPLE: SCHISTOSOMIASIS DATA

Schistosomiasis remains one of the most prevalent parasitic diseases in developing

countries. After malaria, schistosomiasis is the most important tropical disease in terms

of human morbidity with significant economic and public health consequences. In fact,

Schistosomiasis Control Initiative (SCI) implements and evaluates control of schistosomi-



WEIGHTED PAIRSWISE LIKELIHOOD 4

asis and thus invests in process monitoring, drug evaluation and morbidity measurements

throughout the programmes in each supported country. The data analyzed here are ob-

tained from SCI (Fenwick et al., 2009) and they are part of longitudinal morbidity surveys

on children over 4 years in Tanzania during 2005 (n=2157, no intervention), 2006 (n=1048,

where 1 mass drug administration (MDA) is evaluated) and 2008 (n=717, 2 MDA are eval-

uated). Two of the four variables being analyzed in the present study are blood in urine

and pain when urinating which are self-reported symptoms by children when they were

asked whether they had felt any of these, during the last 2 weeks when surveys took place.

The other two variables are: ‘Do you know what schistosomiasis is?’ and blood urine

as detected by reagent test strips. Recent epidemiological studies (Clements, Brooker,

Nyandindi, Fenwick, & Blair, 2008; Koukounari et al., 2006) have suggested the reagent

strips to be a good indicator for urinary schistosomiasis in endemic settings. All responses

were binary and coded ‘1’ for a Yes response and ‘0’ for a No response. Between baseline

and follow-ups, there were children missing either because they were lost to follow up or

some schools were not revisited and so data collection did not happen in these, due to

logistical constraints. The aim of our analysis is twofold, first to study the measurement

properties of the four indicators and second to study simultaneously changes in the symp-

toms, presence and knowledge of schistosomiasis before and after the drug administration.

The model used is a multivariate growth model that accounts for the associations of the

four items within and across time.

3. GENERALIZED LINEAR LATENT VARIABLE
MODEL

We adopt the generalized linear latent variable model (GLLVM) specification as

described in Skrondal and Rabe-Hesketh (2004). The model framework accommodates

models with random effects and latent variables. Let yjit be the observation of individual

j on item i at time t. To accommodate different types of responses in a unified framework,

we postulate a multivariate generalized linear mixed effects model. In particular, the

conditional distribution of yjit given a vector of latent variables ηjit and covariates xjit is

assumed to be a member of the exponential family, with linear predictor νjit given by

νjit = x⊤
jitβit + z⊤

jitηjit, j = 1, . . . , n, i = 1, . . . , p, t = 1, . . . , T,

where xjit denotes a design vector of possibly time-dependent covariates with a corre-

sponding vector of fixed effects parameters βit. The design vector zjit is associated with

the vector of latent variables ηjit which are assumed to be independent between sample

units. The latent variable vector can include latent variables that depend on individuals

and items, on individuals and times or on individuals only but not on all three since those
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would not be identified. The conditional expectation of the response y given covariates x

and latent variables η is linked to the linear predictor ν via a link function git(·):

git{E(yjit | xjit,ηjit)}.

For the remaining of the paper, we will use the term latent variable to indicate either a

random effect or a latent variable.

A special case of the GLLVM framework is the multivariate growth model for binary

variables that will be used for analysing the schistosomiasis data. The model has been

proposed by Fieuws and Verbeke (2006) for multivariate continuous data and it is extended

here to multivariate binary outcomes. Assuming that yjit is now binary, related to time

and a set of L covariates, the model is:

logit
{
P (yjit = 1 | xjit, ηji,0, ηji,1)

}
= βi,0 + βi,1xjit,1 +

L∑
ℓ=2

βit,l xjit,l

+ηji,0 + ηji,1xjit,1, (1)

where logit(x) = log(x/(1 − x)), xjit,1 indicates time and the latent variables ηji,0 and

ηji,1 are item-individual, multivariate normals with mean zero and unrestricted covariance

matrix, representing item-individual variation at the intercept and at the slope or growth

level respectively. The covariances among the latent variables capture the associations of

items within and across time. The ηs are assumed to be independent from the observed

covariates x. This modeling approach can deal with both balanced and unbalanced data

and also with unequal time spaced measurements.

Maximum likelihood is often employed to estimate the parameters of the GLLVM. To

define the observed data likelihood we typically assume that the vector of latent variables,

ηj∗∗, follows a distribution Fθη parameterized by θη. A standard choice is the normal

distribution with mean zero and covariance matrix D, in which case θη = vech(D) denotes

the unique elements of D. Under the assumption of conditional independence, the log-

likelihood contribution of the jth sample unit is:

ℓj(θ) = log p(yj∗∗ | xj∗∗;θ) = log

∫
p(yj∗∗ | xj∗∗,ηj∗∗, ;θy)p(ηj∗∗;θη) dηj∗∗

= log

∫ T∏
t

p∏
i

p(yjit | xjit,ηjit;θy)p(ηj∗∗;θη) dηj∗∗, (2)

where yj∗∗ and xj∗∗ as in ηj∗∗ denote the vector of responses and covariates respectively

with indices defining all possible values of i and t respectively. Expression (2) defines

a general latent variable model for the y items given the latent variables η and the co-

variates x. The model consists of the measurement model p(yj∗∗ | xj∗∗,ηj∗∗, ;θy) which
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describes how the items y measure η and the structural model p(ηj∗∗;θη) which specifies

the distribution of the latent variables. The q-dimensional parameter vector θ is written

as θ⊤ = (θ⊤
y ,θ

⊤
η ) where θy and θη denote the parameters of the measurement part and

the structural part of the model respectively. The assumption of conditional independence

implies that the latent variables and covariates account for the interdependencies among

the observed variables. This greatly facilitates the computation of the likelihood because,

each density p(yjit | xjit,ηjit;θy) is a member of the exponential family or of the extended

exponential family in the case of ordinal responses.

Under the normality assumption for the latent variables, the integrals in the def-

inition of the log-likelihood in (2) do not have, in general, a closed-form solution and

as a result the location of the MLEs of GLLVMs requires a combination of numerical

integration and optimization. For the maximization of the log-likelihood function stan-

dard algorithms can be utilized, such as the Expectation-Maximization algorithm (E-M)

(Dempster, Laird, & Rubin, 1977) or the Newton-Raphson algorithm (Lange, 2004). For

the numerical approximation of the integrals in (2) various simulation techniques provide

powerful tools. Standard choices are Gaussian quadrature rules (Bock & Aitkin, 1981;

Schilling & Bock, 2005; Press, Teukolsky, Vetterling, & Flannery, 2007), simple Monte

Carlo methods (Sammel, Ryan, & Legler, 1997) but also advanced sampling algorithms

such as the MCMC (importance sampling, rejection sampling), or Laplace approximations

as described in Huber, Ronchetti, and Victoria-Feser (2004) and the work related with the

ADMB project that combines Laplace approximation and MCMC sampling algorithms

(Fournier et al., 2012). Those techniques work efficiently for solving high dimensional

problems.

The computational complexity of a GLLVM increases exponentially with the in-

crease of the latent variables and therefore composite likelihood estimation can reduce the

dimensionality of the problem at the expense of loss of some information. Under com-

posite likelihood estimation, and more specifically pairwise likelihood, an approximated

method from the ones mentioned above still needs to be applied but to a lower dimensional

problem.

4. PROPOSED WEIGHTED PAIRWISE
ESTIMATOR

A pairwise likelihood replaces the full likelihood in (1) by a set of bivariate like-

lihoods. Let us denote by yji∗ the T -dimensional vector of all observations on time for
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subject j and item i. The pairwise log-likelihood for a random sample of size n is

pℓ(θ) =

n∑
j=1

pℓj(θ) =

n∑
j=1

p−1∑
i=1

p∑
k=i+1

log p(yji∗,yjk∗,θ) (3)

where the pairwise likelihood estimator θ̂PL is a consistent estimator of θ under suitable

regularity conditions (Arnold & Strauss, 1991).

We show that θ̂PL is asymptotically a weighted estimator of estimates obtained from

separate maximizations of pairwise log-likelihoods each one summed across subjects. Let

us denote by r, one of N possible combinations of item i and item k above. The pairwise

likelihood pℓ(θ) becomes pℓ(θ) =
∑N

r=1 fr(θ) where fr(θ) =
∑n

j=1 log p(yji∗,yjk∗,θ). Let

us also denote by θ̂r the estimator resulting from maximizing fr(θ). For a large sample

size n, a Taylor series expansion of ∂fr(θ)

∂θ
around θ̂r gives

∂fr(θ)

∂θ
=

∂fr(θ̂r)

∂θ
+
(
θ − θ̂r

)⊤ ∂2fr(θ̂r)

∂θ∂θ⊤ ,

where the first component on the right hand side is zero.

By definition of θ̂PL, ∂pℓ(θ̂PL)/∂θ =
∑N

r=1 ∂fr(θ̂PL)/∂θ = 0. Therefore,∑N
r=1

(
θ̂PL − θ̂r

)⊤
∂2fr(θ̂r)/∂θ∂θ

⊤ = 0, from which we obtain,

θ̂PL =

(
N∑
s=1

∂2fs(θ̂s)

∂θ∂θ⊤

)−1 N∑
r=1

∂2fr(θ̂r)

∂θ∂θ⊤ θ̂r =

N∑
r=1

Arθ̂r,

where

Ar =

(
N∑
s=1

∂2fs(θ̂s)

∂θ∂θ⊤

)−1
∂2fr(θ̂r)

∂θ∂θ⊤ , r = 1, . . . , N.

The aim of the paper is to find new weights Ar that satisfy some optimality criterion.

To maximize each fr(θ) separately, we rewrite the pairwise loglikelihood for pairs

of items given in (3) as

pℓj(θ) =

p−1∑
i=1

p∑
k=i+1

log p(yji∗,yjk∗;θi,k), (4)

where θi,k denotes the q-dimensional model parameter vector indexed by the pair of items

{i, k}. Similarly, for pairs of time points, the pairwise log-likelihood function is:

pℓj(θ) =

T−1∑
t=1

T∑
s=t+1

log p(yj∗t,yj∗s;θt,s), (5)



WEIGHTED PAIRSWISE LIKELIHOOD 8

where θt,s denotes the q-dimensional parameter vector for the pair of time points {t, s}.
The choice between (4) or (5) is according to which of the two representations re-

duces the computational complexity. The separate maximizations give as many consistent

estimates for a single parameter as the total number of possible pairs. Fieuws and Verbeke

(2006) suggested to take the simple average as the final estimate. Although this is the

simplest solution, it may not lead to the most efficient estimator.

Let us denote by Θ̂
⊤
= (θ̂

⊤
1 , θ̂

⊤
2 , . . . , θ̂

⊤
N ), the Nq-dimensional vector with elements

the estimates θ̂r, r = 1, . . . , N obtained from separate maximizations of (4) or (5). The

asymptotic covariance matrix of Θ̂ has the form (Fieuws & Verbeke, 2006)

V =
1

n
J−1KJ−1, (6)

where J is a Nq×Nq block diagonal matrix and K a matrix of the same dimensions with

each element of J and K is of dimension q × q

Jrr = − 1

n

n∑
j=1

E

(
∂2pℓj(θ)

∂θr∂θ
⊤
r

)
, Kru =

1

n

n∑
j=1

E

(
∂pℓj(θ)

∂θr

∂pℓj(θ)

∂θ⊤
u

)
,

r = 1, . . . , N , u = 1, . . . , N .

The weighted estimator is of the form θ̂WPL = AΘ̂ where A is a q×Nq block matrix

of weights. A is obtained by minimizing the total variance of the weighted estimator,

θ̂WPL, given by the trace of AV A⊤ where V is the asymptotic covariance matrix given in

(6). Matrix A is of the form A = (A1, A2, . . . , AN ) where each element Ar of dimension

q×q gives the weight for the estimate θ̂r. By denoting with Ar,ij and θ̂r,j the i, j element of

matrix Ar and the jth component of θ̂r respectively, each parameter θi, i = 1, . . . , q, will be

estimated by θ̂WPL,i =
∑N

r=1

∑q
j=1Ar,ij θ̂r,j . To guarantee consistency, the minimization

is done under the constraint that the weights for each i sum to 1, that is
∑N

r=1

∑q
j=1Ar,ij =

1.

Let us denote with α the qA-dimensional vector of unique weights contained in A.

Vector α is linked with vec(A) through a matrix Ψ which determines the position of each

element of α in vec(A), as vec(A) = Ψα. The sum-to-one constraints are now applied to

the elements of α by defining a q × qA matrix M such that Mα = 1q. To understand

the nature of α, Ψ and M , we give two simple examples. Let us consider two estimates

of θ = (θ1, θ2)
⊤ denoted by θ̂1 = (θ̂11, θ̂12)

⊤ and θ̂2 = (θ̂21, θ̂22)
⊤. The weight matrix

A has the form A = (A1, A2) where A1 and A2 are 2 × 2 weight matrices for θ̂1 and θ̂2

respectively. In the first example, we assume that all elements of θ̂1 and θ̂2 can be used

to estimate θ1 and θ2 and that all elements of A are unique and α = vec(A). In this

case Ψ = I8. The elements of the first row of A should add up to one and the same is

true for the elements of the second row of A. Therefore, the form of matrix M will be
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M = (I2, I2, I2, I2). As a second example, let us assume that θ1 is estimated using θ̂11

and θ̂21 and θ2 is estimated using θ̂12 and θ̂22. Then matrices A1 and A2 are diagonal and

α = (A1,11, A1,22, A2,11, A2,22)
⊤ and Ψ = I2 ⊗ diag(e1, e2) where ek is a 2× 1 vector with

1 in the k-th place and 0 elsewhere. Matrix M has the form M = (I2, I2).

The solution of this minimization problem is given in Theorem 1 and the proof is

in the supplementary material.

Theorem 1 The minimizer of trAV A⊤ under the constraint Mα = 1q is given by

α∗ = Ω−1M⊤(MΩ−1M⊤)−11q, (7)

where Ω = Ψ⊤ (V ⊗ Iq)Ψ and Ψ is such that vec(A) = Ψα.

If we assume that all weight matrices Ar are diagonal, then each θi is estimated by

the corresponding components θ̂r,i, r = 1, . . . , N , only. In this case, qA = Nq and Ψ is

a Nq2 × Nq matrix having the form Ψ = IN ⊗ diag(e1, e2, . . . ,eq) where ei is a vector

with 1 in the ith place and zeros everywhere else. In this case, it can be shown that

Ω = V ⊙ (JN ⊗ Iq), where JN is a N ×N matrix of ones and ⊙ is the Hadamard product

between two matrices. This is equivalent with getting as Ω, a block matrix for which each

block Ωrj is a q × q diagonal matrix with elements, the corresponding elements of V but

with zeros everywhere else. The optimal vector of weights α takes the form

α = Ω−1 (1N ⊗ Iq)
[(

1⊤N ⊗ Iq

)
Ω−1 (1N ⊗ Iq)

]−1
1q.

Since all Ωrj matrices are diagonal, it can be shown that Ω−1 is again a block matrix and

each block Ωrj is again a q × q diagonal matrix. The i, i element of the Ar matrix is

Ar,ii =

∑N
j=1Ω

rj
ii∑N

r=1

∑N
j=1Ω

rj
ii

. (8)

This means that the weights of θ̂r,i, r = 1, . . . , N , the linear combination of which will

estimate θi, are given by,∑N
j=1Ω

1j
ii∑N

r=1

∑N
j=1Ω

rj
ii

,

∑N
j=1Ω

2j
ii∑N

r=1

∑N
j=1Ω

rj
ii

, . . . ,

∑N
j=1Ω

Nj
ii∑N

r=1

∑N
j=1Ω

rj
ii

. (9)

5. SIMULATIONS

In this section, we present results from three simulation scenarios using the multi-

variate growth model for binary outcomes both with a linear and a quadratic time latent

variable. In all simulations, we analysed p = 4 variables and ran 200 simulations. The
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other parameters were selected as follows: under simulation scenario 1, the sample size

was chosen as n = 100 and the number of time points T = 10, under scenario 2, n = 500

and T = 10 and under scenario 3, n = 500 and T = 10. The model used for simulating

data under scenarios 1 and 2 is:

logit
{
P (yjit = 1)

}
= βi,0 + βi,1xj + βi,2t+ βi,3xj × tj + ηji,0 + ηji,1 × tj , (10)

and the model used for simulating data under scenario 3 is:

logit
{
P (yjit = 1)

}
= βi,0+βi,1xj+βi,2tj+βi,3t

2
j+βi,4xj×tj+β5xj×t2j+ηji,0+ηji,1×tj+ηji,2×t2j ,

(11)

where xj and tj denote a group effect and the linear effect of time for individual j re-

spectively and i denotes the item. In model (10) , we used as parameter values for the

fixed part of the model (βi,0 = −2, βi,1 = −0.2, βi,2 = 0.5, βi,3 = 0.5) and in model (11),

(βi,0 = −1, βi,1 = 0.5, βi,2 = 0.1, βi,3 = −0.2, βi,4 = 0.5, βi,5 = −0.1). We assumed that the

parameters of the fixed effects are the same across time for all items. The values of the

parameters for the simulation study were chosen such that there is sufficient information

(i.e., proportions of the binary responses not tending to zero or one) in each item and time

point.

Furthermore, under simulation scenarios 1 and 2, the distribution of the latent

variables (ηj1,0, ηj1,1, . . . ηj4,0, ηj4,1) was assumed to be 8-dimensional normal with mean

zero and covariance matrix

Σ = I4 ⊗

(
0.3 0.1

0.2 0.3

)
+ 141

⊤
4 ⊗

(
0.7 0.7

0.6 0.6

)

For simulation scenario 3, the latent variables (ηj1,0, ηj1,1, ηj1,2, . . . ηj4,0, ηj4,1, ηj4,2) were

assumed to be 12-dimensional normal with mean zero and covariance matrix

Σ = I4 ⊗

 0.8 0.6 0.3

0.6 0.7 0.5

0.3 0.5 0.6

+ 141
⊤
4 ⊗ 0.2 131

⊤
3

Table 1 summarizes the results of the three simulation scenarios in terms of bias,

efficiency and coverage of the 95% asymptotic confidence intervals of the unweighted and

weighted estimator. For saving space, the results of the first two outcomes are presented.

By comparing the columns of ‘S.E. unweighted’ and ‘S.E. weighted’ in the two tables, one

can immediately see that the weighted estimator has a higher efficiency compared to the

unweighted one. The difference between the asymptotic standard errors computed under

the unweighted and the weighted estimator becomes smaller as the sample size increases
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from 100 to 500 but still the difference is noticeable. The coverage of asymptotic 95%

confidence intervals in most cases exceeds 95% and reaches one.

Although the weighted estimators have much smaller standard errors, these are still

large compared to optimal ones and this could be a reason for empirical coverages reaching

values near to one. No differences are found in the bias between the two estimators.

6. APPLICATION

For the data introduced in Section 2 on reported symptoms of schistosomiasis we

used the multivariate growth model already discussed in Section 3 with a logistic link.

The baseline and follow up of one and two mass drug administration (MDA) are modeled

through a time covariate with values 0, 1 and 3 to allow for the two years gap between the

second and the third measurements and also to make the interpretation of the intercept

parameter meaningful. We also attempted to fit a model with two latent variables one to

allow for a random intercept and random slope but we experienced numerical difficulties

with the estimated variance of the random slopes practically zero, suggesting that this

extension was not supported by the data. The latent variable at the intercept level rep-

resents the combined effect of all omitted children and item specific covariates that cause

some children to be more prone to report symptoms of schistosomiasis or detected with

blood in their urine through the test than other children. The model is:

logit
{
P (yjit = 1 | t, ηji,0)

}
= βi,0 + βi,1t+ ηji,0 (12)

where ηji,0 are item-individual zero mean multivariate normals with an unrestricted co-

variance matrix representing item-individual variation at the intercept level. Table 2 gives

the simple average estimates and the corresponding weighted ones for the intercept and

the coefficient for time for all four items together with their standard errors. As it was

expected, the weighted estimates have smaller standard errors. All four coefficients for

time were found to be highly statistically significant. Obtaining the exponentiated coef-

ficients of the time variable to bring their interpretation to odds ratios we find that after

the MDAs, the chance of self-reporting and detected blood in the urine by the reagent

strips decreased by 15% and 53% respectively. At the same time, the chances of know-

ing about the disease and self-reporting of pain when urinating have increased with time.

Although we might have expected that MDA treatments to reduce not only the blood in

urine but also the pain, it is still reasonable to expect that pain when urinating could

be attributed to many other characteristics and therefore this does not necessarily reflect

failure of MDA. The increase of knowledge and awareness is the positive effect of the SCI

programme.
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Table 1: Scenarios 1, 2 and 3: True values, unweighted and weighted estimates along with
asymptotic standard errors and coverages, n = 100or500, p = 4, T = 10, 200 simulations

Outcome True Unweighted Weighted S.E. S.E Coverage Coverage
unweighted weighted unweighted weighted

Scn. 1 (n = 100) 1 -2.00 -2.06 -2.06 1.28 0.93 1.00 0.99
-0.20 -0.25 -0.25 1.69 1.24 1.00 1.00
0.50 0.54 0.54 2.00 1.51 1.00 1.00
0.50 0.54 0.54 2.60 2.02 1.00 1.00

2 -2.00 -2.01 -2.01 1.31 0.98 1.00 1.00
-0.20 -0.27 -0.27 1.62 1.19 1.00 1.00
0.50 0.52 0.52 2.04 1.59 1.00 1.00
0.50 0.57 0.57 2.53 1.99 1.00 1.00

Scn. 2 (n = 500) 1 -2.00 -1.98 -1.98 0.33 0.30 0.99 0.99
-0.20 -0.25 -0.25 0.42 0.37 1.00 1.00
0.50 0.51 0.51 0.53 0.47 1.00 1.00
0.50 0.53 0.53 0.70 0.61 1.00 1.00

2 -2.00 -1.99 -1.99 0.34 0.30 1.00 1.00
-0.20 -0.24 -0.24 0.41 0.36 1.00 1.00
0.50 0.50 0.50 0.54 0.46 1.00 1.00
0.50 0.52 0.52 0.70 0.60 1.00 1.00

Scn. 3 (n = 500) 1 -1.00 -0.90 -0.88 1.79 1.10 1.00 0.99
0.50 0.41 0.40 2.55 1.67 1.00 1.00
0.10 -0.04 -0.05 1.56 1.01 1.00 1.00
-0.20 -0.21 -0.21 5.69 3.57 1.00 1.00
0.50 0.63 0.64 2.30 1.57 1.00 1.00
-0.10 -0.10 -0.10 8.13 5.42 1.00 1.00

2 -1.00 -0.91 -0.90 1.78 1.11 1.00 0.99
0.50 0.44 0.43 2.56 1.71 1.00 1.00
0.10 -0.04 -0.04 1.58 1.00 1.00 1.00
-0.20 -0.22 -0.22 5.52 3.32 1.00 1.00
0.50 0.62 0.62 2.28 1.52 1.00 1.00
-0.10 -0.08 -0.08 7.98 5.27 1.00 1.00

Table 2: Schistosomiasis data: unweighted and weighted estimated parameter values and
standard errors for the fixed effects

Parameter Unweighted Unweighted Weighted Weighted

estimate S.E. estimate S.E.

β̂1,0 -2.52 0.122 -2.51 0.107

β̂2,0 -1.69 0.072 -1.66 0.063

β̂3,0 -0.79 0.046 -0.79 0.045

β̂4,0 -1.54 0.066 -1.52 0.063

β̂1,1 -0.17 0.064 -0.17 0.064

β̂2,1 0.27 0.036 0.27 0.035

β̂3,1 0.75 0.035 0.75 0.035

β̂4,1 -0.75 0.084 -0.75 0.084
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It is clear from Table 3 that gives the estimated covariance and correlation matrix

for the random intercept term, that MDA is not enough to account for the dependencies

among the items and children’s characteristics. Variances and correlations seem high

enough to justify the use of the random intercept in the model. The highest correlations

are between the random intercepts for the two self-reporting symptoms and between the

self-reporting symptom of blood in urine and the detection through the reagent strips

which implies that at baseline, children with low probability of reporting a blood urine

symptom will also have a low probability of reporting pain and also low probability of

detecting blood in their urine via the reagent strips. In addition to that, at baseline,

there is a much smaller correlation between the two self-reporting symptoms, the reagent

strips and how much children seem to know about the disease. The intra-class coefficient

controlling for the effect of the explanatory variable time (intervention) is 0.493, 0.322,

0.160 and 0.281 for items 1 to 4 respectively. The intra-class correlation measures the

dependencies among the dichotomous responses on the same children for each item. The

largest homogeneity within children responses is detected for items 1 and 2 which are the

self-reporting items. Children will continue reporting the presence of the symptoms even

after the intervention (i.e. MDA) where in the case of the reagent strips the correlation of

the measurements reduces to 0.281. We should note that in the data analysis our primary

interest is in the parameters of the fixed effects of the model. The parameters associated

with the item-specific latent variables are more seen as nuisance parameters and therefore

we do not produce standard errors for those. However, inference on those parameters can

be based on likelihood ratio tests already developed under the framework of composite

likelihood estimation (Varin, 2008) or on bootstrapping methodology.

Table 3: Schistosomiasis data: weighted estimated covariance and correlation matrix for
the random intercept

Item 1 2 3 4

1 3.194 2.178 0.668 1.687

2 2.178 1.563 0.422 0.980

3 0.668 0.422 0.628 0.518

4 1.687 0.980 0.518 1.286

1 1.000 0.975 0.472 0.832

2 0.975 1.000 0.426 0.691

3 0.472 0.426 1.000 0.576

4 0.832 0.691 0.576 1.000
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In Table 4, we computed some fitted probabilities for various values of the latent

variable and for all three time points and items. It is quite evident that the estimated

probabilities for all four items vary significantly at different values of the latent variable

indicating large variability in children responses. There is less of that variability for item 4

(reagent strips) at wave 3 in which the estimated probabilities of detecting blood in urine

through the reagent strips is relatively low at all values of the latent variable. There is a

clear effect of MDA which is reflected in the large reduction of the probability of detecting

the disease through the reagent strips. This leads us to the conclusion that one needs to

treat the self-reporting items (excluding the blood in urine) with caution and if possible

avoid them when one wants to measure intervention effectiveness.

Table 4: Schistosomiasis data: fitted probabilities of a positive response for different values
of the random intercept

−2× σ̂η0ji
−1× σ̂η0ji

0 1× σ̂η0ji
2× σ̂η0ji

Item 1

t -3.574 -1.787 0 1.787 3.574

0 0.002 0.013 0.075 0.327 0.742

1 0.002 0.012 0.069 0.293 0.712

3 0.001 0.008 0.047 0.231 0.642

Item 2

t -2.500 -1.250 0 1.250 2.500

0 0.016 0.053 0.162 0.404 0.703

1 0.020 0.067 0.201 0.468 0.754

3 0.034 0.108 0.297 0.596 0.838

Item 3

t -1.585 -0.792 0 0.792 1.585

0 0.085 0.170 0.312 0.501 0.689

1 0.165 0.303 0.490 0.680 0.824

3 0.469 0.661 0.812 0.905 0.955

Item 4

t -2.268 -1.134 0 1.134 2.268

0 0.022 0.066 0.179 0.405 0.679

1 0.011 0.032 0.094 0.243 0.500

3 0.002 0.007 0.023 0.067 0.182

We do not report here the weights for each pair but we should note that for our data
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application, weights took values close to 0 or 1 for pairs of items indicating that only a

percentage of all pairs contributed to estimate the model parameters. Unfortunately that

information becomes available after the estimation is complete and therefore it cannot

be used to reduce the computational time but rather to increase the efficiency of the

estimates.

7. CONCLUSION

The paper studies the use of weights in pairwise likelihood estimation for a family

of models with random effects / latent variables. It is shown that the pairwise estimator

obtained from maximizing the sum of all pairwise log-likelihoods can be written as a

weighted sum of estimates obtained from separate maximizations of each pairwise log-

likelihood. We propose a new set of weights that improve the efficiency of the pairwise

likelihood estimator and apply them to a data set collected as part of the SCI programme.

The four binary indicators of schistosomiasis are analyzed with a multivariate growth

model. Simulations show that the proposed weights improve the efficiency of the estimators

obtained from the pairwise maximum likelihood estimation. Finally, in our developments

we have assumed that we work with complete data or in the presence of incomplete

response patterns that the missing data mechanism is missing completely at random.

However, due to the fact that missing data and complex missing data mechanisms are

the norm rather than the exception in applied research, we are currently extending our

proposed weights to also account for missing at random mechanisms. This is in line with

recent developments in pseudo-likelihood methodology for incomplete data proposed by

Molenberghs, Kenward, Verbeke, and Birhanu (2011).

SUPPLEMENTARY MATERIAL

Proof of Theorem 1

The variance of AΘ̂ is AV A⊤. The choice of A is based on the minimization of the

total variance of the weighted estimator which is the trace of AV A⊤ under the sum-to-

one constraints. Let us define vector α which contains all qA unique elements of A and

assume that there is a design matrix M which imposes the sum-to-one restrictions to these

elements. This matrix consists of zeros and ones at appropriate places. Each row of this

matrix imposes a sum-to-one restriction to the elements of α suitable for estimating each

one of the q model parameters. Here these restrictions are such that Mα = 1q where M

is a q × qA matrix and 1q is a q-dimensional vector of ones. Each of these q restrictions

corresponds to a different set of estimated parameters therefore, matrix M is of full row

rank. Let us define a Nq2 × qA matrix Ψ such that Ψα = vec(A). Such a matrix defines



WEIGHTED PAIRSWISE LIKELIHOOD 16

the position of each unique element of α in vec(A) vector, therefore Ψ is of full column

rank. Examples of vector α and matrices M and Ψ are found in the main document.

Consider the Lagrangian:

ϕ =
1

2
trAV A⊤ − ℓ⊤ (Mα− 1q) (13)

where ℓ is a q × 1 vector of Lagrange coefficients. Then,

ϕ =
1

2
{vec(A)}⊤ (V ⊗ Iq) {vec(A)} − ℓ⊤ (Mα− 1q) .

Since Ψα = vec(A),

ϕ =
1

2
α⊤Ψ⊤ (V ⊗ Iq)Ψα− ℓ⊤ (Mα− 1q) .

The differential is

dϕ =
{
Ψ⊤ (V ⊗ Iq)Ψα

}⊤
dα− ℓ⊤Mdα.

Hence, the first order equations are

Ψ⊤ (V ⊗ Iq)Ψα = M⊤ℓ and Mα = 1q. (14)

Since Ψ is of full column rank, matrix Ψ⊤ (V ⊗ Iq)Ψ is invertible and since M is of full

row rank, matrix M
{
Ψ⊤ (V ⊗ Iq)Ψ

}−1
M⊤ is invertible too. Therefore, the solution with

respect to ℓ is

ℓ =

[
M
{
Ψ⊤ (V ⊗ Iq)Ψ

}−1
M⊤

]−1

1q.

If we define Ω = Ψ⊤ (V ⊗ IqΨ) and substitute ℓ into (14), we get

Ωα = M⊤
(
MΩ−1M⊤

)−1
1q,

from which the solution

α∗ = Ω−1M⊤(MΩ−1M⊤)−11q

emerges.
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