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Contrasting Probabilistic Scoring Rules

Reason L. Machete∗

Dept. of Mathematics and Statistics, P. O. Box 220, Reading, RG6 6AX, UK

Dated: March 15, 2013

Abstract

There are several scoring rules that one can choose from in order to score prob-
abilistic forecasting models or estimate model parameters. Whilst it is generally
agreed that proper scoring rules are preferable, there is no clear criterion for pre-
ferring one proper scoring rule above another. This manuscript compares and con-
trasts some commonly used proper scoring rules and provides guidance on scoring
rule selection. In particular, it is shown that the logarithmic scoring rule prefers
erring with more uncertainty, the spherical scoring rule prefers erring with lower
uncertainty, whereas the other scoring rules are indifferent to either option.

Keywords: estimation; forecast evaluation; probabilistic forecasting; utility function

1 Introduction

Issuing probabilistic forecasts is meant to express uncertainty about the future evolu-
tion of some quantity of interest. Such forecasts arise in many applications such as
macroeconomics, finance, weather and climate forecasting. There are several scoring
rules that one can choose from in order to elicit probabilistic forecasts, rank competing
forecasting models or estimate forecast distribution parameters. It is generally agreed
that one should select scoring rules that encourage a forecaster to state his ‘best’ judge-
ment of the distribution, the so called proper scoring rules (Friedman, 1983; Nau, 1985;
Gneiting and Raftery, 2007), but which one to use is generally an open question. We
shall take scoring rules to be loss functions that a forecaster wishes to minimise. Scoring
rules that are minimised if and only if the issued forecasts coincide with the forecaster’s
best judgement are said to be strictly proper (Gneiting and Raftery, 2007; Brocker and
Smith, 2007). We shall restrict our attention to strictly proper scoring rules.

Nonetheless using scoring rules to rank competing forecasting models poses a prob-
lem; scoring rules do not provide a universally acceptable ranking of performance. In
estimation, different scoring rules will yield different parameter estimates (Gneiting and
Raftery, 2007; Johnstone and Lin, 2011). Moreover, a forecaster’s best judgement may
depart from the ideal; the ideal is a distribution that nature or the data generating pro-
cess would give (Gneiting et al., 2007). Although strictly proper scoring rules encourage
experts to issue their best judgements, such judgements may yet differ from each other
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and the ideal. Which scoring rule should one use to choose between two experts? Sav-
age (1971) made the instructive statement that “any criteria for distinguishing among
scoring rules must arise out of departures of actual subjects from the ideal.” There have
been some efforts to contrast scoring rules, but none seem to have followed this insight.

Bickel (2007) made empirical comparisons of the quadratic, spherical and logarithmic
scoring rules and found them to yield different rankings of competing forecasts but failed
to see why. Considering a concave nonlinear utility function that explicitly depends on
the scoring rule, he also found the logarithmic scoring rule to yield the least departures
from honest opinions at maximal utility, a point he claimed favours it as a rule of
choice. But a utility function need not be exponential nor explicitly depend on the
scoring rule. Jose et al. (2008) considered weighted scoring rules and showed that they
correspond to different utility functions. A limiting feature of the utility functions
considered is that they are defined on bounded intervals; there are many applications in
which the variable of interest is unbounded. Their motivation for weighted scoring rules
is based on betting arguments, but it is not clear what the betting strategies (if any)
are. Recently, Boero et al. (2011) empirically compared the Quadratic Probability Score
(QPS), Ranked Probability Score (RPS) and the logarithmic scoring rule on UK inflation
forecasts by the Monetary Policy Committee and the Survey of External Forecasters
(SEF). They found the scoring rules to rank the two sets of distributions similarly.
Upon ranking individual forecasters from the SEF, they found the RPS to have better
discriminatory power than the QPS, a feature they attributed to the RPS’s sensitivity
to distance. Despite the foregoing efforts, there is lacking a theoretical assessment of
what the preferences of the commonly used scoring rules are with respect to the ideal.

This paper contrasts how different scoring rules would rank competing forecasts of
specified departures from ideal forecasts and provides guidance on scoring rule selection.
It focuses upon those scoring rules that are commonly used in the forecasting literature,
including econometrics and meteorology. More specifically, we contrast the relative
information content of forecasts preferred by different scoring rules. Implications of the
results on decision making are then suggested, noting that it may be desirable to be
more or less uncertain when communicating probabilistic forecasts. We realise that an
appropriate utility function may be unknown (Bickel, 2007) and expected utility theory
may not even be appropriate (Kahneman and Tversky, 1979).

In section 2, we consider three scoring rules of categorical forecasts, which then
inspires our study of density forecasts in section 3, where we consider four scoring rules:
the Quadratic Score (Gneiting and Raftery, 2007), Logarithmic Score (Good, 1952),
Spherical Score (Friedman, 1983) and Continuous Ranked Probability Score (Epstein,
1969). We conclude with a discussion of the results in section 4.

2 Categorical Forecasts

In this section, we consider the scoring of categorical forecasts. The scoring rules consid-
ered are Brier score (Brier, 1950), the logarithmic scoring rule and the spherical scoring
rule (Friedman, 1983). In order to aid intuition in the next section, here we focus on the
binary case. Another commonly used scoring rule for categorical forecasts is the Ranked
Probability Score (RPS) (Epstein, 1969). In the binary case, the RPS score reduces to
the Brier score.

It will be useful to be aware of the following basics. Given any vectors f ,g ∈ ℜm,
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the inner product between the two vectors is

〈f ,g〉 =

m
∑

i=1

figi,

from which the L2-norm is defined by ||f ||2 = 〈f ,f〉1/2.

2.1 The Brier score

Consider a probabilistic forecast {fi}
m
i=1 of m categorical events. Suppose the true

distribution is {pi}
m
i=1. If the actual outcome is the jth category, the Brier score is given

by (Brier, 1950)

BS(f , j) =
1

m

m
∑

i=1

(fi − δij)
2,

where δij = 0 if i 6= j and δij = 1 if i = j. If follows that if we expand out the bracket
we get

BS(f , j) =
1

m

(

m
∑

i=1

f2
i − 2fj + 1

)

.

The expected Brier score is then given by

E[BS(f , J)] =

m
∑

j=1

pjBS(f, j)

=
1

m

m
∑

i=1

(

f2
i − 2pifi + pi

)

=
1

m

m
∑

i=1

[

(fi − pi)
2 + pi − p2i

]

=
1

m

{

||γ||22 +
m
∑

i=1

pi(1− pi)

}

,

where γ is a vector with components γi = fi − pi for all i = 1, . . . ,m. It is evident from
the last expression on the right hand side that the Brier score is effective with respect
to the metric d2(f ,g) = ||f − g||2. When m = 2, we can put f1 = p + γ, p1 = p and
p2 = q and obtain

E[BS(f , J)] = γ2 + pq.

It follows that ±γ will yield the same Brier score. This means the Brier score does not
discriminate between over-estimating and under-estimating the probabilities with the
same amount. Further more, for any two forecasts f i = (p + γi, q − γi), i = 1, 2, with
|γ1| < |γ2|, the Brier score would prefer the forecast corresponding to γ1.

2.2 Logarithmic scoring rule

The logarithmic scoring rule was proposed by Good (1952). It was later termed Ig-
norance by Roulston and Smith (2002) when they introduced it to the meteorological
community. Given a probabilistic forecast f = (f1, f2, . . . , fm), the logarithmic scoring
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rule is given by LS(f , j) = − log fj, where j denotes the category that materialises. Let
us consider the expected logarithmic score of the forecasting scheme f = (p+ γ, q − γ):

E[LS(f , J)] = −p log(p+ γ)− q log(q − γ), (1)

where J ∈ {1, 2} is a random variable. The above expectation is also referred to as
the Kullback-Leibler Information Criterion (Corradi and Swanson, 2006). As noted
by Friedman (1983), this scoring rule is not effective.

If we let f+ = (p + γ, q − γ) and f− = (p − γ, q + γ), then we can define E[LS]± =
E[LS(f+, J)] − E[LS(f−, J)]. Then, assuming that γ > 0 without loss of generality,

E[LS]± = p log

(

p− γ

p+ γ

)

+ q log

(

q + γ

q − γ

)

(2)

Note that when p = q = 0.5, then E[LS]± = 0, otherwise E[LS]± 6= 0. Differentiating (2)
with respect to γ yields

d

dγ
E[LS]± =

2γ2(p2 − q2)

(p2 − γ2)(q2 − γ2)
(3)

Expressions (2) and (3) are well defined provided γ < min(p, q).

d

dγ
E[LS]± > 0, if p > q

d

dγ
E[LS]± < 0, if p < q

It follows that E[LS]± > 0 if p > q and E[LS]± < 0 if p < q. In other words, the loga-
rithmic score penalises over confidence on the likely outcome and rewards erring on the
side of caution. Given forecasting schemes that are equally calibrated, the logarithmic
score will prefer the one with a higher entropy. To explain this further, let us denote
the entropy of the forecast corresponding to γ by h(γ), i.e.

h(γ) = −(p+ γ) log(p + γ)− (q − γ) log(q − γ). (4)

We now define the function G(γ) = h(γ)− h(−γ) and claim that G(γ) < 0 for 0 < γ <
q < p. To prove this claim, we first note that G(0) = 0. It then suffices to show that
G′(0) < 0. Note that

G′(γ) = − log(p + γ) + log(q − γ)− log(p− γ) + log(q + γ)

= − log

(

p+ γ

q + γ

)

+ log

(

q − γ

p− γ

)

.

The condition p > q implies that G′(γ) < 0 for all γ ∈ (0, q). Therefore, it is evident
that, of the two forecasts, the logarithmic score prefers the one with a higher entropy.
We have thus proved the following proposition:

Proposition 2.1 Given two forecasts, f+ = (p + γ, q − γ) and f− = (p − γ, q + γ),
where 0 < γ < q < p, the logarithmic scoring rule prefers f−. Moreover, f− has a
higher entropy than f+.
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What about when there are two forecasts f i = (p+γi, q−γi), i = 1, 2 with 0 < γ1 <
γ2 < q and p > q? It is obvious that the Brier score will prefer f1 over f2. The question
is, which of the two forecasts will the logarithmic scoring rule prefer? We answer this
question by stating the following proposition:

Proposition 2.2 Given two forecasts f i = (p+γi, q−γi), i = 1, 2 with 0 < γ1 < γ2 < q
and p > q, the logarithmic scoring rule prefers f1 over f2.

Proof. In order to prove this proposition, it is sufficient to consider the expected
logarithmic score of the forecast f = (p + γ, q − γ), which is given by equation (1).
Differentiating the equation with respect to γ yields

d

dγ
E[LS(f , J)] =

γ

(p+ γ)(q − γ)
(5)

Equation (5) implies that, if q > γ > 0, E[LS(f , J)] is an increasing function of γ.
Hence, the logarithmic scoring rule prefers the forecast f1.

On the other hand, if γ < 0 with |γ| < p, then equation (5) implies that E[LS(f , J)]
is a decreasing function of γ. It then follows that, given γ2 < γ1 < 0 with |γ2| < p, the
logarithmic scoring rule will prefer the forecast f1.

Finally, let us consider the case of two forecasts f1 = (p + γ1, q − γ1) and f2 =
(p − γ2, q + γ2), where 0 < γ1 < γ2 < q < p. Again, it is clear that the Brier score
will prefer the forecast f1 over f2. It remains to be seen which forecast the logarithmic
scoring rule will prefer. This may be determined by considering the function H(γ1, γ2),
where

H(γ1, γ2) = p log

(

p− γ2
p+ γ1

)

+ q log

(

q + γ2
q − γ1

)

(6)

Note that H(γ1, γ2) = E[LS(f1, J)] − E[LS(f2, J)]. The forecast f1 is preferred if
H(γ1, γ2) < 0. The following proposition gives insights of relative forecast performance
in the parameter space.

Proposition 2.3 Given that 0 < γ2 < q < p, there exists γ∗ ∈ (0, γ2) such that (a)
H(γ∗, γ2) = 0, (b) H(γ1, γ2) > 0 for γ1 ∈ (γ∗, γ2) and (c) H(γ1, γ2) < 0 for γ1 ∈ (0, γ∗).

Before proving the above proposition, we remark that H(γ1, γ2) < 0 if and only if the
logarithmic scoring rule prefers the forecast f1. This proposition implies that the log-
arithmic scoring rule and the Brier score prefer different forecasts when γ1 ∈ (γ∗, γ2).
Let us now consider the proof of this proposition.

Proof. In proving this proposition, it is useful to bear in mind that H(γ2, γ2) > 0.
The partial derivatives of equation (6) are given by

∂H

∂γ1
=

γ1
(p+ γ1)(q − γ1)

and
∂H

∂γ2
=

−γ2
(p+ γ2)(q − γ2)

. (7)

Further more, we can differentiate equations (7) to obtain

∂2H

∂γ21
=

pq + γ21
(p+ γ1)2(q − γ1)2

and
∂2H

∂γ22
=

−(pq + γ22)

(p− γ2)2(q + γ2)2
. (8)

It follows from equations (7) that ∂H/∂γ1 = 0 at γ1 = 0 and ∂H/∂γ2 = 0 at γ2 = 0.
Since ∂2H/∂γ21 > 0 for all γ1, H(γ1, ·) has a global minimum at γ1 = 0. Similarly,

5



H(·, γ2) has a global maximum at γ2 = 0 since ∂2H/∂γ22 < 0 for all γ2 and the first partial
derivative with respect to γ2 vanishes there. In particular, H(0, γ2) ≤ H(0, 0) = 0, i.e.
H(0, γ2) ≤ 0. For γ2 > 0, we have the strict inequality, H(0, γ2) < 0. But we also have
H(γ2, γ2) > 0 from Proposition 2.1. It, therefore, follows from the intermediate value
theorem that H(γ1, γ2) = 0 for some γ1 = γ∗ ∈ (0, γ2), which completes the proof.

Proposition 2.4 For positive γ1 and γ2 such that γ1 < q < p and γ2 < p, the entropy
of the forecast f1 = (p+γ1, q−γ1) is lower than that of the forecast f2 = (p−γ2, q+γ2)
whenever γ2 ≤ (p− q)/2.

A consequence of this proposition is that the forecast corresponding to γ1 = γ∗ is more
informative than f2 provided γ2 ≤ (p − q)/2. Otherwise, either forecast could be more
informative than the other. We now give the proof of this proposition.

Proof. To prove the above proposition, we consider the derivative of equation (4):

dh

dγ
= − log

(

p+ γ

q − γ

)

.

We then note that dh/dγ < 0 provided that (p − q) > −2γ. If γ > 0, this inequality is
trivially satisfied. On the other hand, if γ < 0, then the inequality is satisfied provided
|γ| < (p − q)/2. If γ2 < (p − q)/2, then h(γ) is a strictly decreasing function for
all γ ∈ [−γ2, γ2], which implies that h(γ1) > h(γ2). If γ2 > (p − q)/2, then h(γ) is an
increasing function for all γ ∈ (−γ2,−(p−q)/2) (provided p > 3q) and strictly decreasing
function in (−(p − q)/2, γ1), which implies that h(−(p − q)/2) > max{h(γ1), h(−γ2)}.
Hence, in this case, we cannot determine which of h(γ1) and h(−γ2) is lower.

2.3 The Spherical Scoring Rule

The spherical scoring rule is given by

S(f , j) = −
fj

||f ||2
.

Define f− = p − γ and f+ = p + γ. Which of the two forecasts f− and f+ does the
spherical scoring rule prefer? In order to address this question, we appeal to geometry.
Considering f = p+ γ, the dot product rule yields

||p||2||f ||2 cos θ = 〈f ,p〉

where θ is the angle between f and p. The above formula may be rewritten as

cos θ =
||p||22 + 〈γ,p〉

||p||2||f ||2
. (9)

We then state the following proposition:

Proposition 2.5 If p = (p, q) and γ = (γ,−γ) and if we denote the right hand side of
equation (9) by C(γ), then

dC(γ)

dγ
=

−γ

||p||2||f ||32
.
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Proof. First note that ||f ||22 = ||p||22 + 2〈γ,p〉+ ||γ||22 and

d||f ||2
dγ

=
(p− q) + 2γ

||f ||2
.

Using the quotient rule, we then differentiate C(γ) with respect to γ to obtain

dC(γ)

dγ
=

||f ||2
d

dγ (||p||
2
2 + 〈γ,p〉)− (||p||22 + 〈γ,p〉) d

dγ ||f ||2

||p||2||f ||22

=
||f ||22(p− q)− (||p||22 + 〈γ,p〉)[(p − q) + 2γ]

||p||2||f ||
3
2

=
(p− q)(||p||+2 2〈γ,p〉+ ||γ||22)− (||p||22 + 〈γ,p〉)[(p − q) + 2γ]

||p||2||f ||32

=
−2γ||p||22 + γ(p− q)2

||p||2||f ||
3
2

=
−2γ||p||22 + γ(||p||22 − 2pq)

||p||2||f ||32

=
−γ(||p||22 + 2pq)

||p||2||f ||32

=
−γ(p+ q)2

||p||2||f ||
3
2

.

The desired result follows from noting that p+ q = 1.

Proposition 2.6 Suppose that p > q and γ ∈ (0, q). Then the spherical scoring rule
prefers the lower entropy forecast, f+, instead of f−.

Proof. Since the spherical scoring rule is effective, it suffices for us to show that
d∗(f+,p) < d∗(f ,p). Suppose the angles that each of f+ and f− makes with p are
respectively θ+ and θ−. It is then true that d∗(f+,p) < d∗(f ,p) if and only θ+ < θ−
since each distance is the length of a chord on a unit circle. Note that C(0) = 1 and
C ′(0) = 0. From Proposition 2.5, −C ′(τ) < C ′(−τ) for all τ ∈ (0, γ), which implies that

−

∫ γ

0

C ′(τ)dτ <

∫ γ

0

C ′(−τ)dτ ⇒ −

∫ γ

0

C ′(τ)dτ < −

∫

−γ

0

C ′(τ)dτ

⇒

∫ γ

0

C ′(τ)dτ >

∫

−γ

0

C ′(τ)dτ

⇒ C(τ)|γ0 > C(τ)|−γ
0

⇒ C(γ)− C(0) > C(−γ)− C(0)

⇒ C(γ) > C(−γ).

But C(γ) > C(−γ) implies that θ+ < θ−.

3 Density Forecasts

This section considers scoring rules for forecasts of continuous variables. It is in some
sense a generalisation of the previous section. As before, we consider how each scoring
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rule would rank two competing predictive distributions of fairly good quality. In the
case of the logarithmic scoring rule and the Continuous Ranked Probability Score, we
consider errors of each predictive distribution, f(x), from the target distribution, p(x),
that are odd functions, i.e. γ(x) = f(x)− p(x) with γ(−x) = −γ(x).

Familiarity with the following notation and definitions will be useful. Given two
functions f(x) and g(x) that are bounded, an inner product is defined by

〈f, g〉 =

∫

∞

−∞

f(x)g(x)dx.

Then the L2 norm is defined to be ||f ||2 = 〈f, f〉1/2.

3.1 The Quadratic scoring rule

A continuous counterpart of the Brier score is the quadratic score (Gneiting and Raftery,
2007), given by

QS(f,X) = ||f ||22 − 2f(X),

where X is a random variable. Taking the expectation yields

E[QS(f,X)] = ||f − p||22 − ||p||22. (10)

We can now write f(x) = p(x) + γ(x), where
∫

γ(x)dx = 0, and substitute it into (10)
to obtain

E[QS(f,X)] = ||γ||22 − ||p||22

As was the case with the Brier score, the functions ±γ(x) yield the same quadratic
score. For any two forecasts, fi(x) = p(x) + γi(x), i = 1, 2 with ||γ1||2 < ||γ2||2, the
quadratic scoring rule would prefer f1(x). Further more, ||γ1|| = ||γ2|| implies that
E[QS(f1,X)] = E[QS(f2,X)].

3.2 The Logarithmic scoring rule

The expectation of the logarithmic scoring rule for the forecast is

E[LS(f,X))] = −

∫

p(x) log(p(x) + γ(x))dx.

As in the discrete case, we introduce the pdfs f+(x) = p(x)+ γ(x), f−(x) = p(x)− γ(x)
so that we can define E[LS]± = E[LS(f+,X))] − E[LS(f−,X))]. It follows that

E[LS]± =

∫

p(x) log

(

p(x)− γ(x)

p(x) + γ(x)

)

dx. (11)

It is necessary that |γ(x)| ≤ p(x) for (11) to be well defined. Consider the case when
p(x) = p(−x). If, in addition, γ(x) is an odd function, i.e. γ(−x) = −γ(x), then
equation (11) yields E[LS]± = 0.

When γ(−x) = −γ(x) and
∫ 0

∞
p(x)dx > 0.5, we state the following proposition:

Proposition 3.1 Given that γ(−x) = −γ(x) with γ(|x|) < 0 and p(|x|) ≤ p(x), then
E[LS]± ≥ 0.
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The above proposition gives conditions under which the forecast f−(x) is preferred by
the logarithmic scoring rule over f+(x).
Proof. The proof proceeds as follows:

E[LS]± =

∫

∞

−∞

p(x) log

(

p(x)− γ(x)

p(x) + γ(x)

)

dx

=

∫ 0

−∞

p(x) log

(

p(x)− γ(x)

p(x) + γ(x)

)

dx+

∫

∞

0

p(x) log

(

p(x)− γ(x)

p(x) + γ(x)

)

dx

If we now perform a change of variable u = −x in the right hand integral and then
replace u by x, we obtain

E[LS]± =

∫ 0

−∞

p(x) log

(

p(x)− γ(x)

p(x) + γ(x)

)

dx−

∫

−∞

0

p(−x) log

(

p(−x)− γ(−x)

p(−x) + γ(−x)

)

dx

=

∫ 0

−∞

p(x) log

(

p(x)− γ(x)

p(x) + γ(x)

)

dx+

∫ 0

−∞

p(−x) log

(

p(−x) + γ(x)

p(−x)− γ(x)

)

dx

≥

∫

0

−∞

p(x) log

(

p(x)− γ(x)

p(x) + γ(x)

)

dx+

∫

0

−∞

p(x) log

(

p(x) + γ(x)

p(x)− γ(x)

)

dx = 0,

where we used p(|x|) ≤ p(x) to obtain the last inequality. To justify the use of this
inequality, we need to show that the function

Φ(p) = p log

(

p+ γ

p− γ

)

is a decreasing function for γ ∈ (0, p). Differentiating Φ with respect to p yields

Φ′(p) = log

(

p+ γ

p− γ

)

−
2pγ

p2 − γ2
.

It now suffices to show that Φ′(p) < 0 for all p. Let us introduce the notation W (p) =
log[(p+ γ)/(p − γ)] and Y (p) = 2pγ/(p2 − γ2) so that Φ′(p) = W (p)− Y (p). Note that
W (2γ) = log 2 and Y (2γ) = 4/3 = log(e4/3). Hence W (2γ) < Y (2γ), which implies that
Φ′(2γ) < 0. Differentiating W (p) and Y (p) with respect to p yields

W ′(p) =
−2γ

p2 − γ2
and Y ′(p) =

−2γ(p2 + γ2)

(p2 − γ2)2
.

It is now clear that W ′(p) < 0 and Y ′(p) < 0 for all p. Further more, Y ′(p) < W ′(p).
Hence W (p) < Y (p) for all p ∈ (γ, 2γ], which implies that Φ′(p) < 0 for all p ∈ (γ, 2γ].
It now remains to be shown that Φ′(p) < 0 for all p ∈ (2γ,∞). It suffices to consider
the asymptotic behaviour as p → ∞. Applying L’Hopital’s rule, we obtain

lim
p→∞

|W (p)|

|Y (p)|
= lim

p→∞

|W ′(p)|

|Y ′(p)|
= lim

p→∞

p2 + γ2

p2 − γ2
= 1.

Hence, limp→∞W (p) = limp→∞ Y (p), i.e. W (∞) = Y (∞). With this result in mind,
for all p ∈ [2γ,∞), we have

∫

∞

p
Y ′(τ)dτ <

∫

∞

p
W ′(τ)dτ ⇒ Y (τ)|∞p < W (τ)|∞p

⇒ Y (∞)− Y (p) < W (∞)−W (p)

⇒ W (p) < Y (p),

9



which completes the proof. The condition p(|x|) < p(x) implies that
∫ 0

−∞
p(x)dx ≥ 0.5.

It corresponds to the case p > q in the discrete case.
We now want to compare the entropies of the forecasts f(x) = p(x) ± γ(x) when

γ(−x) = −γ(x) and γ(|x|) ≤ γ(x). The entropy of the function f(x) = p(x) + γ(x) is
then given by

h(γ) = −

∫

(p(x) + γ(x)) log(p(x) + γ(x))dx. (12)

The functional derivative of h(γ) with respect to γ is then given by

δh(γ)

δγ(x)
= −

∂

∂γ(x)
{(p(x) + γ(x)) log(p(x) + γ(x))}

= −[log(p+ γ) + 1]. (13)

The order O(ε) part of h(γ+ εδγ)−h(γ) is given by (see Stone and Goldbart (2008) for
further insights)

δh(γ) =

∫

∞

−∞

δh(γ)

δγ(x)
δγ(x)dx. (14)

Plugging (13) into (14) yields

δh(γ) = −

∫

∞

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx

= −

∫ 0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx −

∫

∞

0

[log(p(x) + γ(x)) + 1]δγ(x)dx

= −

∫ 0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx +

∫

−∞

0

[log(p(−x) + γ(−x)) + 1]δγ(−x)dx

= −

∫

0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx −

∫

0

−∞

[log(p(−x) + γ(−x)) + 1]δγ(−x)dx

= −

∫

0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx +

∫

0

−∞

[log(p(−x)− γ(x)) + 1]δγ(x)dx

= −

∫ 0

−∞

log

(

p(x) + γ(x)

p(−x)− γ(x)

)

δγ(x)dx,

where we have applied a change of variable x → −x in the second integral of the third
line and assumed δγ(−x) = −δγ(x) in the fifth line. In particular,

δh(γ)|γ=0 = −

∫ 0

−∞

log

(

p(x)

p(−x)

)

δγ(x)dx.

Using the assumption that p(x) ≥ p(−x) whenever x < 0, we consequently obtain

δh(γ)|γ=0 ≤ 0, (15)

if δγ(x) > 0 for all x < 0. In effect, we have just proved the following proposition:

Proposition 3.2 Given that γ(−x) = −γ(x),
∫

γ(x)dx = 0, γ(|x|) ≤ 0, p(|x|) ≤ p(x)
and |γ(x)| < p(x), then the entropy of the forecast density f+(x) = p(x) + γ(x) is lower
than that of the forecast density f−(x) = p(x)− γ(x).
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Propositions 3.1 and 3.2 imply that the logarithmic scoring rule prefers the forecast den-
sity that is less informative, which is in agreement with the categorical case considered
in the previous section.

Proposition 3.3 Given two forecasts fi(x) = p(x) + γi(x), i = 1, 2, with (i) |γ1(x)| <
|γ2(x)|, (ii) γi(|x|) ≤ 0, (iii) γi(−x) = −γi(x), (iv) |γi(x)| ≤ p(x) and (v) p(|x|) ≤ p(x),
then the logarithmic scoring rule prefers forecast f1(x) over forecast f2(x).

Proof. To prove the above proposition, we consider the functional derivative of the ex-
pected logarithmic scoring rule, E[LS] = −

∫

∞

−∞
p(x) log(p(x) + γ(x))dx. The functional

derivative with respect to γ(x) is

δ

δγ
E[LS] =

−p(x)

p(x) + γ(x)
.

Using this result, we obtain the first variation of E[LS] as

δE[LS] =

∫

∞

−∞

δE[LS]

δγ(x)
δγ(x)dx

=

∫

∞

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx

=

∫

0

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx+

∫

∞

0

−p(x)

p(x) + γ(x)
δγ(x)dx

=

∫

0

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx+

∫

−∞

0

p(−x)

p(−x) + γ(−x)
δγ(−x)dx

=

∫ 0

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx+

∫ 0

−∞

p(−x)

p(−x)− γ(x)
δγ(x)dx

=

∫ 0

−∞

[

p(−x)

p(−x)− γ(x)
−

p(x)

p(x) + γ(x)

]

δγ(x)dx

=

∫ 0

−∞

[p(−x) + p(x)]γ(x)

[p(−x)− γ(x)][p(x) + γ(x)]
δγ(x)dx

≥ 0,

provided δγ(x) > 0 for all x < 0, δγ(−x) = −δγ(x), γ(−x) = −γ(x) and γ(|x|) ≤
0. What has been shown is that as γ(x) changes by δγ(x), the expected logarithmic
score changes by a positive amount. In particular, if we start at γ(x) = γ1(x), and
progressively move towards γ(x) = γ2(x) by making successive additions of δγ(x), the
expected logarithmic score can only increase. Hence the expected logarithmic score of
γ2(x) will be higher than that of γ2(x), which yields the result.

We shall now consider two forecasts, f1(x) = p(x) + γ1(x) and f2(x) = p(x)− γ2(x)
with |γ1(x)| ≤ |γ2(x)| ≤ p(x). In this case, the quadratic scoring rule would prefer f1(x)
over f2(x). In order to determine which forecast the logarithmic scoring would prefer,
we consider the functional

H(γ1, γ2) =

∫

∞

−∞

p(x) log

(

p(x)− γ2(x)

p(x) + γ1(x)

)

dx. (16)

Then the following proposition holds
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Proposition 3.4 Given that |γ1(x)| ≤ |γ2(x)| ≤ p(x) and γi(−x) = −γi(x), i = 1, 2,
there exists γ ∗ (x) satisfying the inequalities γ∗(x)γ2(x) ≥ 0 and |γ∗(x)| ≤ |γ2(x)| such
that (a) H(γ∗, γ2) = 0, (b) H(γ1, γ2) > 0 for |γ∗| < |γ1| and (c) H(γ1, γ2) < 0 for
|γ∗| > |γ1|.

Proof. It is helpful to first note that Proposition 3.1 implies that H(γ2, γ2) > 0 when
γ2 6= 0. Thinking of γ1(x) as fixed, the first variation of H(·, γ2) with respect to γ2(x) is
given by

δH(·, γ2) =

∫

∞

−∞

δH(·, γ2)

δγ2(x)
δγ2(x)dx

=

∫

∞

−∞

−p(x)

p(x)− γ2(x)
δγ2(x)dx

=

∫ 0

−∞

−p(x)

p(x)− γ2(x)
δγ2(x)dx+

∫

∞

0

−p(x)

p(x)− γ2(x)
δγ2(x)dx

=

∫ 0

−∞

−p(x)

p(x)− γ2(x)
δγ2(x)dx−

∫

−∞

0

p(−x)

p(−x) + γ2(x)
δγ2(x)dx

=

∫ 0

−∞

−p(x)

p(x)− γ2(x)
δγ2(x)dx+

∫ 0

−∞

p(−x)

p(−x) + γ2(x)
δγ2(x)dx

=

∫ 0

−∞

[

p(−x)

p(−x) + γ2(x)
−

p(x)

p(x)− γ2(x)

]

δγ2(x)dx

=

∫

0

−∞

−[p(−x) + p(x)]γ2(x)

[p(−x) + γ2(x)][p(x) − γ2(x)]
δγ2(x)dx

≤ 0,

provided δγ2 > 0 and δγ2(−x) = −δγ2(x). In the fourth line a change of variable
x = −τ was applied and then τ was replaced with x since it is a dummy variable. It
follows that H(·, γ2) has a maximum when γ2 = 0, i.e. H(·, γ2) ≤ H(·, 0). In particular,
H(0, γ2) ≤ H(0, 0) = 0. For γ2 6= 0, we have the strict inequality, H(0, γ2) < 0. Since
H(γ2, γ2) > 0, continuity implies that H(γ1, γ2) = 0 for some γ1(x) = γ∗(x) such that
|γ∗| < |γ2|, and this completes the proof.

3.3 The Spherical Scoring Rule

Given a forecast f(x), the spherical scoring rule is given by

S(f,X) = −
f(X)

||f ||2
.

If we define the operator ρf = f(x)/||f ||2, the expected spherical score is the inner
product

E[S(f,X)] = −〈ρf, p〉.

The minimum of this expectation is achieved if and only f = p since it is a strictly
proper scoring rule (Friedman, 1983). We now state the following proposition:

Proposition 3.5 Given that γ(−x) = −γ(x) with γ(|x|) < 0, |γ(x)| < p(x) and
p(|x|) ≤ p(x), then the spherical scoring rule prefers the forecast f+(x) over f−(x),
i.e. E[S(f+,X)] ≤ E[S(f−,X)] .
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Proof. The aim here is to show that E[S(f+,X)] ≤ E[S(f−,X)], which is equivalent to
〈ρf+, p〉 ≥ 〈ρf−, p〉. Note that each of these inner products is non-negative since

〈ρf±, p〉 =
〈f±, p〉

||f±||2

=
〈p± γ, p〉

||f±||2

=
||p||22 ± 〈γ, p〉

||f±||2
≥ 0,

due to Cauchy Schwartz’s inequality, 〈±γ, p〉 ≤ ||γ||2||p||2, and the hypothesis, |γ(x)| ≤
p(x) ⇒ ||γ||2 ≤ ||p||2. Therefore, 〈ρf+, p〉 ≥ 〈ρf−, p〉 is equivalent to 〈ρf+, p〉

2 ≥
〈ρf−, p〉

2. It therefore suffices to show that the latter inequality holds.

〈ρf+, p〉
2 − 〈ρf−, p〉

2 =
〈f+, p〉

2

||f+||
2
2

−
〈f−, p〉

2

||f−||
2
2

=
〈p+ γ, p〉2

||f+||22
−

〈p− γ, p〉2

||f−||22

=
(||p||22 + 〈γ, p〉)2

||f+||22
−

(||p||22 − 〈γ, p〉)2

||f−||22

=
||f−||

2
2(||p||

2
2 + 〈γ, p〉)2 − ||f+||

2
2(||p||

2
2 − 〈γ, p〉)2

||f+||
2
2||f−||

2
2

.

Plugging in ||f+||
2
2 = ||p||22 + 2〈γ, p〉+ ||γ||22 and ||f−||

2
2 = ||p||22 − 2〈γ, p〉+ ||γ||22 into the

numerator of the last expression, removing brackets and collecting like terms yield

〈ρf+, p〉
2 − 〈ρf−, p〉

2 =
〈γ, p〉(||p||22||γ||

2
2 − 〈γ, p〉2)

||f+||
2
2||f−||

2
2

. (17)

As a consequence of Cauchy-Schwartz’s inequality, ||p||22||γ||
2
2 − 〈γ, p〉2 ≥ 0. It will now

be shown that under the hypothesis of the proposition, 〈γ, p〉 ≥ 0.

〈γ, p〉 =

∫

∞

−∞

γ(x)p(x)dx

=

∫

0

−∞

γ(x)p(x)dx+

∫

∞

0

γ(x)p(x)dx

=

∫

0

−∞

γ(x)p(x)dx−

∫

−∞

0

γ(−x)p(−x)dx

=

∫ 0

−∞

γ(x)p(x)dx+

∫ 0

−∞

γ(−x)p(−x)dx

=

∫ 0

−∞

γ(x)p(x)dx−

∫ 0

−∞

γ(x)p(−x)dx

=

∫ 0

−∞

γ(x)[p(x)− p(−x)]dx

≥ 0,
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since p(x) ≥ p(−x) and γ(x) ≥ 0 for all x ≤ 0. Hence, the right hand side of equa-
tion (17) is non-negative.

The distribution preferred by the spherical scoring rule is already known through
Proposition 3.2 to be of lower entropy. As was the case in the binary case, the spherical
scoring rule prefers an opposite distribution to the logarithmic scoring rule.

3.4 Continuous Ranked Probability Score

Finally, we consider the Continuous Ranked Probability Score (CRPS) of the density
forecast f(x) whose cumulative distribution is F (x). The CRPS is a function of F and
the verification X and is defined by (Gneiting and Raftery, 2007)

CRPS(F,X) =

∫

∞

−∞

(F (τ) − I{τ ≥ X})2dτ.

The above score may equivalently be written as

CRPS(F,X) =

∫ X

−∞

F 2(τ)dτ +

∫

∞

X
(F (τ) − 1)2dτ. (18)

It follows from (18) that

E[CRPS(F,X)] =

∫

∞

−∞

p(x)

∫ x

−∞

F 2(τ)dτdx+

∫

∞

−∞

p(x)

∫

∞

x
(F (τ) − 1)2dτdx, (19)

where p(x) is the true (or target) density function. If P (x) =
∫ x
−∞

p(τ)dτ , we can then
apply the integration by parts formula to each term on the right hand side of (19) to
obtain

∫

∞

−∞

p(x)

∫ x

−∞

F 2(τ)dτdx = P (x)

∫ x

−∞

F 2(τ)dτ

∣

∣

∣

∣

∞

−∞

−

∫

∞

−∞

P (x)F 2(x)dx

=

∫

∞

−∞

F 2(x)dx−

∫

∞

−∞

P (x)F 2(x)dx

and
∫

∞

−∞

p(x)

∫

∞

x
(F (τ)− 1)dτdx = P (x)

∫

∞

x
(F (τ)− 1)2dτ

∣

∣

∣

∣

∞

−∞

+

∫

∞

−∞

P (x)(F (x) − 1)2dx

= 0 +

∫

∞

−∞

P (x)(F (x) − 1)2dx,

whence

E[CRPS(F,X)] =

∫

∞

−∞

P (x)(1 − P (x))dx+

∫

∞

−∞

(F (x) − P (x))2dx, (20)

after some algebraic manipulation. Define F (x) = P (x)+Γ(x), where Γ(x) =
∫ x
−∞

γ(τ)dτ
and f(x) = p(x)+γ(x). If we also define G(P ) =

∫

P (x)(1−P (x))dx, then equation (20)
can be re-written as E[CRPS(F,X)] = G(P )+ ||Γ||22. We have thus proved the following
proposition:

Proposition 3.6 The Continuous Ranked Probability Score does not distinguish be-
tween distributions whose cumulative errors from the target distribution are equal in the
sense of the L2 norm.
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Consequently, the CRPS does not distinguish between density forecasts whose errors
from the target density differ by the sign. To see this, consider two forecasts which whose
errors from the target density are γ1(x) and γ2(x) respectively, with γ1(x) = −γ2(x). It
then follows that

||Γ1||
2
2 − ||Γ2||

2
2 =

∫

∞

−∞

Γ2
1(x)dx−

∫

∞

−∞

Γ2
2(x)dx

=

∫

∞

−∞

(

Γ2
1(x)− Γ2

2(x)
)

dx

=

∫

∞

−∞

(Γ1(x) + Γ2(x)) (Γ1(x)− Γ2(x)) dx

= 0,

since γ1(x) = −γ2(x) ⇒ Γ1(x) + Γ2(x) = 0.
As a final remark, we note that the second term in the expectation of CRPS in (20)

somewhat resembles the mean squared error criterion discussed in Corradi and Swanson
(2006). The mean squared error of the forecast F (x) is E[Γ2(X)] =

∫

p(x)Γ2(x)dx.
Likewise, the mean squared error criterion does not distinguish between forecasts whose
errors from the target density differ by a sign (i.e. γ1(x) = −γ2(x)) because

E[Γ2
1(X)]− E[Γ2

2(X)] =

∫

∞

−∞

p(x)
(

Γ2
1(x)− Γ2

2(x)
)

dx

=

∫

∞

−∞

p(x) (Γ1(x) + Γ2(x)) (Γ1(x)− Γ2(x)) dx

= 0.

4 Discussion and Conclusions

This manuscript contrasted how certain scoring rules would rank competing forecasts
of specified departures from the target distribution. We considered the Brier Score, the
logarithmic scoring rule and the spherical scoring rule, in categorical case, focusing on
the binary case. In the continuous case, we considered the Quadratic Score, Logarith-
mic scoring rule, spherical scoring rule and the Continuous Ranked Probability Score
(CRPS). Given two forecasts whose errors from the target distribution differ only by the
sign, we found that the logarithmic scoring rule prefers the higher entropy distribution
whilst the spherical scoring rule prefers the lower entropy distribution: bear in mind
that higher entropy corresponds to more uncertainty (Shannon, 1948). Both the Brier
score and the Quadratic Score do not distinguish two distributions with equal L2 norms
of their errors from the target distribution. The logarithmic scoring rule selects a lower
entropy forecast only if it is nearer to the target distribution in the sense of the L2 norm
and vice versa for the spherical scoring rule. The CRPS is indifferent to forecasts whose
errors from the target density differ by a sign.

Some have criticised the logarithmic scoring rule for placing a heavy penalty on
assigning zero probability to events that materialise (e.g. Boero et al., 2011; Gneiting
and Raftery, 2007); but assigning zero probability to events that are possible is also
discouraged by Laplace’s rule of succession (Jaynes, 2003). What has been shown here is
that the logarithmic scoring rule is good at highlighting forecasts that are less uncertain
than ideal forecasts. Such forecasts may have to be dealt with appropriately. One way of
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dealing with such forecasts is to blend with the unconditional distribution as discussed
in Machete (2012). Nonetheless, given two density forecasts, the logarithmic scoring
rule does not just reject the more extreme in the sense of entropy: If both forecasts are
more uncertain than the ideal forecast, the logarithmic scoring rule will tend to prefer
the less uncertain of the two.

Note that in the continuous case, we made the assumption that the true distribution
satisfies p(|x|) ≤ p(x), which mean for every negative x, p(−x) ≤ p(x). Further research
would be required to determine the effect of relaxing this assumption. We conjecture
that the general result should hold when this assumption is relaxed to saying the density
should have more mass overall in the negative side than in the positive side (or vice
versa), but not necessarily point by point. The assumptions mean that the case of
skewed distributions is accounted for, which is useful because many distributions are
skewed. Looking beyond the scoring rules considered, we envisage that scoring rules
may be split into three categories: those that tend to favour more uncertain forecasts,
those that favour less uncertain forecasts and those that are indifferent to either option.
Discriminating between scoring rules within each of the three sets would then be an
issue to confront.

Does our consideration of departures from ideal forecasts amount to advocating
for dishonesty by forecasters? Not at all. We are merely making an observation that
forecasters can honestly report predictive distributions that have departures from ideal
forecasts. Although strictly proper scoring rules encourage forecasters to be honest when
they report their best judgements, they do not guarantee that the reported forecasts
will coincide with ideal forecasts. Our point then is that using a given scoring rule may
inherently favour departures from ideal forecasts in one direction more than in another.
Therefore, when one selects a scoring rule to estimate distribution parameters or choose
between two competing experts, it amounts to deciding preferred departures.

Which scoring rule one should choose will depend on the application at hand. Com-
bining insights of scoring rules set forth in this paper with an understanding of the
situation at hand can help decide which scoring rule is most appropriate. The issue to
consider may be decisions associated with high impact, low probability events. To illus-
trate our point, let us consider inflation forecasting. It is undesirable to over estimate
the probability for extreme inflation because of the panic it can create as buyers rush
to spend now before prices rise. In order to manage peoples expectations better, the
spherical scoring rule is preferable in this case. As another example, consider seasonal
forecasts of drought in the UK, which is arguably a rare event. Under estimating the
probability of this event could result in water shortages since water companies might
not be stringent on water usage. In this case, the logarithmic scoring rule is preferable.

Johnstone et al. (2011) made a good effort of proposing scoring tules tailored to
“the decision problem and the utility function of the decision maker”. The scoring rules
they proposed depend linearly on the utility function. Whilst taloring scoring rules to
decision problems is a step in the right direction, an acknowledged limitation is when
the forecasts are issued to multiple users who may not even have a utility function. Our
work extends to situations where the assumptions made by Johnstone et al. (2011) are
not valid.
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Nau RF, 1985. Should scoring rules be éffective?́ Management Science 31:527–535.

Roulston MS, Smith LA, 2002. Evaluating Probabilistic Forecasts Using Information
Theory. Monthly Weather Review 130:1653–1660.

Savage LJ, 1971. Elicitation of Personal Probabilities and Expectations. Journal of the
American Statistical Association 66:783–801.

Shannon CE, 1948. A Mathematical theory of communication. Bell Systems Technology
Journal 27:379–423,623–656.

Stone M, Goldbart P, 2008. Mathematics for Physics I. PIMANDER-CASAUBON.

18


	Machete_Contrasting probabilistic scoring_2014_cover
	Machete_Contrasting probabilistic scoring_2014_author

