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Abstract

Ashtekar’s generalization of Curie’s Principle and Kabir’s Principle in this vol-

ume shows that these principles are robust, obtaining in a variety of modifica-

tions of quantum theory. In this note, I illustrate how Wigner’s Principle can

be similarly generalized.
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1. Introduction

My thanks to Dr. Ashtekar for his note on the roads to T -violation. This

clarifies the situation a great deal. I have argued that when you boil down exist-

ing techniques for testing time asymmetric (T -violating) phenomena, you find

that there are really just three principles underpinning them: Curie’s principle,

Kabir’s principle, and Wigner’s principle (Roberts, 2014) . But is there any

sense in which these principles really belong to quantum theory, or are they

more general than that?

As Dr. Ashtekar illustrates with great clarity, the former two principles are

significantly more general than quantum theory as we currently know it. Just

how general? We don’t need the dynamics to be linear, let alone unitary. We

don’t need a vector space or a superposition principle. We don’t even need

observables. Curie’s principle, Dr. Ashtekar observes, follows from little more

than the notion of a bijection on a set of states. And Kabir’s principle can be

formulated with the addition of only the bare-bones notion of an “overlap map”

to capture some structural features of a transition probability. Both principles

are true in the very minimalist formalism that Ashtekar calls general mechanics

(Ashtekar, 2014).

Curie’s Principle and Kabir’s Principle are the only techniques that have led

to successful tests for T -violation. So, these generalizations illustrate a sense in

which our existing evidence for CP -violation and for T -violation is extremely

robust, since these principles obtain in a variety of modifications of quantum

theory.

But what about the third road to T -violation, Wigner’s principle? My pur-

pose in the remainder of this note is to illustrate how Wigner’s principle can be

generalized as well.

2. General Mechanics

Following Ashtekar (2014), let S be a set of states, and let S : S → S be

a bijection, which we interpret as implementing dynamical evolution (like an
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Figure 1: Time reversal invariance.

S-matrix). It is helpful to think of ourselves as having two copies of that set of

states denoted by different indices, Si (the “initial states”) and Sf (the “final

states”), and write S : Si → Sf . Accordingly, when it is appropriate, a single

state σ ∈ S will be denoted with different indices σi ∈ Si and σf ∈ Sf depending

on which of the two copies it is in.

We further define an overlap map O : S × S → R that is symmetric

O(σ, ρ) = O(ρ, σ), providing a generalization of the quantum mechanical no-

tion of a transition probability |〈σ, ρ〉|2. Following the index convention above,

we denote this map by Oi when it operates on Si × Si, and by Of when it

operates on Sf × Sf .

The time reversal operator in general mechanics is a one-to-one mapping

T : Si → Sf , and we interpret time reversal invariance to mean that T−1S =

S−1T . Equivalently, time reversal invariance says that T−1ST−1S = I is the

identity on S. This captures the essential property of a time reversal invariant

system that if we evolve a state, time reverse it, evolve it again, and then time

reverse it again, then that is the same as if we had done nothing at all, as in

Figure 1.

3. Degeneracy

In quantum theory, a degenerate eigenvector ψ of the Hamiltonian H is one

that admits an eigenvector φ that is orthogonal to it 〈ψ, φ〉 = 0, but which has

the same eigenvalue. Our central task in this section is to find an appropri-
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ate definition of degeneracy for general mechanics, since it is essential to the

expression of Wigner’s principle.

General mechanics so far does not have enough structure to define degen-

eracy. We don’t have linearity, so we can’t talk about eigenvalues on a linear

space. But can we do so using the overlap map?

To see that this is not enough, consider the special case of quantum me-

chanics, where the overlap map is O(ψ, φ) = |〈ψ, φ〉|2. Let ϕ be a normalized

energy eigenvector, and hence an eigenvector of the unitary evolution operator

Ut = e−itH . Then |〈ϕ,Utϕ〉|2 =
∣∣〈ϕ, e−ithϕ〉∣∣2 = 1 for all eigenvalues h. And

since Ut is unitary, |〈Utψ,Utφ〉|2 = |〈ψ, φ〉| for all ψ, φ. Neither of these two

calculations provides a way to distinguish eigenvectors with distinct eigenval-

ues. This suggests we don’t yet have enough information to get at degeneracy.

However, we can define degeneracy with the help of a little extra structure.

3.1. Preliminary Definitions

Let me begin by introducing two definitions, making use only of the objects

that have been introduced so far.

• Equivalent States (≡). Two states σ, ρ ∈ S are equivalent (written σ ≡ ρ)

when O(σ, ξ) = O(ρ, ξ) for all ξ ∈ S.

In quantum mechanics, two vectors related by a complex unit represent

the same state, ψ = eiθφ. This is equivalent1 to the statement that

|〈ψ, ξ〉|2 = |〈φ, ξ〉|2 for all ξ ∈ H. So, since O(ψ, ξ) = |〈ψ, ξ〉|2 in the

special case of quantum theory, our definition is the natural generalization

of the statement that ψ and φ represent the same state.

1Proof: (⇒) This direction is obvious. (⇐) Suppose |〈ψ, ξ〉|2 = |〈φ, ξ〉|2 for all ξ ∈ H. Thus

the complex numbers 〈ψ, ξ〉 and 〈φ, ξ〉 have the same length, and so are related by a rotation of

the complex plane. This means that for each ξ ∈ H, there exists some e−iθ such that 〈ψ, ξ〉 =

e−iθ〈φ, ξ〉 = 〈eiθφ, ξ〉, and hence 〈ψ − eiθφ, ξ〉 = 0. In particular, 〈ψ − eiθφ, ψ − eiθφ〉 = 0.

Therefore, since the inner product 〈·, ·〉 is positive definite, ψ − eiθφ = 0, and so ψ = eiθφ as

claimed.
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• Stationary States. A state σ ∈ S is stationary when Sσ ≡ σ, where

S : Si → Sf is the dynamical evolution operator.

In quantum theory, a state ψ ∈ H is stationary if Utψ = eiθψ. Expressed

in general mechanics with the dynamics S, this just says that Sψ and ψ

are equivalent states, according to our definition above.

3.2. Additional Structure

We must now introduce a new structure, which I will call the pre-overlap

map
p

O. It is a mapping
p

O : S × S → C, which is taken to be compatible with

both the dynamical evolution operator S and the time reversal operator T ,

p

O(Sσ, Sρ) =
p

O(σ, ρ)
p

O(Tσ, Tρ) =
p

O(ρ, σ),

for all σ, ρ ∈ S. This mapping is thus analogous to the inner product 〈·, ·〉 in

quantum theory, but lacks much of its structure.

Our use for the pre-overlap map is to define an analogue of two states having

“the same energy eigenvalues.” In generalized mechanics, we take this to be the

statement that for stationary states σ and ρ,

p

O(σ, Sσ) =
p

O(ρ, Sρ).

Again, consider the quantum analogue 〈σ,Utσ〉 = 〈ρ,Utρ〉, where σ and ρ are

vectors in a Hilbert space and Ut = e−itH . Since ψ and φ are assumed to be

stationary and normalized,

〈σ,Utσ〉 = 〈ρ,Utρ〉 =⇒ e−ith = e−ith
′
,

where Utσ = e−ithσ and Utρ = e−ith
′
ρ. This implies that σ and ρ have the same

energy eigenvalues, h = h′.

With this in mind, we can define what it means for a stationary state σ in

general mechanics to be non-degenerate. In quantum theory, non-degeneracy is

the property that σ and ρ have the same energy eigenvalues only if σ = eiθρ.

In general mechanics, this amounts to the following.
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Definition 1. A stationary state σ ∈ S is non-degenerate if for every stationary

state ρ,
p

O(σ, Sσ) =
p

O(ρ, Sρ) only if σ ≡ ρ. Otherwise, σ is called degenerate.

4. Generalization of Wigner’s principle

With the definitions above, we now have a simple statement of Wigner’s

principle.

Proposition 1. Suppose there exists a stationary state σ ∈ S such that both of

the following are true:

1. σ is non-degenerate; and

2. Tσ 6≡ σ.

Then we have T -violation, in that TS−1 6= ST−1.

Proof. We prove the contrapositive statement: assume TS−1 = ST−1. Let σ

be stationary, Sσi = σf , and define ρ by the relations, ρf := Tσi, ρi := T−1σf .

Then,

p

Of (σf , Sσi) =
p

Oi(T−1Sσi, T−1σf ) Compatibility of T

=
p

Oi(S−1Tσi, T−1σf ) Time reversal invariance

=
p

Oi(S−1ρf , ρi) Definition of ρ

=
p

Of (SS−1ρf , Sρi) Compatibility of S

=
p

Of (ρf , Sρi).

Suppose (1) is true, and σ is non-degenerate. Then by this calculation, σ ≡ ρ.

Since ρ = Tσ, this implies that (2) fails. Suppose instead that (2) is true, and

Tσ 6≡ σ. Then σ 6≡ ρ, and (1) fails.

5. Discussion

Ashtekar (2014) showed that Curie’s Principle is the most general of the three

roads to T -violation, requiring only a minimal amount of structure involving
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bijections on sets, while Kabir’s Principle requires the addition of an overlap

map. We have now seen that Wigner’s principle requires the addition of an

overlap map plus a pre-overlap map. The three roads thus require successively

more structure. Nevertheless, casting them in Ashtekar’s general framework

shows that they are all surprisingly robust, much more so than was understood

by Roberts (2014).
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