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Moral Hazard and Renegotiation of
Multi-Signal Contracts

Abstract

We study the costs and bene�ts of additional information in agency contracts, when there
is the possibility of renegotiation. The literature to date assumes that contractual simplicity,
i.e. the omission of informative contractual contingencies, can only arise in multi-period envi-
ronments, and only in a speci�c manner in which it is interim information that is excluded. In
contrast, we show that in certain circumstances, it is also e¢ cient to restrict the set of con-
tingencies in a standard one period contract, where all information arrives at once. Although
increasing the number of contingencies will always decrease the agency cost, it can have the
adverse e¤ect of weakening the principal�s commitment not to renegotiate, thus undermining
ex ante incentives to exert e¤ort. Applications to several real world phenomena are brie�y
explored.

Keywords: Moral Hazard, Renegotiation, Commitment, Multiple Signals, Contractual
Simplicity.

JEL Classi�cation: D86

1. Introduction

In this paper, we study the costs and bene�ts of an additional piece of information

in agency contracts, when there is the possibility of renegotiation. In the classical model

of Holmström (1979), it is Pareto e¢ cient to make compensation contingent on all signals

which are informative of the agent�s action, as famously proved in the Su¢ cient Statistic

Theorem. However, these predictions stand in stark contrast to the nature of real world

contracts, which are typically left relatively simple and uncontingent. Although it is

well-established in the existing literature that the threat of renegotiation can make it

bene�cial for the principal to restrict the set of signals on which an incentive contract can

be based, the prevailing assumption in the literature to date has been that this result only

arises in complicated multi-period models of repeated moral hazard/adverse selection.

It is assumed that the possibility of renegotiation has no relevance for the optimal set of

contingencies in a one period contract1. However, we show that this is not necessarily

the case. We ask whether the principal could do better if she committed herself to fewer

signals rather than more even when all signals are informative of the agent�s action,

1A seminal paper in this literature is Cremer (1995). He shows in a repeated model of moral hazard
that it can be e¢ cient to restrict observability of an interim signal, in order to strengthen the principal�s
commitment not to renegotiate. He argues that a complex multi-period model is necessary because
"renegotiation is only relevant if we have at least two periods."
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in a one period contract in which all information arrives at once. The answer is, in

certain circumstances, yes. We show that although increasing the number of informative

contingencies will always decrease the agency cost of providing incentives à la Holmström

(1979), it can have the adverse e¤ect of weakening the principal�s commitment not to

renegotiate, thus undermining ex ante incentives to exert e¤ort.

The key �ndings of our analysis can be summarized as follows. Suppose the contract

can be based on two variables - �rst, the agent�s output and second, a (noisy) signal of

the agent�s e¤ort which indicates whether output was high simply due to good luck or to

the agent�s hard work2. Clearly, in the full commitment paradigm, it is Pareto e¢ cient

to condition the agent�s compensation on both signals (à la Holmström (1979)), and

to stipulate a higher payment if high output was due to the agent�s diligence rather

than luck. This improves the provision of incentives. However, the problem is that

this increases the discrepancy in wages received in the best and worst states of the

world. If the principal cannot commit not to renegotiate the contract, then under this

compensation structure it becomes more tempting to provide a bit of insurance to the

agent ex post (after e¤ort has been undertaken but before the �nal outcomes are realized).

This weakens ex ante incentives. Thus, in this paper we try to capture the broad intuition

that parties might prefer not to write contracts which include too many contingencies

with very high/low payo¤s for the extreme outcomes, as such contracts tend to be less

credible are more prone to renegotiation.

In addition to the theoretical contribution, the empirical signi�cance of our results

is that there exist many economic environments in which the phenomenon of contractual

simplicity arises which do not �t well with the multi-period paradigm assumed in the

literature to date. For example, in salesforce compensation, agents are usually rewarded

with a �xed annual bonus for meeting a speci�c annual sales target, rather than a tiered

bonus with a larger payment for exceptional performance (see, for example, Joseph and

Kalwani (1998)). In executive compensation, incentives are often provided through stock

options on the basis of exceeding a single strike price, rather than a more sophisticated

design based on multiple strike prices3. In venture capital contracting, Kaplan and

Strömberg (2003) �nd that the entrepreneur�s compensation is often based on crude non-

�nancial performance "milestones"4, in which his equity stake increases if the milestone

2As noted in La¤ont and Martimort (2002, p.167), this information could be obtained by comparing
the agent�s performance with those of other agents engaged in similar activities, i.e. "benchmarking"
or "yardstick competition".

3Some recent papers have explored alternative rationalizations for the use of simple bonus schemes,
not based on renegotiation: Herweg et al. (2009) and de Meza and Webb (2007) analyze incentive pro-
vision under loss aversion, and MacLeod (2003) analyzes optimal contracting on subjective performance
indicators.

4Some examples include "release of second major version of the product, FDA approval of new drug,
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is achieved5. Finally, the theory of "yardstick competition" predicts that an agent�s

compensation should be based not only on his own performance, but also on that of

other agents in the market engaged in similar activities. However, this is rarely observed

in practice. In all the examples quoted above, it is plausible to assume that the excluded

contingencies are observed at the same time as those contingencies which are included6,

hence it is at least suggestive that a model of contract renegotiation in a one period

framework where all information arrives at once is a fruitful approach to exploring such

phenomena.

We provide a more detailed intuition of our results as follows. We extend the

seminal article of Fudenberg and Tirole (1990) by allowing the contract to be based on

more than one signal. In their paper, a risk neutral principal engages a risk averse agent

to undertake a costly e¤ort which is unobservable to the principal. An incentive contract

is written which bases the agent�s monetary compensation on a noisy signal of his e¤ort

(such as his output), and must o¤er a higher payment for good performance in order

to induce the agent to work hard and overcome his "disutility of exerting e¤ort". This

exposes him to risk. However, after the agent has acted, but before the �nal outcome

is observed, the principal (she) gains from renegotiating the contract in order to shield

the agent from risk, by replacing the original contract with a riskless payment which

gives the agent the same utility, but reduces the principal�s wage bill due to the lower

risk premium. But the agent (he) anticipates this at the outset, and realizing that his

eventual payment will be independent of his action, will no longer have an incentive to

exert e¤ort. Thus, if the principal cannot commit not to renegotiate the contract, the

�rst-best e¤ort is no longer attainable. In order to eliminate this time inconsistency

problem and make the contract "renegotiation-proof", the agent must randomize his

action between high and low e¤ort. The principal does not observe the outcome of

randomization, which creates a "lemons" problem at the interim stage - if the principal

o¤ers an insurance policy to the "good" type who chose high e¤ort, the "bad" type who

faces a higher probability of loss will enjoy a rent from falsely claiming to be "good" and

accepting this o¤er. If the probability of the agent choosing low e¤ort is su¢ ciently high,

then the expected gain to the principal from providing insurance to the "good" type is

new corporate partnership found, patents approved, company secures threshold number of customers
who have purchased the product and give positive feedback, new clinical tests completed" (see Kaplan
and Strömberg (2003) Table 3B).

5One might argue that the empirical fact that VCs don�t use complicated contracts does not rule
out the possibility that the initial contract is subsequently renegotiated to include more sophisticated
compensation schemes with additional contingencies. However, the evidence is not supportive of this -
Kaplan and Strömberg (2003) �nd that contracts actually tend to become less contingent over time.

6In the case of yardstick competition, it is reasonable to assume that the output of outside agents
must be observed at roughly the same time as the inside agent, in order to control for �uctuations in
the external environment.
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exceeded by the expected cost of rent to the "bad" type, such that insurance becomes

unpro�table. Thus, the contract becomes renegotiation-proof.

Moving to our paper, in a world without renegotiation, the principal�s sole objective

is to minimize the agency cost (or risk premium) incurred in providing incentives to the

agent. However, when renegotiation cannot be prevented, the principal faces a further

objective of minimizing the cost of renegotiation-proofness, i.e. the shortfall in e¤ort

provision relative to �rst-best. We show how these two objectives can end up con�icting

with each other. It is useful to introduce some terminology here. Denote the average

cost of incentive provision as the agency cost per unit disutility of exerting e¤ort, and

similarly the marginal cost of incentive provision as the marginal agency cost. Whereas

the �rst objective requires minimization of the average cost of incentive provision, the

second objective requires minimization of the marginal cost of incentive provision. In

certain circumstances, these two variables move in opposite directions - although, from

Holmström (1979), including an additional signal will always decrease the average cost,

we show that it can actually increase the marginal cost.

We illustrate this e¤ect with a simple example. Suppose the contract can be written

on signal Y with binary outcomes fgood; badg, and consider the e¤ects of including an
additional signal Z with binary outcomes fhigh; lowg7, which is observed if Y = \good".
Given that the combined contingency \good & high" conveys more "favorable news"

that the agent has exerted e¤ort than \good" alone, the agent should be rewarded more

generously. From Milgrom (1981), this monotonicity in the compensation structure

minimizes the average cost of incentive provision. Next, at the renegotiation stage the

principal can alter the original contract and provide (partial) insurance to the agent,

for example, by o¤ering a lower wage in the \good" state, compensated by a higher

wage in the \bad" state so that the agent remains indi¤erent (in utility terms) but the

risk premium and therefore the wage bill incurred by the principal decreases. For the

contract to be renegotiation-proof, there must be no gain from providing even a small

bit of insurance across any contingencies. In other words, the probability of undertaking

low e¤ort must be su¢ cient to ensure the marginal bene�t of insurance is exceeded by

the marginal cost (of increasing rent to the "bad" type). We show that if marginal

utility is diminishing su¢ ciently fast in income and the wage in the \good & high"

contingency increases too much and becomes "too extreme", then the marginal bene�t of

insurance provision across \good & high" and \bad" in the multi-signal contract increases

relative to insurance provision across \good" and \bad" in the one signal contract. Note

that insurance provision is simply incentive provision working in reverse. Hence, put

7For example, signal Y could be revenue data, whereas signal Z could be some additional information
about intrinsic project quality, such as the outcome of clinical trials or beta-tests, customer feedback,
patent approval etc.
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di¤erently, inclusion of the additional signal results in an increase in the marginal cost

of incentive provision.

Hence, the principal faces a trade-o¤: on the one hand, omitting the additional

signal raises the upper bound on the level of e¤ort provision consistent with renegotiation-

proofness, but on the other hand it increases the risk premium incurred in incentive

provision. If the �rst e¤ect dominates, then it is ex ante e¢ cient to omit the additional

signal from the contract. Finally, although it is ex ante e¢ cient, ex post once e¤ort

is sunk, the principal cares only about minimizing the risk premium, or equivalently,

maximizing insurance provision to the agent. Hence, at this stage she gains from re-

inserting the omitted information into the contract. To prevent this, she must "lash

herself to the mast" by undertaking an irreversible investment at the outset which renders

the additional signal unobservable to all8.

The idea that the principal might be worse o¤ from observing additional informa-

tion has surfaced in many guises in the agency literature, notably in the "ratchet e¤ect"

of La¤ont and Tirole (1988). There are also a number of more closely related papers

which show that in models of renegotiation, making an additional signal observable may

make the principal worse o¤because it makes renegotiation more powerful. But all these

models consider somewhat of a special case, in that they require multi-period contracts,

and furthermore, it is only ever bene�cial to omit early arriving (or interim) information

which, crucially, is observed before renegotiation takes place. The reason for this is that

after observing the interim signal, the principal can condition her renegotiation o¤er on

the information conveyed by this signal (e.g. she can choose to renegotiate only if the

interim outcome was good). This increases the value of renegotiation, thus making the

threat of renegotiation more powerful in undermining ex ante incentives. Hence, the

principal might be better o¤ restricting observability of the interim signal. Clearly, a

subsequent period is required, otherwise observation of the �rst signal has no impact

on the value of renegotiation. In our paper, however, including an additional signal can

increase the gains from renegotiation even if there are no subsequent periods after this

signal is observed. Thus, incentives to omit information can arise even in a one period

framework. Put di¤erently, the timing of the omitted signal is irrelevant - it can arrive

before, at the same time as or after other signals. We proceed to summarize the existing

8Some real-world examples of how this might be achieved are given here. If the time between e¤ort
being sunk and the �nal outcome being realized is relatively short, then a �rm can commit to restricting
observability of information by not setting up the appropriate accounting and information systems at
the outset of the project. In venture capital �nance, the venture capitalist (VC) can restrict the amount
of contractible information by allocating control rights to the entrepreneur at the outset. Kaplan and
Strömberg (2003) present evidence consistent with this view - in order to enforce contracts written on
"di¢ cult to verify" non-�nancial information such as the outcome of clinical trials and beta-tests, the
VC needs to retain control in order to have the power to terminate entrepreneurs who fail to comply.
(Similar opportunistic behavior by the VC is prevented by concerns about reputation).
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body of literature.

Dewatripont and Maskin (1995) investigate a model of "hidden types" with two

"screening" variables which are observed sequentially. The optimal contract under full

commitment exhibits the familiar rent extraction-e¢ ciency trade-o¤ and imposes alloca-

tive ine¢ ciency in both variables. However, when renegotiation is possible, the agent�s

choice of �rst period variable reveals information about his type, which the principal

is able to use to renegotiate away any ine¢ ciency in the second period variable. Thus,

it becomes impossible to use the latter as a screening device. If this is the less costly

screen of the two variables, then it is ex ante e¢ cient to restrict observability of the �rst

variable in order to harden the principal�s commitment not to renegotiate. Hart and

Tirole (1988) and Dewatripont (1989) consider related models, in which the possibility

of renegotiation results in information being revealed more slowly compared to the full

commitment outcome.

Crémer (1995) considers a repeated model of moral hazard and shows how ob-

servation of an interim signal about the agent�s ability can undermine the principal�s

credibility in threatening to �re an agent who performed poorly. Speci�cally, after ob-

serving this signal, the principal can choose to renegotiate and retain the agent only

if he is revealed to be high quality. This increases the gains from renegotiation, thus

weakening ex ante incentives to exert e¤ort. Ma (1991) also studies a repeated model

of moral hazard, in which the principal would wish to commit not to renegotiate after a

short term signal is observed, in order to preserve long term incentives. This can only be

achieved through the agent randomizing his action à la Fudenberg-Tirole. In a related

model, Axelson and Baliga (2009) show that commitment to non-renegotiation can be

achieved without sacri�cing e¤ort provision, by allowing the agent to manipulate and

garble the short term signal. This creates a lemons problem at the interim stage which

eliminates any potential gains to the principal from renegotiating. A notable exception

to the above papers is Hermalin and Katz (1991), who show that renegotiation can ac-

tually be ex ante e¢ cient. If the principal observes a non-veri�able signal of the agent�s

e¤ort before renegotiating, then the �rst-best outcome can be attained. This is because

renegotiation then takes place under complete information, which means the principal

can provide full insurance to the risk-averse agent without undermining ex ante incen-

tives. However, the principal would wish to commit not to observe any premature signal

of the �nal outcome before the opportunity for renegotiation arises (i.e. she would like

to avoid what the authors call "information leakage"), as this would reduce the scope

for insuring the agent.

Some other papers in which the possibility of renegotiation leads to di¤erent con-

tractual outcomes are mentioned here. In a recent ground-breaking paper, Bolton and

Faure-Grimaud (2010) show that contracting parties might actually prefer to write an
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incomplete contract even when all contingencies are fully foreseeable and describable.

The rationale for omitting contingencies is di¤erent to our paper - due to time-costs of

deliberating current and future decisions, this gives them the option to defer thinking

about decisions to the time when they arise, such that they start o¤ with a relatively

uncontingent agreement which is continuously renegotiated in light of new information

and becomes progressively more detailed over time. Matthews (2001) shows that the op-

timal contract under moral hazard, risk aversion and limited liability is a debt contract

when renegotiation is possible. Jewitt et al. (2008), however, analyze the full commit-

ment outcome under similar assumptions, and show that debt is not always the optimal

contract. Our paper is di¤erent in that Matthews models only one signal - he does not

analyze the e¤ects of including additional signals and instead focusses on di¤erent issues.

As highlighted above, the predictions of our model are consistent with a puzzling

feature of venture capital contracts documented in Kaplan and Strömberg (2003). They

�nd that the entrepreneur�s compensation is often contingent upon non-�nancial perfor-

mance milestones, which is especially puzzling, given that they are more di¢ cult to verify

objectively than contingencies based on �nancial targets. However, their advantage may

lie in the fact that they are intrinsically binary in nature (i.e. the realized performance

outcomes can only be "pass" or "fail") and are hard to enumerate into more detailed

contingencies. Take the example of a biotech venture in which the entrepreneur must be

incentivized to develop a high quality drug. A performance milestone could be written

which increases the entrepreneur�s equity stake by a �xed amount if the drug receives

FDA approval, and keeps it constant otherwise. Alternatively, the performance mile-

stone could be based on pro�t data, for example requiring the entrepreneur to achieve a

target of one million dollars. However, the problem is that unlike the non-�nancial mile-

stone, this milestone is not renegotiation-proof - ex post, the venture capitalist would

be free to renegotiate and replace the crude milestone with a more sophisticated com-

pensation scheme containing multiple contingencies (for example, a tiered bonus scheme

which stipulates a small bonus if the entrepreneur breaks even, and a much higher bonus

if he exceeds �ve million). Hence, although non-�nancial milestones make for a blunter

instrument in terms of incentive provision, our model provides one possible advantage

in terms of strengthening renegotiation-proofness of the contract.

The remainder of the paper proceeds as follows. Section 2 presents the model.

Section 3 outlines the contracting equilibrium of the Fudenberg-Tirole benchmark model

with one signal. Section 4 extends the model to the case of two informative signals,

and solves for the optimal renegotiation-proof multi-signal contract. Section 5 allows

the principal to restrict observability of the additional signal, and analyzes the choice

between one signal and multi-signal contracts. Section 6 concludes the paper. Appendix

A contains all the proofs. Appendix B considers an extension which allows for the
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payment of an ex ante rent to the agent.

2. The Model

2.1. Agent

There are two possible e¤ort choices e 2 fe
¯
; �eg ; where e denotes the disutility of

e¤ort and �e > e
¯
(hence e

¯
is interpreted as "low" e¤ort and �e as "high" e¤ort), and denote

	 � �e� e
¯
as the disutility of exerting e¤ort. The e¤ort choice is observable only to the

agent. The agent is risk averse and his utility for income w and e¤ort e is additively

separable, V (w; e) = U(w) � e where U 0(:) > 0; U 00(:) < 0, U(:) is twice continuously

di¤erentiable and admits an inverse function �(:), and for any U 2 < there exists unique
w 2 < such that �(U) = w:

2.2. Principal

There are two possible outputs or revenues for the principal, g and b, where g > b:

The probability of output g when the agent chooses e¤ort e is denoted pg(e), where

pg(�e) > pg(e¯
). Let I(e) � pg(e)g + (1� pg(e))b denote expected revenue. The principal

is risk neutral. Her objective is to maximize expected pro�t, de�ned as the di¤erence

between expected revenue I(e) and the expected wage cost of inducing e¤ort e. We

assume:

I(�e)� �(�e) � I(e
¯
)� �(e

¯
) � 0 (1)

The left-hand side inequality in (1) ensures that inducing high e¤ort is �rst-best e¢ cient.

The right-hand side inequality is assumed purely for simplicity in order to rule out the

"shut down" equilibrium considered in Fudenberg-Tirole, in which the principal chooses

not to o¤er any contract and the project is never started.

2.3. Information structure

The principal and agent will always receive a veri�able signal Y which is perfectly

correlated with output. Thus far, our set up is identical to Fudenberg-Tirole. We

introduce an additional veri�able signal Z which is observed only if state g occurs. Z

takes only two values h and l. Thus, the state space in the multi-signal information

system is fh; l; bg, where h > l > b. We index the state by i. Denote the probability

of state i when the agent chooses e¤ort e as pi(e). We assume: (1) the outcomes of

signals Y and Z are observed simultaneously9, and critically (2) signals Y and Z are

both informative of the agent�s action in the sense of Holmström (1979). Formally:

P robfZ = h=(�e; g)g 6= P robfZ = h=(e
¯
; g)g (2)

9Equivalently, Z is observed after Y but a second round of renegotiation in between is not possible.
If it is possible, the analysis is more complicated but it does not qualitatively a¤ect our results.
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We also assume the strict monotone likelihood ratio property (MLRP):

ph(�e)=ph(e¯
) > pl(�e)=pl(e¯

) > pb(�e)=pb(e¯
) (3)

We explain in section 5 below why this assumption is required. Finally, we use the

following additional notation throughout the paper:

� =
pl(�e)pb(e¯

)� pl(e¯ )pb(�e)
ph(�e)pl(e¯

)� ph(e¯ )pl(�e)
and  =

ph(�e)pb(e¯
)� ph(e¯ )pb(�e)

ph(�e)pl(e¯
)� ph(e¯ )pl(�e)

(4)

2.4. Contracts

A compensation scheme c(e) is a speci�cation of utility levels Ui(e) for all con-

tractible states i, so that the agent receives wage wi(e) = �(Ui(e)) in state i.10 A

contract c is a pair of compensation schemes fc(e
¯
); c(�e)g from which the agent chooses

before the �nal outcome is realized. From the revelation principle, we can restrict the

contract space C to all feasible pairs of compensation schemes fc(e
¯
); c(�e)g without loss

of generality, since any allocation obtained from a more complex message space is also

achievable by a direct revelation mechanism, in which the agent announces his type

alone.

2.5. Extensive form, equilibrium and renegotiation-proofness

The extensive form of the game is as follows. In period 0, the principal chooses

whether or not to make an irreversible investment which renders signal Z unobservable

to all. In period 1, the "ex ante stage", the principal o¤ers the agent a contract c1 on

a take-it-or-leave-it basis. If the agent rejects the o¤er, the game ends and both parties

get their outside options (which we normalize to zero). If he accepts, the agent chooses a

probability distribution x over e¤ort levels fe
¯
; �eg, where x � P rob(e = �e): The principal

does not observe x or the realized e¤ort level e:

In period 2, the "ex post" or "renegotiation" stage, the principal o¤ers the agent a

new contract c2 on a take-it-or-leave-it basis11. If the agent rejects, the original contract

c1 remains binding. If he accepts, the original contract is torn up and the new contract

c2 becomes binding. Then the agent chooses an element from the menu fc(e
¯
); c(�e)g.

Finally, the signal outcomes are realized and the agent receives his wage.

Our solution concept is perfect Bayesian equilibrium. This requires that players�

strategies are sequentially rational given their beliefs, and beliefs �on the equilibrium

10So, if only signal Y is observable, c(e) = fUg(e); Ub(e)g. If both signals are observable, c(e) =
fUh(e); Ul(e); Ub(e)g.
11Ma (1994) and Matthews (1995) show that if the agent has all the bargaining power in the renego-

tiation game, then the full commitment equilibrium allocation is attainable.
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path�(and also �o¤ the equilibrium path�wherever possible) are determined using Bayes�

rule and equilibrium strategies.

A contract is renegotiation-proof if there is no gain to the principal from altering it

at the renegotiation stage, given her beliefs about the agent�s choice of e¤ort distribution

x. Throughout the paper we restrict attention to such contracts. From theRenegotiation-

Proofness Principle, there is no loss of generality in making this restriction. To see why,

suppose that a Pareto improving allocation could be achieved by an initial contract c01
which is subsequently renegotiated to c02 6= c01. But then the same allocation could be

achieved by writing c02 as the original contract.

3. One Signal Contracts

In this section, we consider the optimal renegotiation-proof contract in the case of

one signal. This is equivalent to the benchmark model of Fudenberg-Tirole. We outline

the solution to their model and highlight some of the main features. (We refer the reader

to their paper for detailed derivations and discussion).

The optimal renegotiation-proof contract is described by whichever of the following

two maximizes the principal�s expected pro�t:

(i) c(e
¯
) = c(�e) = fe

¯
;e
¯
g and x = 0; (ii) c(e

¯
) = fe

¯
; e
¯
g ; c(�e) =

�
U�g (�e); U

�
b (�e)

	
where:

U�g (�e) = �e+ (1� pg(�e))	=(pg(�e)� pg(e¯ )) U�b (�e) = �e� pg(�e)	=(pg(�e)� pg(e¯ ))
(5)

and x � x� 2 (0; 1) where x� is the unique solution to:

x�

1� x� =
�

�0(e
¯
)

�0(U�g (�e))� �0(U�b (�e))

��
pg(�e)� pg(e¯ )
pg(�e)(1� pg(�e))

�
(6)

The optimal contract in (i) constitutes a full insurance contract, which o¤ers the agent a

non-contingent payment, induces him to choose the low e¤ort level with probability one

and is trivially renegotiation-proof. The optimal contract in (ii) constitutes an incentive

contract which o¤ers the agent a risky payment (notice U�g (�e) > U
�
b (�e)), induces him to

randomize and choose the high e¤ort level with positive probability and is renegotiation-

proof provided that x is not too high. Notice that there exists multiple equilibria - the

incentive contract is renegotiation-proof for all distributions x 2 [0; x�], and the agent
is indi¤erent between all distributions x 2 [0; x�]. However, throughout the paper we
assume that the agent chooses the distribution that the principal most prefers, hence

x = x�.12

12We explain why the principal most prefers x = x� in section 5 below.
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Another key di¤erence to the full commitment outcome is that the optimal incentive

contract consists of a menu of compensation schemes: a full insurance scheme for the

type who chose low e¤ort and a risky scheme for the type who chose high e¤ort. At the

renegotiation stage, the principal faces a problem of insurance under adverse selection à

la Rothschild and Stiglitz (1976). Given that the agent has private information on his

risk level, and that di¤erent types have di¤erent preferences over insurance policies, it

follows that the principal gains from screening preferences by o¤ering a menu of schemes

which provides more insurance to the "bad" type.

Finally, Fudenberg-Tirole show a third respect in which the optimal contract under

renegotiation di¤ers from the full commitment outcome: it may give the agent a positive

ex ante rent. This can have the desirable e¤ect of relaxing the renegotiation-proofness

constraint, which increases the upper bound on distribution x and thus increases ex ante

e¤ort provision. In order to simplify the analysis, in the main body of our paper we rule

out the payment of an ex ante rent. However, in Appendix B we consider an extension

in which we relax this assumption and show that our results remain robust.

4. Multi-signal contracts

In this section, we consider the case in which there are two contractible signals. We

solve for the optimal renegotiation-proof contract by backward induction - this amounts

to the following two steps. At the renegotiation stage, after e¤ort is sunk, the principal

can propose a new contract o¤er c2 given her beliefs about the e¤ort distribution x.

The agent can choose to either accept or reject the new o¤er. In step 1, we solve for

equilibrium in this continuation game. In step 2, we solve for the optimal ex ante contract

c1 and the agent�s optimal strategy x, subject to the continuation equilibrium.

As in the one signal case, the principal can o¤er a full insurance contract which

induces the agent to choose x = 0. Clearly, given that it stipulates a non-contingent

wage, the full insurance contract does not depend on the information structure and is

therefore identical to the previously considered case. Thus, in this section we focus on

incentive contracts which are consistent with the agent choosing x > 0.

Step 1: Solving for the continuation equilibrium

At the renegotiation stage, e¤ort is sunk, hence the principal�s problem is to propose

a new contract o¤er c2 which minimizes the expected wage bill given her beliefs about

e¤ort distribution x. Clearly, the agent will accept the new contract c2 if and only if it

matches or exceeds the expected utility he derives from the existing contract c1. Denote

this ex post reservation utility for type e
¯
and �e as U

¯
and �U respectively. We write the

11



principal�s optimization program as:

min
c22C

x
X
i

pi(�e)�(Ui(�e)) + (1� x)
X
i

pi(e¯
)�(Ui(e¯

)) (7)

subject to: X
i

pi(e)Ui(e) �
X
i

pi(e)Ui(e
0) 8e0 6= e (8)

X
i

pi(e¯
)Ui(e¯

) � U
¯

(9)

X
i

pi(�e)Ui(�e) � �U (10)

where (7) represents the principal�s expected wage bill given distribution x, (8) repre-

sents the ex post incentive compatibility constraints and (9)-(10) represent the ex post

individual rationality constraints. We proceed to characterize the solution to this pro-

gram. This is important for the following reason. In order for the ex ante contract to

be renegotiation-proof, there must be no gain to the principal from altering it at the

renegotiation stage. In other words, it must be the the solution to (7)-(10). Thus, char-

acterizing this solution is equivalent to formulating necessary and su¢ cient conditions

for the ex ante contract to satisfy renegotiation-proofness. We state these conditions in

Lemmata 1 and 2 below, then discuss in detail.

Lemma 1. An ex ante contract c is renegotiation-proof only if it satis�es the following
conditions:

Uh(e¯
) = Ul(e¯

) = Ub(e¯
) = U

¯
(11)X

i

pi(e¯
)Ui(�e) = U¯

(12)

Uh(�e) > Ul(�e) > Ub(�e) (13)

ph(�e)�
0(Uh(�e))� � pl(�e)�0(Ul(�e)) + pb(�e)�0(Ub(�e)) = 0 (14)

Proof. See Appendix A. �

Conditions (11)-(13) are the direct counterparts of the one signal case - we refer

the reader to Fudenberg-Tirole (Lemma 2.1) for a detailed discussion. To summarize,

the principal gains by o¤ering a menu of schemes, consisting of a full insurance scheme

for type e
¯
(condition (11)) and a risky scheme for type �e (condition (13)). Condition

(12) states that the ex post incentive compatibility constraint binds for type e
¯
. Equation

(14) characterizes the solution for the cost-minimizing type �e compensation scheme. A

key feature is that it will always be contingent on both signals, namely Uh(�e) 6= Ul(�e)

12



(recall that signal Z is observed only if Y = g). This result simply mirrors Holmström�s

Su¢ cient Statistic Theorem. Given that both signals are informative of the agent�s

action, both must be used to condition his compensation.

Lemma 2. Let c be an ex ante contract which satis�es (11)-(14). There exists x��(c) 2
(0; 1) such that c is renegotiation-proof if and only if x � x��(c), where x��(c) is the

unique solution to:

x��(c)

1� x��(c) =
�

�0(U
¯
)

�0(Uh(�e))� �0(Ub(�e))

��
ph(�e)pb(e¯

)� ph(e¯ )pb(�e)
ph(�e)pb(�e)

�
(15)

Proof. See Appendix A. �

A contract c satisfying (11)-(14) in Lemma 1 minimizes the expected wage bill

for given U
¯
. But renegotiation-proofness further requires that there is no gain to the

principal from increasing U
¯
. Lemma 2 shows that there is no gain from increasing

U
¯
, and hence contract c is renegotiation-proof, if and only if x is not too high. To

see why, suppose the principal o¤ers to increase U
¯
by �U

¯
> 0. This increases the ex-

pected wage bill by (1 � x)�0(U
¯
)�U
¯
. Doing this relaxes the incentive compatibility

constraint which allows the principal to provide a bit more insurance to type �e. Sup-

pose she o¤ers to decrease Uh(�e) by �Uh < 0 and increase Ub(�e) by an exactly o¤-

setting amount �Ub > 0 thus keeping the agent indi¤erent. Doing this decreases the

risk premium incurred and hence reduces the expected wage bill. The expected gain is

denoted x [ph(�e)�0(Uh(�e))�Uh + pb(�e)�0(Ub(�e))�Ub]. For contract c to be renegotiation-

proof, there must be no net gain from increasing U
¯
by even an in�nitesimal amount.

Speci�cally, computing the limit as �U
¯
! 0 yields the net marginal bene�t of insurance

across states h and b, which must be non-negative:

x

�
ph(�e)�

0(Uh(�e))
dUh
dU
¯
+ pb(�e)�

0(Ub(�e))
dUb
dU
¯

�
+ (1� x)�0(U

¯
) � 0 (16)

which, with the appropriate manipulations, yields condition (15). But notice this con-

dition has been formulated with speci�c reference to insurance provision across states

h and b, which begs the question of whether it is robust to alternative insurance o¤ers,

for example, across states h and l. The answer is yes, because at the optimum the net

marginal bene�t of insurance is equalized across the entire set of feasible insurance of-

fers, which means condition (15) for renegotiation-proofness is identical across the entire

feasible set.

A further point worth remarking on here is that the binding constraint for

renegotiation-proofness that the net marginal bene�t of insurance is non-negative is

stronger than requiring that the net gain from full insurance, or equivalently the net
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average bene�t of insurance (de�ned as the net gain from full insurance per unit rent),

is non-negative. To gain some intuition, consider full insurance in terms of a sequence

of small increments of insurance. Due to diminishing marginal utility, the value of an

increment of insurance is diminishing along this sequence. Thus, the marginal bene�t

of insurance (i.e. the �rst bit of insurance provided) will be more valuable than the

average bene�t of insurance (i.e. the average value of the elements of this sequence).

Thus, the constraint that binds depends not on the average bene�t of insurance, but on

the marginal bene�t of insurance. Put di¤erently, the renegotiation-proofness constraint

depends not on the average cost but on the marginal cost of incentive provision. As we

show in section 5 below, this distinction is important - although omitting the additional

signal will always increase the average cost of incentive provision, it may actually decrease

the marginal cost. This relaxes the renegotiation-proofness constraint and raises the

upper bound on x.

Step 2: Solving for the optimal ex ante renegotiation-proof contract

We characterize the solution for the ex ante incentive contract consistent with

x > 0, and derive conditions under which it constitutes the optimal ex ante renegotiation-

proof contract. First, the ex ante contract must satisfy conditions (11)-(14) and (15)

in Lemmata 1 and 2. Next, the ex ante incentive contract must satisfy two further

conditions:

X
i

pi(�e)Ui(�e)� �e �
X
i

pi(e¯
)Ui(e¯

)� e
¯

(17)

X
i

pi(�e)Ui(�e)� �e � 0 (18)

(17) represents the agent�s ex ante incentive compatibility constraint. Given that the

agent is required to randomize his action, he must be indi¤erent between choosing high

and low e¤ort. Thus, (17) must hold with equality. (18) represents the agent�s ex

ante individual rationality constraint. This must also hold with equality, given that we

exclude the payment of an ex ante rent. We state our results in Proposition 1 below,

before discussing in detail.

Proposition 1. The following pro�le constitutes a perfect Bayesian equilibrium of the

multi-signal game:

(i) the principal o¤ers ex ante contract c��1 consisting of c(e
¯
) = fe

¯
; e
¯
; e
¯
g and

c(�e) = fU��h (�e); U��l (�e); U��b (�e)g, where fU��h (�e); U��l (�e); U��b (�e)g is the unique solution to
the system of equations (10) (which holds with equality), (12), (14), U

¯
= e
¯
and �U = �e,
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(ii) the agent accepts and chooses x = x�� 2 (0; 1) where x�� is the unique solution
to:

x��

1� x�� =
�

�0(e
¯
)

�0(U��h (�e))� �0(U��b (�e))

��
ph(�e)pb(e¯

)� ph(e¯ )pb(�e)
ph(�e)pb(�e)

�
(19)

(iii) there is no renegotiation,

if and only if the following condition holds:

I(�e)� I(e
¯
) >

X
i

pi(�e)�(U
��
i (�e))� �(e¯ ): (20)

Proof. See Appendix A. �

Condition (20) states that the incentive contract dominates the full insurance con-

tract if and only if inducing high e¤ort is second-best e¢ cient. Speci�cally, the increase

in output due to higher e¤ort (the left-hand side of (20)) must exceed the increase in the

wage bill incurred due to the higher risk premium (the right-hand side). Note also that,

analogous to the one signal case, there exists multiple equilibria - the ex ante contract

c��1 is renegotiation-proof for any value x 2 [0; x��] and the agent is willing to choose
any value x 2 [0; x��] given his indi¤erence between high and low e¤ort. It is immediate
the principal�s expected pro�t is linear in x, and under condition (20), increasing in x.

Hence, she prefers the highest possible value of x. As in the one signal case, we assume

that the agent chooses the distribution that the principal most prefers and sets x = x��.

5. One signal versus multi-signal contracts

In this section, we turn to the case in which the principal can choose ex ante whether

or not to restrict observability of the additional signal Z. We investigate conditions for

optimality of the one signal vs. multi-signal contracts, but in order to obtain a complete

characterization of the optimal contract, it is necessary to specialize the utility function.

Although our results are not general, we believe they are still of interest in that we

gain some insight into certain properties of the utility function which ensure our main

result (that the one signal contract dominates). However, it needs mentioning that our

results do not depend critically on this speci�cation of the utility function and hold for a

variety of other functional forms. We start by deriving su¢ cient conditions under which

omission of the additional signal relaxes the renegotiation-proofness constraint and raises

the upper bound on x. Then we characterize the solution for the optimal renegotiation-

proof contract and state conditions on parameters under which the one signal contract

dominates.
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Deriving su¢ cient conditions under which omitting the additional signal Z
raises the upper bound on x

We state our results in Lemma 3 and Proposition 2 below, then discuss in detail.

Lemma 3. Strict MLRP implies the following ordering:

U��h (�e) > U
�
g (�e) > U

��
l (�e) > U

��
b (�e) > U

�
b (�e) (21)

Proof. See Appendix A. �

Proposition 2. Assume the utility function U : S ! < where S = fw 2 < : w < Kg
de�ned by U(w) = A �

�
n�1
n
(K � w)

� n
n�1 , where A > 0; K > 0 and n > 1. Assume

strict MLRP holds. Let D � �e+ (1�pg(�e))	
pg(�e)�pg(e¯ )

and make the following change of variables:

U�g (�e) = D and U�b (�e) = D � 	
pg(�e)�pg(e¯ )

. Then there exists a critical value 0 < 	� < 1
such that omitting the additional signal Z raises the upper bound on x if and only if

	 > 	�.

Proof. See Appendix A. �

Intuitively, how the additional signal a¤ects the renegotiation-proofness constraint

depends on how it changes the di¤erential between wages in the "best" and "worst" states

of the world. Under the conditions of Proposition 2, inclusion of the additional signal

results in wages in the best state increasing too much, such that the di¤erential between

wages in the "best" and "worst" states widens, with the result that the renegotiation-

proofness constraint tightens. First, the assumption of strict MLRP is necessary, without

it, rewards in the best state will never increase. To see why, consider two distinct cases:

(i) ph(�e)=ph(e¯
) > pg(�e)=pg(e¯

) > pl(�e)=pl(e¯
) > pb(�e)=pb(e¯

) (strict MLRP holds) - here,

contingency h conveys a greater likelihood that the agent exerted high e¤ort than g,

hence the agent should be rewarded more generously, as this reduces the agency cost of

incentive provision. Thus, U��h (�e) > U
�
g (�e); (ii) ph(�e)=ph(e¯

) > pg(�e)=pg(e¯
) > pb(�e)=pb(e¯

) >

pl(�e)=pl(e¯
) (strict MLRP fails) - although again h conveys more favorable news than g,

the di¤erence here is that the likelihood ratio in state l is very low, strongly indicating

that the agent chose low e¤ort. To aid intuition, consider the extreme case in which the

high e¤ort type never lands on state l (i.e. pl(�e)=pl(e¯
) = 0). In this situation, it is more

e¢ cient to use "sticks", i.e. penalize poor performance by decreasing the wage in the

worst state (l), than "carrots", i.e. reward good performance by increasing the wage in

the best state (h) - the latter scheme increases risk (as the higher wage in h must be

o¤set by a lower wage in b so that type �e�s individual rationality constraint continues to

bind), whereas the former scheme does not. Hence, U��h (�e) < U
�
g (�e).
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Next, using expressions (6) and (19), it is easily veri�ed that including the addi-

tional signal lowers the upper bound on x if and only if:

P�0(U��h (�e))� �0(U�g (�e)) > P�0(U��b (�e))� �0(U�b (�e)) (22)

where P = ph(�e)(pg(�e) � pg(e¯ ))= (pg(�e)(ph(�e)pb(e¯ )� ph(e¯ )pb(�e))). Condition (22) repre-
sents the following trade-o¤: under strict MLRP, including the additional signal increases

the wage in the best state (i.e. U��h (�e) > U
�
g (�e), and thus �

0(U��h (�e)) > �
0(U�g (�e))), but

also, from Lemma 3, increases the wage in the worst state (U��b (�e) > U�b (�e), and thus

�0(U��b (�e)) > �0(U�b (�e))). Thus, the renegotiation-proofness constraint tightens if the

�rst e¤ect dominates the second. Note that the utility function speci�ed above has

the property that marginal utility diminishes at a faster rate with income (equivalently,

marginal cost increases at a faster rate with income). Thus, as the disutility of e¤ort 	

grows larger, the di¤erential between wages in the best and worst states increases, such

that the left-hand side of (22) increases relative to the right-hand side, until 	 exceeds

a critical value such that the inequality (22) holds.13

Deriving conditions under which the one signal contract dominates the multi-
signal contract

We now turn to the principal�s choice between one signal and multi-signal con-

tracts. The optimal renegotiation-proof contract is that which maximizes the principal�s

expected pro�t over the entire space of renegotiation-proof contracts. From the preced-

ing analysis, this boils down to whichever of the following three maximizes the principal�s

expected pro�t: (i) the full insurance contract, (ii) the one signal contract characterized

in section 3 and (iii) the multi-signal contract characterized in section 4. In Proposi-

tion 3 below, we characterize the solution for the optimal renegotiation-proof contract

and state conditions on parameters under which each of these outcomes constitutes the

optimal renegotiation-proof contract.

Proposition 3. Assume strict MLRP and assume the utility function and change
of variables speci�ed in Proposition 2.

(a) There exists a critical number 0 < 	� <1 such that:

(i) for any given 	 � 	�, there exists positive constant f such that the principal�s
expected pro�t is maximized by o¤ering the multi-signal contract c(e

¯
) = fe

¯
; e
¯
; e
¯
g, c(�e) =

13The following numerical example illustrates that if the additional signal is omitted, the improvement
in the distribution over e¤ort levels can be quite substantial. Using the utility function speci�ed in
proposition 2, let A = 506, K = 1000, n = 10, and pg(�e) = 0:55; pg(e¯

) = 0:45; ph(�e) = 0:275;
ph(e¯

) = 0:117; e
¯
= �100, �e = 10: This yields x�� = 0:04 and x� = 0:30. Hence the probability of the

agent choosing high e¤ort increases by 0:26(= 0:30� 0:04).
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fU��h (�e); U��l (�e); U��b (�e)g if and only if I(�e) � I(e¯ ) > f and the full insurance contract

c(e
¯
) = c(�e) = fe

¯
; e
¯
g if and only if I(�e)� I(e

¯
) � f .

(ii) for any given 	 > 	�, there exist positive constants c > d such that the

principal�s expected pro�t is maximized by o¤ering the one signal contract c(e
¯
) = fe

¯
; e
¯
g,

c(�e) =
�
U�g (�e); U

�
b (�e)

	
if and only if I(�e)�I(e

¯
) > c, the multi-signal contract if and only

if d < I(�e)� I(e
¯
) � c, and the full insurance contract if and only if I(�e)� I(e

¯
) � d.

(b) There exists a perfect Bayesian equilibrium which attains the upper bound on

the principal�s pay-o¤ as characterized above.

Proof. See Appendix A. �

We illustrate the choice between one signal and multi-signal contracts in Figure 1

below. If 	 � 	�, then from Proposition 2 x� � x�� and hence the multi-signal contract
unambiguously dominates - it yields both a better e¤ort distribution and a lower risk

premium. If, however, 	 > 	�, the principal faces a trade-o¤: on the one hand, the one

signal contract improves the e¤ort distribution, on the other hand it increases the risk

premium incurred. For any given 	, if the marginal product of e¤ort �I = I(�e)� I(e
¯
)

is su¢ ciently large, then the gain from higher e¤ort outweighs the cost of higher risk,

and hence the one signal contract dominates.
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Figure 1: One signal vs. multi-signal contracts

6. Concluding remarks

In this paper, we consider a model of contract renegotiation with multiple signals.

In contrast to Holmström�s su¢ cient statistic result, we �nd that omitting an informa-

tive signal from the contract can be Pareto-e¢ cient. This result arises due to an e¤ect

of renegotiation which has not been previously discussed in the literature - the principal

faces potentially con�icting objectives of minimizing both the agency cost of incentive

provision and the cost of renegotiation-proofness. Although inclusion of additional con-

tingencies always reduces the agency cost, it can have the adverse e¤ect of making some

pay-o¤s in the agent�s compensation function too extreme, which increases the cost of

renegotiation-proofness.

We characterize the conditions under which one signal contracts dominate multi-

signal contracts. Although our model is very stylized, we believe the results are robust

to a more sophisticated modelling environment. For instance, although we restrict the

action and outcome spaces somewhat, the broad intuition of our results does not depend

critically on these assumptions. A further limitation is that for part of our analysis we

specialize the utility function, the sole reason for this being in order to admit an analytical

solution. A fruitful extension would be to generalize the utility function in order to

understand more fully the economic interpretation of our results and the characteristics

of the agent�s preferences on which they depend14.

14In an earlier version of this paper in which we model a non-veri�able signal at the renegotiation
stage, we are able to derive a su¢ cient condition on the utility function on which our results depend,
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A potential application of our model concerns the role of legislated bounds on

compensation, for example the use of pay bands and minimumwages and, more currently,

the imposition of regulatory caps on bankers�executive compensation. Our �ndings could

potentially provide a justi�cation for such bounds on the grounds of e¢ ciency rather

than fairness, in the sense that policies which prevent compensation from becoming too

extreme could have the advantage of improving ex post commitment.

The �ndings of our paper also suggest broader questions on the nature of the re-

lationship between information and e¢ ciency in the principal-agent problem. We show

that under circumstances in which parties cannot commit not to subsequently renego-

tiate contracts, gathering additional information can induce Pareto-inferior outcomes.

Hence, this begs the question of what types of information structures are bene�cial in

improving commitment, and what types weaken it. Under what speci�c conditions does

Holmström�s su¢ cient statistic result no longer apply? How does this a¤ect the ranking

of information systems developed in Jewitt (2007) and Kim (1995)? These and other

interesting questions are left for future research.

Appendix A: Proofs

A.1. Proof of Lemma 1

Recall �U and U
¯
denote type �e and e

¯
�s reservation utilities derived from ex ante

contract c. (i) Fix type e
¯
�s utility at U

¯
during renegotiation. (ii) We restrict attention

without loss of generality to the case in which �U > U
¯
. Clearly this must hold, otherwise

there would be no ex ante incentive for the agent to exert high e¤ort. (i) and (ii)

imply (iii) constraint (8) for type �e is slack at the optimum. (iv) It is immediate from

the previous statements that that (11) holds. Given (i)-(iv), we can replace program

(7)-(10) with:

min
fUi(�e)gi=h;l;b

X
i

pi(�e)�(Ui(�e)) (23)

subject to: X
i

pi(e¯
)Ui(�e) � U¯ (24)

X
i

pi(�e)Ui(�e) � �U (25)

Given that the principal�s objective function (23) is strictly convex and continuously

di¤erentiable in Ui(�e), that the constraints (24) and (25) are linear and the interior of

which is that �u00(w)= [u0(w)]2 is increasing in w: According to Jewitt (1988), this condition has a
meaningful economic interpretation that people with such utility functions are more easily motivated
by "sticks" rather than "carrots".
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the constrained set is non-empty, the Kuhn-Tucker conditions are necessary and su¢ cient

for characterizing a global minimum. We write the corresponding Lagrangian function:

L(Uh(�e); Ul(�e); Ub(�e); �; �)

=
X
i

pi(�e)�(Ui(�e)) + �

"X
i

pi(e¯
)Ui(�e)�U¯

#
+ �

"
�U �

X
i

pi(�e)Ui(�e)

#
(26)

where � and � denote the nonnegative multipliers associated with constraints (24) and

(25) respectively. Deriving �rst order conditions:

pi(�e)�
0(Ui(�e)) + �pi(e¯

)� �pi(�e) = 0 for all i 2 fh; l; bg (27)

In the �rst step, we prove � > 0 and � > 0: Summing equations (27) over i yields:X
i

pi(�e)�
0(Ui(�e)) + � = � (28)

Given that the �rst term is strictly positive by assumption and that � is nonnegative,

we can conclude � > 0 and thus constraint (25) is binding. Multiplying each of the

equations in (27) by Ui(�e) and summing over i yields:X
i

pi(�e)�
0(Ui(�e))Ui(�e) + �

X
i

pi(e¯
)Ui(�e) = �

X
i

pi(�e)Ui(�e) (29)

Taking into account the expression for � given in (28) and re-arranging yields:

X
i

pi(�e)�
0(Ui(�e))Ui(�e)�

 X
i

pi(�e)�
0(Ui(�e))

! X
i

pi(�e)Ui(�e)

!

= �

"X
i

pi(�e)Ui(�e)�
X
i

pi(e¯
)Ui(�e)

#
(30)

But note that the left-hand side of (30) is simply cov (Ui(�e);�0(Ui(�e))), which is strictly

positive by assumption. Thus, � > 0 which yields (12).

Next, multiplying the equation (27) for i = h by �; and the equation for i = l by

�; and leaving the equation for i = b unchanged, summing all three modi�ed equations
over i yields (14). Finally, from a familiar proof due to Milgrom (1981), the assumption

of strict MLRP implies (13). �
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A.2. Proof of Lemma 2

First, from Lemma 1, at the renegotiation stage we can restrict attention without

loss of generality to contract o¤ers which satisfy (11)-(14). Next, suppose the principal

o¤ers an arbitrary value U
¯
0 > U

¯
. From Lemma 1, the corresponding insurance o¤er

to type �e must satisfy constraints (24) and (25) with equality. This forms a system

of two linear equations with three unknowns, denoted fU 0h(�e); U 0l (�e); U 0b(�e)g, which has
in�nitely many solutions. We de�ne a parametric variable � . With some tedious algebra,

the solution set can be expressed as:

U 0h(�e; �) = �U + (1� pg(�e))
�
�U �U

¯
0� =(pg(�e)� pg(e¯ )) + ��

U 0l (�e; �) = �U + (1� pg(�e))
�
�U �U

¯
0� =(pg(�e)� pg(e¯ ))� � (31)

U 0b(�e; �) = �U � pg(�e)
�
�U �U

¯
0� =(pg(�e)� pg(e¯ )) + �

where � 2 < and each value � corresponds to a particular insurance o¤er. We call this
the set of incentive feasible insurance o¤ers C 0. We split the remainder of the proof into

two steps:

Claim 1. The net marginal bene�t of all incentive feasible insurance o¤ers is

non-negative if and only if x � x��(c).
Proof. Using the expressions (31), let � � denote the unique value of � which solves

program (23)-(25) (equivalently, let � � denote the unique value of � which equates (14)).

Let M(U
¯
) denote the expected wage bill for contract c, where:

M(U
¯
) = x

 X
i

pi(�e)�(Ui(�e; �
�))

!
+ (1� x)�(U

¯
) (32)

Di¤erentiating (32) w.r.t. U
¯
gives:

dM

dU
¯
= x

 X
i

pi(�e)�
0(Ui(�e; �

�))
dUi
dU
¯

!
+ (1� x)�0(U

¯
) (33)

Taking into account the de�nitions in (31), we can re-write (33) as:

dM

dU
¯
= � x

pg(�e)� pg(e¯ )

"
(1� pg(�e)) (ph(�e)�0(Uh(�e; � �)) + pl(�e)�0(Ul(�e; � �)))

�pg(�e)pb(�e)�0(Ub(�e; � �))�B d��

dU
¯

#
+(1�x)�0(U

¯
)

(34)

whereB = (pg(�e)�pg(e¯ )) (ph(�e)�
0(Uh(�e; �

�))� � pl(�e)�0(Ul(�e; � �)) + pb(�e)�0(Ub(�e; � �))) :
But thanks to the envelope theorem, we have B = 0. This means expression (34) is

equivalent if we replace d��

dU
¯
with an arbitrary value d�

dU
¯
. Recalling the de�nitions in

(31), this new expression represents the net marginal bene�t of all incentive feasible
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insurance o¤ers for ex ante contract c: Clearly, it is identical for all values d�
dU
¯
, which

means proving dM
dU
¯
� 0 for all incentive feasible insurance o¤ers (i.e. for all values d�

dU
¯
)

is equivalent to proving dM
dU
¯
� 0 for a speci�c insurance o¤er (i.e. a single value of d�

dU
¯
).

Let d�
dU
¯
= �(1 � pg(�e))= ((pg(�e)� pg(e¯ ))). Making this substitution in (34), with some

tedious algebra it is easily veri�ed that dM
dU
¯
� 0 is equivalent to x � x��(c). Finally, by

inspection of (15) it is immediate x��(c) 2 (0; 1). �

Claim 2. The net gain from all U
¯
0 > U

¯
and all corresponding incentive feasible

insurance o¤ers is strictly positive if x � x��(c).
Proof. Let U

¯
� U
¯
0 in (23)-(25), fU 0i(�e; � 0)gi=h;l;b denote the solution to this pro-

gram and M(U
¯
0) denote the expected wage bill derived from this contract o¤er. It is

easily veri�ed that the change in the expected wage bill caused by renegotiation can be

expressed as:

M(U
¯
0)�M(U

¯
) =

Z U
¯
0

U
¯

"
�x
X
i

pi(�e)�
0( ~Ui(�e))�i + (1� x)�0( ~U)

#
d ~U (35)

where

~Uh(�e) = �U +
(1� pg(�e))

�
�U � ~U

�
pg(�e)� pg(e¯ )

+ �� � � �
�
� � � � 0
U
¯
0 �U
¯

�
( ~U �U

¯
)

~Ul(�e) = �U +
(1� pg(�e))

�
�U � ~U

�
pg(�e)� pg(e¯ )

� � � + 
�
� � � � 0
U
¯
0 �U
¯

�
( ~U �U

¯
)

~Ub(�e) = �U �
pg(�e)

�
�U � ~U

�
pg(�e)� pg(e¯ )

+ � � �
�
� � � � 0
U
¯
0 �U
¯

�
( ~U �U

¯
)

�h = (1� pg(�e))=(pg(�e)� pg(e¯ )) + �(�
� � � 0)=(U

¯
0 �U
¯
)

�l = (1� pg(�e))=(pg(�e)� pg(e¯ ))� (�
� � � 0)=(U

¯
0 �U
¯
)

�b = �pg(�e))=(pg(�e)� pg(e¯ )) + (�
� � � 0)=(U

¯
0 �U
¯
)

It is easily veri�ed that sign(�i) = sign(Ui(�e; � �) � ~Ui(�e)) for all ~U 2 (U¯ ;U¯
0] and all i.

Thus, from strict convexity of �(:), we can deduce �i�0( ~Ui(�e)) is strictly decreasing in ~U

over the interval [U
¯
;U
¯
0] for all i. Hence (i) the integrand of (35) is strictly increasing in

~U over the interval [U
¯
;U
¯
0]. Note that (ii) evaluating this integrand at ~U = U

¯
yields the

net marginal bene�t of insurance for contract c (this can be seen by setting d�
dU
¯
= � ���� 0

U
¯
0�U
¯

in (34)). Recall from claim 1, (iii) the net marginal bene�t of insurance is non-negative

if and only if x � x��(c). From the previous three statements, we can conclude (35) is

strictly positive if x � x��(c). �

23



A.3. Proof of Proposition 1

We split the proof into two steps:

Claim 1. Suppose the principal o¤ers ex ante contract c��1 . The following consti-
tutes a continuation equilibrium: the agent accepts and chooses x = x��, and there is no

renegotiation.

Proof. Consistent with Bayes�Rule, the principal�s belief about the e¤ort distri-
bution is x��. Given this, and given that it satis�es Lemmata 1 and 2, contract c��1 is

the cost-minimizing solution to (7)-(10), hence there are no gains to altering it at the

renegotiation stage. Next, note that U
¯
= e
¯
and �U = �e imply that (17) and (18) both

hold with equality. This means (i) the agent is willing to accept the contract and (ii)

anticipating that contract c��1 will not be renegotiated, and given that he is indi¤erent

between high and low e¤ort, randomizing and choosing x = x�� is an optimal strategy.

�
Claim 2. The optimal renegotiation-proof ex ante contract is c��1 if and only if

(20) holds.

Proof. The optimal renegotiation-proof ex ante contract is that which maximizes
the principal�s expected pro�t subject to the renegotiation-proofness conditions. Let us

partition the set of renegotiation-proof contracts into those consistent with x = 0 and

those consistent with x > 0. First, as shown in the one signal case, the pro�t-maximizing

contract which induces x = 0 is the full insurance contract c(e
¯
) = c(�e) = fe

¯
; e
¯
; e
¯
g. Next,

we show that the pro�t-maximizing contract which induces x > 0 is c��1 . We prove by

contradiction. Suppose there exists c01 6= c��1 which also induces x > 0 and yields a higher
expected pro�t. Recall that type e

¯
and type �e�s reservation utilities at the renegotiation

stage are denoted U
¯
and �U respectively. From Lemma 1, a contract consistent with x > 0

must be the solution to program (7)-(10), which, recall, is c(e
¯
) = fU

¯
;U
¯
;U
¯
g and c(�e) is

the unique solution (expressed as a function of U
¯
and �U) to the system of equations (10)

(which holds with equality), (12) and (14). Next, (17) and (18) must hold with equality,

which implies U
¯
= e
¯
and �U = �e. The unique solution to this system of equations is none

other than c��1 . Hence, there cannot exist c
0
1 6= c��1 which yields a higher expected pro�t.

Hence we can restrict attention WLOG to the full insurance contract and c��1 . Finally,

it is immediate that c��1 yields a higher expected pro�t than the full insurance contract

if and only if:

x��(I(�e)�
X
i

pi(�e)�(U
��
i (�e))) + (1� x��)(I(e¯ )� �(e¯ )) > I(e¯ )� �(e¯ ) (36)

which is equivalent to condition (20). �
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A.4. Proof of Lemma 3

First, from Milgrom (1981), strict MLRP implies U��h (�e) > U
��
l (�e) > U

��
b (�e). Next,

recall the de�nitions of � and  in (4). With some tedious algebra, it is easily veri�ed

that strict MLRP also implies � > 0 and  > 0. Next, using the expressions in (31),

recall �U = �e and U
¯
= e
¯
and � � is the unique value of � which equates (14). Then we can

write:

U��h (�e) = U
�
g (�e) + ��

�; U��l (�e) = U
�
g (�e)� � �; U��b (�e) = U�b (�e) + � � (37)

Recall U��h (�e) > U
��
l (�e). This, together with (37) implies U

��
h (�e) > U

�
g (�e) > U

��
l (�e): This

in turn, together with � > 0 and  > 0, implies � � > 0. Hence, U��b (�e) > U
�
b (�e): �

A.5. Proof of Proposition 2

We split the proof into two steps:

Claim 1. There exists an arbitrary value 	0 2 (0;1) at which x� > x��.
Proof. First, using (6) and (19) and noting that +� = pg(�e)�pg(e¯ )

ph(�e)pl(e¯
)�ph(e¯ )pl(�e)

, x� > x��

is equivalent to:�
ph(�e)( + �)

pg(�e)

�
�0(U��h (�e))� �0(U�g (�e))�

�
ph(�e)( + �)

pg(�e)

�
�0(U��b (�e)) + �

0(U�b (�e)) > 0

(38)

Denote the LHS of (38) as F (	). Using the above change of variables, we get lim
	!1

U�g (�e) =

D and

lim
	!1

U�b (�e) = �1. Let

G(	) � ph(�e)�0(U��h (�e))� � pl(�e)�0(U��l (�e)) + pb(�e)�0(U��b (�e)) (39)

Notice thatG(	) is simply the left-hand side of (14), hence optimality requiresG(	) = 0:

Let �MAX � lim
	!1

� �. Then given �0(U) = (A � U)�1=n, and taking into account the
de�nitions in (37), it is easily veri�ed by inspection of (39) that �MAX 2 (0;1). Let
K � ((pl(�e))

n � (�ph(�e))n) =(((�ph(�e))n + �(pl(�e))n). With some tedious algebra, it
can be shown �MAX = K(A�U�g (�e)). Next, given lim

	!1
�0(U�b (�e)) = lim

	!1
�0(U��b (�e)) = 0,

and denoting UMAX
h (�e) � D + ��MAX we have:

lim
	!1

F (	) =

�
ph(�e)( + �)

pg(�e)

�
�0(UMAX

h (�e))� �0(D) (40)

Next, denote �(e) � ph(e)=pg(e) and 1��(e) � pl(e)=pg(e) and let function 
 be de�ned
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by:


(�(e
¯
)) = (pg(�e)�pg(e¯ ))

n�1

0@ �(�e) (pg(�e)(1� pg(e¯ ))� (�(e¯ )=�(�e))pg(e¯ )(1� pg(�e)))
1�n+

(1� �(�e))
�
pg(�e)(1� pg(e¯ ))�

�
1��(e

¯
)

1��(�e)

�
pg(e¯

)(1� pg(�e))
�1�n

1A
With some tedious algebra, it can be shown that lim

	!1
F (	) > 0 , 
(�(e

¯
)) > 1. It

is easily veri�ed that (i) 
(�(e
¯
)) is continuous in �(e

¯
), (ii) 
(�(e

¯
)) = 1 at �(e

¯
) = �(�e)

and (iii) strict MLRP implies �(e
¯
) < �(�e) and d


d�(e
¯
)
< 0 for all values �(e

¯
) 2 [0; �(�e)).

Hence, from the previous three statements, we can conclude 
(�(e
¯
)) > 1, and therefore

lim
	!1

F (	) > 0, for all values �(e
¯
) 2 [0; �(�e)). Finally, given that �0(:) is continuous

in U and U��h (�e), U
��
b (�e) and U

�
b (�e) are continuous in 	, then by inspection of (38), it

follows F (	) is also continuous in 	 over (0;1). Given this and that lim
	!1

F (	) > 0,

there must exist an arbitrary value 	0 2 (0;1) such that F (	0) > 0. �

Claim 2. There exists a critical value 0 < 	� < 1 such that for 	 2 (0;1);
x� T x�� if and only if 	 T 	�.

Proof. First, recall from the proof of Lemma 2 that by setting d��

dU
¯
= 0 in (34),

(19) is equivalent to:

x��

1� x�� =
�

�0(e
¯
)

�(�e)�0(U��h (�e)) + (1� �(�e))�0(U��l (�e))� �0(U��b (�e))

��
pg(�e)� pg(e¯ )
pg(�e)(1� pg(�e))

�
(41)

which means that x� T x�� is equivalent to J(	) T 0, where:

J(	) � �(�e)�0(U��h (�e))+(1��(�e))�0(U��l (�e))��0(U�g (�e))��0(U��b (�e))+�0(U�b (�e)) (42)

Next, by inspection of (39), 	 = 0 ) � � = 0, hence (i) J(0) = 0. Di¤erentiating (42)

w.r.t. 	 yields:

dJ

d	
� (�(�e)��00(U��h (�e))� (1� �(�e))�00(U��l (�e))� �00(U��b (�e)))

d�

d	
+ (43)

(�0(U��b (�e))� �0(U�b (�e)))(
1

pg(�e)� pg(e¯ )
)

Note that (ii) dJ
d	
< 0 at 	 = 0. Given (i), (ii) Claim 1 and continuity of J(	), there must

exist 	� such that J(	�) = 0. We complete by proving that 	� is the unique solution to

J(	) = 0 over 	 2 (0;1). We prove by contradiction. Let 	� be the smallest non-zero
value such that J(	) = 0: First, we prove that dJ

d	
> 0 at 	�. Di¤erentiating (39) w.r.t.

	 yields:

dG

d	
� ph(�e)�00(U��h (�e))�2

d�

d	
+pl(�e)�

00(U��l (�e))
2 d�

d	
+pb(�e)�

00(U��b (�e))(�
1

pg(�e)� pg(e¯ )
+
d�

d	
)
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Note that optimality requires dG
d	
= 0 for all 	, which implies:

d�

d	
=

1

pg(�e)� pg(e¯ )

�
pb(�e)�

00(U��b (�e))

ph(�e)�00(U��h (�e))�
2 + pl(�e)�00(U��l (�e))

2 + pb(�e)�00(U��b (�e))

�
(44)

Clearly, by inspection of (44), 0 < d�
d	
< 1

pg(�e)�pg(e¯ )
. Next, given that �00(U) is strictly

increasing in U , �00(U��b (�e))��00(U�b (�e)) > 0. If �(�e)��00(U��h (�e))�(1��(�e))�00(U��l (�e))�
�00(U��b (�e))) � 0, then clearly dJ

d	
> 0. Suppose �(�e)��00(U��h (�e))�(1��(�e))�00(U��l (�e))�

�00(U��b (�e))) < 0. Then from (43), and given that
d�
d	
< 1

pg(�e)�pg(e¯ )
, dJ
d	
> 0 if �00(U��b (�e))�

�00(U�b (�e)) > �
00(U��b (�e))�(�(�e)��00(U��h (�e))�(1��(�e))�00(U��l (�e))), which is equivalent

to:

�(�e)��00(U��h (�e))� (1� �(�e))�00(U��l (�e)) > �00(U�b (�e)) (45)

Let R(�) � �(�e)�0(Uh(�e; �))+(1��(�e))�0(Ul(�e; �))��0(U�g (�e))��0(Ub(�e; �))+�0(U�b (�e)).
Di¤erentiating R(�) w.r.t. � yields dR

d�
= �(�e)�00(Uh(�e; �))� � (1 � �(�e))�00(Ul(�e; �)) �

�00(Ub(�e; �)). Note that R(0) = 0; dR
d�
< 0 at � = 0 and R(� �) = 0 at 	 = 	�;

which together imply there exists an arbitrary value � 0 2 (0; � �) at which dR
d�
> 0; or

equivalently:

�(�e)�00(Uh(�e; �
0))� � (1� �(�e))�00(Ul(�e; � 0)) > �00(Ub(�e; � 0)) (46)

Given that �00(U) is strictly increasing in U , (46) and � � > � 0 imply that (45) holds.

Finally, suppose there exists 	�� > 	� where 	�� is the next largest value at which

J(	) = 0. Then given that J(	) > 0 over the interval 	 2 (	�;	��), it must be true
that dJ

d	
� 0 at 	 = 	��. However, note that all arguments of the above proof for 	 = 	�

hold equally for 	 = 	��, hence dJ
d	
> 0 at 	 = 	��. Thus, for 	 2 (0;1), J(	) T 0 if

and only if 	 T 	�. �

A.6. Proof of Proposition 3

We split the proof into two steps:

Proof of (a): From the analysis of previous sections, we can restrict attention

without loss of generality to (i) the full insurance contract c(e
¯
) = c(�e) = fe

¯
; e
¯
g, (ii)

the one signal contract c(e
¯
) = fe

¯
; e
¯
g, c(�e) =

�
U�g (�e); U

�
b (�e)

	
and (iii) the multi-signal

contract c(e
¯
) = fe

¯
; e
¯
; e
¯
g, c(�e) = fU��h (�e); U��l (�e); U��b (�e)g. The optimal renegotiation-

proof contract is whichever of these maximizes the principal�s expected pro�t. We prove

each case in turn:

Proof of (i): First, from Proposition 2, 	 � 	� implies x� � x��. Clearly, this

implies that the one signal contract yields a lower expected pro�t than the multi-signal

contract, because it induces a (weakly) worse e¤ort distribution and a strictly higher

risk premium. Fix 	 at an arbitrary value 0 < 	0 � 	�. Recall from Proposition 1 that
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the multi-signal contract yields a higher expected pro�t than the full insurance contract

if and only if (20) holds. Notice that the RHS of (20) is independent of I(�e)� I(e
¯
) and

strictly positive. Call this f . Thus, the multi-signal contract yields a higher expected

pro�t if and only if I(�e)� I(e
¯
) > f .

Proof of (ii): First, from Proposition 2, 	 > 	� implies x� > x��. Next, it is

immediate that the one signal contract yields a higher expected pro�t than the multi-

signal contract if and only if:

x�(I(�e)�
X
i2fg;bg

pi(�e)�(U
�
i (�e))) + (1� x�)(I(e¯ )� �(e¯ ))

> x��(I(�e)�
X

i2fh;l;bg

pi(�e)�(U
�
i (�e))) + (1� x��)(I(e¯ )� �(e¯ )) (47)

which is equivalent to

I(�e)�I(e
¯
) >

X
i2fg;bg

pi(�e)�(U
�
i (�e))�

X
i2fh;l;bg

pi(�e)�(U
��
i (�e))

1� (x��=x�) +
X

i2fh;l;bg

pi(�e)�(U
��
i (�e))��(e¯ )

(48)

Notice that the RHS of (48) is independent of I(�e)� I(e
¯
) and strictly positive. Call this

c. Next, consistent with the proof of part (i), the multi-signal contract yields a higher

expected pro�t than the full insurance contract if and only if I(�e) � I(e
¯
) > d where

d =
X

i2fh;l;bg

pi(�e)�(U
��
i (�e))� �(e¯ ) > 0. Finally, from inspection of (48), c > d.

Proof of (b): This follows directly from the proof of Proposition 1 (Claim 1). �

Appendix B: Allowing payment of an ex ante rent

We generalize the model and allow payment of an ex ante rent to the agent.

Fudenberg-Tirole show, depending on certain characteristics of the utility function, in-

creasing rent to the agent can have the desirable e¤ect of relaxing the renegotiation-

proofness constraint and increasing the upper bound on distribution x. We show that

our results are robust to this generalization for the utility function speci�ed in Proposi-

tion 2 if 	 is su¢ ciently large. Denote the rent as R � 0. Starting with the one signal
case, as shown in Fudenberg-Tirole (Lemma 3.2) the sign of dx�=dR is the negative of

the sign of d
dU

�
�00(U)
�0(U)

�
. It is easily veri�ed that d

dU

�
�00(U)
�0(U)

�
> 0 for our utility function,

hence the principal will never choose R > 0. Increasing R increases compensation costs

and worsens the e¤ort distribution. Hence the one signal contract is the same as in

section 3 above.

Next, taking the multi-signal case, following the logic of section 4 it is easily veri�ed

that the optimal incentive contract consistent with rent R is computed as described in
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the statement of Proposition 1, but substituting U
¯
= e
¯
with U

¯
= e
¯
+R and �U = �e with

�U = �e+ R. This yields U��h (�e) = U
�
g (�e) + R + ��

�, U��l (�e) = U
�
g (�e) + R � � �, U��b (�e) =

U�b (�e)+R+ �
� (where, with some abuse of notation, � � is de�ned in the proof of Lemma

2). Next, recall the de�nition of x�� in (19) and let Q =
�
ph(�e)pb(e¯

)�ph(e¯ )pb(�e)
ph(�e)pb(�e)

� �
1�x��
x��

�
=

�0(U��h (�e))��0(U��b (�e))

�0(e
¯
+R)

. Note that since Q is decreasing in x��, proving dx��=dR < 0 is

equivalent to proving dQ=dR > 0 which is equivalent to:

(A� (e
¯
+R))

�1
n

�
(A� U��h (�e))

�(n+1)
n (1 + �@� �=@R)� (A� U��b (�e))

�(n+1)
n (1 + @� �=@R)

�
�
�
(A� U��h (�e))

�1
n � (A� U��b (�e))

�1
n

�
(A� (e

¯
+R))

�(n+1)
n > 0

Next, recalling the de�nition of �MAX in the proof of Proposition 2, we similarly de�ne

�̂MAX where it is easily veri�ed �̂MAX = K(A� (U�g (�e)+R)): Let ~D = �e+R+
(1�pg(�e))	
pg(�e)�pg(e¯ )

and make the following change of variables: U�g (�e) +R = ~D,

U�b (�e) + R = ~D � 	
pg(�e)�pg(e¯ )

and e
¯
+R = ~D �

�
(1�pg(�e))
pg(�e)�pg(e¯ )

+ 1
�
	. Then it is easily

veri�ed lim
	!1

dQ=dR > 0 if and only if 1 � �K > 0 which, with some tedious algebra,

is shown to be true. Finally, suppose dQ=dR < 0 for some arbitrary value 	0. Given

lim
	!1

dQ=dR > 0 and from continuity of dQ=dR in 	, there must exist an intermediate

value 	�� 2 (	0;1) such that dQ=dR > 0 if 	 > 	��. Recall the de�nition of 	� in the
proof of Proposition 2. Then, both (i) omitting the additional signal contract raises the

upper bound on x and (ii) the optimal rent payment is R = 0 and hence the multi-signal

contract is the same as in section 4 above, if 	 > max(	�;	��).
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