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Abstract
Extreme heat stress during the crop reproductive period can be critical for crop productivity.
Projected changes in the frequency and severity of extreme climatic events are expected to
negatively impact crop yields and global food production. This study applies the global crop
model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat
stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios
for the 21st century. Our results project maize to face progressively worse impacts under a
range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to
CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face
substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative
to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global
losses of maize yield (1Y=−12.8± 6.7% versus −7.0± 5.3% without HSA), reduce
projected gains in spring wheat yield by half (1Y= 34.3± 13.5% versus 72.0± 10.9%
without HSA) and in soybean yield by a quarter (1Y= 15.3± 26.5% versus 20.4± 22.1%
without HSA). The range reflects uncertainty due to differences between climate model
scenarios; soybean exhibits both positive and negative impacts, maize is generally negative
and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to
be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more
than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5.
We show large disparities in climate impacts across regions and find extreme heat stress
adversely affects major producing regions and lower income countries.
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1. Introduction

Anthropogenic climate change challenges current and future
global food production due to the direct effects of changes
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in mean climatic conditions, increasing risks from extreme
weather events, increased atmospheric CO2 concentration and
increasing pest damage [1, 2]. The Fourth Assessment Report
(AR4) of the Intergovernmental Panel on Climate Change
(IPCC) reports moderate increase in global crop yield for
global mean temperature increase up to 3 ◦C—mostly due
to beneficial CO2 fertilization effects on photosynthesis rate
and transpiration demand—but general decrease above this
threshold [3]. The report further concludes projected changes
in the frequency and severity of extreme climatic events will
have more serious consequences for food production and food
insecurity, than changes in mean climate alone [3].

Yet global climate impact assessments to date fail to
address adequately effects of changes in climate extremes on
crops [1, 2, 4–7], especially the negative impact of heat waves
during the reproductive stage, identified as a major threat to
yield in many parts of the world. Previous analyses modelling
the effect of extreme heat stress on crops have been limited
to single regions [8–12] or do not quantify impacts on yield
[13, 14]. Moreover, most previous studies present only a partial
estimate of uncertainty related to the range of climate change
projections by considering at most four global climate models
(GCMs) using the older SRES emissions scenarios [3, 4, 6, 7].
Finally, anticipated benefits from CO2 fertilization effects
remain a large source of uncertainty [15].

Here we use a new version of the global crop yield
model PEGASUS [5] that takes into consideration heat stress
sensitivity around crop anthesis (HSA) [10, 16] and CO2
fertilization effects for maize, spring wheat and soybean. We
use an ensemble of 72 climate change projections spanning the
21st century together with the CRU TS 2.10 observed climate
dataset [17] for the years 1971–2000 to drive PEGASUS and
produce a robust estimate of uncertainties related to future
climate change. Our approach takes into account impacts
of change in mean climate conditions, extreme temperatures
and elevated atmospheric CO2 concentration. We explore
PEGASUS’ sensitivity to HSA and CO2 fertilization effects
and show impacts on global crop yield and production on
present-day harvested areas. We present results from differ-
ent Representative Concentration Pathways (RCPs) [18] to
evaluate potential benefits of mitigation policy. Although we
make use of one single global gridded crop model and do not
evaluate across-model uncertainty, PEGASUS enables a first
assessment of the effect of HSA on global crop productivity,
currently missing in other comparable state-of-the-art global
gridded crop models [19]. Key sources of uncertainty resulting
from the use of a single crop model (i.e., consisting primarily
of uncertainty in the magnitude of CO2 fertilization effects,
temperature thresholds for HSA, and model representation of
water, temperature and nitrogen stresses), the use of static
harvested areas, and assumptions about farmers’ adaptation
responses (i.e., decision of planting dates and choice of crop
cultivars) are addressed in the discussion section.

2. Methods

2.1. Crop modelling

PEGASUS 1.1 is an improved version of the global crop
yield model PEGASUS [5] that simulates crop response

to elevated CO2 and better represents effects of climate
variability and extremes. A specific heat stress factor is
calculated as a function of intensity and duration of extreme
temperature events during crop anthesis according to crop
specific temperature thresholds [10, 14, 16] (see appendix A).
A literature review indicates spring wheat starts to face HSA
at a lower critical temperature (Tcr) threshold than for the other
crops and maize can tolerate a higher limit temperature (Tlim)
(table A.1). Soybean experiences a shorter range of elevated
temperatures and a steeper decline in yield between the critical
threshold and limit temperatures (table A.1).

Farm management practices represented in PEGASUS
include irrigation and fertilizer application, decision of plant-
ing dates and choice of crop cultivars. Our simulations allow
for adaptation in decision of planting dates and choice of crop
cultivars, according to temperature and precipitation condi-
tions as in Deryng et al [5]. In temperature-limited regions,
PEGASUS typically allows for earlier sowing dates and longer
growing season varieties due to warming temperatures. In
moisture-limited regions, PEGASUS tends to coincide sowing
dates with the start of the rainy season (the crop calendar
methodology is described in detail in [5]). As a result of
adaptation of planting dates and cultivars, timing of crop
anthesis can vary with climate change and thus influences
net HSA effects on crops: temperature-limited regions show
unchanged or slightly later flowering dates resulting mainly
from longer growing periods, which is more influential than
the effect of earlier planting; moisture-limited regions tend to
show earlier flowering dates resulting from earlier planting
dates (Figure S1 in the SI available at stacks.iop.org/ERL/9/0
34011/mmedia).

Total harvested area, along with fraction of total irrigated
and rainfed areas, are kept constant to present-day (circa the
year 2000) and irrigation water is applied to prevent irrigated
crops from experiencing water stress, assuming unlimited
availability of irrigation water as in Deryng et al [5]. We
use the Earthstat dataset (www.earthstat.org) for global crop
harvested area [20] in combination with the MIRCA2000
dataset [21] for crop specific irrigated areas to define present-
day harvested areas and fraction of irrigated and rainfed areas.
Similarly, we use national annual rates of NPK (i.e., combining
nitrogen, phosphate and potash) fertilizer application from
the International Fertilizer Industry Association (IFA) [22]
corresponding to the mid-1990s and maintain application rates
constant throughout the simulations.

PEGASUS is calibrated and validated for the year 2000
using the CRU TS 2.10 climate data [17] for the period
1997–2002 and the Earthstat dataset for global crop yield
and harvested area [20]. Average simulated crop yield for the
period 1997–2002 is used to approximate yield for the year
2000.

2.2. Climate modelling

PEGASUS is driven by climate data from the CRU TS 2.10
dataset for the period 1971–2000 and from the Community
Integrated Assessment System (CIAS) [23] for the period
2001–2100. CIAS uses greenhouse gas (GHG) emissions time
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series corresponding to the four RCPs emission scenarios [18]
to drive a global climate change model MAGICC 6 [24] capa-
ble of reproducing global mean warming from complex GCMs.
The resultant projections of global temperature change drive a
pattern-scaling module ClimGen [25] capable of reproducing
climate change patterns diagnosed from eighteen alternative
GCM simulations combined with a baseline observed climate
using the CRU TS 2.10 dataset. We produce 72 spatially
explicit time-series projections of monthly mean, minimum
and maximum temperatures, total monthly precipitation, wet
day frequency and percentage of cloud cover downscaled to
0.5◦× 0.5◦ resolution (∼50 km2 at the Equator) and consistent
with the RCPs [26]. Monthly mean climate data are inter-
polated to daily using a stochastic weather generator within
PEGASUS (see appendix B).

Changes in temporal distribution of precipitation are
scaled according to changes in global mean temperature using
a gamma shape parameter such that ClimGen outputs of total
monthly precipitation and wet day frequency account for
changes in present and future precipitation variability [25].
Changes in monthly mean, minimum and maximum temper-
atures are estimated according to changes in global mean
temperature so that the weather generator within PEGASUS
generates warmer temperature extrema as global mean temper-
ature increases. However, potential changes in the frequency
of extreme temperature events are not yet simulated within
ClimGen (see appendix B). As those might also change in
future [27], results presented here might be more conservative
than with fully realized changes in temperature variability (see
section 7 for further discussion).

2.3. Global average yield and production estimates

Global average actual yield is calculated by combining yields
simulated from full irrigation and no irrigation runs weighted
by irrigated and rainfed areas. We consider three time periods
averaged over 30 years: baseline corresponding to the 1980s
(1971–2000), medium time horizon corresponding to the
2050s (2036–2065) and long time horizon corresponding to
the 2080s (2071–2100). Total production is estimated by
multiplying actual yield by corresponding harvested area
assuming harvested area remains constant as present-day using
the Earthstat dataset [20].

We use the World Bank definition to classify countries by
income level: Economies are divided according to 2012 GNI
per capita, calculated using the World Bank Atlas method [28].
The groups are: low income, $1035 or less; lower middle
income, $1036–$4085; upper middle income, $4086–$12 615;
and high income, $12 616 or more. We calculated country-level
production for the year 2000 (average over the six-year
period: 1997–2002) using the CRU TS 2.10 climate dataset
and selected the top-five producing countries according to
PEGASUS yield estimates multiplied by crop harvested area.
The top-five countries for maize and soybean production agree
with the United Nations Food and Agriculture Organization
(FAO) rankings [29] for the year 2000. In the case of spring
wheat, we use spring wheat harvested area generated by
combining wheat harvested area [20] and global spring wheat
planting and harvesting calendar [30], assuming that farmers
do not grow both winter and spring varieties in the same
location.

2.4. Representative concentration pathways and climate
change futures

The four RCPs encompass a mitigation pathway in which
radiative forcing is reduced to 2.6 W m−2 (RCP 2.6) by 2100, a
business as usual pathway in which radiative forcing increases
to 8.5 W m−2 (RCP 8.5) by 2100, and two stabilization
pathways in which forcing levels out at 4.5 W m−2 (RCP
4.5) and 6.0 W m−2 (RCP 6.0) by 2100 respectively. The
Fifth Assessment Report (AR5) of the IPCC reports RCP
2.6 engenders a world with global mean surface temperature
stabilized at 1 ◦C by the 2050s with respect to 1986–2005 [27],
resulting in moderate heat stress and low CO2 fertilization
effects. Similarly, RCP 8.5 leads to a global mean warming
exceeding 1.4 ◦C and up to 4.8 ◦C by the 2080s [27], along
with unprecedented extreme heat stress and high potential CO2
fertilization effects.

Here we evaluate and explore uncertainties in crop sen-
sitivity to direct physiological effects of increased CO2 and
HSA for the two most contrasting RCPs (i.e., RCP 2.6 and
8.5). Consequently, results presented consist of 72 simulations
to account for combined impacts of mean climate change,
extreme temperatures around crop anthesis (HSA), and direct
CO2 fertilization effects (CO2) denoted as CC, 36 simulations
to account for impacts of mean climate change and direct CO2
fertilization only (CCw/o HSA), and 36 simulations to account
for impacts of mean climate change and extreme temperatures
only CCw/o CO2 ), for each of the three crops.

3. Global average trends

We find global average yield decreases for all maize sim-
ulations (1Y ranges from −2.9± 2.6% under RCP 2.6 to
−12.8± 6.7% under RCP 8.5 by the 2080s for CC) whereas
corresponding yields of spring wheat and soybean, when CO2
fertilization effects are included, increase throughout the 21st
century owing to large positive responses in C3 crops (1Y
ranges from 9.9 ± 3.6% under RCP 2.6 to 34.3 ± 13.5%
under RCP 8.5 for spring wheat and from 7.1± 7.0% under
RCP 2.6 to 15.3± 26.5% under RCP 8.5 for soybean by
the 2080s for CC) (figure 1 and table 1). HSA strongly
influences maize and spring wheat yields, contributing to
nearly half of expected losses for maize by the 2080s under
RCP 8.5 (1Y=−12.8± 6.7% for CC compared to 1Y=
−7.0± 5.3% for CCw/o HSA) and substantial reductions in
expected yield gains for spring wheat (1Y= 34.3± 13.5%
for CC compared to 1Y = 72.0± 10.9% for CCw/o HSA).
In contrast, HSA moderately affects soybean global yield
trajectories due to its higher critical temperature threshold to
HSA (see Methods and appendix A) (1Y = 15.3± 26.5%
for CC compared to 1Y = 20.4± 22.1% for CCw/o HSA).
Soybean exhibits a larger range of results spanning both
positive and negative outcomes globally whereas maize results
are mostly negative and wheat results mostly positive with
CO2 fertilization effects. Differences between crop responses
and the larger range of results for soybean reflect differences in
specific temperature tolerance to HSA (e.g. soybean has higher
critical temperature tolerance but lower limit temperature
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Figure 1. Global average yield trends simulated by PEGASUS under all 4 RCPs × 18 GCMs ensemble for maize, spring wheat and
soybean. Thick lines represent median value across each set of simulations. Full lines are for simulations including both CO2 fertilization
effect and HSA (CC). Dotted lines are for simulations not taking into account HSA (CCw/o HSA) and dashed lines are for simulations with
no CO2 fertilization effects (CCw/o CO2 ). Grey areas represent the range of global average yield estimates in the case of CC simulations.

Table 1. Median of relative change in global crop yield 1Y (%) by the 2050s and the 2080s relative to the 1980s for maize, spring wheat,
and soybean derived from 30-year average yield calculated for each period. The range represents the median absolute deviation (MAD) from
median.

Maize Spring wheat Soybean
Crop sensitivity RCP 2050 2080 2050 2080 2050 2080

CC RCP 2.6 −3.1± 2.4 −2.9± 2.6 9.8± 3.0 9.9± 3.6 9.5± 7.3 7.1± 7.0
RCP 4.5 −4.9± 3.3 −6.8± 4.2 13.0± 4.0 16.7± 5.3 10.8± 8.9 9.4± 12.6
RCP 6.0 −4.2± 3.1 −8.3± 5.2 13.3± 3.7 23.0± 6.8 11.4± 8.4 13.0± 16.1
RCP 8.5 −7.4± 3.2 −12.8± 6.7 16.9± 6.3 34.3± 13.5 11.1± 12.5 15.3± 26.5

CCw/o HSA RCP 2.6 −2.2± 2.1 −2.2± 2.1 16.6± 3.1 15.9± 3.4 10.2± 7.1 7.7± 6.8
RCP 8.5 −4.7± 3.3 −7.0± 5.3 31.9± 4.9 72.0± 10.9 12.4± 11.6 20.4± 22.1

CCw/o CO2 RCP 2.6 −4.7± 2.4 −4.4± 2.5 −4.5± 3.3 −2.9± 3.5 1.9± 6.8 0.9± 6.6
RCP 8.5 −10.5± 3.2 −22.0± 5.7 −10.1± 5.0 −24.1± 7.1 −6.9± 9.6 −26.0± 17.3

tolerance in comparison to maize—see appendix A) as well as
differences in GCM precipitation and temperature patterns and
in spatial patterns of production specific to each crop. Figure S2
in the SI (available at stacks.iop.org/ERL/9/034011/mmedia)
illustrates level of agreement in GCM simulations for each
crop. In the case of soybean, there are as many areas showing
a net decrease in yield as there are showing a net increase.
However, in some important soybean production areas such as
the USA and Brazil, there is no agreement on whether the sign
of the projected yield changes is positive or negative (see also
section Spatial patterns).

When CO2 fertilization effects are excluded from sim-
ulations (dashed lines in figure 1), spring wheat and soy-
bean yields follow maize’s negative trend, soybean being
the most affected crop: 1Y = −26 ± 17.3% for soybean,
1Y = −22.0± 5.7% for maize, and 1Y = −24.1± 7.1%
for spring wheat respectively for RCP 8.5 by the 2080s (see
table 1). Soybean also shows the widest range of simulated
yields when including HSA with and without CO2 effects.

Maize is by far the most negatively affected crop and
our results suggest a climate change future following RCP
2.6 could avoid fairly significant losses otherwise expected
with higher RCPs, due to their larger heat and water stress
conditions—since CO2 fertilization effects are minimal for
maize, a C4 crop. On the contrary, spring wheat and soybean,
both C3 crops, could benefit greatly from higher CO2 concen-
tration in the atmosphere arising from RCP 8.5 or RCP 6.0 as,

in these cases, beneficial CO2 fertilization effects outweigh
negative effects of mean climate change and extremes. How-
ever, crop response to elevated CO2 remains the largest source
of uncertainty as little is known about their actual response
in the field throughout the world, especially under tropical
climatic conditions and varied soil nutrient availability (all
experiments to date have been conducted either in chambers
or in fields located in the United States and in Europe, i.e.,
under temperate climatic conditions—see Discussion).

Finally, maize, spring wheat and soybean have different
tolerance thresholds to extreme temperatures (see appendix A),
leading to substantial differences in yield response. Spring
wheat is the most affected by extreme temperatures and
soybean is the least affected. By the 2080s for RCP 8.5, HSA
accounts for 45% of total negative impacts on maize, offsets
25% of positive impacts on soybean and 52% of positive
impacts on spring wheat when averaged at the global scale
(table 1).

4. Spatial patterns

We confirm previous findings of regional disparities in crop
yield impacts, with yield increases in high latitudes and large
yield reductions in mid and low latitudes (figure 2). Maize,
with the largest cultivated area, shows a uniform decrease in
yield over mid and low latitudes by the 2080s (figure 2(a)).
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Figure 2. Maps of median 1Y (%) across the 18 GCMs ensemble for RCP 8.5 in the 2080s relative to the 1980s for maize (a), spring wheat
(d) and soybean (g). Maps ((b)–(e)–(h)) show corresponding 1Y differences (%) between CCw/o HSA and CC simulations (green areas
show important yield gains without HSA). Similarly, maps (c-f-i) show corresponding 1Y differences between CCw/o CO2 and CC
simulations (red to black areas show important yield losses without CO2 fertilization).

In contrast, spring wheat and soybean present disparate results
owing to contradictory effects resulting from beneficial CO2
fertilization and detrimental extreme heat stress, the latter
playing a critical role in some regions (figures 2(d) and (g)
respectively). The number of simulations agreeing in the sign
of change in yield is also higher for maize than for the other
crops (see figure S1 in the SI (available at stacks.iop.org/ER
L/9/034011/mmedia), which presents corresponding maps of
ensemble simulations and their agreement).

Comparison between maps from top (CC) and middle
(CCw/o HSA) rows in figure 2, indicates crop harvested areas
at risk of HSA. In the case of maize (figures 2(a) and (b)),
greater HSA sensitivity occurs in the American corn-belt, the
Middle-East, west and south Asia, and northeast China. Within
the top-five producing countries (figure 3), Brazil, Mexico and
Argentina experience large decreases in national production,
exacerbated by HSA (blue and yellow bars). The United States
also faces a notable decrease in all simulations. China’s small
gain owing to CO2 fertilization effects is cancelled out by HSA.
These losses among the top-five producing countries (i.e.,
accounting for 80% of global maize production) could play a
major role in future world supply of maize, with consequences

for stability of international crop markets and higher risks of
future food insecurity as already experienced during the 2008
global food crisis [31, 32].

In the case of spring wheat (figures 2(d) and (e)), all
current cultivated areas experience heat stress damage: the
most severely impacted regions are again the mid and low
latitudes, including the northern part of the United States, the
Near-East and eastern part of Australia. In fact, all top-five
producing countries exhibit drastic reductions in anticipated
production increases due to HSA (figure 3). Note country
ranking is estimated according to PEGASUS spring wheat
harvested area [30], which does not include winter wheat and
hence differs from country rankings that include both winter
and spring wheat (see Methods).

Finally, in the case of soybean (figures 2(g) and (h)),
the United States, Brazil and India (accounting for more than
60% of global soybean production) are the most affected
among the top-five producing countries (figure 3). In contrast,
Argentina, the third largest soybean producing country, shows
a large increase in its production, which could increase
its ranking to second in terms of world production, before
Brazil. China also displays large gains in production but only

5
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Figure 3. Bar plots showing net production (left side) and relative change in production (right side) for RCP 8.5 by the 2080s among
top-five producing countries for maize, spring wheat and soybean. The top of the bar stands for median value and whiskers show range for
each data. Dashed red lines on the left plots show current level of production, circa the year 2000. Production is estimated using present-day
harvested area.

Figure 4. Box plots of 1Y (%) simulated for RCP 8.5× 18 GCMs for the 2080s relative to the 1980s among different income-level
countries as defined by the World Bank: high income (HI), medium high income (MHI), medium low income (MLI) and low income (ML)
levels for maize, spring wheat and soybean. The bottom and top of the box are lower and upper quartiles, respectively, the band near the
middle of the box is the median value across each set of simulations, and the cross is the mean value.

when CO2 fertilization effects are included and little change
under CCw/o CO2 . Finally, the main region of production, the
central part of the United States, faces the most critical HSA
effects.

When CO2 fertilization effects are not taken into account
(figures 2(c), (f) and (i)), yields of all three crops decrease
uniformly in mid and low latitudes whereas changes in yields
in high latitudes remain positive. In addition, we find a net
decrease in yields for the top-five producing countries of each
crop, including even Canada, a high latitude country, in the
case of spring wheat (red bars in figure 3).

5. Country income levels

Impacts by the 2080s follow a regular gradient among income
levels of nations (as defined by the World Bank [28]—see
Methods) for maize and partly for spring wheat, whereas
impacts are mixed in the case of soybean (figure 4). For maize,
we find high income (HI) economies face the least damage
while low income (LI) ones suffer the most. As seen in the
global average trends (figure 1), maize yields decrease under
nearly all simulations.

For spring wheat, yields increase from HI to medium
low income (MLI) countries when CO2 fertilization effects

6
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are included. LI countries are less positively affected. Under
CCw/o CO2 , yields decrease the most for LI and HI groups.
Spring wheat displays the strongest response to CO2 fertiliza-
tion effects and greater HSA compared to the other crops.

In the case of soybean, medium high income (MHI) coun-
tries experience large increases in yield when including CO2
effects and small decreases under CCw/o CO2 . LI economies
also experience a small increase in yield when including CO2
effects and a decrease without it. HI and MLI economies are
the most impacted regions experiencing a large decrease in
yield under CCw/o CO2 , which is cancelled out with positive
CO2 fertilization effects. Spread in the results is similar within
all groups, whereas HI economies exhibit larger uncertainties
in impacts, which is also the case for maize.

Apart from maize, which shows greater impacts with
decreasing income level, we find relative differences in results
due to HSA or CO2 fertilization effects do not show systematic
patterns by income levels and repeat global trends illustrated
in figures 1 and 2.

6. RCPs trajectories

PEGASUS is more responsive to CO2 effects and HSA than
different pathways of radiative forcing. Yet CO2 effects on
C3 and C4 crops vary greatly, resulting in quite different
outcomes depending on crop–RCP combination. When all
factors are taken into account, global average maize yield by
the 2080s displays much greater reduction under RCP 8.5
(1Y = −12.8± 6.7%) than under RCP 2.6 (1Y = −2.9±
2.6%), and moderate losses under RCP 4.5 (1Y = −6.8±
4.2%) and 6.0 (1Y=−8.3± 5.2%) (figure 1). In contrast,
yields of spring wheat and soybean increase the most under
RCP 8.5 (up to 34.3± 13.5%), followed by RCP 6.0 (up to
23.0± 6.8%), RCP 4.5 (up to 16.7± 5.3%) and RCP 2.6 (up to
9.9± 3.6%). By the 2050s, maize yield may be a little higher
under RPC 4.5 than under RCP 6.0. Similarly, soybean yield
could be slightly higher under RCP 6.0 than RCP 8.5. These
differences highlight the complexity of crop–climate–CO2
interactions.

Relative changes in production (figure S3 in the SI
available at stacks.iop.org/ERL/9/034011/mmedia for top-five
countries) and yield (figure S4 in the SI available at stacks.io
p.org/ERL/9/034011/mmedia for income-level groups) under
RCP 2.6 are much smaller than under RCP 8.5 (figures 3
and 4 respectively). However, the range of uncertainties is
greatly reduced. A strong mitigation scenario resulting in a
low stabilized radiative forcing (i.e., RCP 2.6) could therefore
contribute to reduced uncertainties in projections of overall
impacts and thus facilitate adaptation planning. In contrast,
a business as usual future such as RCP 8.5 is associated
with large uncertainties in projected impacts, and designing
adaptation strategies for such an uncertain future is much more
challenging.

Finally, when assuming CO2 fertilization to be negligible
(i.e., CCw/o CO2 ), we find dramatic yield losses for all three
crops by the 2080s under RCP 8.5; whereas corresponding
yield losses are reduced by more than 80% under RCP 2.6
(see two last rows in table 1). In this case, our findings

present major differences between RCP trajectories and further
emphasize the importance of better quantifying the role of
elevated atmospheric CO2 on crops (see discussion, section 7).

7. Discussion and conclusion

Our paper fills an important gap in previous assessments of
climate change impact on global crop yield by simulating, for
the first time at the global scale, effects of extreme heat stress
during the crop reproduction phase and an extensive range
of future climate scenarios (72) encompassing differences in
GHG emissions and GCMs. Table 2 compares key results pre-
sented here against other global scale impact assessments. We
identified studies using different crop simulation approaches,
including the LPJmL model [4], the DSSAT suite of crop
models [6, 7] and version 1.0 of PEGASUS [5] under climate
change only (referred to in the table as CCw/o HSA,CO2 ) and
CCw/o HSA scenarios. Table 2 also includes results from a sta-
tistical model using historical observed data [33]. PEGASUS
1.1 differs from 1.0 by including an improved interpolation
algorithm of monthly climate data to daily values using a
weather generator and being sensitive to specific extreme heat
stress (see Method section and appendix A). Some studies
reported results for each individual crop and some reported
multi-crop averages. Effects of HSA in PEGASUS 1.1 lead
to more pessimistic outcomes. Importantly, PEGASUS 1.1
produces a wider range of estimated 1Y than any previous
study. For instance, impacts on soybean yields may be largely
positive or negative even when CO2 fertilization effects are
taken into account. Previous studies listed in table 2 considered
only two to four GCMs to drive their crop models, whereas our
study, using PEGASUS 1.1, takes into account an ensemble
of eighteen GCMs, which increases the range of uncertainties,
due to climate model scenarios.

Our results include some important scientific uncertainties
and assumptions. First, we use global values of temperature
thresholds for HSA for each crop whereas in reality tem-
perature thresholds vary not only among crop types but also
among crop cultivars. Second, this analysis omits winter wheat
and therefore gives only a partial assessment on total global
wheat yield (spring wheat as simulated in PEGASUS accounts
for 35% of total wheat harvested area). Third, PEGASUS
does not include negative impacts related to crop pest and
disease factors, which have yet to be explicitly examined in
crop models [1], or crop interactions with pollutants such
as ozone, and nutrient–CO2 interactions. Fourth, our study
assumes no adaptation in fertilizer application rates, which
does not represent realistic scenarios of future fertilizer appli-
cation rates. In fact, we constrain our analysis to focus on
biophysical aspects of climate impacts without speculating on
future developments in the world economy and trade and gain
in yield due to improvements in agro-technologies. Adaptation
scenarios taking into account future fertilizer application rates
would require additional information on economy and trade,
which is beyond the scope of this study. Similarly, irrigation
scenarios here do not rely on actual water resources available,
assuming water is available in irrigated cropland. A more
realistic assessment would require linkage to a global water
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model, which could lead to reductions in irrigated crop yield
due to water scarcity. Fifth, CO2 fertilization effects on crops,
which are included here, remain controversial [34–36]. Atmo-
spheric CO2 concentrations continue to rise rapidly, having
recently surpassed 400 parts per million. The potential for CO2
fertilization effects to alleviate the largely negative impacts
of climate change on crops, and ultimately food security, is
unclear. Little is known about actual crop response to elevated
CO2 effects in many parts of the world. Current Free-Air CO2
Enrichment (FACE) experiments [37] have been conducted
in temperate climates, principally in the United States and a
few in Europe. CO2 effects in tropical climates could be very
different and possibly more sensitive to soil nutrient availabil-
ity. Differences in the impacts found here with and without
CO2 fertilization highlight the urgency for further study of
CO2 effects on crops across agroecosystems [38]. In addition,
elevated CO2 is expected to reduce C–N ratios in crops,
hence reducing the quality of grains by reducing the overall
protein content [39]. Although this last point is paramount
for global food security, CO2 effects on grain protein content
are omitted from current global crop models. Sixth, monthly
temperature series generated within CIAS do not take into
account changes in the frequency of extreme temperatures,
which would increase risk of HSA. As a result, our simulation
results are probably conservative and may underestimate the
yield impact of extreme temperatures. Finally, our study uses
only one crop model and therefore omits a key source of
uncertainty in crop response to changing climate inputs. The
need for research into uncertainties associated with different
impact models is increasingly recognized [19, 40].

To conclude, our results quantify the importance of
extreme weather events on crop yield and confirm regional
disparities in climate change impacts. By the 2080s under
RCP 8.5, we find strong HSA effects for maize (responsible
for up to 45% of global average yield losses under RCP
8.5 by the 2080s relative to the 1980s) and spring wheat
(responsible for up to 52% reduction of global average yield
gains) and smaller consequences for soybean (responsible
for up to 25% reduction of global average yield gains).
Future GHG emission pathways are shown here to play an
important role in determining future crop production. These
results highlight the importance of climate mitigation to avoid
important yield impacts. Strong radiative forcing, leading to
a large increase in global mean temperature and hence higher
extreme temperatures, will impact crops negatively in some of
the regions contributing most to global production and across
different income countries. The potential effects on global food
prices and crop yield reduction in currently food insecure areas
represent significant consequences for global food security.
The wide range of impacts across regions underscores the need
for carefully targeted adaptation responses including breeding
and technology programmes for greater crop heat tolerance.
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Appendix A. Crop modelling

PEGASUS is a light-use efficiency (LUE) type global crop
model that integrates, in addition to climate, the effect of
planting date decision and cultivar choice, irrigation, and
fertilizer application on crop yield for maize, spring wheat and
soybean [5]. PEGASUS 1.1 used in this study includes several
improvements since version 1.0 to reflect multiple climate
change impacts on crop yields. These include the effects of
elevated atmospheric CO2 concentration on photosynthesis
rate and transpiration demand, specific heat stress at anthesis
and a stochastic weather generator to create daily data from
monthly climate inputs.

A.1. CO2 effect on LUE coefficient

PEGASUS operates at a daily time-step. The LUE model
assumes photosynthesis in unstressed conditions is propor-
tional to incoming solar radiation. Additionally, tempera-
ture, soil moisture availability, and nutrient availability can
limit daily net biomass production (P). P is expressed in
mol C m−2 s−1 as:

P = εAPAR fT fW fN (A.1)

where ε (mol C mol quanta−1) is the LUE coefficient, APAR
(mol quanta m−2s−1) represents the daily average absorbed
photosynthetically active radiation. fT , fW , and fN are three
limiting factors varying between 0 (high stress) and 1 (no
stress) of daily mean temperature, daily soil moisture, and soil
nutrient status, respectively. ε increases with CO2 so that:

ε=
100CO2

CO2+ er1−r2·CO2
(A.2)

where CO2 is the concentration of carbon dioxide in the
atmosphere (ppm), and r1 and r2 are shape coefficients. The
shape coefficients are calculated by solving equation (A.2)
using two known points (εamb, CO2amb ) and (εhi , CO2hi ). εamb
is tuned to simulate present-day global crop yield data at
CO2amb = 380 ppm as in Deryng et al, (2011) [5]. At CO2hi =

550 ppm, parameters are εhi = 1.06× εamb for maize, εhi =

1.13× εamb for wheat, and εhi = 1.19× εamb for soybean
according to free-air CO2 enrichment (FACE) results [36]:

r1= ln
[

CO2amb

0.01 · εamb
−CO2amb

]
+ r2 ·CO2amb (A.3)

r2=
ln[

CO2amb
0.01·εamb

−CO2amb ] − ln[
CO2hi

0.01·εhi
−CO2hi ]

CO2hi −CO2amb

(A.4)
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Table A.1. Temperature critic (Tcr) and limit (Tlim) (in ◦C) for maize, wheat and soybean used in this study (PEGASUS 1.1) and
corresponding values found in the literature.

Maize Wheat Soybean
Reference Tcr (◦C) Tlim (◦C) Tcr (◦C) Tlim (◦C) Tcr (◦C) Tlim (◦C)

PEGASUS 1.1 32 45 25 35 35 40
Lobell et al (2013) [8] 30
Moriondo et al (2011) [10] 31 40
Semenov and Shewry (2011) [11] 27
Teixeira et al (2011) [14] 35 45 27 40 35 40
Thuzar et al (2010) [45] 34
Modhej et al (2008) [46] 22
Spiertz et al (2006) [47] 25
Porter and Gawith (1999) [48] 24 31
Ferris et al (1998) [49] 25 35

A.2. CO2 effect on transpiration

The water stress factor fW [5] depends on daily potential
evapotranspiration demand (PET), which is reduced by CO2
concentration following a similar and simplified approach
to Easterling et al [41], also used in the SWAT and EPIC
models [42, 43], so that:

PET= PETamb×

(
1.5− 0.5

CO2

CO2amb

)
(A.5)

where PETamb corresponds to PET estimated under CO2amb .
While CO2 effect on LUE coefficient is crop specific, CO2
influence on PET is identical for all crops.

A.3. Heat stress at anthesis

Crops are sensitive to extreme temperatures, particularly
around the reproductive stage, called anthesis. Following the
methodology developed by Challinor et al [16] and used in
several other studies [10, 14], PEGASUS’ account of extreme
temperature stress on crop yield follows three steps:

(i) estimation of the crop thermal sensitivity period (TSP);
(ii) identification of an extreme temperature event according

to crop specific temperature tolerance threshold;
(iii) application of a heat stress factor fHSA on storage organ

production, which depends on duration and intensity of
the high temperature event.

Crop TSP includes a couple of days before and after
anthesis and is estimated as a function of crop growing
period length (GPL), which depends on growing degree days
accumulation [5] and varies with crop cultivars. Anthesis
is scheduled when the number of days since emergence
reaches half of crop GPL (calculated between emergence and
maturity), i.e., 0.5 GPL; TSP starts a few days before anthesis
at 0.45 GPL and ends after anthesis at 0.7 GPL. A high
temperature event occurs when daily effective temperature
(Teff) exceeds a critical temperature (Tcr) threshold. Above
this threshold, the daily heat stress factor fHSAd during the

TSP is calculated according to:

fHSAd =


1 if Teff < Tcr

1−
Teff − Tcr

Tlim− Tcr
if Tcr ≤ Teff < Tlim

0 if Teff ≥ Tlim

(A.6)

Teff is defined as (Tmean + Tmax)/2, where Tmean is the daily
mean temperature and Tmax is the daily maximum tempera-
ture [44], Tlim is the limit temperature above which fHSAd is
maximal. Crop specific Tcr and Tlim come from a synthesis
of values found in the literature [10, 11, 14, 33, 45–49]
(table A.1). Temperature tolerance differs for each crop. Here,
HSA critical temperature thresholds are 25 ◦C for spring
wheat, 32 ◦C for maize and 35 ◦C for soybean. Hence, as
temperatures increase spring wheat yield is impacted first,
followed by maize and finally soybean. However, HSA impact
functions differ among crop type as temperature thresholds at
zero pod-set are 35 ◦C for spring wheat, 45 ◦C for maize and
40 ◦C for soybean.

The daily heat stress factor is accumulated and averaged
over the TSP so that fHSA is expressed as:

fHSA =
1

TSP

TSP∑
1

fHSAd (A.7)

Finally, crop yield (Y in t Ha−1) affected by HSA is expressed
as:

Y =
EF

0.45 DF
Cso× fHSA (A.8)

where Cso represents the amount of dry carbon accumulated
in the storage organs at harvesting date, EF is the economic
fraction of the storage organs, DF is the dry fraction of the
economic yield to convert weight of dry matter to weight of
fresh matter, and 0.45 is the mass of carbon contained in one
unit of dry matter [5].

Appendix B. Climate data and weather generator

B.1. CIAS

Monthly climate data used in this study comprise historical
climate data from the CRU TS 2.10 dataset [17] and 72
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global climate change patterns derived from eighteen GCMs
combined with four RCPs generated using CIAS [23]: a mod-
ular integrated assessment model (IAM) linking an emission
scenarios module (ESM), a simple global climate module
(SCM), MAGICC 6 [24], and a climate scenario downscal-
ing module (DSM), ClimGEN [25]. Designed for modelling
climate change policy and effectiveness, CIAS is a unique
multiinstitutional modular and flexible integrated assessment
system offering a single framework to create multiple IAMs
by interchanging the coupling of the different modules [23].
CIAS is supported by a software framework called SoftIAM,
which allows various combinations of modules to be connected
together into alternative IAMs and provides a graphical inter-
face to let users interact with the system, configure and perform
various kind of simulations to answer different scientific and
policy questions. CIAS modules are configured to emulate here
the behaviour of eighteen GCMs used in the IPCC AR4 [3]
coupled to four RCPs used in the IPCC AR5 [18].

B.2. RCPs

The ESM provides atmospheric concentration data of GHG
emissions for various scenarios database such as the IPCC
SRES and RCPs, the latter being used in this study. Alterna-
tively, GHG concentrations can be estimated from emission
scenarios generated from an economic module linked to an
emission converter as presented in [23]. GHGs concentration
data are then input to MAGICC 6.

B.3. MAGICC

The MAGICC model [50] has been developed and updated
over two decades and widely used in integrated modelling
studies [51, 52]. MAGICC is a single piece of software
comprising a set of linked internal components to simulate
GHGs cycles, radiative forcing, and ice melt. Radiative forcing
drives an upwelling diffusion energy balance model to estimate
future climate changes. MAGICC 6 [24] is an updated version
of the original MAGICC, with an improved representation
of the carbon cycle. Climate feedback on the carbon cycle
is included; the resulting [CO2] depends on the forcing,
the climate sensitivity and the ocean heat uptake efficiency.
Sulphate aerosol forcing is scaled directly with the emissions
because of the short residence time in the atmosphere. Thus
the model allows the user to emulate GCM output, specifically
changes in [CO2], global-mean surface air temperature and
sea level between the years 2000 and 2100 resulting from
anthropogenic emissions of CO2, CH4, N2O, HFCs, CFCs and
PFCs, as well as SO2. MAGICC 6 is tuned to emulate here
eighteen state-of-the-art GCMs to create global temperature
projections for the four RCPs [18].

B.4. ClimGEN

The DSM generates spatially explicit climate data at various
temporal scale from the single global-mean surface air temper-
ature calculated by the SCM. The current DSM is CLIMGEN,
which produces monthly, seasonal and annual mean climate
data at a spatial resolution of 0.5

◦

× 0.5
◦

grid-cell covering

both the terrestrial land surface excluding Antarctica [17].
CLIMGEN follows a pattern-scaling methodology currently
based on the CMIP3 GCM patterns [26]: any given change
in annual mean temperature as simulated by MAGICC 6
can be linearly rescaled to represent spatial and temporal
pattern of change in each climate variables. ClimGEN com-
bines these change patterns with the observed climatology,
currently provided by the CRU TS 2.10 dataset [17], to produce
patterns of mean absolute climate, and then combines them
with observed time series of deviations from climatology to
produce realisations of climate change over 2001 to 2100
with realistic yearly variability superimposed. CLIMGEN can
generate monthly climate data for eight variables including
mean, maximum and minimum temperatures, precipitation,
vapour pressure, cloud cover and wet-day frequency. In the
case of precipitation, change in GCM precipitation pattern is
expressed as fractional change from present-day precipitation
combined with the observed climatology by multiplication.
To simulate future change in both precipitation variability and
mean precipitation, ClimGEN includes a gamma shape param-
eter that represents the temporal distribution of precipitation.
Change in the gamma shape parameter output by the GCMs is
scaled by the required global-mean temperature change [25].
Future changes in the frequency of temperature extremes are
not, however, as yet incorporated [25, 53].

B.5. Weather generator

Monthly climate data generated within CIAS are interpolated
to a daily time-step using PEGASUS’ internal weather gener-
ator. First, PEGASUS derives fraction of sunshine hours from
CIAS cloud cover data following Doorenbos and Pruitt [54].
Then, PEGASUS uses monthly mean climate input of total
precipitation, wet day frequency, fraction of sunshine hours
and minimum, maximum and mean temperatures to feed into
an extended version of the Richardson weather generator [55,
56]. Daily precipitation follows a two-states first order Markov
chain according to the number of wet days per month and a
gamma shape distribution of precipitation centred on monthly
average precipitation per wet day [55, 57]. The method for
wet and dry day transition probabilities is described in [58].
Daily temperature and fraction of sunshine hours follow a
multivariate model for which mean and standard-deviation of
each variable are tied to the wet or dry status of the day [57].
Furthermore, daily mean temperature estimates are tied to
daily minimum and maximum temperature estimates [55], so
that changes in daily mean temperatures reflect changes in
minimum and maximum temperature extrema.
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