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Oriented Euler Complexes and Signed Perfect
Matchings
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Abstract

This paper presents “oriented pivoting systems” as an abstract framework for
complementary pivoting. It gives a unified simple proof thatthe endpoints of
complementary pivoting paths have opposite sign. A specialcase are the Nash
equilibria of a bimatrix game at the ends of Lemke–Howson paths, which have
opposite index. For Euler complexes or “oiks”, an orientation is defined which
extends the known concept of oriented abstract simplicial manifolds. Ordered
“room partitions” for a family of oriented oiks come in pairsof opposite sign.
For an oriented oik of even dimension, this sign property holds also for un-
ordered room partitions. In the case of a two-dimensional oik, these are perfect
matchings of an Euler graph, with the sign as defined for Pfaffian orientations of
graphs. A near-linear time algorithm is given for the following problem: given a
graph with an Eulerian orientation with a perfect matching,find another perfect
matching of opposite sign. In contrast, the complementary pivoting algorithm
for this problem may be exponential.
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1 Introduction

A fundamental problem in game theory is that of finding a Nash equilibrium of a
bimatrix game, that is, a two-player game in strategic form.This is achieved by the
classical pivoting algorithm by Lemke and Howson (1964). Shapley (1974) intro-
duced the concept of anindexof a Nash equilibrium, and showed that the endpoints
of every path computed by the Lemke–Howson algorithm have opposite index. As
a consequence, any nondegenerate game has an equal number ofequilibria of posi-
tive and negative index, if one includes an “artificial equilibrium” (of, by convention,
negative index) that is not a Nash equilibrium. The Lemke–Howson algorithm is one
motivating example for the complexity class PPAD defined by Papadimitriou (1994).
PPAD stands for “polynomial parity argument with direction” and describes a class
of computational problems whose solutions are the endpoints of implicitly defined,
and possibly exponentially long, directed paths. A salientresult by Chen and Deng
(2006) is that finding one Nash equilibrium of a bimatrix gameis PPAD-complete.

Lemke (1965) generalized the Lemke–Howson algorithm to more generallinear
complementary problems(LCPs). Lemke’s algorithm is the fundamentalcomplemen-
tary pivotingalgorithm; a substantial body of subsequent work is concerned with its
applicability to LCPs and related problems (for a comprehensive account see Cottle,
Pang, and Stone, 1992). Todd (1972; 1974) introduced a theory of “abstract” com-
plementary pivoting where the sets of basic and nonbasic variables in a linear system
are replaced by elements of a “primoid” and “duoid”.

Todd’s “semi-duoids” have been studied independently by Edmonds (2009) under
the name ofEuler complexesor “oiks”. A d-dimensional Euler complex over a finite
set ofnodesis a multiset ofd-element sets calledroomsso that any set ofd−1 nodes
is contained in an even number of rooms. For a family of oiks over the same node
setV , Edmonds (2009) showed that there is an even number ofroom partitionsof V ,
using an “exchange algorithm” which is a type of parity argument. A special case is
a family of two oiks of possibly different dimension corresponding to the two players
in a bimatrix game. Then room partitions are equilibria, andthe Lemke–Howson
algorithm is a special case of the exchange algorithm. In another special case, all
oiks in the family are the same 2-oik, which is anEuler graphwith edges as rooms
andperfect matchingsas room partitions.

This paper presents three main contributions in this context. First, we define an
abstract framework calledpivoting systemsthat describes “complementary pivoting
with direction” in a canonical manner. Similar abstract pivoting systems have been
proposed by Todd (1976) and Lemke and Grotzinger (1976); we compare these with
our approach in Section 5. Second, using this framework, we extend the concept of
orientationto oiks and show that room partitions at the two ends of a pivoting path
have opposite sign, provided the underlying oik is oriented. For two-dimensional
oiks, which are Euler graphs, room partitions are perfect matchings. Their orientation
is the sign of a perfect matching as defined for Pfaffian orientations of graphs. Our
third result is a polynomial-time algorithm for the following problem: Given a graph
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with an Eulerian orientation and a perfect matching, find another perfect matching
of opposite sign. The complementary pivoting algorithm that achieves this may take
exponential time.

In order to motivate our general framework, we sketch here two canonical exam-
ples (with further details in Section 2) where paths of complementary pivoting have
a direction and endpoints of opposite sign. The first exampleis a simple polytope in
dimensionm with n facets, each of which has alabel in {1, . . . ,m}. A vertex is called
completely labeledif the m facets it lies on together have all labels 1, . . . ,m. Thesign
of a completely labeled vertex is the sign of thedeterminantof the matrix of the nor-
mal vectors of the facets it lies on when written down in the order of their labels. The
“parity theorem” states that the polytope has an equal number of completely labeled
vertices of positive and of negative sign (so their total number is even).

The second example is that of anEuler digraphwith vertices 1, . . . ,m and edges
oriented so that each node of the graph has an equal number of incoming and outgoing
edges. A perfect matching of this graph has a sign obtained asfollows: Consider any
ordering of the matched edges and write down the two endpoints of each matched
edge in the order of its orientation. This defines a permutation of the nodes, whose
parity (even or odd number of inversions) defines the sign of the matching. Here
the “parity theorem” states that the Euler digraph has an equal number of perfect
matchings of positive and of negative sign.

The first example is a case of a “vertical” LCP (Cottle and Dantzig, 1970) and
the second of an oik partition. Both parity theorems have a canonical proof where
the completely labeled vertices and perfect matchings, respectively, are connected
by paths of “almost completely labeled vertices” or “almostmatchings”, respec-
tively. The orientation of the path uses that exchanging twocolumns of a determinant
switches its sign, and that exchanging two positions in a permutation switches its par-
ity. In addition, one has to consider how the “pivoting” operation changes such signs.
Our concept of a pivoting system (see Definition 2) takes account of these features
while keeping the canonical proof.

In Section 2 we describe our two motivating examples in more detail. Labeled
polytopes and their completely labeled (“CL”) vertices arerelated to LCPs, and are
equivalent to equilibria in bimatrix games (Proposition 1). We also give a small
example of the pivoting algorithm that finds a second perfectmatching in an Euler
digraph.

In Section 3 we describe our framework of oriented pivoting systems, and prove
the main “parity” Theorem 3. The section concludes with the application to labeled
polytopes.

We study orientation for oiks in Section 4. The general Definition 6 seems to be a
new concept, which extends the known orientation for abstract simplicial manifolds
(e.g., Hilton and Wylie, 1967; Lemke and Grotzinger, 1976) and “proper duoids”
(Todd, 1976). Then the parity theorem applies to ordered room partitions in oriented
oiks, where the order of rooms in a partition is irrelevant for oiks of even dimension;
see Theorem 10 and Theorem 11.
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Section 5 discusses related work, in particular of Todd (1972; 1974; 1976) and of
Edmonds (2009) and Edmonds, Gaubert, and Gurvich (2010).

Section 6 is concerned with signed perfect matchings in Euler digraphs. A sec-
ond perfect matching of opposite sign is guaranteed to existby the complementary
pivoting algorithm, which, however, may take exponential time. In Theorem 12 we
give an algorithm to find such an oppositely signed matching in near-linear time in
the number of edges of the graph. This is closely related to the well-studied theory
of Pfaffian orientations: an orientation of an undirected graph is Pfaffian if all per-
fect matchings have the same sign. It is easy to see directly that an Euler digraph
is not Pfaffian; our result can be seen as a constructive and computationally efficient
verification of this fact.

Issues of computational complexity are discussed in the concluding Section 7.

2 Labeled polytopes and signed matchings

In this preliminary section, we present two main examples that we generalize later
in an abstract framework. The first example is a labeled polytope, whose completely
labeled (“CL”) vertices provide an intuitive geometric view of Nash equilibria in
a bimatrix game. We also mention the connection to the linearcomplementarity
problem. The second example is an Euler digraph with its perfect matchings.

We use the following notation. Let[k] = {1, . . . ,k} for any positive integerk. The
transpose of a matrixB is B⊤. All vectors are column vectors. The zero vector is0,
the vector of all ones is1, their dimension depending on the context. Inequalities
like x≥ 0 between two vectors hold for all components. Aunit vector ek has itskth
component equal to one and all other components equal to zero. A permutationπ of
[m] hasparity (−1)k if k is the number of itsinversions, that is, pairsi, j so thati < j
andπ(i) > π( j), and the permutation is also called even or odd whenk is even or
odd, respectively.

A polyhedronP is the intersection ofn halfspaces inRm,

P= {x∈ R
m | a⊤j x≤ b j , j ∈ [n]} (1)

with vectorsa j in R
m and realsb j . A labeling function l: [n]→ [m] assigns a label

to each inequality in (1), andx in P is said to have labell( j) when thej th inequality
is binding, that is,a⊤j x = b j , for any j in [n]. The polyhedronP is a polytope if it
is bounded. Avertexof P is an extreme point ofP, that is, a point that cannot be
represented as a convex combination of other elements ofP.

We normally look at “nondegenerate” polytopes where binding inequalities define
facets, and no more thanm inequalities are ever binding. That is, we assumeP
is a simple polytope (every vertex lies on exactlym facets) and that none of the
inequalities can be omitted without changing the polytope,so for every j in [n] the
j th binding inequality defines a facetFj given by

Fj = {x∈ P | a⊤j x= b j} (2)
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(for notions on polytopes see Ziegler, 1995). Then facetFj has labell( j) for j in [n],
and we callP a labeled polytope. A vertex ofP is completely labeledor CL if the m
facets it lies on have together all labels in[m].

CL vertices of polytopes are closely related to Nash equilibria in bimatrix games.
Suppose the polytopeP has the form

P= {x∈ R
m | −x≤ 0, Cx≤ 1} (3)

for some(n−m)×m matrix C, and that each of the firstm inequalitiesxi ≥ 0 has
label i in [m]. Then0 is a completely labeled vertex. IfP in (1) has a completely la-
beled vertex, then it is easy to see that it can be brought intothe form (3) by a suitable
affine transformation that maps that vertex to0 (see von Stengel, 1999, Prop. 2.1). If
C is a square matrix, then the CL verticesx of P other than0 correspond to symmet-
ric Nash equilibria(x̂, x̂) of the symmetric game with payoff matrices(C,C⊤), where
x̂= x/1⊤x. In turn, symmetric equilibria of symmetric games encode Nash equilib-
ria of arbitrary bimatrix games (see, e.g., Savani and von Stengel, 2006, also for a
description of the Lemke–Howson method in this context). Hence, given a bimatrix
game, its Nash equilibria are encoded by the CL vertices (other than0) of a polytope
P in (3).

Conversely, consider a labeled polytopeP with a CL vertex0 as in (3). For a
general matrixC in (3) and general labels for the inequalitiesCx≤ 1, the follow-
ing proposition implies that the CL vertices ofP correspond to Nash equilibria of
a “unit-vector game”(A,C⊤). The unit vectors that form the columns ofA encode
the labels for the inequalitiesCx≤ 1. (This proposition holds even if a point ofP
may have more thanm binding inequalities, except that then a CL point ofP is not
necessarily a vertex.) The proposition, in a dual version, was first stated and used
by Balthasar (2009, Lemma 4.10). The special case whenA is the identity matrix
describes an “imitation game” whose equilibria correspondto the symmetric equi-
libria of the symmetric game(C,C⊤) (McLennan and Tourky, 2010). For further
connections see Section 5.

Proposition 1 Suppose that(3) defines a polytope P so that the inequalities−xi ≤ 0
have label i for i∈ [m], and the last n−m inequalities Cx≤ 1 have labels l(m+ j)
in [m] for j ∈ [n−m]. Then x is a CL point of P−{0} if and only if for someŷ
the pair (x/(1⊤x), ŷ) is a Nash equilibrium of the m× (n−m) game(A,C⊤) where
A= [el(m+1) · · ·el(n)].

Proof. Consider the game(A,C⊤) as described. Then a mixed strategy pair(x̂, ŷ)
with payoffsu to player 1 andv to player 2 is a Nash equilibrium if and only if

x̂≥ 0, 1⊤x̂= 1, ŷ≥ 0, 1⊤ŷ= 1, Aŷ≤ 1u, Cx̂≤ 1v, (4)

and the “best response” (or complementarity) conditions

∀i ∈ [m] : x̂i > 0⇒ (Aŷ)i = u, ∀ j ∈ [n] : ŷ j > 0⇒ (Cx̂) j = v (5)
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hold. Condition (4) impliesu > 0 andv > 0, as follows. First, ˆy j > 0 for some j
in [n]. The j th column ofA is the unit vectorei for i = l(m+ j), so for thei th row
(Aŷ)i of Aŷ we haveu≥ (Aŷ)i ≥ ŷ j > 0. Second, ifv≤ 0 thenCx̂≤ 1v≤ 0≤ 1,
and henceCx̂λ ≤ 1 for any realλ ≥ 0, where ˆx 6= 0, so thatP contains the infinite
ray {x̂λ | λ ≥ 0}, but P is bounded. So indeedu> 0 andv> 0. With x= x̂/u and
y= ŷ/v, conditions (4) and (5) are equivalent to

x≥ 0, x 6= 0, y≥ 0, y 6= 0, Ay≤ 1, Cx≤ 1, (6)

and

∀i ∈ [m] : xi > 0⇒ (Ay)i = 1, ∀ j ∈ [n] : yi > 0⇒ (Cx) j = 1, (7)

from which (4) and (5) are obtained withu= 1/1⊤x, v= 1/1⊤y, x̂= xu, ŷ= yv.
Suppose now that(x̂, ŷ) is an equilibrium, withx andy so that (6) and (7) hold.

Thenx∈ P and we want to show thatx is a CL point ofP. Let i ∈ [m]. If xi = 0 then
x has labeli , so letxi > 0. Then(Ay)i = 1 by (7), so there is somej in [n] so that the
j th column ofA is ei , that is,l(m+ j) = i , andy j > 0. By (7), (Cx) j = 1, so thej th
inequality inCx≤ 1 is binding, which has labell(m+ j) = i . Sox is CL.

Conversely, letx be a CL point ofP andx 6= 0. Then for eachi in [m] with xi > 0,
label i for x comes from a binding inequality(Cx) j = 1 with label l(m+ j) = i , so
we lety j = 1 for the smallestj with this property, and setyk = 0 for all otherk in [n].
Thenxi > 0 implies(Ay)i = (ei)i = 1, andy j > 0 implies(Cx) j = 1, so (6) and (7)
hold, and with ˆx = x/1⊤x and ŷ = y/1⊤y we obtain the Nash equilibrium(x̂, ŷ) of
(A,C⊤).

A linear complementarity problem(LCP) with anm×m matrix M andm-vector
q is the problem of findingz in R

m so thatz≥ 0, q+Mz≥ 0, andz⊤(q+Mz) = 0
(see Cottle, Pang, and Stone, 1992). This the same as finding aCL point z of the
polyhedron

P= {z∈ R
m | −z≤ 0, −Mz≤ q} (8)

whose 2m inequalities have labels 1, . . . ,m,1, . . . ,m. More generally,M in (8) may
be of size(n−m)×m with labels 1, . . . ,m for the inequalities−z≤ 0 and arbitrary
labels in [m] for the inequalities−Mz≤ q. This is known as the “vertical” LCP
(Cottle and Dantzig, 1970). Lemke (1965) described a path-following method of
“complementary pivoting” to solve LCPs; many studies concern whether this method
terminates depending onM andq. This is always so in our special case (3) where
q= 1, C=−M, andP is bounded.

For a simple polytopeP in (3), a “Lemke path” (see also Morris, 1994) is obtained
for a givenmissing label win [m] as follows. Start at a CL vertex, for example0,
and “pivot” along the unique edge that leaves the facet with labelw. This reaches a
vertexv on a new facetF with labelk. If k=w, thenv is CL and the path terminates.
Otherwise, labelk is duplicate, that is,v is on another facet that also has labelk.
Continue by pivoting away from that facet to the next vertex,which again has a label
that is eitherw or duplicate, and repeat. This defines a unique path that consists of
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vertices and edges all of which have all labels exceptw, and whose endpoints are
CL. The CL vertices ofP are the unique endpoints of these “Lemke paths” and hence
there is an even number of them, which is the basic “parity theorem”. In addition,
a CL vertex has asignwhich is the sign of the determinant of them normal vectors
of the binding inequalities when these vectors are written down in the order of their
labels 1, . . . ,m. Then the endpoints of a Lemke path have opposite sign, as essentially
shown by Shapley (1974). We prove this in more general form inTheorem 3 and
Proposition 4 below.

Our second example is given by an Euler digraphG= (V,E), that is, a graph so
that each edge is oriented so that every node ofG has equally many incoming and
outgoing edges. We allow multiple parallel edges between two nodes. LetV = [m].
A perfect matching Mis a set ofm/2 edges no two of which have a node in common.
Thesignof a perfect matchingM is defined as follows. Consider the edges inM in
some order and write down their endpoints in the order of the orientation of the edge.
This defines a permutation ofV . The sign ofM is the parity of that permutation,
which is independent of the order of edges.

A “pivoting path” that starts from a perfect matchingM of G, and finds a second
perfect matching, can be defined as follows (see Figure 1 for asimple example).
Choose amissingnodew and for each node ofG a fixedpairingbetween its incoming
and outgoing edges. Lete be the matched edge incident tow, for example oriented
from w to u, soe= (w,u). Consider the (necessarily unmatched) edge(u,k) at the
other endpointu of e that is paired withe. (If e was oriented as(u,w), the paired
edge would be(k,u).) Replacee in M with (u,k). Unlessk = w, the result is an
“almost matching” with a nodek in V that is incident to two edges(u,k) ande′ , say,
nodew that is not incident to any edge, and every other node incident to exactly one
edge. Consider the endpointv of e′ other thank, and (assuminge′ is oriented as
e′ = (k,v)), replacee′ again with its paired unmatched edge(v,x) at v (in Figure 1,
x= w). Continue in this manner until the endpoint of the newly found edge isw. It
can be shown that the matching ofG that is found has opposite sign to the original
matching. In Figure 1, the two matchings are{12,34} and {23,41} which have
indeed opposite sign.

 1 2

 4

e

e’
3

w u

kv

Figure 1: Example of an Euler digraph and matched edges (wiggly lines) (1,2) and
(3,4). Here all edges are uniquely paired because every node has only one incoming
and one outgoing edge.
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3 Labeled oriented pivoting systems

In this section we describe a general abstract framework of “complementary pivoting”
with orientation. We will use an abstract set ofstates(which may be vertices of a
polytope, or sets of edges, such as matchings, in a digraph) and theirrepresentations
which define how to assign labels, orientations, signs, and how topivot from one state
to another.

Consider a finite setSof states. Each states is representedby anm-tuple

r(s) = (s1, . . . ,sm) (9)

of nodes si from a given setV . For a polytope as in (1), the set of nodesV is the set
[n] that numbers its facets, and a state is a vertex ofP represented by them facets
it lies on. In an Euler digraph,V is the set ofm nodes of the graph, and a states
is a set ofm/2 edges. A representation ofs is an m-tuple (s1, . . . ,sm) so that the
oriented edges ins are(s2i−1,s2i) for 1≤ i ≤m/2. Note that this representation may
not identifys uniquely if the graph has parallel edges.

The pivoting operationf takes a states and i in [m] and produces a new statet ,
with the effect that thei th componentsi of the representation ofs in (9) is replaced
by another elementu of V . We denote the resultingm-tuple by(r(s) | i→ u),

((s1, . . . ,sm) | i→ u) = (s1, . . . ,si−1,u,si+1, . . . ,sm). (10)

We denote the resulting new state with this representation by t = f (s, i). The pivoting
step is simply reversed bys= f (t, i). (We will soon refine this by allowingr(t) to be
a permutation ofr(s).) In the polytope,s andt are adjacent vertices that agree in all
binding inequalities except for thei th one.

In an Euler digraph with paired incoming and outgoing edges at each node, an
example of pivoting is the following: Suppose states (set with m/2 edges) has
the edge(s1,s2), which is paired with(s2,u) in the graph, and leti = 1. Pivoting
replaces(s1,s2) with (s2,u), giving the new statet . Here we encounter the dif-
ficulty that the representations ofs and t should ber(s) = (s1,s2,s3, . . . ,sm) and
r(t) = (s2,u,s3, . . . ,sm) in order to write down the edges in their orientation. How-
ever, this requires thats2 appears in a permuted place fromr(s) in r(t); this is ad-
dressed in Definition 2 below which is more general than the description so far.

Each nodeu in V has alabel l(u) given by a labeling functionl : V → [m]. The
path-following argument has as endpoints of the pathscompletely labeled (CL)states
s where, given (9),{l(si) | i ∈ [m]} = [m]. In addition, it considers statess that are
almost completely labeled (ACL)defined by the condition{l(si) | i ∈ [m]} = [m]−
{w}, wherew is called themissing labeland the uniquek so thatk = l(si) = l(sj)
for i 6= j is called theduplicate label.

“Complementary pivoting” means the following: Start from aCL states and
allow a specific labelw to be missing, wherel(si) = w. Pivot to the statet = f (s, i).
Then if the new nodeu in (10) has labell(u) = w, thent is CL and the path ends.
Otherwise,l(u) is duplicate, withl(sj) = l(u) for j 6= i , so that the next state is
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obtained by pivoting tof (t, j), and the process is repeated. This defines a unique
path that starts with a CL state, follows a sequence of ACL states, all of which have
missing labelw, and ends with another CL state. The path cannot meet itself because
the pivoting function is invertible; hence, the process terminates.

We also want to give adirectionto the pivoting path. For this purpose, a CL state
will get asign, either+1 or−1, so that the two CL states at the ends of the path have
opposite sign. This sign is the product of two such numbers (again either+1 or−1),
namely theorientationσ(s) of the states when represented asr(s) = (s1, . . . ,sm),
and the parity of the permutationπ of [m] when writing down the nodess1, . . . ,sm

in ascending order of their labels. In the polytope setting,the orientation of a vertex
is the sign of the determinant of the normal vectorsa j of the facetsFj that contain
that vertex, see (16) below. The important abstract property is that pivoting from
(s1, . . . ,sm) to ((s1, . . . ,sm) | si → u) changes the orientation, stated for polytopes in
Proposition 4 below.

In order to motivate the following definition, we first give a very simple example
of a pivoting path with only one ACL state apart from its two CLstates at its ends.
ConsiderV = {a1,a2,a3,b1,b2} with labels l(a1) = l(b1) = 1, l(a2) = l(b2) = 2,
l(a3) = 3, and three statess0,s1,s2 with r(s0) = (a1,a2,a3), r(s1) = (b2,a2,a3),
r(s2) = (b2,b1,a3). Assume thatf (s0,1) = s1 and f (s1,2) = s2. Then starting from
the CL states0 and missing label 1 pivots tos1 (by replacinga1 with b2), which is
an ACL state with duplicate label 2 in the two positions 1 and 2. The next com-
plementary pivoting step pivots froms1 to s2 (by replacinga2 with b1), wheres2 is
CL and the path ends. The three states have the following orientations:σ(s0) = 1,
σ(s1) = −1, σ(s2) = 1, which alternate as one state is obtained from the next by
pivoting. Here, the two CL statess0 ands2 have the same orientation. They obtain
theirsignby writing their nodes in ascending order of their labels: This is already the
case forr(s0), but in r(s2) the permutation 2,1,3 of the labels is odd, so the sign of
s2 becomes−1, which is indeed opposite to the sign ofs0.

In this example, we have chosen the representations of the statess0,s1,s2 in such
a way that the required pivoting steps can indeed be performed by exchanging a node
at a fixed position; however, this may not be clear in advance:another representation
of the three states might be(a1,a2,a3), (a2,a3,b2), (a3,b1,b2). In this case, we
still allow pivoting from s0 to s1 by going from(a1,a2,a3) to (b2,a2,a3) but with a
subsequent, known permutationπ to obtain the representation(a2,a3,b2) of s1; for
a “coherent” orientation of the states, we have to take the parity of π into account.

Definition 2 A pivoting systemis given by(S,V,m, r, f ) with a finite setSof states, a
finite setV of nodes, a positive integerm, arepresentationfunctionr : S→Vm, and a
pivoting function f: S× [m]→ S. For a permutationπ of [m] andr(t) = (t1, . . . , tm),
let

rπ(t) = (tπ(1), . . . , tπ(m)). (11)

Then for eacht = f (s, i), there is a permutationπ = π(s, i) of [m] so thatrπ(t) =
(r(s) | i→ u) for someu in V , and f (t,π(i)) = s. The pivoting system isorientedif

9



each states has anorientationσ(s), whereσ : S→{−1,1}, so that

σ(t) =−σ(s) ·parity(π) (12)

whenevert = f (s, i) with π = π(s, i) as described.

Note that when pivoting from states to statet = f (s, i), the permutationπ so that
rπ(t) = (r(s) | i → u) is a functionπ(s, i) of s and i and hence part of the pivoting
system. In addition, the orientationσ of the states is unique only up to possible mul-
tiplication with−1; usually one of the two possible orientations that are “coherent”
according to (12) is chosen as a convention (for Nash equilibria of bimatrix games,
for example, so that the CL vertex0 of P in (3) has negative sign).

The following simple example illustrates the use of the permutationπ = π(s, i)
in Definition 2. Supposer(s) = (s1,s2,s3) = (1,2,3) andr(t) = (t1, t2, t3) = (2,3,4),
where f (s,1) = t by replacings1 with 4. This means thatrπ(t)= (tπ(1), tπ(2), tπ(3)) =
((s1,s2,s3) | 1→ 4) = (4,2,3), so π(1) = 3, π(2) = 1, π(3) = 2, that is,π says
that sj becomestπ( j) except for the “pivot element”si . Pivoting “back” givess=
f (t,π(1)) = f (t,3).

It is important to note that the pivot operationf operates on statess which gives
a new statet = f (s, i), wherei refers to thei th componentsi of the representation
r(s) = (s1, . . . ,sm). However, there may be different statess and s′ with the same
representationr(s) = r(s′), as we will see in later examples; otherwise, we could
just takeS as a subset ofVm and dispense withr . This is one distinction to the for-
mal approaches of Lemke and Grotzinger (1976) and Todd (1976), who, in addition,
assume that the nodess1, . . . ,sm in (9) are distinct, which we do not require either.
Furthermore, we do not give signs to the two equivalence classes of even and odd
permutations of(s1, . . . ,sd), as Hilton and Wylie (1967) or Todd (1976), but instead
consider unique representationsr(s), and build a single permutationπ into each piv-
oting step.

The pivoting system(S,V,m, r, f ) is labeledif there is a labeling functionl : V→
[m]. For (s1, . . . ,sm) wheresi ∈ V for i in [m], let l(s1, . . . ,sm) = (l(s1), . . . , l(sm)),
and consider thism-tuple as a permutation of[m] if l(si) 6= l(sj) wheneveri 6= j . If
the pivoting system is oriented, then thesignof a CL states is defined as

sign(s) = σ(s) ·parity(l(r(s))). (13)

For an ACL states, we definetwo opposite signs as follows: consider the positions
i, j of the duplicate label inr(s) = (s1, . . . ,sm), that is,l(si) = l(sj) with i 6= j , and
missing labelw. Replacingl(si) with w in l(r(s)) then defines a permutation of[m],
denoted by(l(r(s)) | i→ w), which has opposite parity to(l(r(s)) | j → w) because
that permutation is obtained by switching the labelsw and l(sj) in positionsi and j .
Let

sign(s, i) = σ(s) ·parity(l(r(s)) | i→ w), (14)

so
sign(s, j) = σ(s) ·parity(l(r(s)) | j→ w) =−sign(s, i). (15)

10



This is the basic observation, together with the orientation-switching of a pivoting
step stated in (12), to show that complementary pivoting paths in an oriented pivoting
system have a direction. This direction (say from negatively to positively signed CL
end-state) is also locally recognized for any ACL state on the path, as stated in the
following theorem. Hence, for a fixed missing labelw, the endpoints of the paths
define pairs of CL states of opposite sign. The pairing may depend onw, but the sign
of each CL state does not.

Theorem 3 Let (S,V,m, r, f ) be a pivoting system with a labeling function l: V →
[m], and fix w∈ [m].
(a) The CL states and ACL states with missing label w are connected by comple-

mentary pivoting steps and form a set of paths and cycles, with the CL states as
endpoints of the paths. The number of CL states is even.

(b) Suppose the system is oriented. Then the two CL states at the end of a path have
opposite sign. When pivoting from an ACL state s on that path to t = f (s, i)
where l(si) is the duplicate label in r(s) = (s1, . . . ,sm), the CL state found at
the end of the path by continuing to pivot in that direction has opposite sign to
sign(s, i). There are as many CL states of sign1 as of sign−1.

Proof. Assume that the pivoting system is oriented; otherwise complementary piv-
oting (already described informally above) is part of the following description by
disregarding all references to signs. Consider a CL states and r(s) = (s1, . . . ,sm),
with w declared as the missing label for the path that starts ats, and letl(si) = w.
We can define sign(s, i) as in (14), which is just sign(s) in (13), becausel(r(s)) =
(l(r(s)) | i→w). The following considerations apply in the same way ifs is an ACL
state with duplicate labell(si). The path starts (or continues, ifs is ACL) by pivoting
to t = f (s, i). Assumerπ(t) = (r(s) | i→ u) as in Definition 2. Then(l(r(s)) | i→w)
is a permutation of[m], which is equal to(l(rπ(t)) | i→ w), and(l(r(t)) | π(i)→w)
is a permutation of[m] with parity(π) ·parity(l(r(s)) | i → w) as its parity. Hence,
by (12)

sign(s, i) = σ(s) ·parity(l(r(s)) | i→ w)
=−σ(t) ·parity(π) ·parity(l(r(s)) | i→ w)
=−σ(t) ·parity(l(r(t)) | π(i)→ w)
=−sign(t,π(i)).

If l(u) is the missing labelw, then t is the CL state at the other end of the path
and sign(t) = sign(t,π(i)), which is indeed the opposite sign of the starting states.
Otherwise, labell(u) is duplicate, withl(u) = l(sj) for some j 6= i , that is,l(tπ(i)) =
l(tπ( j)) for r(t) = (t1, . . . , tm), so that the path continues with the next pivoting step
from t to f (t,π( j)), where by (15)

sign(t,π( j)) =−sign(t,π(i)) = sign(s, i),

that is, this step continues from a state with the same sign asthe starting CL state,
and the argument repeats. This proves the theorem.
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For a labeled polytopeP as in (1), an oriented pivoting system is obtained as fol-
lows: The states inSare the verticesx of P, and by the assumptions onP each vertex
x lies on exactlym facetsFs1, . . . ,Fsm, where we taker(x) = (s1, . . . ,sm) as the repre-
sentation ofx with s1, . . . ,sm in any fixed (for example, increasing) order. Moreover,
the normal vectorsas1, . . . ,asm of these facets in (2) are linearly independent. For
any i in [m], the set

⋂

p∈[m]−{i}Fsp is an edge ofP with two verticesx andy as its
endpoints, which defines the pivoting function asy= f (x, i). The orientation of the
vertexx is given by

σ(x) = sgn(det[as1 · · ·asm]) (16)

with the usual sign function sgn(z) for reals z and the determinant detA for any
square matrixA. The following proposition is well known (Lemke and Grotzinger,
1976, for example, argue with linear programming tableau entries; Eaves and Scarf,
1976, Section 5, consider the index of mappings); we give a short geometric proof.

Proposition 4 A labeled polytope P with orientationσ(x) as in(16) for each vertex
x of P defines an oriented pivoting system.

Proof. Consider pivoting fromx to vertexy = f (x, i). We want to prove (12), that
is, σ(y) = −σ(x) · parity(π) where π is the permutation so thatrπ(y) = (r(x) |
i → u). Let x be on them facetsFs1,Fs2, . . . ,Fsm as in (2). The representation
r(x) = (s1, . . . ,sm) determines the order of the columns of the matrix[as1as2 · · ·asm]
whose determinant determines the orientationσ(x) in (16). Any permutation of the
columns of this matrix changes the sign of the determinant according to the parity
of the permutation, so for proving (12) the actual order of(s1, . . . ,sm) in r(x) does
not matter as long as it is fixed. Hence, we can assume thatπ is the identity permu-
tation, and that pivoting affects the first column (i = 1), so thaty is on them facets
Fs0,Fs2, . . . ,Fsm.

We show that det[as0as2 · · ·asm] and det[as1as2 · · ·asm] have opposite sign, that is,
σ(y) =−σ(x) as claimed. Them+1 vectorsas0,as1,as2, . . . ,asm are linearly depen-
dent, so there are realsc0,c1, . . . ,cm, not all zero, with

m

∑
p=0

cpa⊤sp
= 0⊤. (17)

Note thatc0 6= 0, because otherwise the normal vectorsas1,as2, . . . ,asm of the facets
that definex would be linearly dependent, and similarlyc1 6= 0. Multiply the sum
in (17) with bothy and x, wherea⊤sp

y = a⊤sp
x = bsp for p = 2, . . . ,m. This shows

c0a⊤s0
y+c1a⊤s1

y= c0a⊤s0
x+c1 a⊤s1

x or equivalently

c0(a
⊤
s0

y−a⊤s0
x) = c1(a

⊤
s1

x−a⊤s1
y),

so c0 andc1 have the same sign becausex is not on facetFs0 andy is not on facet
Fs1 , soa⊤s0

y−a⊤s0
x= bs0−a⊤s0

x> 0 anda⊤s1
x−a⊤s1

y= bs1−a⊤s1
y> 0. By (17),

0= det[(as0c0+as1c1) as2 · · ·asm] = c0det[as0as2 · · ·asm]+c1det[as1as2 · · ·asm]
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which shows that det[as0as2 · · ·asm] and det[as1as2 · · ·asm] have indeed opposite sign.

The orientation of a vertex of a simple polytopeP depends only on the determi-
nant of the normal vectorsa j of the facets in (16), but not on the right hand sidesb j

whenP is given as in (1). Translating the polytopeP by adding a constant vector to
each point ofP only changes these right hand sides. If0 is in the interior ofP, then
one can assume thatb j = 1 for all j in [n]. The convex hull of the vectorsa j is then
a simplicial polytopeP∆ called the “polar” ofP (see Ziegler, 1995). The vertices of
P∆ correspond to the facets ofP and vice versa. A pivoting system for the simplicial
polytope has its vertices as nodes and its facets as states, which one may see as a more
natural definition. However, the facets of a simplicial polytope are oriented via (16)
only if it has 0 in its interior, which is not required for the simple polytope P. For
common descriptions such as (3), we therefore prefer to lookat simple polytopes.

Theorem 3 and Proposition 4 replicate, in streamlined form,Shapley’s (1974)
proof that the equilibria at the ends of a Lemke–Howson path have opposite index.
Applied to the polytopeP in (3), the completely labeled vertex0 does not represent a
Nash equilibrium, and it is customarily assumed to have index −1, which is achieved
by multiplying all orientations with−1 if m is even.

4 Oriented Euler complexes

Todd (1972; 1974) introduced the concept of a “semi-duoid”,which was studied by
Edmonds (2009) under the name of Euler complex or “oik”. Edmonds showed that
“room partitions” for a “family of oiks” come in pairs. In this section, we give a
direction to Edmonds’s parity argument. For that purpose, we introduce the new con-
cept of anoriented oikand show that one can then define signs for “ordered room
partitions”, where the order of the rooms can be disregardedfor oiks of even di-
mension (Theorem 11). We discuss the connection of labels with “Sperner oiks” in
Appendix A.

Definition 5 Let V be a finite set ofnodesand letd be an integer,d≥ 2. A d-dimen-
sionalEuler complexor d-oikonV is a multisetR of d-element subsets ofV , called
rooms, so that any setW of d−1 nodes is contained in an even number of rooms. If
W is always contained in zero or two rooms, then the oik is called amanifold. A wall
is a (d−1)-element subset of a roomR. A neighboringroom toR for a wallW of R
is any room that containsW as a subset.

In the preceding definition we follow Edmonds, Gaubert, and Gurvich (2010) of
choosingd rather thand−1 (as in Edmonds, 2009) for the dimension of the oik. A
2-oik on V is an Euler graph with node setV and edge multisetR . We allow for
parallel edges (which is whyR in Definition 5 is a multiset, not a set) but no loops.

Rooms are often called “abstract simplices”, and a longer term for manifold is
“abstract simplicial pseudo-manifold” (e.g., Lemke and Grotzinger, 1976). The fol-
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lowing definition generalizes the common definition of coherently oriented rooms in
manifolds (Hilton and Wylie, 1967, p. 54) to oiks.

Definition 6 Consider ad-oik R on V and fix a linear order onV . Represent each
room R= {s1, . . . ,sd} in R as r(R) = (s1, . . . ,sd) wheres1, . . . ,sd are in increasing
order. For each roomR, choose anorientationσ(R) in {−1,1}. The induced ori-
entationon any wallW = R−{si} is defined as(−1)iσ(R). The orientation of the
rooms is calledcoherent, and the oikoriented, if half of the rooms containing any
wall W induce orientation 1 onW and the other half orientation−1 onW.

As an example, consider a 2-oik, where rooms are the edges of an Euler graph.
Suppose an edge{u,v} is oriented so thatσ(u,v) = 1. Then the induced orientation
on the wall{u} is −1 and on{v} it is 1, so{u,v} becomes the edge(u,v) of a
digraph oriented fromu to v. A coherent orientation means that each wall (that is,
node) has as many incoming as outgoing edges, so this is an Eulerian orientation of
the graph (which always exists; ford > 2 there are already manifolds that cannot be
oriented, for example a triangulated Klein bottle). In general, the simplest oriented
oik consists of just two rooms with equal node set but opposite orientation. As an
Euler digraph, this is a pair of oppositely oriented parallel edges.

Proposition 7 A d-oik R on V defines a pivoting system(S,V,m, r, f ) as follows:
Let S= R , m= d, and r andσ be as in Definition 6. For any wall W , match
the 2k rooms that contain W into k pairs(R,R′), where R and R′ induce opposite
orientation on W if the oik is oriented. Then f(R, i) = R′ if r (R) = (s1, . . . ,sd) and
W = R−{si}. If σ is coherent, then the pivoting system is oriented.

Proof. Let R∪R′ = {s1, . . . ,sd+1} = R∪ {sj} = R′ ∪ {si}, with s1, . . . ,sd+1 in in-
creasing order, and leti < j , otherwise exchangeR andR′ . Thenr(R′) is obtained
from r(R) by replacingsi with sj followed by the permutationπ that insertssj at
its place in the ordered sequence by “jumping over”j− i−1 elementssi+1, . . . ,sj−1
to remove as many inversions, so parity(π) = (−1) j−i−1. Hence, f (R, i) = R′ is
well defined. If σ is coherent, thenR and R′ induce on the common wallR∩R′

the opposite orientations(−1)iσ(R) and (−1) j−1σ(R′) (becausesi 6∈ R′), that is,
σ(R′) =−σ(R)(−1) j−i−1 =−σ(R) ·parity(π) as required in (12).

The matching of rooms with a common wall intok pairs described in Proposi-
tion 7 is unique if the oik is a manifold. In a 2-oik, that is, anEuler graph, such a
matching of incoming and outgoing edges of a node is for example obtained from an
Eulerian tour of the graph, which also gives a coherent orientation.

For an “oik-family” R1, . . . ,Rh where eachRp is a dp-oik on the same node
setV for p ∈ [h], Edmonds, Gaubert, and Gurvich (2010) define the “oik-sum” as
follows.

Definition 8 Let Rp be adp-oik on V for p ∈ [h], and letm= ∑h
p=1dp. Then the

oik-sumR = R1+ · · ·+Rh is defined as the set ofm-element subsetsR of [h]×V
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so that

R= R1⊎R2⊎· · ·⊎Rh = ({1}×R1)∪ ({2}×R2)∪· · ·∪ ({h}×Rh) (18)

whereRp ∈Rp for p∈ [h]. For a fixed order< onV , we order[h]×V lexicograph-
ically by (p,u)< (q,v) if and only if p< q, or p= q andu< v.

As observed by Edmonds, Gaubert, and Gurvich (2010), the oik-sumR is an oik.
A neighboring room ofR= R1⊎R2⊎ · · ·⊎Rh is obtained by replacing, for somep,
the roomRp with a neighboring roomR′p in Rp. The next proposition states, as a new
result, that the oik-sum is oriented if eachRp is oriented. According to Definition 6,
this requires an order on the node set[h]×V to yield an order on the nodes in room
R in (18), which is provided in Definition 8: The nodes of each room Rp are listed
in increasing order (onV ), and thesedp-tuples are then listed in the order of the
roomsR1, . . . ,Rh; this becomes the representationr(R) used to define the orientation
σ on R .

Proposition 9 The oik-sumR in Definition 8 is an m-oik over[h]×V . If eachRp

is oriented withσp, so isR , with

σ(R1⊎· · ·⊎Rh) =
h

∏
p=1

σp(Rp). (19)

Proof. Clearly, each roomR of R as in (18) hasm elements. Any wallW of R is
given byW =R−{(p,v)} for somep in [h] andv in Rp. Then any neighboring room
R′ in R of R for the wallW is given by

R′ = R1⊎· · ·⊎Rp−1⊎R′p⊎Rp+1 · · ·⊎Rh

for the neighboring roomsR′p in Rp for Rp−{v}, of which, includingRp, there is
an even number. This shows thatR is anm-oik.

For the orientation ofR if eachRp is oriented withσp, representR as r(R) by
listing the elements ofR in lexicographic order as in Definition 8. Then the induced
orientation on any wallW = R−{(p,v)} as in Definition 6 is obtained from the
induced orientation onRp−{v}, as follows. Supposesp

1, . . . ,s
p
dp

are the nodes in

Rp in increasing order, wherev= sp
i . Then the induced orientation onRp−{v} in

Rp is (−1)iσp(Rp). In r(R), nodev appears in position∑p−1
j=1 d j + i , so the induced

orientation ofR onW is, with σ(R) is defined as in (19),

(−1)∑p−1
j=1 d j+iσ(R) = (−1)iσp(Rp)(−1)∑p−1

j=1 d j ∏
q∈[h]−p

σq(Rq). (20)

All the rooms inR that containW are obtained by replacingRp with any room
R′p that containsRp−{v}. Half of these have induce the same orientation asRp

on Rp−{v}, half of these the other orientation. Because this affects only the term
(−1)iσp(Rp) in (20), half of the roomsR′ that containW induce one orientation on
W and half the other orientation. Soσ is a coherent orientation ofR .
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Consider now an oik-familyR1, . . . ,Rh whereRp is a dp-oik on V for p in [h]
so that|V| = m= ∑h

p=1dp. SupposeRp ∈Rp for p in [h] and
⋃h

p=1Rp =V (so the
roomsRp are, as subsets ofV , also pairwise disjoint). Then(R1, . . . ,Rh) is called an
ordered room partition. In the following theorem, the even number of ordered room
partitions is due to Edmonds, Gaubert, and Gurvich (2010); the observation on signs
is new.

Theorem 10 Let Rp be a dp-oik on V for p in[h] and |V|= m= ∑h
p=1dp. Then the

number of ordered room partitions is even. If eachRp is oriented as in Proposition 9,
then there is an equal number of ordered room partitions of positive as of negative
sign, where the sign of a room partition(R1, . . . ,Rh) is defined by

sign(R) = sign(R1, . . . ,Rh) = σ(R1⊎ . . .⊎Rh) ·parity(π) (21)

with the permutationπ of V given according to the order of the nodes of V in r(R),
that is, withπ(u) < π(v) if u ∈ Rp and v∈ Rq and p< q, or u,v ∈ Rp and u< v
in V .

Proof. This is a corollary of Theorem 3 and Propositions 7 and 9. Assume that
V = {v1, . . . ,vm} with the order onV given byvi < v j for i < j (or just letV = [m]).
Define the labelingl : [h]×V → [m] by l(p,vi) = i for i ∈ [m]. Then the CL rooms
R1⊎ . . .⊎Rh of R1+ · · ·+Rh are exactly the ordered room partitions, with the sign
in (21) defined as in (13). So there is an equal number of them ofeither sign.

If the oiks are not all oriented, then the paths that connect any two CL states are
still defined, so the number of ordered room partitions is even, except that they have
no well-defined sign.

Connecting any two room partitions by paths of ACL states as in the preceding
proof corresponds to the “exchange graph” argument of Edmonds (2009), where the
ACL states correspond toskew room partitions(R1, . . . ,Rh) defined by the property
⋃h

p=1Rp =V−{w} for somew in V ; herew represents the missing label.
Suppose now that all oiksRp in the oik family are the samed-oik R ′ over V

for p in [h], with |V| = m= h ·d. Then any ordered room partition(R1, . . . ,Rh) de-
fines an (unordered)room partition{R1, . . . ,Rh}. Any such partition gives rise to
h! ordered room partitions, so ifh≥ 2 their number is trivially even. However, the
path-following argument can be applied to the unordered partitions as well (which is
the original exchange algorithm of Edmonds, 2009), which shows that the ordered
room partitions at the two ends of the pivoting path define different unordered parti-
tions. The next theorem shows that unordered partitions{R1, . . . ,Rh} are connected
by pivoting paths, which are essentially the same paths as inTheorem 10, and that
the sign property continues to hold whend is even andR ′ is oriented.

Theorem 11 Let R ′ be a d-oik on V and|V| = m= h · d. Then the number of
room partitions{R1, . . . ,Rh} is even. IfR ′ is oriented withσ ′and d is even, then
sign(R1, . . . ,Rh) as defined in(19) with σp = σ ′ and (21) is independent of the
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order of the rooms R1, . . . ,Rh, and there are as many room partitions of sign1 as of
sign−1.

Proof. We consider unordered multisets{R1, . . . ,Rh} of h rooms ofR ′ as statess
of a pivoting system. We first define a representationr(s) = (s1, . . . ,sm). Let Rp =
{sp

1, . . . ,s
p
d} for p in [h] wheresp

1, . . . ,s
p
d are in increasing order according to the order

on V . Fix some order of the rooms inR ′, for example the lexicographic order with
some tie-breaking for rooms that have the same node set. Assume that the rooms
R1, . . . ,Rh are in ascending order, which defines a unique representation of s as

r(s) = r({R1, . . . ,Rh}) = (s1
1, . . . ,s

1
d, s2

1, . . . ,s
2
d, . . . ,sh

1, . . . ,s
h
d). (22)

(Note thatr may not be injective, which is allowed.) Assume that neighboring rooms
in R ′ are matched into pairsRp,R′p containing the wallRp−{si} as in Proposition 7.
The pivoting step froms= {R1, . . . ,Rh} to t = f (s, i) replacesRp by R′p.

In (22), the nodes of each individual roomRp still appear consecutively as in
the permutationπ in Theorem 10, except for the order of the rooms themselves.
Then withv1, . . . ,vm as the nodes ofV in increasing order and the “identity” labeling
l : V → [m], l(vi) = i , the m-tuple l(r(s)) defines a permutationπ of [m] if s is a
room partition, as in (21). Then the parity ofπ does not depend on the order of the
rooms ins if d is even, so the sign in (21) is well defined and the same as in (13). An
ACL states is a skew room partition, which has two opposite signs as in (15). Then
the claim follows from Theorem 3.

B

CD

c d

A

a

b
3 2

5 4

1

6

Figure 2: A 3-oik with triangles as rooms. The circular arrows indicate the positive
orientation of nodes in a room.

The following example shows that we cannot expect to define a sign to unordered
room partitions whenR ′ has odd dimensiond (see also Merschen, 2012, Figure 3.6).
Let d = 3 and consider the oik defined by the eight vertices of the 3-dimensional
cube, which correspond to the facets of the octahedron, shown as the triangles in Fig-
ure 2 including the outer triangle marked “A”. A coherent orientation of the eight
rooms is obtained as follows (shown in Figure 2 with a circular arrow that shows the
positively oriented order of the nodes):σ(A) = σ(123) = 1, σ(B) = σ(145) =−1,
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σ(C) = σ(124) =−1, σ(D) = σ(135) = 1, σ(a) = σ(456) = 1, σ(b) = σ(236) =
−1, σ(c) = σ(356) =−1, σ(d) = σ(246) = 1. The four room partitions are{A,a},
{B,b}, {C,c}, {D,d}. Any two of these are connected by pivoting paths, so they can-
not always have opposite signs at the end of these paths. However, for ordered room
partitions the signs work. For example,(A,a) is connected to(b,B) via the com-
plementary pivoting steps(123,456)→ (236,456)→ (236,145), and to(C,c) via
the steps(123,456)→ (124,456)→ (124,356). Moreover,(C,c) connects to(B,b)
via (124,356)→ (145,356)→ (145,236). We have sign(A,a) = 1, sign(b,B) =−1
(because 236145 has parity−1), and sign(C,c) = −1 and sign(B,b) = 1. The two
ordered room partitions(b,B) and(B,b) have different signs because they define two
permutations 236145 and 145236 of opposite parity.

5 Related work

Todd (1972; 1974; 1976) developed an abstract theory of complementary pivoting,
using “semi-primoids” and “semi-duoids”. A semi-duoid is the same as an “oik” as
defined by Edmonds (2009), see Definition 5 above. For a semi-duoid R on V , the
set{V−R |R∈R} is a semi-primoid. (“Primoids” and “duoids” fulfill an additional
connectness condition.) For example, for the basic feasible solutions of a system of
linear equations with nonnegative variables, the sets of basic variables form a primoid
and the sets of nonbasic variables form a duoid.

Todd defines the pivoting operation by alternating between the semi-duoid and
the semi-primoid. Edmonds defines pivoting by exchanging a room with an adjacent
room. Edmonds shows that partitions ofV into rooms for a given “oik family” come
in pairs. This result is equivalent to that of Todd for partitions ofV into two rooms,
but more general when considering partitions into more thantwo rooms. In order to
obtain a unique path of complementary pivoting, Todd (1974,p. 255) describes the
local pairing of the 2k rooms that contain a common wall intok pairs as in Propo-
sition 7. In contrast, Edmonds (2009, p. 66) merely stipulates “no repetition” which
requires remembering the history of the pivoting path.

The Lemke–Howson algorithm finds a Nash equilibrium of anm× n bimatrix
game. Its pivoting steps alternate between vertices of two polytopes of dimensionm
and n, respectively (see von Stengel, 2002, for an exposition). In order to capture
this with room partitions, Edmonds (2009) considers two oiks of (possibly different)
dimensionm andn, respectively, on the same setV = [m+n]. However, alternating
between two polytopes is not essential, by considering instead their product as a
single labeled polytope, as described in Section 2 above.

We have described complementary pivoting using labels, with the pivoting step
started by the missing label and on the path determined by theduplicate label. A
given labeling (or “coloring”)V → [m] determines an oikR0 of dimension|V|−m
whose elements are the complements of completely labeled sets. It is a manifold
(also known as the “coloring manifold”) where removing any nodeu from a room
R and replacing it with the unique node inV −R with the same label asu gives
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the adjacent room. IfR is an m-oik on V , then the completely labeled roomsR
of R are clearly those so that{R,R0} with R0 ∈ R0 is a partition ofV . Edmonds,
Gaubert, and Gurvich (2010) callR0 a “Sperner oik”. The oikR0 is “polytopal”
because its rooms correspond to the vertices of a product of simplices (Edmonds,
2009, Example 3). This has also been observed by Todd (1972, p. 1.5; 1974, p. 248)
who callsR0 a “simplicial duoid”. A similar product of simplices results from the
constraintsy≥ 0, Ay≤ 1 in (4) for the unit-vector game(A,C⊤) in Proposition 1,
where each column ofA is a unit vector.

Edmonds, Gaubert, and Gurvich (2010) show that the pivotingpath for a family
of oiks onV can instead be applied to room partitions for only two oiks, namely
their oik-sum (see Definition 8 above) together with a Sperner oik R0. Oik-sums are
equivalent to products of semi-duoids defined by Todd (1972,Chapter 5). This seems
to reduce everthing to Todd (1972) who covered the case of twooiks. However, as
already mentioned, partitions ofV into more than two rooms (even if implied by a
suitable oik-sum) were not explicitly considered by Todd.

The labels used by Edmonds, Gaubert, and Gurvich (2010) to define the Sperner
oik R0 are the elements ofV . This is essentially the same argument as our proof
of Theorem 10, without the orientation. In Appendix A, we argue that the definition
of a “sign” requires a reference to the parity of the permutation of the labels of a
room, which does not seem simpler when looking at room partitions with a Sperner
oik instead.

Shapley (1974) showed that the Nash equilibria at the two ends of a Lemke–
Howson path have opposite index, defined in terms of determinants of the payoff
matrices restricted to the equilibrium support. (That paper also gives an accessible
exposition of the Lemke–Howson algorithm using “labels”.)Theorem 3 and Propo-
sition 4 replicate Shapley’s argument in streamlined form.Lemke and Grotzinger
(1976) define coherent orientations of abstract simplicialmanifolds. Our approach
is similar, except that we separate states and their representation, and apply the con-
cepts of orientation and sign to the representation, in order to capture room partitions
as well, and oiks that are not manifolds. If the oik cannot be oriented, then Lemke
and Grotzinger (1976) have shown (for nonorientable manifolds) that opposite signs
for CL rooms cannot be defined in general; see also Grigni (2001).

Todd (1976) extends the alternate primoid-duoid pivoting steps with an orienta-
tion, and also simplifies Shapley’s approach. His construction is essentially equiv-
alent to that of Lemke and Grotzinger (1976). It also does notextend to room par-
titions with more than two rooms, nor to oiks that are not manifolds (Todd, 1976,
p. 54). Our own contribution is a framework oforientedcomplementary pivoting
that encompasses room partitions in oiks, for which orientations are new.

Eaves and Scarf (1976, Sections 5–6) apply index theory to piecewise linear map-
pings in a more general setting, which we have not tried to include in our model.

One of our main examples of partitions ofV into more than two rooms is perfect
matchings in an Euler graph as considered by Edmonds (2009, Example 4) (but, to
our knowledge, not by Todd or others). For an Euler digraph, these perfect matchings
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have a sign, which has been studied in the context of Pfaffian orientations of a graph;
we discuss this connection in Section 6 to keep that section largely self-contained.

Interestingly, perfect matchings of an Euler digraph correspond to CL vertices
of a labelled “dual cyclic polytope”. These polytopes have been used by Morris
(1994) to construct exponentially long Lemke paths, and by Savani and von Stengel
(2006) to construct exponentially long Lemke–Howson paths. The connection to
Euler digraphs is due to Casetti, Merschen, and von Stengel (2010) and Merschen
(2012) and is summarized at the end of Section 6.

6 Signed perfect matchings

This section is concerned with algorithmic questions of room partitions in 2-oiks,
which are perfect matchings in Euler graphs. The sign of a perfect matching, for
any orientation of the edges of a graph, is closely related tothe concept of aPfaffian
orientationof a graph, where all perfect matchings have the same sign. The compu-
tational complexity of finding such an orientation is an openproblem (see Thomas,
2006, for a survey). An Eulerian orientation is not Pfaffian by Theorem 11, a fact
that is also easy to verify directly. The main result of this section (Theorem 12) states
that in an Euler digraph, a second perfect matching of opposite sign can be found
in polynomial (in fact, near-linear) time. This holds in contrast to the complemen-
tary pivoting algorithm, which can take exponential time; Casetti, Merschen, and von
Stengel (2010) have shown how to apply results of Morris (1994) for this purpose.
However, the pivoting algorithm takes linear time in abipartite Euler graph, and a
variant can be used to find an oppositely signed matching in a bipartite graph that has
no source or sink (Proposition 13).

We follow the exposition of Pfaffians in Lovász and Plummer (1986, Chapter 8).
The determinant of anm×m matrix B with entriesbi j is defined as

detB= ∑
π

parity(π)
m

∏
i=1

bi,π(i) (23)

where the sum is taken over all permutationsπ of [m]. Let B be skew symmetric, that
is, B= −B⊤. Then detB= det(−B⊤) = det(−B) = (−1)mdetB, so detB= 0 if m
is odd. Assumem is even. Then it has long been known (see references below) that

detB= (pf B)2 (24)

for a function pfB called thePfaffianof B, defined as follows. LetM (m) be the set
of all partitionss of [m] into pairs,s= {{s1,s2}, . . . ,{sm−1,sm}}, and let parity(s) be
the parity of(s1,s2, . . . ,sm) seen as a permutation of[m] under the assumption that
each pair{s2k−1,s2k} is written in increasing order, that is,s2k−1 < s2k for k in [m/2];
the order of the pairs themselves does not matter. Then

pf B= ∑
s∈M (m)

parity(s)
m/2

∏
k=1

bs2k−1,s2k . (25)
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In fact, becauseB is skew symmetric, the order of a pair(s2k−1,s2k) can also be
changed because this also changes the parity ofs. An example of (25) ism= 4
where pfB= b12b34−b13b24+b14b23.

Parameswaran (1954) and Lax (2007, Appendix 2) show that a skew-symmetric
matrix B fulfills (24) for some function pfB. For a direct combinatorial proof, one
can see that the products in (23) are zero for those permutationsπ whereπ(k) = k for
somek, and cancel out for the permutations with odd cycles; then only permutations
with even-length cycles remain, which can be obtained uniquely, using those cycles,
from pairs of partitions taken fromM (m) (see also Jacobi, 1827, pp. 354ff, and
Cayley, 1849).

Consider a simple graphG with node set[m]. An orientationof G creates a
digraph by giving each edge{u,v} an orientation as(u,v) or (v,u). Define them×m
matrix B via

buv =







0 if {u,v} is not an edge,
1 if {u,v} is oriented as(u,v),
−1 if {u,v} is oriented as(v,u).

(26)

ThenB is skew symmetric. Anys in M (m) is a perfect matching ofG if and only if

∏m/2
k=1bs2k−1,s2k 6= 0, so only the perfect matchings ofG contribute to the sum in (25).

If G is an Euler digraph, that is, an oriented 2-oik, then this defines the orientation
of edge{u,v}, assumingu< v, asσ({u,v}) = buv, according to Definition 6. Then
by (19) and (21), a perfect matchings has the sign

sign(s) = parity(s1, . . . ,sm) ·
m/2

∏
k=1

bs2k−1,s2k ,

so the Pfaffian pfB in (25) is the sum over all matchings ofG weighted with their
signs. For the Eulerian orientation, that sum is zero by Theorem 11, which follows
also from (24) becauseB1= 0, so detB= 0.

In our Definition 5 of ad-oik, R can be a multiset, which ford = 2 defines
an Euler graphG which may have parallel edges and then is not simple. The rooms
themselves have to be sets, so loops are not allowed. In this case, (26) can be extended
to definebuv as the number of edges oriented as(u,v) minus the number of edges
oriented as(v,u). This counts the number of matchings with their signs correctly;
oppositely oriented parallel edges(u,v) and(v,u) cancel out both in contributing to
buv and when counting matchings with their signs.

For any graphG and any orientation ofG, the sign of a perfect matchings is
most easily defined by writing down the nodes of each edge{s2k−1,s2k} in the way
the edge is oriented as(s2k−1,s2k); this does not affect (25) as remarked there. When
writing down the nodess1, . . . ,sm this way, sign(s) = parity(s1, . . . ,sm) and pfB =

∑s∈M (G)sign(s) whereM (G) is the set of perfect matchings ofG.
A Pfaffian orientationis an orientation ofG so that all perfect matchings have

positive sign. Its great computational advantage is that itallows to compute the num-
ber of perfect matchings ofG using (24) by evaluating the determinant detB, which
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can be done in polynomial time. In general, counting the number of perfect match-
ings is #P-hard already for bipartite graphs (Valiant, 1979). The question if a graph
has a Pfaffian orientation is polynomial-time equivalent todeciding whether a given
orientation is Pfaffian (see Vazirani and Yannakakis, 1989,and Thomas, 2006). For
bipartite graphs, this problem is equivalent to finding an even-length cycle in a di-
graph, which was long open and shown to be polynomial by Robertson, Seymour,
and Thomas (1999). For general graphs, its complexity is still open.

We now consider the following algorithmic problem: Given anEuler digraph with
a perfect matching, find another matching of opposite sign, which exists. Without the
sign property, a second matching can be found by removing oneof the given matched
edges from the graph and applying the “blossom” algorithm ofEdmonds (1965) to
find a maximum matching, which finds another perfect matchingfor at least one
removed edge; however, its sign cannot be predicted, and adapting this method to
account for the sign seems to lead to the difficulties relatedto Pfaffian orientations in
general graphs. Merschen (2012, Theorem 5.3) has shown how to find in polynomial
time an oppositely signed matching in a planar Euler graph, and his method can be
adapted to graphs that, like planar graphs, are known to havea Pfaffian orientation.

The following theorem presents a surprisingly simple algorithm for any Euler
graph. It runs in near-linear time in the number of edges of the graph and is faster
and simpler than using blossoms. The inverse Ackermann function α is an extremely
slowly growing function withα(n) ≤ 4 for n≤ 22048 (Cormen et al., 2001, Section
21.4).

Theorem 12 Let G= (V,E) be an Euler digraph, and let M be a perfect matching of
G. Then a perfect matching M′ of opposite sign can be found in time O(|E| ·α(|V|)),
whereα is the inverse Ackermann function.

Proof. The matchingM is a subset ofE. A sign-switching cycle Cis an even-length
cycle so that every other edge inC belongs toM, and so that, in a chosen direction
of the cycle,C has an even number of forward-oriented edges. We claim that then
the symmetric differenceM′ = M△C has opposite sign toM. To see this, suppose
first that all edges inC point forward, and thatC∩M consists of the firstk/2 edges
(s1,s2), . . . , (sk−1,sk) of M (which does not affect the sign ofM). Then these edges
are replaced inM′ by (sk,s1), (s2,s3), . . . , (sk−2,sk−1), which defines an odd per-
mutation of thesek nodes, soM′ has opposite sign toM. Changing the orientation
of any two edges inC leaves the sign of bothM andM′ unchanged (if both edges
belong toM or to M′) or changes the signs of bothM andM′, so they stay opposite.
This proves the claim.

So it suffices to find a sign-switching cycleC for M, which is achieved by the
following algorithm: Successively apply one of the following reductions (a) or (b) to
G until (c) applies:
(a) If v in V has indegree and outdegree 1 with edges(u,v) and(v,w), then ifu= w

go to (c), otherwise removev from V and(u,v) and(v,w) from E and contract
u andw into a single node.
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(b) If D is a directed cycle of unmatched edges (soD⊂ E−M), remove all edges in
D from E.

(c) The two edges(u,v) and(v,u), one of which is matched, form a sign-switching
cycleC of the reduced graph. Repeatedly re-insert the edge pairs(u′,v′), (v′,w′)
removed in the contraction (a) intoC until C is a cycle of the original graph.
ReturnC.

Steps (a) and (b) preserve the invariant thatG is an Euler digraph and has a perfect
matching. Namely, in (a) one node and one matched and one unmatched edge is
removed fromG, and the two contracted nodesu andw together have the same in-
and outdegree and an incident matched edge. In (b), all nodesof the cycleD have
their in- and outdegree reduced by 1. If reduction (a) cannotbe applied because every
node has at least two outgoing edges, then one of them is unmatched, and following
these edges will find a cycleD as in (b). So the reduction steps eventually terminate.
In each iteration in (c), the two re-inserted edges(u′,v′) and (v′,w′) point in the
same direction and one of them is matched, so this preserves the property thatC is
sign-switching.

The above algorithm is clearly polynomial. Appendix B describes a detailed im-
plementation with near-linear running time in the number ofedges, and give an exam-
ple. Its essential features are the following. The algorithm starts with the endpoint of
a matched edge, and follows, in forward direction, unmatched edges whenever pos-
sible. It thereby generates a path of nodes connected by unmatched edges. If a node
is found that is already on the path, then some final part of that path forms a cycleD
of unmatched edges that are all discarded as in (b). Then the search starts over from
the beginning of the cycle that has just been deleted. If, in the course of this search, a
nodev is found where the only outgoing edge(v,w) is matched, then the contraction
in (a) applies with(u,v) as unmatched edge. The matched edge(v,w) is remembered
as the original matched edge incident tow, with (u,v) as its “partner”, for possible
later re-use in (c). The two edges are removed from the lists of incident edges tou
andw. Edges are stored in doubly-linked lists that can be moved and deleted from
in constant time. The endpointw of the matched edge(u,w) contracted in step (a)
may be a node that has been visited on the path, so that the reduction (b) immediately
follows; if w is the first node of the path, the search has to re-start.

Contracted nodes of the reduced graph are represented by equivalence classes of
a standardunion-finddata structure, which can be implemented with amortized cost
α(|V|) per access (Tarjan, 1975). Contractingu andw in (a) is done by applying the
“union” operation to the equivalence classes foru andw, and any node is represented
via the “find” operation applied to an original node. The nodes in edge lists are
always the original nodes, so that each edge is visited only aconstant number of
times, resulting in the running timeO(|E| ·α(|V|)).

As described in Appendix B in Figure 11, the cycleC in (c) is obtained by re-
cursively re-inserting matched edges(v′,w′) and their “partners”(u′,v′′) until the
nodesv′ andv′′ do not just belong to the same equivalence class (as at the time of
contraction) but are actually the same original node,v′ = v′′, of G; a similar recur-
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sion is applied to the other nodesu′ and w′ . Lemma 16 in Appendix B shows the
correctness.

In the remainder of this section, we consider the complementary pivoting algo-
rithm for perfect matchings in Euler digraphs outlined at the end of Section 2. IfG is
bipartite, then this algorithm terminates in timeO(|V|), as noted by Merschen (2012,
Lemma 4.3). In fact, a simple extension of the pivoting method applies to general
bipartite graphs which are oriented so that the graph has no sources or sinks (which
shows that such an orientation is not Pfaffian).

Proposition 13 Consider a bipartite graph G= (V,E) with an orientation so that
each node has at least one incoming and outgoing edge, with incoming and outgoing
edges stored in separate lists, and a perfect matching M of G.Then a matching of
opposite sign can be found in time O(|V|).

Proof. The algorithm computes a path of nodesu0,u1, . . . until that path hits itself
and forms a cycleC, which will be sign-switching with respect toM. The edges
on the path are successive matched-unmatched pairs of edges{u2k,u2k+1} in M
and {u2k+1,u2k+2} in E−M for k ≥ 0 that point in the same direction either as
(u2k,u2k+1), (u2k+1,u2k+2) or as(u2k+1,u2k), (u2k+2,u2k+1). Starting from any node
u0 andk= 0, these are found by following from nodeu2k its incident matched edge
to u2k+1, where this node has an outgoing unmatched edge tou2k+2 in the same di-
rection becauseu2k+1 has at least one incoming and one outgoing edge. This repeats
with k incremented by one untilu2k+2 is a previously encountered node, which is
of the form u2i for some 0≤ i < k because the graph is bipartite. Then the nodes
u2i , . . . ,u2k+2 define a cycleC which is sign-switching because it has an even number
of forward-pointing edges. Hence,M△C is a matching of opposite sign toM. Each
node is visited at most once, so the running time isO(|V|).

If G is not bipartite, then the complementary pivoting algorithm may have ex-
ponential running time, for any starting node that serves asa missing label. The
construction is adapted from the exponentially long Lemke paths of Morris (1994)
for labeleddual cyclic polytopes. The completely labeled vertices of such polytopes
correspond to perfect matchings in Euler graphs, as noted byCasetti, Merschen, and
von Stengel (2010), in the following way.

A dual cyclic polytope is defined in any dimensionmwith any numbern of facets,
n > m, as the “polar polytope” of the convex hull ofn pointsµ(t j) on the moment
curve µ(t) = (t, t2, . . . , tm)⊤ for j in [n] (see Ziegler, 1995). Its vertices have been
described by Gale (1963): Them facets that a vertexx lies can be described by a bit
stringg= g1g2 · · ·gn in {0,1}n so thatg j = 1 if and only if x is on the j th facet, for
j in [n]. Then these bit strings fulfill theevenness conditionthat wheneverg has a
substring of the form 01k0, thenk is even. We consider evenm, so that these strings
are preserved under cyclical shifts. The setG(m,n) of these “Gale strings” encodes
the vertices of the polytope, and pivoting, and an orientation, can be defined in a
simple combinatorial way on the strings alone.
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With a labeling l : [n] → [m], the CL Gale strings therefore come in pairs of
opposite sign. They correspond, including signs, to theperfect matchingsof the graph
G with node set[m] and (oriented) edges(l( j), l( j+1)) for 1≤ j < n and(l(n), l(1))
(Casetti, Merschen, and von Stengel, 2010; Merschen, 2012,Theorem 3.4). That is,
the cyclic sequencel(1), . . . , l(n), l(1) defines an Euler tour ofG, so thatG is an
Euler digraph. The graph has parallel edges and possibly loops, where the latter can
be omitted. The 1’s in a Gale string come in pairs, which correspond to edges ofG. A
pivoting step from one ACL Gale string to another means that asubstring of the form
12k0 is replaced by 012k, which translates tok pivoting steps of skew matchings inG.
Morris (1994) gives a specific labeling forn= 2m where all complementary pivoting
paths, for any dropped label, are exponentially long inm. The corresponding Euler
digraph and the pivoting steps are described in Merschen (2012, Section 4.4).

7 Conclusions

We conclude with open questions on the computational complexity of pivoting sys-
tems.

Consider a labeled oriented pivoting system whose components (in particular the
pivoting operation) are specified as polynomial-time computable functions. Assume
one CL state is given. The problem of finding a second CL state belongs to the com-
plexity class PPAD (Papadimitriou, 1994). This problem is also PPAD-complete,
because finding a Nash equilibrium of a bimatrix game is PPAD-complete (Chen and
Deng, 2006), which is a special case of an oriented pivoting system by Proposition 1.
However, there should be a much simpler proof of this fact because pivoting sys-
tems are already rather general, so that it should be possible to encode an instance
of the PPAD-complete problem “End of the Line” (see Daskalakis, Goldberg, and
Papadimitriou, 2009) directly into a pivoting system.

Finding a Nash equilibrium of a bimatrix game is PPAD-complete, and Lemke–
Howson paths may be exponentially long. Savani and von Stengel (2006) showed
this with games defined by dual cyclic polytopes for the payoff matrices of both
players, and a simpler way to do this is to use the Lemke paths by Morris (1994).
One motivation for the study of Casetti, Merschen, and von Stengel (2010) was the
question if finding a second completely labeled Gale string is PPAD-complete. This
is unlikely because this problem can be solved in polynomialtime with a matching
algorithm. For the complexity class PPADS, where one looks for a second CL state
of opposite sign (Daskalakis, Goldberg, and Papadimitriou, 2009), this problem is
also solvable in polynomial time with our algorithm of Theorem 12.

However, for room partitions of 3-oiks, already manifolds,finding a second room
partition is likely to be more complicated. Is this problem PPAD-complete? We leave
these questions for further research.
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Appendix A: Labeling functions and Sperner Oiks

One of the original motivations to consider room partitionsfor oiks R1, . . . ,Rh with
possibly different dimensions is to abstract from the original Lemke–Howson algo-
rithm for possibly non-square bimatrix games, which alternates between two poly-
topes, represented byR1 andR2 (Edmonds, 2009). Similarly, our proof of Theo-
rem 3 shows complementary pivoting as an alternating use of the pivoting function
and the labeling function. Edmonds, Gaubert, and Gurvich (2010) cast the use of
labels (or “colors”) in terms of room partitions with a special manifoldR0 called a
Sperneroik. If l : V → [m] is a labeling function, then the rooms of the Sperner oik
R0 are thecomplementsof completely labeled sets, that is,

R0 = {Q⊆V | |Q|= |V|−m, l(V−Q) = [m]}. (27)

This is a manifold becauseW is a wall of a roomQ of R0 if and only if V−W has
m+1 elements of which exactly two have the same label, so addingeither element
to W defines the two rooms that containW. In addition toR0, suppose thatR is an
m-oik onV and defines a pivoting system as in Proposition 7. Then an ordered room
partition (R,Q) with R∈R andQ∈R0 is just a completely labeled roomR of R .
Complementary pivoting with missing labelw amounts to the “exchange algorithm”
with skew room partitions, which are our ACL states.

Is the use of room partitions where one room comes from a Sperner oik more
natural than the concept of completely labeled rooms? Obviously, the definitions are
nearly identical, but apart from that we want to make two comments in favor of using
labels.

First, Edmonds, Gaubert, and Gurvich (2010) note that a Sperner oikR0 is “poly-
topal”, that is, its rooms correspond to the vertices of a simple polytope. They leave
the construction of such a polytope as an exercise, which we give here to show the
connection to the unit-vector games in Proposition 1.

Proposition 14 Let |V| = {v1, . . . ,vn} and l : V → [m] so that l(vi) = i for i ∈ [m].
Consider the m× (n−m) matrix A= [el(vm+1) · · ·el(vn)] with A⊤ = [a1 · · ·am] and

P0 = {y∈ R
n−m | Ay≤ 1, y≥ 0}. (28)

Then P0 is a simple polytope, and y is a vertex of P0 if and only if it lies on n−m
facets and the m non-tight inequalities in(28) fulfill

{i ∈ [m] | a⊤i y< 1}∪{l(vm+ j) | y j > 0}= [m]. (29)
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Proof. For eachi in [m] let

L(i) = { j ∈ [n−m] | l(vm+ j) = i}. (30)

Then thei th row of Ay≤ 1 saysa⊤i y = ∑ j∈L(i)y j ≤ 1. Let y ∈ P0. For eachi , if
a⊤i y= ∑ j∈L(i) y j = 1, theny j > 0 for at least onej in L(i), so i ∈ {l(vm+ j) | y j > 0},
which shows (29).

The non-empty setsL(i) form a partition of[n−m], and if L(i) is empty then
ai = 0 and the inequalitya⊤i y≤ 1 is redundant. Therefore the inequalities (28) can
be re-written as

∑
j∈L(i)

y j ≤ 1, y j ≥ 0 ( j ∈ L(i)). (31)

For eachi in [m], (31) defines a simplex whose vertices are the unit vectors and 0 in
R
|L(i)| (if L(i) is empty, this is the one-point simplex{()}). Hence,P0 is the product

of these simplices and therefore a simple polytope, so any vertex y of P0 is on exactly
n−m facets.

Proposition 14 can be applied to any Sperner oikR0 of dimensionn−m obtained
from l : V → [m] which has at least one room, taken to be{vm+1, . . . ,vn} by num-
beringV suitably. Then inequalities in (28) have labels 1, . . . ,m, l(vm+1), . . . , l(vm);
they define facets ofP0 except for redundant inequalitiesa⊤i y ≤ 1 whereai = 0.
Then then−m tight inequalities for each vertexy of P0 define a room ofR0 because
the labels for them non-tight inequalities fory are the set[m] according to (29), in
agreement with (27).

SupposeR is anm-oik given by the vertices of the polytopeP in (3), with labels
1, . . . ,m, l(m+ 1), . . . , l(n) for its n inequalities (the same labels as forP0). Then
an ordered room partitionR,Q with R∈ R and Q ∈ R0 is a completely labeled
room R, or vertexx of P, with Q corresponding to a vertexy of P0. Except for the
vertex pair(0,0), this is a Nash equilibrium(x,y) of the unit-vector game(A,C⊤) in
Proposition 1. In that game, there is no reference to labels,which are encoded in the
payoff matrixA that definesP0, just as the labels are encoded in the rooms ofR0.
Like unit vector games, Sperner oiks may offer a useful perspective, but we do not
think it is deep; moreover, they only have a simple structureas products of simplices
described in (31).

1 2

34

1 2

34

Figure 3: Two oriented Euler graphs which show that the parity of the permutation of
all nodes matters.

Secondly, Sperner oiks are oriented, and the labels used in the proof of Theorem
10 and 11 are simply the nodes ofV . Perhaps using a Sperner oik, rather than labels,
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may avoid referring to the parity ofl(r(s)) for a room partitions as in (13) when
defining the sign ofs? The following example shows that already whens is a room
partition for a 2-oik, one has to refer to the parity ofl(r(s)) in some way. Figure 3
shows two cases of 2-oiksR ′ over V = {1,2,3,4} with an orientation. The left
oik has the two room partitions{12,34} and{14,23}, whereσ1(12) = σ2(34) = 1
and σ1(14) = −1, σ2(23) = 1. According to (19), this impliesσ(12,34) = 1 and
σ(14,23) = −1, so the two room partitions have opposite orientation (it suffices to
consider unordered room partitions becaused is even, as noted in Theorem 11).

Similarly, the right oik in Figure 3 has the two room partitions {12,34} and
{13,24}, whereσ1(12) = σ2(34) = 1 andσ1(13) = σ2(24) = 1, so all orientations
are positive andσ(12,34) = 1 andσ(13,24) = 1, so these two room partitions have
equal orientation. The difference is that the room partition s= {14,23} defines an
even permutationl(r(s)) = (1,4,2,3) of V , whereas{13,24} defines the odd permu-
tation(1,3,2,4). So the sign of a room partition has to refer to the order in which the
labels appear.

We think that labeled pivoting systems are a general and useful way of represent-
ing path-following and parity arguments, certainly for complementary pivoting and
room partitions in oiks.

Appendix B: Implementation Details of Finding a Sign-
Switching Cycle in an Euler Graph

Theorem 12 states that an oppositely signed matching in a graph with an Eulerian
orientation can be found in near-linear time in the number ofedges. In this appendix,
we describe the details of the implementation of the algorithm outlined in the proof
of Theorem 12.

Whene is an edge fromu to v, then we callu the tail andv theheadof e, and
bothu andv are calledendpointsof e.

The algorithm applies reductions (a) and (b) to the graph until it has a trivial sign-
switching cycle which is expanded as in (c) to form a sign-switching cycle of the
original graph. The algorithm starts with a node that is the head of a matched edge,
and follows, in forward direction, unmatched edges whenever possible. It thereby
generates a path of nodes connected by unmatched edges. If a node is found that is
already on the path, then some final part of that path forms a cycle D of unmatched
edges that are all discarded as in (b). Then the search startsover from the beginning
of the cycle that has just been deleted.

If, in the course of this search, a nodev is found with the only outgoing edge
being matched, the contraction in (a) is performed as follows. Suppose the three
nodes in question areu,v,w with unmatched edgee from u to v and matched edge
m from v to w, and no other edge incident tov. We take the edgese and m and
nodev out of the graph and contract the nodesu and w into a single node (with
the methodSHRINK(e,m) discussed below), which creates a reduced version of the
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graph. Throughout the computation, the current reduced graph is represented by a
partition of the nodes with a standardunion-finddata structure (Tarjan, 1975). We
denote by[x] the partition class that contains nodex, which has as itsrepresentativea
special node calledFIND(x), whereFIND is one of the standard union-find methods;
we usually denote a representative node with a capital letter. That is, any two nodesx
andy are equivalent (in the same equivalence class) if and only ifFIND(x) = FIND(y).
In the reduced graph,every edgeis only incident to the representativeFIND(x) of a
partition class, and the information for nodes that are not representatives is irrelevant.
Initially, all partition classes are singletons{x}, which is achieved by calling the
MAKESET(x) method. The methodUNITE(x,y) for nodesx,y merges[x] and[y] into
a single set.

MAKESET(x):

x.parent← x
x.rank← 0

UNITE(x,y):

X,Y← FIND(x),FIND(y)
if X.rank>Y.rank then

Y.parent← X
return X,Y

else
X.parent←Y
if X.rank=Y.rank then

Y.rank←Y.rank+1
return Y,X

FIND(x):

if x 6= x.parent then
x.parent← FIND(x.parent)

return x.parent

Figure 4: The union-find methodsMAKESET, UNITE, andFIND with rank heuristic
and path compression. Here,UNITE(x,y) returnsX,Y so thatX is the new represen-
tative of [x]∪ [y], andY is the old representative of either[x] or [y] which is no longer
used.

Figure 4 shows an implementation of these methods as in Cormen et al. (2001,
Section 21.3). (In this pseudo-code, an assignment such asX,Y← x,y assignsx
to X andy to Y, so for examplex,y← y,x would exchange the current values ofx
andy.) Each partition class is a tree withx.parentpointing to the tree predecessor
of nodex, which is equal tox if x is the root. For this root,x.rank stores an upper
bound on the height of the tree. TheUNITE method returns the pairX,Y of former
representatives of the two partition classes, whereX is the new representative of
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the merged partition class andY is the representative no longer in use, which we
need in order to move edge lists in the graph. With the “rank heuristic” used in the
UNITE operation and the “path compression” of the recursiveFIND method, the trees
representing the partitions are extremely flat, with an amortized cost for theFIND

method given by the inverse Ackermann function that is constant for all conceivable
purposes (see Tarjan, 1975, and Cormen et al., 2001, Section21.3).

Every nodex of the graph has its incident edges stored in anadjacency list, which
for convenience is given by separate listsx.outlistandx.inlist for unmatched outgoing
and incoming edges, respectively, and the unique matched edge x.matchedwhich is
either incoming or outgoing. Every edgee is stored in a single object that contains the
following links to edges:e.nextout, e.prevout, e.nextin, e.previn, which link to the
respective next and previous element in the doubly-linkedoutlist and inlist wheree
appears. In addition,e contains the links to two nodese.tail ande.head, which never
change, so thate is always an edge frome.tail to e.headin theoriginal graph. In the
current reduced graph at any stage of the computation,e is an edge fromFIND(e.tail)
to FIND(e.head), so these fields ofe are not updated whene is moved to another
node in an edgelist; this allows to move all incident edges from one node to another
in constant time.

SHRINK(e,m):

1 U,W← FIND(e.tail),FIND(m.head)
2 removee from U.outlist
∗ 3 V← FIND(e.head)
∗ 4 sleepcounter← sleepcounter+1
∗ 5 V.sleeptime← sleepcounter

6 m.partner← e
7 X,Y← UNITE(U,W)
8 appendY.outlist to X.outlist
9 appendY.inlist to X.inlist

10 X.matched←U.matched

Figure 5: TheSHRINK operation that removes the unmatched edgee from U to V
and matched edgem from V to W from the current graph and merges the edgelists
of U andW. The code in the starred lines 3–5 is only needed to reason about the
method and can be omitted.

Figure 5 gives pseudo-code for the contraction (a) described above. The three
nodesU,V,W are the representatives of their partition classes, and only for these
nodes the lists of outgoing and incoming edges and their matched edge are relevant.
The unmatched edgee appears inU.outlist and has headV , so thatU = FIND(e.tail)
andV = FIND(e.head) = FIND(m.tail), even though it may be possible thate.head6=
m.tail like for x,y in Figure 6. The matched edgem from V to W is obtained as
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V.matched(and equalsW.matched), becauseV.outlist is empty soV has no outgoing
unmatched edge (but has to have an outgoing edge due to the Eulerian orientation).

U[   ]

V[   ]

W[    ]

e m

yx

Figure 6: The equivalence classes[U ], [V], [W] and edgese andm in the SHRINK

operation. A wiggly line denotes a matched edge.

After the SHRINK operation, the reduced graph no longer contains the edgese
andm and the nodeV . (However, these are preserved for later re-insertion, helped
by the fieldm.partnerassigned toe in line 6 of SHRINK, discussed below along with
lines 3–5.) The edgee is removed from the list of outgoing edges ofU in line 2. The
equivalence classes forU andW are united in line 7 where eitherU or W becomes
the new representative, stored inX . The lists of outgoing and incoming edges of the
representativeY that is no longer in use are appended to those ofX in lines 8 and 9.
A node can only lose but never gain the status of being a representative, so there is
no need to delete the edgelists ofY. If the new representativeX is W, its current
matched edgem has to be replaced by the matched edgeU.matchedas in line 10
(which has no effect ifX =U ). The Euler property of the reduced graph is preserved
because the outdegree ofX is the sum of the outdegrees ofU andW minus one, and
so is the indegree (the missing edges aree andm).

The list operations in lines 2, 8, 9 ofSHRINK can be performed in constant time.
For that purpose, it is useful to store the lists of outgoing and incoming unmatched
edges of a nodeu as doubly-linked circular lists that start with a “sentinel” (dummy
edge), denoted bysu (see Cormen et al., 2001, Section 10.2). Figure 7 gives an
example of small graph (which is neither Eulerian nor has a perfect matching). The
three unmatched edges aree1,e2,e3 and the matched edge ism. The outlist ofx
containse1,e2, the outlist ofy is empty, and the outlist ofz containse3. The inlist
of each node contains exactly one edge. The first and last element of the outlist of
a nodeu is pointed to bysu.nextoutandsu.prevout, which are bothsu itself when
the list is empty, as foru = y in the example. The inlist is similarly accessed via
su.nextin and su.previn. Each append operation in line 8 or 9 ofSHRINK is then
performed by changing four pointers. The remove operation in line 2 can, in fact, be
done directly frome, again by changing four pointers, here of the next and previous
edge in the list (which may be a sentinel). Due to the sentinels, e does not need the
information of which node it is currently attached to, so line 2 should be written (a
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Figure 7: Example of a graph with the out- and inlists for the nodesx,y,z accessed by
sentinels (dummy edges)sx,sy,sz shown in gray. They use the same fieldsnextout,
prevout, nextin, previn as the unmatched edgese1,e2,e3 except fortail and head
which are ignored. The matched edgem is stored directly, linked to byy.matched
andz.matched, and not in a list. Them.nextoutfield can be used to link tom.partner.

bit more obscurely) as “removee from its outlist” (that is, the outlist it is currently
contained in), without reference toU .

Figure 8 shows the whole algorithm that finds a perfect matching of opposite
sign via a sign-switching cycle. Initialization takes place in lines 1–6, which will be
explained when the respective fields and variables are used.

The main computation starts at stepA. The first nodeV is the head of a matched
edge. This assures that, due to the Euler property, this nodehas at least one outgoing
unmatched edge that may be the first edgee of an edge paire,m that is contracted
with the SHRINK method. Starting from stepB, a path of unmatched edges is grown
with its nodes stored invisitednode[1], . . . ,visitednode[vc] wherevc counts the num-
ber of visited nodes, and edges stored invisitededge[1], . . . ,visitededge[vc−1], where
visitededge[i] is the edge fromvisitednode[i] to visitednode[i +1] for 1≤ i < vc. A
nodeu is recognized as visited on that path whenu.visited is positive, which is the
index i so thatu = visitednode[i]. This field is initialized in line 4 as initially zero
(unvisited).

Line 10 tests ifV has a non-empty list of outgoing unmatched edges, which is
true whenvc= 1. The next node, following the first edgee of that list, isW. Line 15
checks with the methodCHECKVISITED, shown in Figure 9, ifW has been visited
before. If that is the case, then all edges in the corresponding cycle are completely
removed from the graph and the nodes are marked as unvisited (lines 3 and 4 of
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FIND OPPOSITELY SIGNED MATCHING :

1 for all nodesu
2 MAKESET(u)
3 u.origmatched← u.matched
4 u.visited← 0
∗ 5 u.sleeptime← 0
∗ 6 sleepcounter← 0

A : m← any matched edge of current graph
7 V← FIND(m.head)
8 vc← 1

B : visitednode[vc]←V
9 V.visited← vc

10 if V.outlist is not empty then
11 e← first edge inV.outlist
12 W← FIND(e.head)
13 visitededge[vc]← e
14 vc← vc+1
15 CHECKVISITED(W)
16 V←W
17 go to B
18 else
19 m←V.matched
20 W← FIND(m.head)
21 vc← vc−1
22 U,e← visitednode[vc],visitededge[vc]
23 if W =U then
24 return EXPANDCYCLE(e,m)
25 SHRINK(e,m)
26 CHECKVISITED(W)
27 if vc> 1 then
28 V← FIND(W)
29 go to B
30 else
31 go to A

Figure 8: The main methodFIND OPPOSITELY SIGNED MATCHING for an Euler
graph with a given perfect matching.

CHECKVISITED in Figure 9), andvc is reset to the beginning of that cycle. In any
case,W is the next node of the path, and the loop repeats at stepB via line 17.
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CHECKVISITED(W):

1 if W.visited> 0 then
2 for i←W.visited, . . . ,vc−1
3 removevisitededge[i] from its outlist and inlist
4 visitednode[i].visited← 0
5 vc←W.visited

Figure 9: TheCHECKVISITED method that checks if nodeW has already been vis-
ited, and if yes deletes the encountered cycle of unmatched edges and updatesvc.

U[   ]

V[   ]

m e

Figure 10: The equivalence classes[U ], [V] when a sign-switching cycle has been
found.

Lines 18–31 deal with the case thatV has no outgoing unmatched edge, which can
only hold if vc> 1. Then the matched edgem incident toV is necessarily outgoing
due to the Euler property and becauseV has an incoming edgee from U to V , which
is found in line 22. This edge is normally removed in theSHRINK operation and then
no longer part of the path, which is whyvc is decremented in line 21 (nodeV will no
longer be part of the graph and can keep itsvisitedfield). However, a sign-switching
cycle is found ifW = U (see Figure 10), which is tested in line 23 and dealt with
in the EXPANDCYCLE method called in line 24, which terminates the algorithm and
will be explained below.

If W 6= U , then SHRINK(e,m) is called in line 25. Afterwards, nodeW is still
the old representative of the head node ofm, as it was used in finding the path of
unmatched edges. NodeW may be part of that path, as tested (and the possible cycle
removed) in line 26. IfW has been visited, thenW.visited< vc becauseW 6= U ,
so at least one edge is removed. Ifvc> 1 (which holds in particular ifW has not
been visited), then the path is now grown fromFIND(W) in line 28, where theFIND

operation is needed to updatevisitednode[vc] in stepB because the old representative
U may have been changed toW after theUNITE operation in line 7 ofSHRINK in
Figure 5.
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The caseW.visited= 1 needs special treatment, which results invc= 1 and hap-
pens whenm is same as the initial matched edgem in stepA. In that case,m is re-
moved viaSHRINK, andFIND(W) may now be the tail rather than head of a matched
edge, and then may no longer have an unmatched outgoing edge,which is necessary
for lines 21–22 to work. For that reason, the loop goes back toA rather thanB, as
in line 31; note thatW.visitedhas been set to zero in line 4 ofCHECKVISITED with
i = vc= 1. In stepA, a new matched edge that has not yet been removed in a call
to SHRINK can be found in constant time by storing all matched edges in adoubly-
linked list (for example, using the fieldsnextinandprevin that so far are unused for
matched edges, see Figure 7); a matched edgem should be deleted from that list after
line 6 of SHRINK in Figure 5, for example.

EXPANDCYCLE(e,m):

1 C←{(e,m)}
2 RECONNECT(e.head,m.tail,C)
3 RECONNECT(e.tail,m.head,C)
4 for all (e,m) ∈C
5 makee a matched edge andm an unmatched edge
6 return graph with this new matching

RECONNECT(x,y,C):

7 if x 6= y then
8 m← x.origmatched
9 e←m.partner

10 C←C∪{(e,m)}
11 RECONNECT(e.head,m.tail,C)
12 RECONNECT(e.tail,y,C)

Figure 11: TheEXPANDCYCLE and the recursiveRECONNECT method that create
the sign-switching cycle and with it the oppositely signed matching.

We now discuss how to re-insert the contracted edges into thegraph once a
sign-switching cycle has been found, which is done in theEXPANDCYCLE method
in Figure 11. The method itself is straightforward. Recall that edges of the cur-
rent graph are stored with the representatives of equivalence classes, where an un-
matched edge is accessed in line 11 and a matched edge in line 19 of the main method
FIND OPPOSITELY SIGNED MATCHING in Figure 8. The sign-switching cycle will
be reconstructed using the original endpoints of the edges.For each nodeu, the orig-
inal matched edge incident tou is stored inu.origmatched(see line 3 of the main
method), becauseu.matchedmay be modified (in line 10 of theSHRINK method).

In order to explain theEXPANDCYCLE method, we record the time at which the
SHRINK operation has been applied to a nodeV . This is done in lines 3–5 in Figure 5
using using the fieldV.sleeptimeand the global variablesleepcounter, which are
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initialized in lines 5–6 of Figure 8. These lines have a “star” to indicate that they do
not affect the algorithm, and can therefore be omitted. We use them to reason about
the correctness of theEXPANDCYCLE method.

The contractionSHRINK(e,m) affects three equivalence classes[U ], [V], [W] with
representativesU,V,W as shown in Figure 6. All nodes in[V] become inaccessible
afterwards, but the equivalence class still exists (and is in fact still represented in
the union tree by those nodesv so thatV = FIND(v), although the union-find data
structure will no longer be used for these nodes). We say thatall nodes in[V] become
asleepat the time recorded in the positive integerV.sleeptime. Any nodeu so that
FIND(u).sleeptime= 0 is calledawake.

Lemma 15 During the main methodFIND OPPOSITELY SIGNED MATCHING, the
following condition holds after any statement from stepA onwards. Let[U ] be an
equivalence class of nodes with representative U and let m′ = U.matched. Then
there is exactly one node u in[U ] and another node z not in[U ] so that:
(i) If U is awake, then z is awake and{u,z}= {m′.head,m′.tail}.
(ii) If U is asleep, then z is awake or asleep with later sleeptime than U , and u=

m′.tail, z= m′.head.
In either case:
(iii) For every node y in[U ]−{u}, let m= y.origmatched. Then y= m.head, the

node m.tail is asleep (with earlier sleeptime than U if U is asleep),there is an
edge e so that e= m.partner, the nodes m.tail and e.head are equivalent and
with x= e.tail we have x∈ [U ]−{y}.

U[   ]

m’

me

u
z

asleep, earlier
than U

x y

Figure 12: Illustration of Lemma 15. The matched edgem′ with endpointsu andz
may have either orientation ifu is awake, otherwiseu= m′.tail as stated in (ii).

Proof. We prove this by induction over the number of calls to theSHRINK method,
which are the only times when the equivalence classes change. Initially, all equiv-
alence classes are singletons and all nodes are awake. Then[U ] = {U}, only (i)
applies, wherem′ is the matched edge incident tou which is either the tail or head of
m′ andz is the other endpoint ofm′ , and (iii) holds trivially.

Figure 12 shows the general case of the lemma. Consider the three equivalence
classes[U ], [V], [W] with representativesU,V,W as shown in Figure 6 in the notation
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used for theSHRINK method. BeforeSHRINK(e,m) is called, the lemma applies by
inductive assumption to each of the three classes[U ], [V], [W] in place of[U ]. The
unique matched edgem′ that goes outside the equivalence class to an awake node
is m for [V] and [W], and for [U ] it is some other matched edgem′ (not shown in
Figure 6) which will be that edge after[U ] and [W] have been united. There is no
edge other thane or m from a node in[V] to an awake node outside[V] because only
in this case (whenV has in- and outdegree one in the reduced graph) theSHRINK

method is called. Every node in[U ], [V], or [W] is the endpoint of a matched edge in
the original graph, and other than the endpoints ofm andm′ they are all equal to the
head of such a matched edge, with its tail node asleep, by inductive assumption (iii).

After theSHRINK operation,[U ] and[W] become a single equivalence class, and
all nodes in[V] becomes asleep. The only nodey in the new class[U ]∪ [W] for
which (iii) does not hold by inductive assumption ism.head, but thene takes exactly
the described role asm.partner. In particular,x = e.tail 6= y, becausex ∈ [U ] and
y∈ [W] and[U ] 6= [W]. In addition,[V] changes its status from awake to asleep, and
all nodes in[V]−{m.tail} are heads of matched edges that connect to equivalence
classes that went asleep beforeV as claimed in (iii) by the inductive hypothesis. This
completes the induction.

The previous lemma implies that any two endpoints of a matched edge belong
to different equivalence classes. A key observation in (iii) is that for anyy in an
equivalence class[U ] that is not the endpointu of the “awake” matched edgem′

there is another nodex different from y in that class (which may beu) given by
x= y.origmatched.partner.tail.

Lemma 16 Consider nodes x,y and a set C with the following properties: x and y
are equivalent, and x is the endpoint of an unmatched edge andy is the endpoint
of an oppositely oriented matched edge taken from the pairs of unmatched-matched
edge pairs in C, as in (i) or (ii) in Figure 13. Then afterRECONNECT(x,y,C), the
new edges in C form a path of alternating matched-unmatched edges from x to y with
the same number of matched and unmatched forward-pointing edges.

Proof. If x= y, then the claim holds trivially with a path of zero length because no
edge pairs are added toC. Otherwise, we apply Lemma 15 to the equivalence class
that containsx andy, as shown in the right picture in Figure 13, wherex takes the
role of y in Lemma 15(iii). Hence, nodex is the head of some matched edgem with
partnere, andx′= e.tail 6= x. Then in the methodRECONNECT(line 10 in Figure 11),
(e,m) is added toC. We then apply the claim recursively toe.head,m.tail instead of
x,y, and then tox′,y instead ofx,y, where the assumptions apply, exactly as in lines
11 and 12 ofRECONNECT. So there are alternating paths as described frome.headto
m.tail and fromx′ to y. The resulting path fromx to y composed of these paths and
the edgesm ande has the same number of forward-pointing matched and unmatched
edges, becausem ande point in the same direction (in this case, backwards) along
the path.
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m e

x x x x’y y y

Figure 13: Illustration of Lemma 16 about theRECONNECTmethod.

In theEXPANDCYCLE method, lines 2 and 3 in Figure 11 callRECONNECT(x,y,C)
for the endpointsx,y of the unmatched-edge pair shown in Figure 10 that results when
EXPANDCYCLE is called from the main method (line 24 of Figure 8), first forx,y in
[V] and then forx,y in [U ] in Figure 10. In both cases, Lemma 16 applies, and the
paths together with the first edge pair(e,m) form a sign-switching cycle.

Finally, exchanging the matched and unmatched edges as in line 5 ofEXPAND-
CYCLE can be done as described, irrespective of the order of the edges in the cycle,
just using the pairs(e,m) in C (which are oriented in the same direction along the
cycle), which suffices to obtain a matching of opposite sign.

This concludes the detailed description of the algorithm. It has near-linear run-
ning time in the number of edges, because each unmatched edgeis visited at most
once and either discarded or contracted in the course of the algorithm.
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Figure 14: Example to illustrate the algorithm. Unmatched edges are markeda to h,
matched edges are identified by their endpoints. The first matched edge is 61.
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We illustrate the computation with an example shown in Figure 14. Suppose that
edge lists contain edges in alphabetical order. The first node is 1. The first three
iterations follow the unmatched edgesa,b,c, so thatvc and the arraysvisitednode
andvisitededgehave the following contents:

vc= 4, visitednode= [1 2 3 4], visitededge= [a b c].

Node 4 has an emptyoutlist, so that the computation continues at line 18 (all line
numbers refer to the main methodFIND OPPOSITELY SIGNED MATCHING in Fig-
ure 8 unless specified otherwise). The matched edge ism= 45 with endpointW = 5,
andSHRINK(c,45) is called in line 25. Afterwards,

45.partner= c, vc= 3, visitednode= [1 2 3], visitededge= [a b]

and the reduced graph is shown in Figure 15. The nodes 3 and 5 have been united into
the equivalence class{3,5} which has representative 5 because theUNITE operation
in Figure 4 chooses the second representativeY if the original representatives have
equal rank. The outgoing edges from node 5 ared andh in that order, because the
outlist of 3 has been appended to that of 5.

e
f

g
h
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2

7 8

6

1

b

5,3 

d

Figure 15: The reduced graph after the first contraction withSHRINK(c,45). The
equivalence class with nodes 5,3 is written with the representative listed first.

In line 26, CHECKVISITED(W) has no effect becauseW.visited= 0. In line 28,
V← FIND(W) =W = 5, so that after going back to stepB,

vc= 3, visitednode= [1 2 5], visitededge= [a b].

Line 11 then follows the unmatched edged with

vc= 4, visitednode= [1 2 5 6], visitededge= [a b d]

after which again a contraction is needed, becauseV.outlist is empty, this time with
U,V,W = 5,6,1 and call toSHRINK(d,61). In the SHRINK method,UNITE(5,1)
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returns 5,1 because 5.rank= 1 > 0 = 1.rank. The resulting graph, after line 25 is
completed, is shown on the left in Figure 16, where

61.partner= d, W = 1, vc= 3, visitednode= [1 2 5], visitededge= [a b].

Now consider the call toCHECKVISITED(W) in line 26 and note thatW is still the old
node 1 used before the contraction; recall that this is done because that representative
is possibly stored in thevisitednodearray, which it indeed is at indexW.visited= 1.
The deletion of the detected cycle of unmatched edges in lines 3 and 4 ofCHECKVIS-
ITED (see Figure 9) then produces the reduced graph shown on the right in Figure 16.

ab

e
f

g
h

2

7 8

5,3,1

e
f

g
h

2

7 8

5,3,1

Figure 16: Left: afterSHRINK(d,61), right: afterCHECKVISITED(1).

Normally, the next nodeV would be FIND(W) in line 28. However, the case
vc= 1 applies (recall the reason that the incoming matched edge of visitednode[1]
has been removed by the contraction), and so the computationcontinues via line 31
to stepA. Suppose the first node is now 2. Then the computation followsedgese, f ,h
and reaches node 8, with

vc= 4, visitednode= [2 7 5 8], visitededge= [e f h].

Contraction withSHRINK(h,87) gives the graph shown on the left in Figure 17 where

87.partner= h, vc= 3, visitednode= [2 7 5], visitededge= [e f]

and afterCHECKVISITED(7) the edgef is removed, resulting in

vc= 2, visitednode= [2 7], visitededge= [e].

This time,vc> 1, so withV← FIND(W) = 5 we go back via line 29 to stepB, after
which

vc= 2, visitednode= [2 5], visitededge= [e]

with the graph on the right in Figure 17.
Now V has only the outgoing unmatched edgeg, giving in line 14 (where the last

entryvisitednode[vc] has not yet been assigned)

vc= 3, visitednode= [2 5], visitededge= [e g]
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Figure 17: Left: reduced graph after the third contractionSHRINK(h,87), right: after
CHECKVISITED(7).

and removal of the edgeg gives the graph on the left of Figure 18. At the next
iteration, after line 9,

vc= 2, visitednode= [2 5], visitededge= [e]

where 5.outlist is empty,m= 52, and nowW = 2= U = visitednode[1] in line 23.
Now the final stage of the algorithm is called in line 24 withEXPANDCYCLE(e,m).
The original endpoints of the two edges are (see Figure 14):e.tail = 2, e.head= 7,
m.tail = 3, m.head= 2. Line 2 of Figure 11 makes the callRECONNECT(7,3,{e,m})
which is nontrivial because withx,y= 7,3 we havex 6= y in line 7 of Figure 11. With
x.origmatched= 87 and 87.partner= h, we getC = {(e,52),(h,87)} (where 52 is
just our current name for the matched edge, with its originalendpoints it is the edge
32). All other calls toRECONNECT(x,y,C) then have no effect becausex = y. The
resulting sign-switching cycleC is shown on the right in Figure 18.

2

e

5,3,1,7

e h

7 8

52

Figure 18: Left: graph after the removal ofg, which has a sign-switching cycle.
Right: cycle after the calls toRECONNECT in EXPANDCYCLE.

In this example, every edge of the graph is visited during thealgorithm, and the
reduced graph at the end consists justs of the oppositely oriented unmatched and
matched edge that define a trivial sign-switching cycle. Theoriginal graph in Fig-
ure 15 already has such an edge pair in the form ofb,32, which is not discovered by
the described run of the algorithm. Here, not all matched edges and their partners that
have been removed by theSHRINK operation are used (namely not 45,c and 61,d).
In other cases, the algorithm may also terminate with parts of the graph left unvisited,
or unmatched edges in thevisitededgearray that are not removed.

41



References

Balthasar, A. V. (2009), Geometry and Equilibria in Bimatrix Games. PhD Thesis, London
School of Economics.

Casetti, M. M., J. Merschen, and B. von Stengel (2010), Finding Gale strings. Electronic
Notes in Discrete Mathematics 36, 1065–1072.

Cayley, A. (1849), Sur les déterminants gauches. Journal für die reine und angewandte Math-
ematik (Crelle’s Journal) 38, 93–96.

Chen, X., and X. Deng (2006), Settling the complexity of two-player Nash equilibrium. Proc.
47th FOCS, 261–272.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001), Introduction to Algorithms,
Second Edition. MIT Press, Cambridge, MA.

Cottle, R. W., and G. B. Dantzig (1970), A generalization of the linear complementarity
problem. J. Combinatorial Theory 8, 79–90.

Cottle, R. W., J.-S. Pang, and R. E. Stone (1992), The Linear Complementarity Problem.
Academic Press, San Diego.

Daskalakis, C., P. W. Goldberg, and C. H. Papadimitriou (2009), The complexity of comput-
ing a Nash equilibrium. SIAM Journal on Computing 39, 195–259.

Eaves, B. C., and H. Scarf (1976), The solution of systems of piecewise linear equations.
Mathematics of Operations Research 1, 1–27.

Edmonds, J. (1965), Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467.
Edmonds, J. (2009), Euler complexes. In: Research Trends inCombinatorial Optimization,

eds. W. Cook, L. Lovasz, and J. Vygen, Springer, Berlin, pp. 65–68.
Edmonds, J., S. Gaubert, and V. Gurvich (2010), Sperner oiks. Electronic Notes in Discrete

Mathematics 36, 1273–1280.
Gale, D. (1963), Neighborly and cyclic polytopes. In: Convexity, Proc. Symposia in Pure

Math., Vol. 7, ed. V. Klee, American Math. Soc., Providence,Rhode Island, 225–232.
Grigni, M. (2001), A Sperner lemma complete for PPA. Information Processing Letters 77,

255–259.
Hilton, P. J., and S. Wylie (1967), Homology Theory: An Introduction to Algebraic Topology.

Cambridge University Press, Cambridge.
Jacobi, C. G. J. (1827), Ueber die Pfaffsche Methode, eine gewöhnliche lineäre Differential-
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