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Abstract

This paper presents “oriented pivoting systems” as an adistramework for
complementary pivoting. It gives a unified simple proof thiia endpoints of
complementary pivoting paths have opposite sign. A specis¢ are the Nash
equilibria of a bimatrix game at the ends of Lemke—Howsom®athich have
opposite index. For Euler complexes or “oiks”, an oriemtatis defined which
extends the known concept of oriented abstract simplicehifolds. Ordered
“room partitions” for a family of oriented oiks come in paiv$ opposite sign.
For an oriented oik of even dimension, this sign propertyddalso for un-
ordered room partitions. In the case of a two-dimensiorigltbiese are perfect
matchings of an Euler graph, with the sign as defined for Rfaffrientations of
graphs. A near-linear time algorithm is given for the follog/problem: given a
graph with an Eulerian orientation with a perfect matchiingd another perfect
matching of opposite sign. In contrast, the complementamgtipg algorithm
for this problem may be exponential.
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1 Introduction

A fundamental problem in game theory is that of finding a Naghildrium of a
bimatrix game, that is, a two-player game in strategic foiithis is achieved by the
classical pivoting algorithm by Lemke and Howson (1964).ai88y (1974) intro-
duced the concept of dndexof a Nash equilibrium, and showed that the endpoints
of every path computed by the Lemke—Howson algorithm hawosite index. As
a consequence, any nondegenerate game has an equal nuraqailibfia of posi-
tive and negative index, if one includes an “artificial eduilim” (of, by convention,
negative index) that is not a Nash equilibrium. The Lemkeasstan algorithm is one
motivating example for the complexity class PPAD defined agdeimitriou (1994).
PPAD stands for “polynomial parity argument with directi@mnd describes a class
of computational problems whose solutions are the endpahimplicitly defined,
and possibly exponentially long, directed paths. A saliestilt by Chen and Deng
(2006) is that finding one Nash equilibrium of a bimatrix gasiePAD-complete.

Lemke (1965) generalized the Lemke—Howson algorithm toeng@neralinear
complementary problenfeCPs). Lemke’s algorithm is the fundamentamplemen-
tary pivotingalgorithm; a substantial body of subsequent work is corezmith its
applicability to LCPs and related problems (for a comprashenaccount see Cottle,
Pang, and Stone, 1992). Todd (1972; 1974) introduced aytl@dabstract” com-
plementary pivoting where the sets of basic and nonbasiablas in a linear system
are replaced by elements of a “primoid” and “duoid”.

Todd’s “semi-duoids” have been studied independently by&uds (2009) under
the name oEuler complexesr “oiks”. A d-dimensional Euler complex over a finite
set ofnodeds a multiset ofd-element sets calledomsso that any set al — 1 nodes
is contained in an even number of rooms. For a family of oiksrdkie same node
setV, Edmonds (2009) showed that there is an even numbeoof partitionsof V,
using an “exchange algorithm” which is a type of parity argumn A special case is
a family of two oiks of possibly different dimension correspling to the two players
in a bimatrix game. Then room partitions are equilibria, #mel Lemke—Howson
algorithm is a special case of the exchange algorithm. Inhemcspecial case, all
oiks in the family are the same 2-0ik, which is Baler graphwith edges as rooms
andperfect matchingas room partitions.

This paper presents three main contributions in this cantexst, we define an
abstract framework calleplivoting systemghat describes “complementary pivoting
with direction” in a canonical manner. Similar abstractgiing systems have been
proposed by Todd (1976) and Lemke and Grotzinger (1976);ongpare these with
our approach in Section 5. Second, using this framework,xtend the concept of
orientationto oiks and show that room partitions at the two ends of a piggbath
have opposite sign, provided the underlying oik is orient€gdr two-dimensional
oiks, which are Euler graphs, room patrtitions are perfed¢thiags. Their orientation
is the sign of a perfect matching as defined for Pfaffian oaigms of graphs. Our
third result is a polynomial-time algorithm for the follomg problem: Given a graph



with an Eulerian orientation and a perfect matching, findtla@operfect matching
of opposite sign. The complementary pivoting algorithnt tzhieves this may take
exponential time.

In order to motivate our general framework, we sketch hecedanonical exam-
ples (with further details in Section 2) where paths of canpntary pivoting have
a direction and endpoints of opposite sign. The first exansgesimple polytope in
dimensiormwith n facets, each of which hadabelin {1,...,m}. A vertex is called
completely labeled the mfacets it lies on together have all labels.1, m. Thesign
of a completely labeled vertex is the sign of theterminanbf the matrix of the nor-
mal vectors of the facets it lies on when written down in theeorof their labels. The
“parity theorem” states that the polytope has an equal numibampletely labeled
vertices of positive and of negative sign (so their total bemnis even).

The second example is that of Baler digraphwith vertices 1...,m and edges
oriented so that each node of the graph has an equal numioeoafing and outgoing
edges. A perfect matching of this graph has a sign obtainéallaws: Consider any
ordering of the matched edges and write down the two endpoinéach matched
edge in the order of its orientation. This defines a permutadf the nodes, whose
parity (even or odd number of inversions) defines the sign of the mvagc Here
the “parity theorem” states that the Euler digraph has aralequmber of perfect
matchings of positive and of negative sign.

The first example is a case of a “vertical” LCP (Cottle and Raynt1970) and
the second of an oik partition. Both parity theorems havermiizal proof where
the completely labeled vertices and perfect matchingpeas/ely, are connected
by paths of “almost completely labeled vertices” or “almasatchings”, respec-
tively. The orientation of the path uses that exchangingdelaomns of a determinant
switches its sign, and that exchanging two positions in enpéation switches its par-
ity. In addition, one has to consider how the “pivoting” ogigon changes such signs.
Our concept of a pivoting system (see Definition 2) takes actof these features
while keeping the canonical proof.

In Section 2 we describe our two motivating examples in matitl Labeled
polytopes and their completely labeled (“CL") vertices estated to LCPs, and are
equivalent to equilibria in bimatrix games (Proposition MVe also give a small
example of the pivoting algorithm that finds a second penfeatching in an Euler
digraph.

In Section 3 we describe our framework of oriented pivotipgtems, and prove
the main “parity” Theorem 3. The section concludes with thpli@ation to labeled
polytopes.

We study orientation for oiks in Section 4. The general D&6ini6 seems to be a
new concept, which extends the known orientation for abssimplicial manifolds
(e.g., Hilton and Wylie, 1967; Lemke and Grotzinger, 19764 &proper duoids”
(Todd, 1976). Then the parity theorem applies to orderechrpartitions in oriented
oiks, where the order of rooms in a partition is irrelevamtdiks of even dimension;
see Theorem 10 and Theorem 11.



Section 5 discusses related work, in particular of Todd 219974; 1976) and of
Edmonds (2009) and Edmonds, Gaubert, and Gurvich (2010).

Section 6 is concerned with signed perfect matchings inrsliggraphs. A sec-
ond perfect matching of opposite sign is guaranteed to byishe complementary
pivoting algorithm, which, however, may take exponeniiale. In Theorem 12 we
give an algorithm to find such an oppositely signed matchmgear-linear time in
the number of edges of the graph. This is closely relatedaeav#ll-studied theory
of Pfaffian orientations: an orientation of an undirectedpdris Pfaffian if all per-
fect matchings have the same sign. It is easy to see dirdwalyain Euler digraph
is not Pfaffian; our result can be seen as a constructive angutationally efficient
verification of this fact.

Issues of computational complexity are discussed in thelading Section 7.

2 Labeled polytopes and signed matchings

In this preliminary section, we present two main examples e generalize later
in an abstract framework. The first example is a labeled ppltwhose completely
labeled (“CL") vertices provide an intuitive geometric wieof Nash equilibria in
a bimatrix game. We also mention the connection to the limeanplementarity
problem. The second example is an Euler digraph with itsggerhatchings.

We use the following notation. Leék| = {1,...,k} for any positive integek. The
transpose of a matriB is B'. All vectors are column vectors. The zero vectoBjs
the vector of all ones i4, their dimension depending on the context. Inequalities
like x > 0 between two vectors hold for all componentsudit vector ¢ has itskth
component equal to one and all other components equal to Aggermutationrt of
[m] hasparity (—1)K if k is the number of itinversionsthat is, paird, j so thati < j
and (i) > m(j), and the permutation is also called even or odd wkés even or
odd, respectively.

A polyhedronP is the intersection ofi halfspaces irR™,

P={xeR™|a/x<bj, jen} (1)

with vectorsa; in R™ and reald;. A labeling function I: [n] — [m] assigns a label
to each inequality in (1), anklin P is said to have labdl j) when thejth inequality
is binding, that is,aij = bj, for any j in [n]. The polyhedrorP is a polytope if it
is bounded. Avertexof P is an extreme point oP, that is, a point that cannot be
represented as a convex combination of other elemeris of

We normally look at “nondegenerate” polytopes where bigdmequalities define
facets, and no more tham inequalities are ever binding. That is, we assume
is a simple polytope (every vertex lies on exaathyfacets) and that none of the
inequalities can be omitted without changing the polyteeefor everyj in [n] the
jth binding inequality defines a facEf given by

Fj:{xeP|aij:bj} (2)
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(for notions on polytopes see Ziegler, 1995). Then f&gdtas label () for j in [n],
and we callP alabeled polytopeA vertex of P is completely labeledr CL if the m
facets it lies on have together all labels]in.

CL vertices of polytopes are closely related to Nash equaliim bimatrix games.
Suppose the polytope has the form

P={xeR™| —-x<0,Cx<1} (3)

for some(n—m) x m matrix C, and that each of the firsh inequalitiesx, > 0 has
labeli in [m]. ThenO is a completely labeled vertex. i in (1) has a completely la-
beled vertex, then it is easy to see that it can be broughthetéorm (3) by a suitable
affine transformation that maps that verteXot(see von Stengel, 1999, Prop. 2.1). If
C is a square matrix, then the CL verticesf P other tharO correspond to symmet-
ric Nash equilibria %, X) of the symmetric game with payoff matricés,C "), where
% =x/1"x. In turn, symmetric equilibria of symmetric games encodstNequilib-
ria of arbitrary bimatrix games (see, e.g., Savani and vemgil, 2006, also for a
description of the Lemke—Howson method in this context)néée given a bimatrix
game, its Nash equilibria are encoded by the CL verticeg(dtian0) of a polytope
Pin (3).

Conversely, consider a labeled polytoPewith a CL vertex0 as in (3). For a
general matrixC in (3) and general labels for the inequaliti€ég < 1, the follow-
ing proposition implies that the CL vertices Bf correspond to Nash equilibria of
a “unit-vector game’(A,C"). The unit vectors that form the columns Afencode
the labels for the inequalitieSx < 1. (This proposition holds even if a point &f
may have more tham binding inequalities, except that then a CL pointhfs not
necessarily a vertex.) The proposition, in a dual versioss st stated and used
by Balthasar (2009, Lemma 4.10). The special case whenthe identity matrix
describes an “imitation game” whose equilibria corresptimthe symmetric equi-
libria of the symmetric gam¢C,C") (McLennan and Tourky, 2010). For further
connections see Section 5.

Proposition 1 Suppose that3) defines a polytope P so that the inequalitieg <0
have label i for ic [m], and the last i- m inequalities Cx< 1 have labels (m+ j)
in [m] for j € [n—m|. Then x is a CL point of P- {0} if and only if for somey
the pair (x/(1"7x),y) is a Nash equilibrium of the m (n—m) game(A,C") where
A=[8(mi1) am)-

Proof. Consider the gaméA,C") as described. Then a mixed strategy &iry)
with payoffsu to player 1 and/ to player 2 is a Nash equilibrium if and only if

£>0, 1'x=1, y>0 1'y=1 Ay<1lu, CR<1y, (4)
and the “best response” (or complementarity) conditions

Vie[m : % >0= (AY)i =u, Vien :yj>0=(CX);=vVv (5)



hold. Condition (4) impliest > 0 andv > 0, as follows. Firsty;"> 0 for somej
in [n]. The jth column ofA is the unit vectorg for i =1(m+ j), so for theith row
(AY); of Ay we haveu > (Ay); > ¥; > 0. Second, ifv <0 thenCXx<1lv<0<1,
and hence€CxA < 1 for any realA > 0, wherex# 0, so thatP contains the infinite
ray {XA | A > 0}, butP is bounded. So indeedl> 0 andv > 0. With x = X/u and
y =Y/v, conditions (4) and (5) are equivalent to

x>0, x#0, y>0, y#0, Ay<l Cx<l1, (6)
and
Vie[m : x>0=(Ay) =1, Vieln 1 yi>0=(Cx)j=1, (7)

from which (4) and (5) are obtained with=1/1"x,v=1/1Ty, X = xu, y = yv.
Suppose now thatk,y) is an equilibrium, withx andy so that (6) and (7) hold.
Thenx € P and we want to show thatis a CL point ofP. Leti € [m]. If x; = 0 then
x has label, so letx; > 0. Then(Ay); = 1 by (7), so there is somgin [n] so that the
jth column ofAis g, that is,|(m+ j) =i, andy; > 0. By (7), (Cx)j = 1, so thejth
inequality inCx < 1 is binding, which has labé(m+ j) =i. Soxis CL.
Conversely, lek be a CL point of® andx # 0. Then for eachi in [m] with x; > 0,
labeli for x comes from a binding inequalitfCx); = 1 with labell (m+ j) =i, so
we lety; = 1 for the smallesf with this property, and sef = O for all otherk in [n].
Thenx > 0 implies (Ay)i = (&); = 1, andy; > 0 implies(Cx); = 1, so (6) and (7)
hold, and withx’= x/1"x andy'= y/1"y we obtain the Nash equilibriur(g,y) of
(A,CT). O

A linear complementarity problei.CP) with anm x m matrix M andm-vector

q is the problem of finding in R™ so thatz> 0, q+Mz > 0, andz' (q+Mz) =0

(see Cottle, Pang, and Stone, 1992). This the same as findbigpmint z of the
polyhedron

P={zeR™|-z<0, —Mz<q} (8)

whose 2n inequalities have labels,1.,m,1,....m. More generallyM in (8) may

be of size(n— m) x mwith labels 1... ,m for the inequalities-z < 0 and arbitrary
labels in[m] for the inequalities—Mz < g. This is known as the “vertical” LCP
(Cottle and Dantzig, 1970). Lemke (1965) described a paltbvfing method of
“complementary pivoting” to solve LCPs; many studies canaehether this method
terminates depending dWl andqg. This is always so in our special case (3) where
g=1,C=—M, andP is bounded.

For a simple polytop® in (3), a “Lemke path” (see also Morris, 1994) is obtained
for a givenmissing label win [m] as follows. Start at a CL vertex, for exame
and “pivot” along the unique edge that leaves the facet vaitielw. This reaches a
vertexv on a new faceF with labelk. If k=w, thenvis CL and the path terminates.
Otherwise, labek is duplicate that is, v is on another facet that also has lakel
Continue by pivoting away from that facet to the next vertelxich again has a label
that is eithemw or duplicate, and repeat. This defines a unique path thatstercs
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vertices and edges all of which have all labels exagpand whose endpoints are
CL. The CL vertices oP are the unique endpoints of these “Lemke paths” and hence
there is an even number of them, which is the basic “paritpré®”. In addition,

a CL vertex has aignwhich is the sign of the determinant of thenormal vectors

of the binding inequalities when these vectors are writtanrdin the order of their
labels 1...,m. Thenthe endpoints of a Lemke path have opposite sign, astesy
shown by Shapley (1974). We prove this in more general formhaorem 3 and
Proposition 4 below.

Our second example is given by an Euler digr&ph- (V,E), that is, a graph so
that each edge is oriented so that every nod& dfas equally many incoming and
outgoing edges. We allow multiple parallel edges betweenrtades. Lel/ = [m].

A perfect matching Ms a set ofim/2 edges no two of which have a node in common.
Thesignof a perfect matching/ is defined as follows. Consider the edgedvinn
some order and write down their endpoints in the order of tlentation of the edge.
This defines a permutation &. The sign ofM is the parity of that permutation,
which is independent of the order of edges.

A “pivoting path” that starts from a perfect matchiiMyof G, and finds a second
perfect matching, can be defined as follows (see Figure 1 mimple example).
Choose anissingnodew and for each node @ a fixedpairing between its incoming
and outgoing edges. Letbe the matched edge incidentwo for example oriented
from w to u, soe= (w,u). Consider the (necessarily unmatched) etlgé) at the
other endpoint of e that is paired withe. (If e was oriented asu,w), the paired
edge would bgk,u).) Replacee in M with (u,k). Unlessk = w, the result is an
“almost matching” with a nod& in V that is incident to two edgesl, k) andé€/, say,
nodew that is not incident to any edge, and every other node intidesxactly one
edge. Consider the endpointof € other thank, and (assuming’ is oriented as
€ = (k,v)), replacee’ again with its paired unmatched edgex) at v (in Figure 1,

x =w). Continue in this manner until the endpoint of the newlyrfdedge isw. It
can be shown that the matching Gfthat is found has opposite sign to the original
matching. In Figure 1, the two matchings &f&2 34} and {2341} which have
indeed opposite sign.

4 3
Y k

Figure 1: Example of an Euler digraph and matched edges wimgs) (1,2) and
(3,4). Here all edges are uniquely paired because every node hasr@incoming
and one outgoing edge.



3 Labeled oriented pivoting systems

In this section we describe a general abstract frameworkafiplementary pivoting”
with orientation. We will use an abstract setstates(which may be vertices of a
polytope, or sets of edges, such as matchings, in a digrayghthairrepresentations
which define how to assign labels, orientations, signs, amdtb pivotfrom one state
to another.

Consider a finite seb of states Each states is representedy anm-tuple

r(s) = (st,---,Sm) (9)

of nodes sfrom a given seV. For a polytope as in (1), the set of nodéss the set
[n] that numbers its facets, and a state is a verteR oépresented by thm facets
it lies on. In an Euler digraphy is the set ofm nodes of the graph, and a state
is a set ofm/2 edges. A representation efis anm-tuple (si,...,Sn) so that the
oriented edges inare(s_1,%j) for 1 <i < m/2. Note that this representation may
not identify s uniquely if the graph has parallel edges.

The pivoting operatiorf takes a stats andi in [m] and produces a new stédte
with the effect that theth component of the representation &fin (9) is replaced
by another element of V. We denote the resulting-tuple by (r(s) | i — u),

((s1,.--,Sm) |1 = u)=(s1,...,5-1,U,S+1,---,5m)- (10)

We denote the resulting new state with this representatidnbf (s,i). The pivoting
step is simply reversed ky/~= f(t,i). (We will soon refine this by allowing(t) to be

a permutation of (s).) In the polytopes andt are adjacent vertices that agree in all
binding inequalities except for théh one.

In an Euler digraph with paired incoming and outgoing edgesaah node, an
example of pivoting is the following: Suppose stadset with m/2 edges) has
the edge(s1,sp), which is paired with(sp,u) in the graph, and let= 1. Pivoting
replaces(s;,s2) with (sp,u), giving the new staté. Here we encounter the dif-
ficulty that the representations sfandt should ber(s) = (s1,%,S3,...,5m) and
r(t) = (s2,u,Sg,...,Sm) in order to write down the edges in their orientation. How-
ever, this requires tha, appears in a permuted place fraifs) in r(t); this is ad-
dressed in Definition 2 below which is more general than tisedetion so far.

Each nodeu in V has alabel I(u) given by a labeling functioh:V — [m]. The
path-following argument has as endpoints of the patiispletely labeled (Clgtates
s where, given (9){I(s) | i € [m} = [m]. In addition, it considers statesthat are
almost completely labeled (ACHEfined by the conditiogl(s) | i € [m} = [m] —
{w}, wherew is called themissing labeland the uniqué so thatk = I(s) = I(sj)
fori # | is called theduplicate label

“Complementary pivoting” means the following: Start fromCd states and
allow a specific labelv to be missing, wheré&(s) = w. Pivot to the staté = f(si).
Then if the new nodel in (10) has label (u) = w, thent is CL and the path ends.
Otherwise, | (u) is duplicate, withl(sj) = I(u) for j # i, so that the next state is
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obtained by pivoting tof (t, j), and the process is repeated. This defines a unique
path that starts with a CL state, follows a sequence of ACtestall of which have
missing labelv, and ends with another CL state. The path cannot meet itsedfuse

the pivoting function is invertible; hence, the procesaiieates.

We also want to give directionto the pivoting path. For this purpose, a CL state
will get asign, either+1 or —1, so that the two CL states at the ends of the path have
opposite sign. This sign is the product of two such numbegaifeeither+1 or —1),
namely theorientation o(s) of the states when represented ags) = (si,...,Sm),
and the parity of the permutatiam of [m|] when writing down the nodesi, ..., Sn
in ascending order of their labels. In the polytope settihg,orientation of a vertex
is the sign of the determinant of the normal vectayof the facetsF; that contain
that vertex, see (16) below. The important abstract prggerthat pivoting from
(S1,...,Sm) to ((s1,...,Sm) | § — U) changes the orientation, stated for polytopes in
Proposition 4 below.

In order to motivate the following definition, we first give ary simple example
of a pivoting path with only one ACL state apart from its two Glates at its ends.
ConsiderV = {a3,ap,as3,b1,bp} with labelsl(a;) = I(by) =1, I(ap) = I(b2) = 2,
|(ag) = 3, and three states?,s!,s? with r(s) = (ag,ap,az), r(st) = (bp,ap,ag),
r(s?) = (bp, by, a3). Assume thatf (2, 1) = st and f(s!,2) = . Then starting from
the CL states® and missing label 1 pivots tg! (by replacinga; with by), which is
an ACL state with duplicate label 2 in the two positions 1 andThe next com-
plementary pivoting step pivots frost to s? (by replacinga, with by), wheres? is
CL and the path ends. The three states have the followingtatiens: o(s°) = 1,
o(st) = —1, o(s?) = 1, which alternate as one state is obtained from the next by
pivoting. Here, the two CL state ands® have the same orientation. They obtain
theirsignby writing their nodes in ascending order of their labelsisTit already the
case forr (9), but inr(s?) the permutation 21, 3 of the labels is odd, so the sign of
s? becomes-1, which is indeed opposite to the signsf

In this example, we have chosen the representations ofdtesst, s!, s in such
a way that the required pivoting steps can indeed be perfbby@xchanging a node
at a fixed position; however, this may not be clear in advaanether representation
of the three states might b@y,ay,a3), (ap,as,by), (as,b1,by). In this case, we
still allow pivoting from ¥ to s by going from(ay, ap, ag) to (by, az,a3) but with a
subsequent, known permutatiento obtain the representatiqas, ag, by) of st; for
a “coherent” orientation of the states, we have to take thigypat T into account.

Definition 2 A pivoting systens given by(SV, m;r, f) with a finite setS of statesa
finite setV of nodesa positive integem, arepresentatioriunctionr : S—V™, and a
pivoting function f: Sx [m] — S. For a permutationt of [m] andr (t) = (ty,...,tm),
let

r(t) = (tmys - - trgm)) - (11)

Then for eacht = f(s,i), there is a permutation = 71(s,i) of [m] so thatr'(t) =
(r(s)|i — u) for someuin V, andf(t, m(i)) = s. The pivoting system isrientedif



each state has arorientationo(s), whereo : S— {—1,1}, so that
o(t) = —o(s) - parity(m) (12)
whenevett = f(s,i) with 7m= r1(s,i) as described.

Note that when pivoting from stateto statet = f(s,i), the permutationt so that
r'’(t) = (r(s) | i — u) is a functionr(s,i) of sandi and hence part of the pivoting
system. In addition, the orientatian of the states is unique only up to possible mul-
tiplication with —1; usually one of the two possible orientations that are éeht”
according to (12) is chosen as a convention (for Nash eaalddf bimatrix games,
for example, so that the CL vertéxof P in (3) has negative sign).

The following simple example illustrates the use of the peation 1T = 71(s;i)
in Definition 2. Suppose(s) = (s1,%,%3) = (1,2,3) andr(t) = (ty,to,t3) = (2,3,4),
wheref (s 1) =t by replacings; with 4. This means that™(t) = (ty1),tr2), tri3) =
((s1,%2,83) | 1 = 4) = (4,2,3), somn(l) = 3, m(2) =1, n(3) = 2, that is, 1T says
thats; becomed,; ;) except for the “pivot elements. Pivoting “back” givess =
f(t,m(1)) = f(t,3).

It is important to note that the pivot operatidroperates on stateswhich gives
a new state = f(s,i), wherei refers to theith componenst of the representation
r(s) = (s1,...,Sn). However, there may be different staeands with the same
representation(s) = r(s'), as we will see in later examples; otherwise, we could
just takeS as a subset o ™ and dispense with. This is one distinction to the for-
mal approaches of Lemke and Grotzinger (1976) and Todd (19, in addition,
assume that the nodss, ..., sy in (9) are distinct, which we do not require either.
Furthermore, we do not give signs to the two equivalenceselasf even and odd
permutations ofsi, ..., Sy), as Hilton and Wylie (1967) or Todd (1976), but instead
consider unique representatiar{s), and build a single permutatiaminto each piv-
oting step.

The pivoting systeniSV, m,r, ) is labeledif there is a labeling functioh: V —
[m|. For (sq,...,Sm) Wheres €V foriin [m], letl(sy,...,Sm) = (I(S1),...,1(Sm)),
and consider thisn-tuple as a permutation @] if 1(s) # I(sj) wheneveri # j. If
the pivoting system is oriented, then tsignof a CL states is defined as

sign(s) = a(s) - parity(I (r(s)))- (13)

For an ACL states, we definetwo opposite signs as follows: consider the positions
i, j of the duplicate label im(s) = (sy,...,Sm), thatis,|(s) = I(sj) with i # j, and
missing labelw. Replacind (s) with win I(r(s)) then defines a permutation fy,
denoted by(I(r(s)) | i — w), which has opposite parity td(r(s)) | j — w) because
that permutation is obtained by switching the labelandl (s;) in positionsi and j.

Let

sign(s,i) = a(s) - parity(l(r(s)) | i — w), (14)
SO
sign(s, j) = a(s) - parity(l(r(s)) | j — w) = —sign(s,i). (15)
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This is the basic observation, together with the orientatiwitching of a pivoting
step stated in (12), to show that complementary pivotingget an oriented pivoting
system have a direction. This direction (say from negatitelpositively signed CL
end-state) is also locally recognized for any ACL state anghth, as stated in the
following theorem. Hence, for a fixed missing lalvel the endpoints of the paths
define pairs of CL states of opposite sign. The pairing magddmnw, but the sign
of each CL state does not.

Theorem 3 Let (SV,m,r, f) be a pivoting system with a labeling function\/ —

[m], and fix we [m].

(a) The CL states and ACL states with missing label w are adedeby comple-
mentary pivoting steps and form a set of paths and cycleb,thét CL states as
endpoints of the paths. The number of CL states is even.

(b) Suppose the system is oriented. Then the two CL staties ahtl of a path have
opposite sign. When pivoting from an ACL state s on that path=t f(s,i)
where [s) is the duplicate label in (s) = (s1,...,Sn), the CL state found at
the end of the path by continuing to pivot in that directiors lngpposite sign to
sign(s,i). There are as many CL states of siyas of sign—1.

Proof. Assume that the pivoting system is oriented; otherwise dementary piv-
oting (already described informally above) is part of théolwing description by
disregarding all references to signs. Consider a CL ftatedr(s) = (S1,...,Sm),
with w declared as the missing label for the path that starts and letl(s) = w.
We can define sidis,i) as in (14), which is just sigis) in (13), becausé(r(s)) =
(I(r(s)) | i — w). The following considerations apply in the same wagig an ACL
state with duplicate labé(s). The path starts (or continuessifs ACL) by pivoting
tot = f(s,i). Assume’(t) = (r(s) | i — u) as in Definition 2. Therl(r(s)) |i — w)
is a permutation ofm|, which is equal tql (r"(t)) | i — w), and(I(r(t)) | r(i) — w)
is a permutation ofm| with parity(m) - parity(l(r(s)) | i — w) as its parity. Hence,
by (12)
sign(s,i) = a(s) - parity(I(r(s)) | i — w)

= —o(t) - parity(m) - parity(I(r(s)) | i — w)

= —o(t)-parity(l(r(t)) | r(i) — w)

= —sign(t, m(i)).
If 1(u) is the missing label, thent is the CL state at the other end of the path
and sigift) = sign(t, ri(i)), which is indeed the opposite sign of the starting state
Otherwise, label(u) is duplicate, withl (u) = I(sj) for somej #1, thatis,| (t,)) =
|(trjy) for r(t) = (t1,...,tm), so that the path continues with the next pivoting step
fromt to f(t,1(j)), where by (15)

sign(t, mi(j)) = —sign(t, 7i(i)) = sign(s; i),

that is, this step continues from a state with the same sigheastarting CL state,
and the argument repeats. This proves the theorem. O]
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For a labeled polytopP as in (1), an oriented pivoting system is obtained as fol-
lows: The states is are the verticeg of P, and by the assumptions éheach vertex
x lies on exactlym facetskFs , ..., Fs,, where we take&(x) = (s1,...,Sm) as the repre-
sentation ofk with sy, ..., Sy in any fixed (for example, increasing) order. Moreover,
the normal vectors,, ..., as, of these facets in (2) are linearly independent. For
anyi in [m], the setN,c(m—¢iy Fs, is an edge oP with two verticesx andy as its
endpoints, which defines the pivoting functionyas f(x,i). The orientation of the
vertexx is given by

o(x) = sgndefas, - -ag,)) (16)
with the usual sign function sg@p) for realsz and the determinant dét for any
square matriA. The following proposition is well known (Lemke and Grotgar,
1976, for example, argue with linear programming tableaties) Eaves and Scarf,
1976, Section 5, consider the index of mappings); we giveod gfeometric proof.

Proposition 4 A labeled polytope P with orientatiom(x) as in (16) for each vertex
x of P defines an oriented pivoting system.

Proof. Consider pivoting fromx to vertexy = f(x,i). We want to prove (12), that
is, a(y) = —a(x) - parity(r1) where 1T is the permutation so that"(y) = (r(x) |
i — u). Letx be on them facetsFs,Fs,,...,Fs, as in (2). The representation
r(x) = (st,...,Sm) determines the order of the columns of the mafeixas, - - - as,,]
whose determinant determines the orientatdr) in (16). Any permutation of the
columns of this matrix changes the sign of the determinacdraling to the parity
of the permutation, so for proving (12) the actual ordef®f...,sy) in r(x) does
not matter as long as it is fixed. Hence, we can assumetieathe identity permu-
tation, and that pivoting affects the first colunin<{1), so thaty is on them facets
Feos Fsyy - - -, Py

We show that deds,as, - - - as,,] and defag, as, - - - as,,] have opposite sign, that is,
o(y) = —o(x) as claimed. Then+ 1 vectorsasy, as, , as,, - - - , as,, are linearly depen-
dent, so there are reatg, ¢y, ..., Cn, Not all zero, with

m
> Cpag, =0 (17)
p=0

Note thatcy # 0, because otherwise the normal vectagsas,, ..., as, of the facets
that definex would be linearly dependent, and similady # 0. Multiply the sum
in (17) with bothy and x, Whereaspr = asTpx = bs, for p=2,...,m. This shows

Coagy+ C1aqy = Coal X+ C1ag x or equivalently
Co(ady —agX) = C1(ag,x—agy),

so cp andc; have the same sign becausés not on facetrs, andy is not on facet
Fs,» S0aLy —ag X = by, —agx > 0 andag x—ag y = b, —ag y > 0. By (17),

0 =def(as,Co+as,C1) as," - s, = Codefagas, - as,] + c1defag as, - - - as,,)
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which shows that dédg as, - - - as,,] and defas as, - - - as,,| have indeed opposite sign.
O

The orientation of a vertex of a simple polytoPedepends only on the determi-
nant of the normal vectora; of the facets in (16), but not on the right hand sitd¢s
whenP is given as in (1). Translating the polytopeby adding a constant vector to
each point ofP only changes these right hand sides0 6 in the interior ofP, then
one can assume thif =1 for all j in [n]. The convex hull of the vectors; is then
a simplicial polytopeP? called the “polar” ofP (see Ziegler, 1995). The vertices of
P2 correspond to the facets Bfand vice versa. A pivoting system for the simplicial
polytope has its vertices as nodes and its facets as stdtiet, @ne may see as a more
natural definition. However, the facets of a simplicial gofye are oriented via (16)
only if it has O in its interior, which is not required for the simple poly®p. For
common descriptions such as (3), we therefore prefer todsknple polytopes.

Theorem 3 and Proposition 4 replicate, in streamlined fdsmapley’s (1974)
proof that the equilibria at the ends of a Lemke—Howson patrelopposite index.
Applied to the polytopé® in (3), the completely labeled vertéxdoes not represent a
Nash equilibrium, and it is customarily assumed to havexndg, which is achieved
by multiplying all orientations with-1 if mis even.

4 Oriented Euler complexes

Todd (1972; 1974) introduced the concept of a “semi-duaidiich was studied by
Edmonds (2009) under the name of Euler complex or “oik”. Eddsoshowed that
“room partitions” for a “family of oiks” come in pairs. In thisection, we give a
direction to Edmonds’s parity argument. For that purposeintroduce the new con-
cept of anoriented oikand show that one can then define signs for “ordered room
partitions”, where the order of the rooms can be disregafdediks of even di-
mension (Theorem 11). We discuss the connection of labels“8perner oiks” in
Appendix A.

Definition 5 LetV be afinite set ohodesand letd be an integerd > 2. A d-dimen-
sionalEuler complexr d-oikonV is a multisetZ of d-element subsets &f, called
rooms so that any sétv of d — 1 nodes is contained in an even number of rooms. If
W is always contained in zero or two rooms, then the oik is dadlsmanifold A wall
isa(d—1)-element subset of a rooR A neighboringroom toR for a wallW of R

is any room that containg/ as a subset.

In the preceding definition we follow Edmonds, Gaubert, andvigh (2010) of
choosingd rather thard — 1 (as in Edmonds, 2009) for the dimension of the oik. A
2-oik onV is an Euler graph with node s&t and edge multiseZ. We allow for
parallel edges (which is why? in Definition 5 is a multiset, not a set) but no loops.

Rooms are often called “abstract simplices”, and a longen fer manifold is
“abstract simplicial pseudo-manifold” (e.g., Lemke andtimnger, 1976). The fol-
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lowing definition generalizes the common definition of camtly oriented rooms in
manifolds (Hilton and Wylie, 1967, p. 54) to oiks.

Definition 6 Consider ad-oik % onV and fix a linear order oN. Represent each
roomR={sy,...,} in Z asr(R) = (s1,...,5) Wheres,...,s4 are in increasing
order. For each roorR, choose arrientationo(R) in {—1,1}. Theinduced ori-
entationon any wallWw = R— {s} is defined ag—1)'g(R). The orientation of the
rooms is calleccoherent and the oikoriented if half of the rooms containing any
wall W induce orientation 1 oW and the other half orientationl onW.

As an example, consider a 2-oik, where rooms are the edges Biiler graph.
Suppose an edgy, v} is oriented so thatr(u,v) = 1. Then the induced orientation
on the wall{u} is —1 and on{v} itis 1, so{u,v} becomes the edgei,v) of a
digraph oriented fronu to v. A coherent orientation means that each wall (that is,
node) has as many incoming as outgoing edges, so this is andtubrientation of
the graph (which always exists; fdr> 2 there are already manifolds that cannot be
oriented, for example a triangulated Klein bottle). In gahethe simplest oriented
oik consists of just two rooms with equal node set but oppasitentation. As an
Euler digraph, this is a pair of oppositely oriented patatiges.

Proposition 7 A d-oik # on V defines a pivoting systef8 V,m,r, f) as follows:
Let S= %, m=d, and r ando be as in Definition 6. For any wall W, match
the 2k rooms that contain W into k pairdR R'), where R and Rinduce opposite
orientation on W if the oik is oriented. ThefR i) =R if r(R) = (s1,...,5) and
W =R-{s}. If o is coherent, then the pivoting system is oriented.

Proof. Let RUR = {s1,...,8441} = RU{sj} = RU{s}, with s1,...,54+1 in in-
creasing order, and lét< j, otherwise exchangR andR'. Thenr(R)) is obtained
from r(R) by replacings with s; followed by the permutationt that insertss; at
its place in the ordered sequence by “jumping over’i — 1 elements ,q,...,Sj_1
to remove as many inversions, so pafity= (—1)/='-1. Hence, f(Ri) =R is
well defined. If o is coherent, theR and R induce on the common waRN R
the opposite orientations-1)'o(R) and (—1)!~10(R) (becauses ¢ R), that is,
0(R)=—-0(R)(—1)7""1 = —o(R) - parity(m) as required in (12). O

The matching of rooms with a common wall inkopairs described in Proposi-
tion 7 is unique if the oik is a manifold. In a 2-oik, that is, Baler graph, such a
matching of incoming and outgoing edges of a node is for exawiptained from an
Eulerian tour of the graph, which also gives a coherent tatemn.

For an “oik-family” #1,...,%n where eachZ), is a dp-oik on the same node
setV for p € [h], Edmonds, Gaubert, and Gurvich (2010) define the “oik-susn” a
follows.

Definition 8 Let %, be adp-oik onV for p € [h], and letm = zgzldp. Then the
oik-sumZ = Z1+ - - - + %, is defined as the set ofi-element subset® of [h] x V
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so that
R=RiWRW - -WRy= ({1} xR))U({2} xRp) U---U({h} xR,)  (18)

whereRy, € %, for p € [h]. For a fixed ordex onV, we order[h] x V lexicograph-
ically by (p,u) < (q,v) ifand only if p< g, or p=qgandu<v.

As observed by Edmonds, Gaubert, and Gurvich (2010), thewkZ is an oik.
A neighboring room oR=R;WRy W - - - W Ry, is obtained by replacing, for sone
the roomR, with a neighboring roonﬁ(p in Zp. The next proposition states, as a new
result, that the oik-sum is oriented if ea@), is oriented. According to Definition 6,
this requires an order on the node f#tx V to yield an order on the nodes in room
Rin (18), which is provided in Definition 8: The nodes of eacbnmoR, are listed
in increasing order (o), and thesedy-tuples are then listed in the order of the
roomsRy, ..., Ry; this becomes the representatidRR) used to define the orientation
oonZ.

Proposition 9 The oik-sun# in Definition 8 is an m-oik ovefh| x V. If eachZ),
is oriented withay, so is#, with

h
p=1

Proof. Clearly, each roonR of &% as in (18) hasn elements. Any walW of R is
given byW = R—{(p,v)} for somep in [h] andv in Ry. Then any neighboring room
R in Z of R for the wallW is given by

R=Rt-- &Ry 1WRWRy 1 WRy

for the neighboring roomR}, in %, for Ry — {v}, of which, includingRp, there is
an even number. This shows thtis anm-oik.

For the orientation ofZ if each %}, is oriented withay, represenR asr(R) by
listing the elements oR in lexicographic order as in Definition 8. Then the induced
orientation on any walWw = R— {(p,v)} as in Definition 6 is obtained from the
induced orientation ofr, — {Vv}, as follows. Supposef,..., Sp are the nodes in

Ry in increasing order, where= s°. Then the induced orientation d®, — {v} in

Zpis (—1) ap(Rp). In r(R), nodev appears in positiorzlp;lldj +1i, so the induced

orientation ofR onW is, with o(R) is defined as in (19),

14 . -1,

140 (R) = (~1)/ gp(Rp) (~1) 51+ [ @R e
qelh/—p

p-

(-1)2F-

All the rooms in# that containW are obtained by replacing, with any room
R, that containsRp — {v}. Half of these have induce the same orientatiorRas
on Rp — {v}, half of these the other orientation. Because this affectg the term
(—1)'op(Rp) in (20), half of the room&R that contairWW induce one orientation on
W and half the other orientation. Spis a coherent orientation o . O
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Consider now an oik-family#y, ..., %, whereZ, is adp-oik onV for pin [h]
so that)V| = m= 3% _, dp. SupposeR, € %, for pin [h] andUj_; Ry =V (so the
roomsR;, are, as subsets df, also pairwise disjoint). The(Ry,...,Ry) is called an
ordered room patrtition In the following theorem, the even number of ordered room
partitions is due to Edmonds, Gaubert, and Gurvich (20b@)pbservation on signs
IS new.

Theorem 10 Let %), be a dy-oik on V for p in[h] and|V|=m= zgzldp. Then the
number of ordered room partitions is even. If ea€h is oriented as in Proposition 9,
then there is an equal number of ordered room partitions d@itpee as of negative
sign, where the sign of a room partitigRy, . .., Ry) is defined by

sign(R) = sign(Ry,...,R,) = o(R1W...WR,) - parity(m) (21)

with the permutationt of V given according to the order of the nodes of V (RY,
that is, with r(u) < m(v) if u € Rp and ve Ry and p< g, or uve Ry and u< v
inV.

Proof. This is a corollary of Theorem 3 and Propositions 7 and 9. Assthat
V = {v1,...,vm} with the order orV given byv; < v;j fori < j (or justletV = [m)).
Define the labelingd : [h] xV — [m] by [(p,vi) =i for i € [m]. Then the CL rooms
RiW...wR, of Z1+--- + %, are exactly the ordered room partitions, with the sign
in (21) defined as in (13). So there is an equal number of thesitloér sign.

If the oiks are not all oriented, then the paths that connegtawo CL states are
still defined, so the number of ordered room partitions isyeescept that they have
no well-defined sign. ]

Connecting any two room partitions by paths of ACL stateshatheé preceding
proof corresponds to the “exchange graph” argument of Edis¢2009), where the
ACL states correspond &kew room partitiongRy, ..., R,) defined by the property
ngl Rp =V — {w} for somew in V; herew represents the missing label.

Suppose now that all oiks?,, in the oik family are the samd-oik %’ overV
for pin [h], with V| = m=h-d. Then any ordered room partitidiRy, ..., R,) de-
fines an (unorderedpom partition {Ry,...,R,}. Any such partition gives rise to
h! ordered room partitions, so i > 2 their number is trivially even. However, the
path-following argument can be applied to the unorderettpars as well (which is
the original exchange algorithm of Edmonds, 2009), whiobmshthat the ordered
room partitions at the two ends of the pivoting path definéedi#int unordered parti-
tions. The next theorem shows that unordered partitighs. .., R,} are connected
by pivoting paths, which are essentially the same paths as@rem 10, and that
the sign property continues to hold whers even and%’ is oriented.

Theorem 11 Let #’ be a d-oik on V andV| = m=h-d. Then the number of
room partitions{Ry,...,Ry} is even. I[f%’' is oriented withg’and d is even, then
sign(Ry,...,Ry) as defined in(19) with o, = ¢’ and (21) is independent of the
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order of the rooms R...,R;,, and there are as many room patrtitions of sifas of
sign—1.

Proof. We consider unordered multisef®,...,Ry} of h rooms of %’ as states

of a pivoting system. We first define a representati(8) = (sy,...,Sn). LetRy =
{s},...,s} for pin [h] wheres], ..., s are in increasing order according to the order
onV. Fix some order of the rooms i#’, for example the lexicographic order with
some tie-breaking for rooms that have the same node set.nfsthat the rooms
Ry,...,Ry are in ascending order, which defines a unique represemtaitoas

r(s)=r({Ry,...,Rn}) = (st,....55, S,...,&5 ....sh...,9). (22)

(Note thatr may not be injective, which is allowed.) Assume that neighigprooms
in %' are matched into paifp, R, containing the walRy — {s } as in Proposition 7.
The pivoting step frons= {Ry,..., Ry} tot = f(s,i) replacesR, by R,

In (22), the nodes of each individual rooRy}, still appear consecutively as in
the permutatiorvt in Theorem 10, except for the order of the rooms themselves.
Then withvy, ..., vy as the nodes df in increasing order and the “identity” labeling
[ :V — [m], I(v) =i, them-tupleI(r(s)) defines a permutatior of [m| if sis a
room partition, as in (21). Then the parity ofdoes not depend on the order of the
rooms insif d is even, so the sign in (21) is well defined and the same as jn £18
ACL statesis a skew room partition, which has two opposite signs as). (Then
the claim follows from Theorem 3. [

Figure 2: A 3-oik with triangles as rooms. The circular arsawdicate the positive
orientation of nodes in a room.

The following example shows that we cannot expect to defingrete unordered
room partitions wher#’ has odd dimensiod (see also Merschen, 2012, Figure 3.6).
Let d = 3 and consider the oik defined by the eight vertices of then3dsional
cube, which correspond to the facets of the octahedron,rshsuwhe triangles in Fig-
ure 2 including the outer triangle marked™. A coherent orientation of the eight
rooms is obtained as follows (shown in Figure 2 with a circal@ow that shows the

positively oriented order of the nodesj(A) = 0(123) =1, o(B) = 0(145 = —1,
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0(C)=0(124 =-1,0(D)=0(135 =1, 0(a) =0(456) =1, a(b) = 0(236) =
—1,0(c) =0(356) = —1, o(d) = g(246) = 1. The four room partitions arfA, a},
{B,b}, {C,c}, {D,d}. Any two of these are connected by pivoting paths, so they can
not always have opposite signs at the end of these paths. udovier ordered room
partitions the signs work. For exampl@), a) is connected tab,B) via the com-
plementary pivoting step§l23 456) — (236,456) — (236,145), and to(C,c) via

the stepg123 456) — (124,456) — (124,356). Moreover,(C,c) connects tqB,b)

via (124,356) — (145,356) — (145236). We have sigfA,a) =1, sign(b,B) = -1
(because 236145 has parityl), and sigiC,c) = —1 and sigiiB,b) = 1. The two
ordered room partitiongh, B) and (B, b) have different signs because they define two
permutations 236 145 and 145236 of opposite parity.

5 Related work

Todd (1972; 1974; 1976) developed an abstract theory of tmmgntary pivoting,
using “semi-primoids” and “semi-duoids”. A semi-duoid letsame as an “oik” as
defined by Edmonds (2009), see Definition 5 above. For a sawmidd? onV, the
set{V—-R|Re %} is a semi-primoid. (“Primoids” and “duoids” fulfill an ad@inal
connectness condition.) For example, for the basic feasiblutions of a system of
linear equations with nonnegative variables, the setssithariables form a primoid
and the sets of nonbasic variables form a duoid.

Todd defines the pivoting operation by alternating betwéensemi-duoid and
the semi-primoid. Edmonds defines pivoting by exchangingparwith an adjacent
room. Edmonds shows that partitions\binto rooms for a given “oik family” come
in pairs. This result is equivalent to that of Todd for pawtis ofV into two rooms,
but more general when considering partitions into more tianrooms. In order to
obtain a unique path of complementary pivoting, Todd (1974£55) describes the
local pairing of the R rooms that contain a common wall inkopairs as in Propo-
sition 7. In contrast, Edmonds (2009, p. 66) merely stimdaho repetition” which
requires remembering the history of the pivoting path.

The Lemke—Howson algorithm finds a Nash equilibrium ofrarxx n bimatrix
game. Its pivoting steps alternate between vertices of mlgigpes of dimensiom
and n, respectively (see von Stengel, 2002, for an exposition)ortler to capture
this with room partitions, Edmonds (2009) considers twsak(possibly different)
dimensionm andn, respectively, on the same 8ét= [m-+ n|. However, alternating
between two polytopes is not essential, by consideringeatstheir product as a
single labeled polytope, as described in Section 2 above.

We have described complementary pivoting using labeld) thié pivoting step
started by the missing label and on the path determined byupécate label. A
given labeling (or “coloring”)V — [m| determines an oik#Z, of dimension|V| —m
whose elements are the complements of completely labeted #eis a manifold
(also known as the “coloring manifold”) where removing argdau from a room
R and replacing it with the unique node \h— R with the same label ag gives
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the adjacent room. I#2 is anm-oik onV, then the completely labeled roorks
of % are clearly those so thdR, Ry} with Ry € % is a partition ofV. Edmonds,
Gaubert, and Gurvich (2010) cal#y a “Sperner oik”. The 0ik#y is “polytopal”
because its rooms correspond to the vertices of a produdhgiises (Edmonds,
2009, Example 3). This has also been observed by Todd (19151974, p. 248)
who callsZ; a “simplicial duoid”. A similar product of simplices resslfrom the
constraintsy > 0, Ay < 1 in (4) for the unit-vector gaméA,C") in Proposition 1,
where each column @& is a unit vector.

Edmonds, Gaubert, and Gurvich (2010) show that the pivqiath for a family
of oiks onV can instead be applied to room partitions for only two oiksmely
their oik-sum (see Definition 8 above) together with a Speoile #y. Oik-sums are
equivalent to products of semi-duoids defined by Todd (1€F&pter 5). This seems
to reduce everthing to Todd (1972) who covered the case obilks®a» However, as
already mentioned, partitions ®f into more than two rooms (even if implied by a
suitable oik-sum) were not explicitly considered by Todd.

The labels used by Edmonds, Gaubert, and Gurvich (2010)fitoeddae Sperner
oik Z, are the elements of. This is essentially the same argument as our proof
of Theorem 10, without the orientation. In Appendix A, wewghat the definition
of a “sign” requires a reference to the parity of the permatabf the labels of a
room, which does not seem simpler when looking at room pamstwith a Sperner
oik instead.

Shapley (1974) showed that the Nash equilibria at the twe @rida Lemke—
Howson path have opposite index, defined in terms of detemtsnof the payoff
matrices restricted to the equilibrium support. (That pagdso gives an accessible
exposition of the Lemke—Howson algorithm using “labelsrjeorem 3 and Propo-
sition 4 replicate Shapley’s argument in streamlined folremke and Grotzinger
(1976) define coherent orientations of abstract simpliziahifolds. Our approach
is similar, except that we separate states and their repteggm, and apply the con-
cepts of orientation and sign to the representation, inrdadeapture room partitions
as well, and oiks that are not manifolds. If the oik cannot bered, then Lemke
and Grotzinger (1976) have shown (for nonorientable médsjahat opposite signs
for CL rooms cannot be defined in general; see also GrignilR00

Todd (1976) extends the alternate primoid-duoid pivotitggps with an orienta-
tion, and also simplifies Shapley’s approach. His constvads essentially equiv-
alent to that of Lemke and Grotzinger (1976). It also doesexténd to room par-
titions with more than two rooms, nor to oiks that are not rf@ds (Todd, 1976,
p. 54). Our own contribution is a framework ofientedcomplementary pivoting
that encompasses room partitions in oiks, for which ortgma are new.

Eaves and Scarf (1976, Sections 5-6) apply index theoretepiise linear map-
pings in a more general setting, which we have not tried tudein our model.

One of our main examples of partitions\éfinto more than two rooms is perfect
matchings in an Euler graph as considered by Edmonds (20G8njie 4) (but, to
our knowledge, not by Todd or others). For an Euler digrapése perfect matchings
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have a sign, which has been studied in the context of Pfaffi@ntations of a graph;
we discuss this connection in Section 6 to keep that secigrely self-contained.

Interestingly, perfect matchings of an Euler digraph cgpond to CL vertices
of a labelled “dual cyclic polytope”. These polytopes haweib used by Morris
(1994) to construct exponentially long Lemke paths, and éya8i and von Stengel
(2006) to construct exponentially long Lemke—Howson patfike connection to
Euler digraphs is due to Casetti, Merschen, and von Ste2@dl0) and Merschen
(2012) and is summarized at the end of Section 6.

6 Signed perfect matchings

This section is concerned with algorithmic questions ofmmgpartitions in 2-oiks,
which are perfect matchings in Euler graphs. The sign of éepematching, for
any orientation of the edges of a graph, is closely relatébda@aoncept of #@faffian
orientationof a graph, where all perfect matchings have the same siga.cdmpu-
tational complexity of finding such an orientation is an opeoblem (see Thomas,
2006, for a survey). An Eulerian orientation is not PfaffignTiheorem 11, a fact
that is also easy to verify directly. The main result of tleéstson (Theorem 12) states
that in an Euler digraph, a second perfect matching of opgpasjn can be found
in polynomial (in fact, near-linear) time. This holds in ¢@st to the complemen-
tary pivoting algorithm, which can take exponential times€tti, Merschen, and von
Stengel (2010) have shown how to apply results of Morris 4)98r this purpose.
However, the pivoting algorithm takes linear time ifbigartite Euler graph, and a
variant can be used to find an oppositely signed matching ipatite graph that has
no source or sink (Proposition 13).

We follow the exposition of Pfaffians in Lovasz and Plumni986, Chapter 8).
The determinant of am x m matrix B with entriesb;; is defined as

m
detB = Z parity(T) I_!biﬂ(i) (23)
T i=

where the sum is taken over all permutationsf [m]. Let B be skew symmetric, that
is, B=—B'. Then deB = det —B") = det —B) = (—1)™detB, so deB =0 if m
is odd. Assumen is even. Then it has long been known (see references belaw) th

detB = (pf B)? (24)

for a function pfB called thePfaffianof B, defined as follows. Let#Z (m) be the set
of all partitionss of [m] into pairs,s= {{s1,S2},...,{Sm—1,5m} }, and let paritys) be
the parity of(s1,sp,...,Sm) seen as a permutation gh| under the assumption that
each paif{sx_1, S} is written in increasing order, that isy_1 < Sy« for kin [m/2];
the order of the pairs themselves does not matter. Then

m/2

pfB= 5 parity(s) [ Osu 1.5x - (25)
sc. (m) k=1
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In fact, becausd is skew symmetric, the order of a pdis_1,5x) can also be
changed because this also changes the parity oAn example of (25) isn= 4
where pr = b12b34 — b13b24+ b14b23.

Parameswaran (1954) and Lax (2007, Appendix 2) show thagwa-sikmmetric
matrix B fulfills (24) for some function pB. For a direct combinatorial proof, one
can see that the products in (23) are zero for those perronsatiwherer(k) = k for
somek, and cancel out for the permutations with odd cycles; thdy permutations
with even-length cycles remain, which can be obtained weliquising those cycles,
from pairs of partitions taken from# (m) (see also Jacobi, 1827, pp. 354ff, and
Cayley, 1849).

Consider a simple grap® with node setim|. An orientationof G creates a
digraph by giving each edgl, v} an orientation agu, v) or (v,u). Define themx m

matrix B via
0 if {u,v}is notan edge,
buy = 1 if {u,v} is oriented agu, V), (26)
—1 if {u,v} is oriented agv,u).

ThenB is skew symmetric. Angin .# (m) is a perfect matching d& if and only if

ﬂ,r(n:/f bsy 1,5x 7 0, S0 only the perfect matchings Gfcontribute to the sum in (25).

If Gis an Euler digraph, that is, an oriented 2-oik, then thisdsfthe orientation
of edge{u, v}, assumingu < v, aso({u,v}) = byy, according to Definition 6. Then
by (19) and (21), a perfect matchisghas the sign

m/2
sign(s) = parity(st, . ..,Sm) - |_| sy 1.5 5
k=1

so the Pfaffian pB in (25) is the sum over all matchings & weighted with their
signs. For the Eulerian orientation, that sum is zero by Témoll, which follows
also from (24) becaud®l = 0, so detB = 0.

In our Definition 5 of ad-oik, % can be a multiset, which fod = 2 defines
an Euler graplG which may have parallel edges and then is not simple. The soom
themselves have to be sets, so loops are not allowed. Irebes (26) can be extended
to definebyy, as the number of edges oriented(asv) minus the number of edges
oriented agv,u). This counts the number of matchings with their signs calyec
oppositely oriented parallel edgés,v) and(v,u) cancel out both in contributing to
byv and when counting matchings with their signs.

For any graphG and any orientation 06, the sign of a perfect matchingis
most easily defined by writing down the nodes of each edge 1,Sx} in the way
the edge is oriented dsy_1,Sx); this does not affect (25) as remarked there. When
writing down the nodes;, ..., sy, this way, sigiis) = parity(ss,...,Sn) and pfB =
> se.#(G) SIgN(s) where.# (G) is the set of perfect matchings 6.

A Pfaffian orientationis an orientation ofG so that all perfect matchings have
positive sign. Its great computational advantage is thadtatvs to compute the num-
ber of perfect matchings @& using (24) by evaluating the determinant Betvhich
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can be done in polynomial time. In general, counting the nemalh perfect match-
ings is #P-hard already for bipartite graphs (Valiant, )97%he question if a graph
has a Pfaffian orientation is polynomial-time equivalendéciding whether a given
orientation is Pfaffian (see Vazirani and Yannakakis, 198@, Thomas, 2006). For
bipartite graphs, this problem is equivalent to finding aarelength cycle in a di-
graph, which was long open and shown to be polynomial by Rebey Seymour,
and Thomas (1999). For general graphs, its complexityliogen.

We now consider the following algorithmic problem: Giventauler digraph with
a perfect matching, find another matching of opposite sigmchvexists. Without the
sign property, a second matching can be found by removingbtie given matched
edges from the graph and applying the “blossom” algorithrEdfnonds (1965) to
find a maximum matching, which finds another perfect matcliorgat least one
removed edge; however, its sign cannot be predicted, anatindahis method to
account for the sign seems to lead to the difficulties reltadefaffian orientations in
general graphs. Merschen (2012, Theorem 5.3) has showndfavdtin polynomial
time an oppositely signed matching in a planar Euler grapt,has method can be
adapted to graphs that, like planar graphs, are known tod&faffian orientation.

The following theorem presents a surprisingly simple atbar for any Euler
graph. It runs in near-linear time in the number of edges efgtaph and is faster
and simpler than using blossoms. The inverse Ackermanrifuma is an extremely
slowly growing function witha (n) < 4 for n < 22948 (Cormen et al., 2001, Section
21.4).

Theorem 12 Let G= (V,E) be an Euler digraph, and let M be a perfect matching of
G. Then a perfect matching’Mf opposite sign can be found in timé|@| - a(|V|)),
wherea is the inverse Ackermann function.

Proof. The matchingM is a subset oE. A sign-switching cycle @s an even-length
cycle so that every other edge@belongs toM, and so that, in a chosen direction
of the cycle,C has an even number of forward-oriented edges. We claim tieat t
the symmetric differencé’ = MAC has opposite sign th. To see this, suppose
first that all edges i€ point forward, and thaf "M consists of the firsk/2 edges
(s1,%2), ---,(%-1,%) of M (which does not affect the sign 8). Then these edges
are replaced iM’ by (s, 1), ($2,%3), -- -, (Sk_2,%_1), Which defines an odd per-
mutation of thesé nodes, sdM’ has opposite sign thl. Changing the orientation
of any two edges iIC leaves the sign of botM and M’ unchanged (if both edges
belong toM or to M’) or changes the signs of bolh andM’, so they stay opposite.
This proves the claim.

So it suffices to find a sign-switching cyde for M, which is achieved by the
following algorithm: Successively apply one of the follawireductions (a) or (b) to
G until (c) applies:

(@) IfvinV hasindegree and outdegree 1 with ed@es) and(v,w), then ifu=w
go to (c), otherwise remowefrom V and (u,v) and (v,w) from E and contract
u andw into a single node.

22



(b) If D is a directed cycle of unmatched edgesisa E — M), remove all edges in
D from E.

(c) The two edgesu,v) and(v,u), one of which is matched, form a sign-switching
cycleC of the reduced graph. Repeatedly re-insert the edge f4ifs), (V,w)
removed in the contraction (a) int®© until C is a cycle of the original graph.
ReturnC.

Steps (a) and (b) preserve the invariant tGas an Euler digraph and has a perfect

matching. Namely, in (a) one node and one matched and onetcinedbedge is

removed fromG, and the two contracted nodasandw together have the same in-
and outdegree and an incident matched edge. In (b), all rafdé&e cycleD have
their in- and outdegree reduced by 1. If reduction (a) cabaapplied because every
node has at least two outgoing edges, then one of them is ahathtand following
these edges will find a cyclg as in (b). So the reduction steps eventually terminate.

In each iteration in (c), the two re-inserted eddesVv) and (V,w) point in the

same direction and one of them is matched, so this presdregaoperty thaC is

sign-switching.

The above algorithm is clearly polynomial. Appendix B déses a detailed im-
plementation with near-linear running time in the numbezdges, and give an exam-
ple. Its essential features are the following. The algarigiiarts with the endpoint of
a matched edge, and follows, in forward direction, unmatadages whenever pos-
sible. It thereby generates a path of nodes connected bytahethedges. If a node
is found that is already on the path, then some final part afthtn forms a cycl®
of unmatched edges that are all discarded as in (b). Theretretsstarts over from
the beginning of the cycle that has just been deleted. Ihercburse of this search, a
nodev is found where the only outgoing edgew) is matched, then the contraction
in (a) applies with(u,v) as unmatched edge. The matched edge) is remembered
as the original matched edge incidenttpwith (u,v) as its “partner”, for possible
later re-use in (c). The two edges are removed from the listscalent edges ta
andw. Edges are stored in doubly-linked lists that can be movelddateted from
in constant time. The endpoimt of the matched edgéu, w) contracted in step (a)
may be a node that has been visited on the path, so that theticed(b) immediately
follows; if w is the first node of the path, the search has to re-start.

Contracted nodes of the reduced graph are represented bylegee classes of
a standardinion-finddata structure, which can be implemented with amortizetl cos
a(|V|) per access (Tarjan, 1975). Contractingndw in (a) is done by applying the
“union” operation to the equivalence classesd@ndw, and any node is represented
via the “find” operation applied to an original node. The n®de edge lists are
always the original nodes, so that each edge is visited omgrstant number of
times, resulting in the running tim@(|E|- a(|V|)).

As described in Appendix B in Figure 11, the cy@ein (c) is obtained by re-
cursively re-inserting matched edgés,w') and their “partners”(u’,v"’) until the
nodesv andV’ do not just belong to the same equivalence class (as at tleeafim
contraction) but are actually the same original nodes V’, of G; a similar recur-

23



sion is applied to the other nodesandw. Lemma 16 in Appendix B shows the
correctness. 0

In the remainder of this section, we consider the compleargrgivoting algo-
rithm for perfect matchings in Euler digraphs outlined & éimd of Section 2. 16 is
bipartite, then this algorithm terminates in tir@|V |), as noted by Merschen (2012,
Lemma 4.3). In fact, a simple extension of the pivoting mdthpplies to general
bipartite graphs which are oriented so that the graph hasmaeas or sinks (which
shows that such an orientation is not Pfaffian).

Proposition 13 Consider a bipartite graph G= (V,E) with an orientation so that
each node has at least one incoming and outgoing edge, vaitimimg and outgoing
edges stored in separate lists, and a perfect matching M ofli&n a matching of
opposite sign can be found in time[9)).

Proof. The algorithm computes a path of nodgsus,... until that path hits itself
and forms a cycleC, which will be sign-switching with respect thl. The edges

on the path are successive matched-unmatched pairs of ddgesix.1} in M

and {ux1,Uxy2} in E—M for k > 0 that point in the same direction either as
(Ugk, Uk 1), (Ugki1,Uoks2) OF @S(Ugki1,Uzk), (Unki2, Uaki1). Starting from any node

Up andk = 0, these are found by following from node its incident matched edge
to ux. 1, where this node has an outgoing unmatched edgeita in the same di-
rection becausay 1 has at least one incoming and one outgoing edge. This repeats
with k incremented by one untily ., o is a previously encountered node, which is
of the formuy; for some 0< i < k because the graph is bipartite. Then the nodes
Uz, ..., U define a cycle€C which is sign-switching because it has an even number
of forward-pointing edges. Henc®|AC is a matching of opposite sign td. Each
node is visited at most once, so the running time{§/|). O

If G is not bipartite, then the complementary pivoting algaritmay have ex-
ponential running time, for any starting node that servea asissing label. The
construction is adapted from the exponentially long Lemé&thg of Morris (1994)
for labeleddual cyclic polytopesThe completely labeled vertices of such polytopes
correspond to perfect matchings in Euler graphs, as noté&hisetti, Merschen, and
von Stengel (2010), in the following way.

A dual cyclic polytope is defined in any dimensiorwith any numben of facets,
n>m, as the “polar polytope” of the convex hull afpoints u(tj) on the moment
curve u(t) = (t,t2,...,t"™T for j in [n] (see Ziegler, 1995). Its vertices have been
described by Gale (1963): Thne facets that a vertex lies can be described by a bit
stringg = 0102+ --on in {0,1}" so thatg; = 1 if and only if x is on thejth facet, for
j in [n]. Then these bit strings fulfill thevenness conditiothat whenevepg has a
substring of the form 0D, thenk is even. We consider even, so that these strings
are preserved under cyclical shifts. The &in,n) of these “Gale strings” encodes
the vertices of the polytope, and pivoting, and an orieamtcan be defined in a
simple combinatorial way on the strings alone.
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With a labelingl : [n] — [m], the CL Gale strings therefore come in pairs of
opposite sign. They correspond, including signs, tqiréect matchingsf the graph
G with node setm] and (oriented) edggs$(j),l(j+1)) for 1< j <nand(l(n),l(1))
(Casetti, Merschen, and von Stengel, 2010; Merschen, 20fhrem 3.4). That is,
the cyclic sequencé&(l),...,1(n),I(1) defines an Euler tour o, so thatG is an
Euler digraph. The graph has parallel edges and possibbs|aghere the latter can
be omitted. The 1's in a Gale string come in pairs, which gpoad to edges @&. A
pivoting step from one ACL Gale string to another means tlsalestring of the form
1240 is replaced by 0%, which translates t& pivoting steps of skew matchings @
Morris (1994) gives a specific labeling far= 2m where all complementary pivoting
paths, for any dropped label, are exponentially longninThe corresponding Euler
digraph and the pivoting steps are described in Merschel(ZRection 4.4).

7 Conclusions

We conclude with open questions on the computational coxitplef pivoting sys-
tems.

Consider a labeled oriented pivoting system whose comgsiignparticular the
pivoting operation) are specified as polynomial-time cotaple functions. Assume
one CL state is given. The problem of finding a second CL stalienigs to the com-
plexity class PPAD (Papadimitriou, 1994). This problem IsoaPPAD-complete,
because finding a Nash equilibrium of a bimatrix game is PRABwlete (Chen and
Deng, 2006), which is a special case of an oriented pivotystesn by Proposition 1.
However, there should be a much simpler proof of this fackhbse pivoting sys-
tems are already rather general, so that it should be pedsil#ncode an instance
of the PPAD-complete problem “End of the Line” (see Daskilaioldberg, and
Papadimitriou, 2009) directly into a pivoting system.

Finding a Nash equilibrium of a bimatrix game is PPAD-congpl@nd Lemke—
Howson paths may be exponentially long. Savani and von $t€2§06) showed
this with games defined by dual cyclic polytopes for the payedtrices of both
players, and a simpler way to do this is to use the Lemke pathddoris (1994).
One motivation for the study of Casetti, Merschen, and vam&l (2010) was the
guestion if finding a second completely labeled Gale strsngRPAD-complete. This
is unlikely because this problem can be solved in polynotmag with a matching
algorithm. For the complexity class PPADS, where one looksafsecond CL state
of opposite sign (Daskalakis, Goldberg, and Papadimitr&@09), this problem is
also solvable in polynomial time with our algorithm of Theor 12.

However, for room partitions of 3-oiks, already manifolfisging a second room
partition is likely to be more complicated. Is this problePAD-complete? We leave
these questions for further research.
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Appendix A: Labeling functions and Sperner Oiks

One of the original motivations to consider room partitiémsoiks %1, . . . , % with
possibly different dimensions is to abstract from the ordiLemke—Howson algo-
rithm for possibly non-square bimatrix games, which akes between two poly-
topes, represented by, and %, (Edmonds, 2009). Similarly, our proof of Theo-
rem 3 shows complementary pivoting as an alternating uskeopivoting function
and the labeling function. Edmonds, Gaubert, and Gurvi€i@2 cast the use of
labels (or “colors”) in terms of room partitions with a spaananifold %, called a
Sperneroik. If | : V — [m] is a labeling function, then the rooms of the Sperner oik
Zo are thecomplementsf completely labeled sets, that is,

Ho={QCV [[Q=V|-m, I(V-Q)=[m]}. (27)

This is a manifold becaus®' is a wall of a roomQ of % if and only if V —W has
m+ 1 elements of which exactly two have the same label, so adgthgr element
to W defines the two rooms that contai. In addition toZg, suppose tha# is an
m-oik onV and defines a pivoting system as in Proposition 7. Then anmenfdeom
partition (R, Q) with R #Z andQ € % is just a completely labeled rooR of #.
Complementary pivoting with missing lab&lamounts to the “exchange algorithm”
with skew room partitions, which are our ACL states.

Is the use of room partitions where one room comes from a 8p&ik more
natural than the concept of completely labeled rooms? QisWyothe definitions are
nearly identical, but apart from that we want to make two cantsin favor of using
labels.

First, Edmonds, Gaubert, and Gurvich (2010) note that arfepeik % is “poly-
topal”, that is, its rooms correspond to the vertices of goéénpolytope. They leave
the construction of such a polytope as an exercise, whichiveelgere to show the
connection to the unit-vector games in Proposition 1.

Proposition 14 Let |V| = {v1,...,Va} and |:V — [m] so that (v;) =i for i € [m].
Consider the nx (n—m) matrix A= [q(Vm+1) . --q(vn)] with AT = [a1---am| and

P={yeR" " Ay<1 y>0}. (28)

Then B is a simple polytope, and y is a vertex @f iPand only if it lies on n—m
facets and the m non-tight inequalities(ia8) fulfill

{ie(ml|a'y <1}U{l(vmsj) |y >0} = [m]. (29)
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Proof. For eachi in [m] let

L) ={j e n—m [ 1(Vm:j) =i} (30)
Then theith row of Ay < 1 saysa'y = YieLmYj < 1. Lety € Ry. For eachi, if
a'y= > ieLYj =1, theny; > O for at least ong in L(i), soi € {l(Vm+j) | yj > O},
which shows (29).
The non-empty setk(i) form a partition of[n—m|, and if L(i) is empty then
a = 0 and the inequalityy'y < 1 is redundant. Therefore the inequalities (28) can
be re-written as
Y i<l ¥ 20 (jeL(). (31)
jeL(i)
For each in [m], (31) defines a simplex whose vertices are the unit vecta9an
RILOI (if L(i) is empty, this is the one-point simpléX)}). Hence R is the product
of these simplices and therefore a simple polytope, so argx of Py is on exactly
n— m facets. 0O

Proposition 14 can be applied to any Sperner4ikof dimensiom —m obtained
from | :V — [m] which has at least one room, taken to g1, ...,vn} by num-
beringV suitably. Then inequalities in (28) have labels 1., m | (Vyi1),...,1(Vm);
they define facets oy except for redundant inequalities y < 1 wherea = 0.
Then then — mtight inequalities for each vertexof Py define a room of#y because
the labels for tham non-tight inequalities foy are the sefm| according to (29), in
agreement with (27).

SupposeZ is anm-oik given by the vertices of the polytogein (3), with labels
1,....,mI(m+1),...,I(n) for its n inequalities (the same labels as f&y). Then
an ordered room partitioR Q with Re % and Q € %, is a completely labeled
roomR, or vertexx of P, with Q corresponding to a vertexof Py. Except for the
vertex pair(0,0), this is a Nash equilibriunix, y) of the unit-vector gaméA,C") in
Proposition 1. In that game, there is no reference to lalédigh are encoded in the
payoff matrix A that defined, just as the labels are encoded in the rooms7pf
Like unit vector games, Sperner oiks may offer a useful pastge, but we do not
think it is deep; moreover, they only have a simple strucagreroducts of simplices
described in (31).

O—2 Gvg

(H=—3 (4~—3

Figure 3: Two oriented Euler graphs which show that the pafithe permutation of
all nodes matters.

Secondly, Sperner oiks are oriented, and the labels usée iproof of Theorem
10 and 11 are simply the nodes\of Perhaps using a Sperner oik, rather than labels,
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may avoid referring to the parity dr(s)) for a room partitions as in (13) when
defining the sign o6? The following example shows that already wisis a room
partition for a 2-oik, one has to refer to the paritylof(s)) in some way. Figure 3
shows two cases of 2-0ik%’ overV = {1,2,3,4} with an orientation. The left
oik has the two room partition§l2 34} and {14,23}, whereo1(12) = 0»(34) =1
and o1(14) = —1, 02(23) = 1. According to (19), this impliesr(12,34) = 1 and
0(14,23) = —1, so the two room partitions have opposite orientationutices to
consider unordered room partitions becadss even, as noted in Theorem 11).

Similarly, the right oik in Figure 3 has the two room partit®o{12,34} and
{1324}, whereo1(12) = 02(34) = 1 and01(13) = 02(24) = 1, so all orientations
are positive anar(12,34) = 1 ando(13,24) = 1, so these two room partitions have
equal orientation. The difference is that the room partiso= {14,23} defines an
even permutatioh(r(s)) = (1,4,2,3) of V, whereas 13,24} defines the odd permu-
tation (1,3,2,4). So the sign of a room partition has to refer to the order ircivithe
labels appear.

We think that labeled pivoting systems are a general andibs@ly of represent-
ing path-following and parity arguments, certainly for q@ementary pivoting and
room partitions in oiks.

Appendix B: Implementation Details of Finding a Sign-
Switching Cycle in an Euler Graph

Theorem 12 states that an oppositely signed matching in@hgsgth an Eulerian
orientation can be found in near-linear time in the numberdgfes. In this appendix,
we describe the details of the implementation of the algoributlined in the proof
of Theorem 12.

Whene is an edge fromu to v, then we callu the tail andv the headof e, and
bothu andv are calledendpointf e.

The algorithm applies reductions (a) and (b) to the graphithts a trivial sign-
switching cycle which is expanded as in (c) to form a signtsiwng cycle of the
original graph. The algorithm starts with a node that is teachof a matched edge,
and follows, in forward direction, unmatched edges wheneessible. It thereby
generates a path of nodes connected by unmatched edgesodéasnfound that is
already on the path, then some final part of that path formske & of unmatched
edges that are all discarded as in (b). Then the search st@itérom the beginning
of the cycle that has just been deleted.

If, in the course of this search, a nodas found with the only outgoing edge
being matched, the contraction in (a) is performed as faloBuppose the three
nodes in question ane,v,w with unmatched edge from u to v and matched edge
m from v to w, and no other edge incident to We take the edges and m and
nodev out of the graph and contract the nodesind w into a single node (with
the methodsHRINK (e, m) discussed below), which creates a reduced version of the
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graph. Throughout the computation, the current reducepghgimrepresented by a
partition of the nodes with a standatthion-finddata structure (Tarjan, 1975). We
denote byx] the partition class that contains noxlevhich has as itsepresentative
special node callediND(x), whereFIND is one of the standard union-find methods;
we usually denote a representative node with a capitatlftteat is, any two nodes
andy are equivalent (in the same equivalence class) if and omiyif (x) = FIND(y).

In the reduced graplevery edgés only incident to the representativenD(x) of a
partition class, and the information for nodes that are e@ptesentatives is irrelevant.
Initially, all partition classes are singletoqg}, which is achieved by calling the
MAKESET(X) method. The methodNITE(X,y) for nodesx,y mergegx| and]y] into

a single set.

MAKESET(X):

X.parent«— X
x.rank< 0

UNITE(X,Y):

X,Y <= FIND(X), FIND(Y)

if X.rank> Y.rank then
Y.parent«— X
return X,Y

else
X.parent«Y
if X.rank=Y.rank then

Y.rank < Y.rank+1

return Y, X

FIND(X):
if X # x.parent then

X.parent«— FIND(X.parent
return x.parent

Figure 4: The union-find methodsAKESET, UNITE, andFIND with rank heuristic
and path compression. HereNITE(X,y) returnsX,Y so thatX is the new represen-
tative of [x] U[y], andY is the old representative of eithpd or [y|] which is no longer
used.

Figure 4 shows an implementation of these methods as in Goanal. (2001,
Section 21.3). (In this pseudo-code, an assignment suchl ds— X,y assignsx
to X andy to Y, so for examplex,y < y,x would exchange the current values»of
andy.) Each partition class is a tree wikyparentpointing to the tree predecessor
of nodex, which is equal tox if X is the root. For this rootx.rank stores an upper
bound on the height of the tree. TlhenITE method returns the pakK,Y of former
representatives of the two partition classes, wheéres the new representative of
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the merged patrtition class antlis the representative no longer in use, which we
need in order to move edge lists in the graph. With the “rankis&c” used in the
UNITE operation and the “path compression” of the recursived method, the trees
representing the partitions are extremely flat, with an dent cost for theFIND
method given by the inverse Ackermann function that is amtsor all conceivable
purposes (see Tarjan, 1975, and Cormen et al., 2001, S&iti8h

Every nodex of the graph has its incident edges stored iadjacency listwhich
for convenience is given by separate listsutlistandx.inlist for unmatched outgoing
and incoming edges, respectively, and the unique matchgebehatchedwhich is
either incoming or outgoing. Every edgés stored in a single object that contains the
following links to edges:e.nextout e.prevout e.nextin e.previn, which link to the
respective next and previous element in the doubly-lindetist andinlist wheree
appears. In additiorg contains the links to two nodestail ande.head which never
change, so that is always an edge froratail to e headin theoriginal graph. In the
current reduced graph at any stage of the computatitman edge fronFIND (e.tail)
to FIND(e.head, so these fields oé are not updated whee is moved to another
node in an edgelist; this allows to move all incident edgemfone node to another
in constant time.

SHRINK(e,m):
1 U,W « FIND(etail), FIND(m.head
2 removee from U .outlist
3V < FIND(e.head
%4 sleepcountes— sleepcountet 1
5 V.sleeptime— sleepcounter
6 m.partner<«— e
7 X,Y « UNITE(U,W)
8 appendy.outlistto X.outlist
9 appendy.inlist to X.inlist
10 X.matched— U.matched

Figure 5: ThesHRINK operation that removes the unmatched eddgem U to V

and matched edgen from V to W from the current graph and merges the edgelists
of U andW. The code in the starred lines 3-5 is only needed to reasom &h®
method and can be omitted.

Figure 5 gives pseudo-code for the contraction (a) destrdtmve. The three
nodesU,V,W are the representatives of their partition classes, ang fonlthese
nodes the lists of outgoing and incoming edges and theirlmedtedge are relevant.
The unmatched edgeappears itJ.outlistand has hea¥, so thatU = FIND(e.tail)
andV = FIND(e.head = FIND(m.tail), even though it may be possible tlesiead#
m.tail like for x,y in Figure 6. The matched edge from V to W is obtained as
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V.matchedand equal®V.matched, becaus&/.outlistis empty sov/ has no outgoing
unmatched edge (but has to have an outgoing edge due to thedBubrientation).

Figure 6: The equivalence classes, [V], W] and edge® andm in the SHRINK
operation. A wiggly line denotes a matched edge.

After the SHRINK operation, the reduced graph no longer contains the e€elges
andm and the nod#&/. (However, these are preserved for later re-insertiorpduel
by the fieldm.partnerassigned t@ in line 6 of SHRINK, discussed below along with
lines 3-5.) The edgeis removed from the list of outgoing edgeslfin line 2. The
equivalence classes faf andW are united in line 7 where eithér or W becomes
the new representative, storedXn The lists of outgoing and incoming edges of the
representativ&’ that is no longer in use are appended to thosX of lines 8 and 9.

A node can only lose but never gain the status of being a reptatsve, so there is
no need to delete the edgelistsYof If the new representativ¥ is W, its current
matched edgen has to be replaced by the matched etlymatchedas in line 10
(which has no effect iK =U). The Euler property of the reduced graph is preserved
because the outdegreeXfis the sum of the outdegreesldfandwW minus one, and

so is the indegree (the missing edgesaamdm).

The list operations in lines 2, 8, 9 sHRINK can be performed in constant time.
For that purpose, it is useful to store the lists of outgoing emcoming unmatched
edges of a noda as doubly-linked circular lists that start with a “sentin@ummy
edge), denoted bg, (see Cormen et al., 2001, Section 10.2). Figure 7 gives an
example of small graph (which is neither Eulerian nor hasréepematching). The
three unmatched edges ag ey,e3 and the matched edge . The outlist ofx
containsey, e, the outlist ofy is empty, and the outlist af containses. The inlist
of each node contains exactly one edge. The first and laseealkeof the outlist of
a nodeu is pointed to bysy.nextoutand s,.prevout which are boths, itself when
the list is empty, as fou =y in the example. The inlist is similarly accessed via
su-nextinand s,.previn. Each append operation in line 8 or 9 ®fRINK is then
performed by changing four pointers. The remove operatidime 2 can, in fact, be
done directly frome, again by changing four pointers, here of the next and ptevio
edge in the list (which may be a sentinel). Due to the sergjeadoes not need the
information of which node it is currently attached to, scelid should be written (a
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y head
nextin
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Figure 7: Example of a graph with the out- and inlists for tbdesx, y, zaccessed by
sentinels (dummy edges), s, s, shown in gray. They use the same fieltsxtout
prevout nextin previn as the unmatched edges, ey, e3 except fortail and head
which are ignored. The matched edges stored directly, linked to by.matched
andz.matchedand not in a list. Then.nextoutfield can be used to link tm.partner.

bit more obscurely) as “remowefrom its outlist” (that is, the outlist it is currently
contained in), without reference tb.

Figure 8 shows the whole algorithm that finds a perfect matchif opposite
sign via a sign-switching cycle. Initialization takes mda lines 1-6, which will be
explained when the respective fields and variables are used.

The main computation starts at st&pThe first nodeV is the head of a matched
edge. This assures that, due to the Euler property, this Imaslat least one outgoing
unmatched edge that may be the first eégd an edge paie,m that is contracted
with the SHRINK method. Starting from stelp, a path of unmatched edges is grown
with its nodes stored imisitednodégl], . . ., visitednodérc| wherevc counts the num-
ber of visited nodes, and edges storedigitededgfl|, .. ., visitededg@/c— 1], where
visitededg@| is the edge fronvisitednodé] to visitednodé + 1] for 1 <i < vc. A
nodeu is recognized as visited on that path whewisitedis positive, which is the
indexi so thatu = visitednodé]. This field is initialized in line 4 as initially zero
(unvisited).

Line 10 tests ifV has a non-empty list of outgoing unmatched edges, which is
true whenvc= 1. The next node, following the first edgef that list, isW. Line 15
checks with the methodHECKVISITED, shown in Figure 9, ifNV has been visited
before. If that is the case, then all edges in the correspgnicle are completely
removed from the graph and the nodes are marked as unvisited 8 and 4 of
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FIND_OPPOSITELY.SIGNED_MATCHING :

for all nodesu
MAKESET(u)
u.origmatched— u.matched
u.visited« 0
u.sleeptime— 0
sleepcounter— O

m <« any matched edge of current graph
V < FIND(m.head
ve+1
visitednodévc| <V
V.visited<— vc
if V.outlistis not emptythen
e« first edge inv.outlist
W <+ FIND(e.head
visitededgfvc| < e
vc<+vc+1
CHECKVISITED(W)
VW
gotoB
else
m <+ V.matched
W « FIND(m.head
vc+vc—1
U, e« visitednodérd, visitededggrc|
if W=U then
return EXPANDCYCLE(e,m)
SHRINK(e,m)
CHECKVISITED(W)
if vce> 1 then
V < FIND(W)
gotoB
else
goto A

*

*

W W N N N DN DN NN DN DNDNDNDNDN PR P PR R R R R PR
P O © 00 N O O »h W N P O © 00 N O 0o W N P O

Figure 8: The main methodIND_OPPOSITELY. SIGNED_MATCHING for an Euler
graph with a given perfect matching.

CHECKVISITED in Figure 9), andvc is reset to the beginning of that cycle. In any
case\W is the next node of the path, and the loop repeats atBsteq line 17.
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CHECKVISITED(W):

if W.visited> 0 then
for i + W.visited...,vc—1
removevisitededgg| from its outlist andinlist
visitednodé|.visited« O
vec + W.visited

a A W N

Figure 9: ThecHECKVISITED method that checks if nod& has already been vis-
ited, and if yes deletes the encountered cycle of unmatathgelseand updatesc.

Figure 10: The equivalence clasgel, [V] when a sign-switching cycle has been
found.

Lines 18-31 deal with the case thahas no outgoing unmatched edge, which can
only hold if vc > 1. Then the matched edgeincident toV is necessarily outgoing
due to the Euler property and becalsbas an incoming edgefrom U to V, which
is found in line 22. This edge is normally removed in #1RINK operation and then
no longer part of the path, which is wivg is decremented in line 21 (nodewill no
longer be part of the graph and can keepritstedfield). However, a sign-switching
cycle is found ifW = U (see Figure 10), which is tested in line 23 and dealt with
in the EXPANDCYCLE method called in line 24, which terminates the algorithm and
will be explained below.

If W U, thensHRINK(e,m) is called in line 25. Afterwards, nod# is still
the old representative of the head nodengfas it was used in finding the path of
unmatched edges. Nodé may be part of that path, as tested (and the possible cycle
removed) in line 26. IlW has been visited, theW.visited< vc becauseN # U,

SO at least one edge is removed.vtf> 1 (which holds in particular iiW has not
been visited), then the path is now grown fremibd (W) in line 28, where thesIND
operation is needed to updatisitednodévc| in stepB because the old representative
U may have been changedd after theuNITE operation in line 7 ofSHRINK in
Figure 5.
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The casaN.visited= 1 needs special treatment, which resultgéa= 1 and hap-
pens whemm is same as the initial matched edgpan stepA. In that casem is re-
moved viasHRINK, andFIND (W) may now be the tail rather than head of a matched
edge, and then may no longer have an unmatched outgoingwhdigph, is necessary
for lines 21-22 to work. For that reason, the loop goes bacdk tather tharB, as
in line 31; note thawV.visitedhas been set to zero in line 4 OHECKVISITED with
i=vc=1. In stepA, a new matched edge that has not yet been removed in a call
to SHRINK can be found in constant time by storing all matched edgedioudbly-
linked list (for example, using the fieldgextinand previnthat so far are unused for
matched edges, see Figure 7); a matched eudgleould be deleted from that list after
line 6 of SHRINK in Figure 5, for example.

EXPANDCYCLE(e,m):
C+{(em)}
RECONNECTe.headm.tail,C)
RECONNECT(e.tail, mheadC)
for all (em) eC
makee a matched edge and an unmatched edge
return graph with this new matching

o g~ W N P

RECONNECT(X,Y,C):

7 if x#y then

8 m <« x.origmatched

9 e < m.partner

10 C«+~Cu{(em)}

11 RECONNECTe.head m tail,C)
12 RECONNECT etail,y,C)

Figure 11: TheEXPANDCYCLE and the recursiv&ECONNECT method that create
the sign-switching cycle and with it the oppositely signeatching.

We now discuss how to re-insert the contracted edges int@taeh once a
sign-switching cycle has been found, which is done ingkeaNDCYCLE method
in Figure 11. The method itself is straightforward. RechHttedges of the cur-
rent graph are stored with the representatives of equigalelasses, where an un-
matched edge is accessed in line 11 and a matched edge i8 loi¢te main method
FIND_OPPOSITELY. SIGNED_MATCHING in Figure 8. The sign-switching cycle will
be reconstructed using the original endpoints of the edgmseach node, the orig-
inal matched edge incident is stored inu.origmatched(see line 3 of the main
method), because matchedmnay be modified (in line 10 of theHRINK method).

In order to explain th&xPANDCYCLE method, we record the time at which the
SHRINK operation has been applied to a n&leThis is done in lines 3-5 in Figure 5
using using the field/.sleeptimeand the global variablsleepcounterwhich are
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initialized in lines 5—6 of Figure 8. These lines have a “starindicate that they do
not affect the algorithm, and can therefore be omitted. V¢ethhiem to reason about
the correctness of threXxPANDCYCLE method.

The contractiorsHRINK(e, m) affects three equivalence clas$ds, [V], W] with
representatived,V,W as shown in Figure 6. All nodes i¥] become inaccessible
afterwards, but the equivalence class still exists (anah iact still represented in
the union tree by those nodesso thatV = FIND(V), although the union-find data
structure will no longer be used for these nodes). We sayathaddes inV] become
asleepat the time recorded in the positive integésleeptime Any nodeu so that
FIND(u).sleeptime= 0 is calledawake

Lemma 15 During the main methodIND_OPPOSITELY SIGNED_MATCHING, the
following condition holds after any statement from sfepnwards. LefU| be an
equivalence class of nodes with representative U and let td.matched. Then
there is exactly one node u j0] and another node z not ijJ] so that:

(i) IfU is awake, then z is awake add, z} = {m'.head n .tail }.

(i) If U is asleep, then z is awake or asleep with later sleaptthan U, and u=
m'.tail, z=m'.head.

In either case:

(iii) For every node y in[U] — {u}, let m= y.origmatched. Then y» m.head, the
node mtail is asleep (with earlier sleeptime than U if U is asleeghgre is an
edge e so that e m.partner, the nodes rail and ehead are equivalent and
with x= e.tail we have x [U] — {y}.

Figure 12: lllustration of Lemma 15. The matched eddevith endpointsu andz
may have either orientation if is awake, otherwisa = m'.tail as stated in (ii).

Proof. We prove this by induction over the number of calls to ##RINK method,
which are the only times when the equivalence classes chdndilly, all equiv-
alence classes are singletons and all nodes are awake. [When{U}, only (i)
applies, wherer' is the matched edge incidentdiovhich is either the tail or head of
m’ andzis the other endpoint afY, and (iii) holds trivially.

Figure 12 shows the general case of the lemma. Consider ribe ¢gguivalence
classesgU], [V], W] with representatived,V,W as shown in Figure 6 in the notation
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used for thesHRINK method. BeforesHRINK (e, m) is called, the lemma applies by
inductive assumption to each of the three clagsés|V], W] in place of[U]. The
unique matched edgef that goes outside the equivalence class to an awake node
is m for [V] and [W], and for[U] it is some other matched edgeé (not shown in
Figure 6) which will be that edge aftéd| and W] have been united. There is no
edge other thae or m from a node inV| to an awake node outsid¢| because only
in this case (whe has in- and outdegree one in the reduced graphpHRNK
method is called. Every node [B], [V], or [W] is the endpoint of a matched edge in
the original graph, and other than the endpointsiaindm’ they are all equal to the
head of such a matched edge, with its tail node asleep, byiivdiassumption (iii).
After the SHRINK operation,[U| and|W| become a single equivalence class, and
all nodes in[V] becomes asleep. The only nogén the new classU] U [W] for
which (iii) does not hold by inductive assumptiomshead but thene takes exactly
the described role as.partner. In particular,x = e.tail #y, because € [U] and
y € [W] and[U] # [W]. In addition,[V] changes its status from awake to asleep, and
all nodes in[V] — {m.tail} are heads of matched edges that connect to equivalence
classes that went asleep beforas claimed in (iii) by the inductive hypothesis. This
completes the induction. O]

The previous lemma implies that any two endpoints of a mataudge belong
to different equivalence classes. A key observation in @ithat for anyy in an
equivalence clasfJ] that is not the endpoint of the “awake” matched edgef
there is another node differentfrom y in that class (which may be) given by
X = y.origmatchedoartnertail.

Lemma 16 Consider nodes,y and a set C with the following properties: x and y
are equivalent, and x is the endpoint of an unmatched edgeyasdhe endpoint
of an oppositely oriented matched edge taken from the pésimatched-matched
edge pairs in C, as in (i) or (ii) in Figure 13. Then afteECONNECT(X,Y,C), the
new edges in C form a path of alternating matched-unmatctigdsfrom x to y with
the same number of matched and unmatched forward-pointiggse

Proof. If x =Yy, then the claim holds trivially with a path of zero length dase no
edge pairs are added @ Otherwise, we apply Lemma 15 to the equivalence class
that containsx andy, as shown in the right picture in Figure 13, wheréakes the
role of y in Lemma 15(iii). Hence, node is the head of some matched edygavith
partnere, andX = e.tail # x. Then in the methodecoNNECT(line 10 in Figure 11),
(e,;m) is added taC. We then apply the claim recursively &chead m.tail instead of
X,y, and then to(,y instead ofx,y, where the assumptions apply, exactly as in lines
11 and 12 oORECONNECT So there are alternating paths as described gdmadto
m.tail and fromx’ to y. The resulting path fror to y composed of these paths and
the edgesn ande has the same number of forward-pointing matched and unmehtch
edges, becausa ande point in the same direction (in this case, backwards) along
the path. (]
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(i) (ii)

Figure 13: Illustration of Lemma 16 about tReCONNECTmethod.

IntheEXPANDCYCLE method, lines 2 and 3 in Figure 11 cRECONNECT(X, Y,C)
for the endpoints, y of the unmatched-edge pair shown in Figure 10 that resulénwh
EXPANDCYCLE is called from the main method (line 24 of Figure 8), first oy in
[V] and then forx,y in [U] in Figure 10. In both cases, Lemma 16 applies, and the
paths together with the first edge p&m) form a sign-switching cycle.

Finally, exchanging the matched and unmatched edges aseirb lof EXPAND-
CYCLE can be done as described, irrespective of the order of thesddghe cycle,
just using the pairge, m) in C (which are oriented in the same direction along the
cycle), which suffices to obtain a matching of opposite sign.

This concludes the detailed description of the algorithtrhals near-linear run-
ning time in the number of edges, because each unmatchedsdigéed at most
once and either discarded or contracted in the course ofdgbetam.

A d S '

Figure 14: Example to illustrate the algorithm. Unmatchdgdes are marked to h,
matched edges are identified by their endpoints. The firstimedtedge is 61.
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We illustrate the computation with an example shown in Fegl4. Suppose that
edge lists contain edges in alphabetical order. The firsened. The first three
iterations follow the unmatched edgash, ¢, so thatvc and the arraywisitednode
andvisitededgéhave the following contents:

vc=4, visitednode=[1 2 3 4, visitededge=[a b d.

Node 4 has an emptyutlist, so that the computation continues at line 18 (all line
numbers refer to the main meth@tdND_OPPOSITELY SIGNED_MATCHING in Fig-
ure 8 unless specified otherwise). The matched edge=s15 with endpointV =5,
andsHRINK(c,45) is called in line 25. Afterwards,

45.partner=c, vc=3, Vvisitednode=[1 2 3, visitededge-[a b|

and the reduced graph is shown in Figure 15. The nodes 3 ansgt®Hhkan united into
the equivalence clags8,5} which has representative 5 becauseuURere operation
in Figure 4 chooses the second representafivithe original representatives have
equal rank. The outgoing edges from node 5ai@ndh in that order, because the
outlist of 3 has been appended to that of 5.

Figure 15: The reduced graph after the first contraction \siiRINK(c,45). The
equivalence class with nodes3is written with the representative listed first.

In line 26, cCHECKVISITED(W) has no effect becaud#.visited= 0. In line 28,
V + FIND(W) =W =5, so that after going back to st&p

vc=3, Vvisitednode=[1 2 5, visitededge=[a b|.
Line 11 then follows the unmatched eddevith
vc=4, visitednode=[1 2 5 §, visitededge=[a b d

after which again a contraction is needed, becausatlist is empty, this time with
U,V,W =5,6,1 and call tosHRINK(d,61). In the SHRINK method,UNITE(5,1)
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returns 51 because Bank= 1> 0 = 1l.rank The resulting graph, after line 25 is
completed, is shown on the left in Figure 16, where

6lpartner=d, W=1 vc=3, visitednode=[1 2 5§, visitededge=[a b.

Now consider the call teaHECKVISITED(W) in line 26 and note thaw/ is still the old
node 1 used before the contraction; recall that this is decaudse that representative
is possibly stored in theisitednodearray, which it indeed is at indew.visited= 1.
The deletion of the detected cycle of unmatched edges is 8raad 4 oCHECKVIS-
ITED (see Figure 9) then produces the reduced graph shown omttiérriFigure 16.

7 O 8

© 53,1

Figure 16: Left: aftelsHRINK(d,61), right: afterCHECKVISITED(1).

Normally, the next nod& would be FIND(W) in line 28. However, the case
vc =1 applies (recall the reason that the incoming matched etigéesibednodél]
has been removed by the contraction), and so the computaiitmues via line 31
to stepA. Suppose the first node is now 2. Then the computation folexgese, f,h
and reaches node 8, with

vc=4, visitednode=[2 7 5 8, visitededge=[e f h.
Contraction withsHRINK (h, 87) gives the graph shown on the left in Figure 17 where
87.partner=h, vc=3, visitednode=[2 7 5, Vvisitededge- e f]
and aftercHECKVISITED(7) the edgef is removed, resulting in
vc=2, visitednode=[2 7|, Vvisitededge- [¢].

This time,vc > 1, so withV «+- FIND(W) = 5 we go back via line 29 to step, after
which
vc=2, visitednode=[2 5|, Vvisitededge= [€]

with the graph on the right in Figure 17.
Now V has only the outgoing unmatched edgeiving in line 14 (where the last
entryvisitednodévc| has not yet been assigned)

vc=3, visitednode=[2 5|, visitededge=|e g
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M mf

5,3,1,7 5,3,1,7

Figure 17: Left: reduced graph after the third contraceriNK (h,87), right: after
CHECKVISITED(7).

and removal of the edgg gives the graph on the left of Figure 18. At the next
iteration, after line 9,

vc=2, visitednode=[2 5|, Vvisitededge- [€]

where 5outlistis empty,m = 52, and nowV = 2 = U = visitednodégl] in line 23.
Now the final stage of the algorithm is called in line 24 W#RPANDCYCLE(e,m).
The original endpoints of the two edges are (see Figured®il = 2, ehead=7,
m.tail = 3, m.head= 2. Line 2 of Figure 11 makes the c’ECONNECT(7,3,{e,m})
which is nontrivial because witky = 7,3 we havex= y in line 7 of Figure 11. With
x.origmatched= 87 and 87partner= h, we getC = {(e,52), (h,87)} (where 52 is
just our current name for the matched edge, with its origemalpoints it is the edge
32). All other calls toRECONNECT(X,Yy,C) then have no effect becauge-=y. The
resulting sign-switching cycl€ is shown on the right in Figure 18.

7 8
o e h
2 53,17 2 5

Figure 18: Left: graph after the removal gf which has a sign-switching cycle.
Right: cycle after the calls tRECONNECTIN EXPANDCYCLE.

In this example, every edge of the graph is visited duringatlyerithm, and the
reduced graph at the end consists justs of the oppositeynted unmatched and
matched edge that define a trivial sign-switching cycle. ®hginal graph in Fig-
ure 15 already has such an edge pair in the foriin, 82, which is not discovered by
the described run of the algorithm. Here, not all matcheeedad their partners that
have been removed by tleeiRINK operation are used (namely not,4%nd 61d).

In other cases, the algorithm may also terminate with pdittssograph left unvisited,
or unmatched edges in thesitededgerray that are not removed.
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