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ABSTRACT

The Intergovernmental Panel on Climate Change’s (IPCC) ‘‘very likely’’ statement that anthropogenic

emissions are affecting climate is based on a statistical detection and attribution methodology that strongly

depends on the characterization of internal climate variability. In this paper, the authors test the robustness of

this statement in the case of global mean surface air temperature, under different representations of such

variability. The contributions of the different natural and anthropogenic forcings to the global mean surface

air temperature response are computed using a box diffusion model. Representations of internal climate

variability are explored using simple stochastic models that nevertheless span a representative range of

plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)]

process and the long-memory fractionally differencing process. The authors find that, independently of the

representation chosen, the greenhouse gas signal remains statistically significant under the detection model

employed in this paper. The results support the robustness of the IPCC detection and attribution statement

for global mean temperature change under different characterizations of internal variability, but they also

suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be

performed when dealing with other climate variables and/or different spatial scales.

1. Introduction

At the center of the climate change debate is the

question of whether global warming can be detected,

and if that is the case, whether or not it can be attrib-

uted to anthropogenic causes. Optimal fingerprinting

is a powerful method of detection and attribution of

climate change (Hasselmann 1979, 1993; Hegerl et al.

1996) used widely in this area of research. In essence,

optimal fingerprinting is a multiregression analysis that

searches for the observed temperature record response

to external drivers or forcings, such as changing levels of

greenhouse gases, and aerosol loading (human induced),

volcanic activity, and variations in solar radiation (natu-

rally induced). A key input in the procedure of fitting this

multiple regression model is an estimate of the internal

variability of the climate system, against which the sta-

tistical significance of anthropogenic and natural signals

must be compared. Hence, an accurate depiction of this

variability is crucial for the robustness of the results.

In this work, we refer to internal variability as the char-

acterization of the variations in the climate system that

would occur in the absence of natural or anthropogenic
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forcings, solely due to the coupling of atmosphere, ocean,

biosphere, and cryosphere dynamics. In most cases,

global climate models (GCMs) are used to estimate cli-

mate internal variability because instrumental records

are both too short to provide a reliable estimate and

contaminated by the effects of external forcings. Typ-

ically, long GCM control simulations are employed for

this purpose. This is such a key step in the process of

detecting and attributing climate change that, in fact,

for some authors (e.g., Huybers and Curry 2006), the

debate surrounding global warming centers on the un-

certainties in the structure and magnitude of the internal

variability of the climate system.

Previous studies (Allen and Stott 2003; Huntingford

et al. 2006) used increasingly sophisticated variations of

the multiregression technique in order to quantify the

statistical significance of the anthropogenic signal in

temperature trends as simulated by a range of climate

models. In these studies, long GCM control simulations

are used to estimate internal variability on the temporal

and spatial scales that are retained in the analysis. Al-

though these authors are careful to attempt the inclusion

of model uncertainty in the regression model and test

the robustness of their results under changes in the am-

plitude of the estimated internal variability, it is not clear

whether or not other aspects of the internal variability

poorly represented by the climatemodels (Newman et al.

2009; DelSole and Shukla 2010; Klein et al. 1999) do bias

statistical estimations of the significance of the anthro-

pogenic signal in the observations.

In this paper, we investigate this question by assuming

that the internal climate variability can be represented

by a stochastic process that includes, apart from a white

noise component, some information about more com-

plex temporal correlations between different states of

the climate system.We refer to this temporal correlation

between different states as the memory of the system

[also named climate persistence by some authors (Beran

1994; Percival et al. 2001)]. Understanding and charac-

terizing thememory of the climate system is problematic

because of the short length of the observational records

when compared to the wide range of interconnected time

scales. In fact, numerous explanations have been ad-

vanced regarding internal variability (e.g., Wunsch 2003;

Mitchell 1976; Hays et al. 1976), but the full character-

ization of its properties and its interplay with external

forcings remains elusive (Ghil 2014).

We use two different stochastic models to represent

internal variability: a first-order autoregressive [AR(1)]

model and a fractionally differencing (FD)model (Percival

et al. 2001). These correspond to the two simplest sto-

chastic models (minimal number of parameters) that can

represent significantly different assumptions about the

internal temporal structure of the system they describe.

While the AR(1) model has the short memory charac-

teristic of an exponentially decaying autocorrelation

function, the FD model has the long memory associated

to an algebraically decaying autocorrelation function.

These two models have been considered before as two

different but plausible (e.g., Hasselmann 1979; Vyushin

and Kushner 2009) characterizations of the climate in-

ternal variability in terms of equally simple parametric

models. In addition, choosing these simple models allows

us to carry out a sensitivity analysis of detection and

attribution to well-defined parameters whose change is

easily understood in terms of memory or unresolved

variability (white noise) in the climate system.

The paper is organized as follows. In section 2, we

describe the data analyzed. We briefly discuss the de-

tection and attribution approach as applied to the one-

dimensional climate model used in our study and to the

two stochastic models, exploring the arguments to jus-

tify using each of them to represent internal climate

variability. In section 3, we discuss how the significance

of the anthropogenic signal depends on themodel chosen

to represent internal variability. We include an analysis

of how consistent our estimates of internal variability are

with the ones estimated from the Coupled Model In-

tercomparison Project, phase 3 (CMIP3), control simu-

lations in order to evaluate whether or not the use of

these control runs for detection and attribution can

potentially bias the results. Section 4 is devoted to the

conclusions.

We remark that our goal is to explore the sensitivity of

the detection and attribution statistics to the representa-

tion of internal variability. Therefore, the main assump-

tions of detection and attribution of climate change,

namely, that the forced responses can be linearly super-

imposed on internal variability and that there are no in-

teractions between forced and unforced variability, are

assumed to be valid.

2. Data and method

We analyze the problem of the sensitivity of detection

and attribution results to internal variability in the simplest

case, that is, for the global mean surface air temperature

as simulated by a one-dimensional climate model.

To estimate the temperature responses to individual

forcings, we use the box diffusion model (BDM) de-

scribed in Andrews and Allen (2008) and Allen et al.

(2009), which can be written as

c
dT

dt
5F2 lT2

c

dml

ffiffiffiffi
k

p

r ðt
0

dT(t0)
dt0

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t2 t0)

p , (1)
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where T is the global mean temperature and F is the

external forcing. In Allen et al. (2009), the heat capacity

c5 7:22(W y/m2 K) corresponds to the heat capacity of

an ocean mixed layer of depth dml5 75m, assuming that

the ocean covers 70% of the Earth’s surface. Best esti-

mates for the climate feedback parameter l and effective

ocean diffusivity k are determined using the linear tem-

perature trend attributable to the increase in greenhouse

gases over the twentieth century on the basis of finger-

print attribution results (Stott et al. 2006), the effective

heat capacity of the atmosphere–land–ocean system im-

plied by the combination of observed surface warming

(Brohan et al. 2006), and the total ocean heat uptake over

the period 1955–98 (Levitus et al. 2005). This results in

k5 0:10[(mld)2/y]5 562:5(m2/y) and l5 1:29(W/m2 K).

This BDM, with the specified parameters, can then be

used to find the temperature responses Ti to different

forcings: volcanic (VOL), solar (SOL), greenhouse

gases (GHG), sulfates (SUL), and all anthropogenic

forcings together (ANT). In this way, the temperature

responses to individual forcings are computed without

relying on GCMs.

Note that observed surface temperatures are used in

the estimation of parameters in this model, albeit in-

directly through the fingerprint results and estimates of

effective heat capacity. The main impact of varying pa-

rameters in the model, however, is to change the mag-

nitude of the responses to different forcings. The shape,

or time evolution, of the response is primarily driven by

the forcings themselves. In our subsequent analysis,

we use only the temporal shape of the responses, not

their magnitude, hence minimizing the risk of ‘‘double

counting’’ of data.

The forcings time series required to estimate the cor-

responding temperature responses using the model

in Eq. (1) are obtained from the CMIP, phase 5 (CMIP5),

recommended datasets (see http://www.pik-potsdam.de/;
mmalte/rcps/; Meinshausen et al. 2011). To carry out the

detection and attribution analysis, observed time series of

annual global mean temperature are required. We use

the observed data from the Hadley Centre/Climatic Re-

search Unit, version 3 (HadCRUT3; see www.cru.uea.

ac.uk/cru/data/temperature/), for the period 1850–2005

(Brohan et al. 2006), and version 4 (HadCRUT4; see

www.metoffice.gov.uk/hadobs/hadcrut4/data/current/

download.html; Morice et al. 2012) to test the sensitivity

of the results to the addition of the last 7 yr of observa-

tions up to 2012 (see section 3). Uncertainties in observed

temperatures and estimates of forcings are ignored in this

paper.

We additionally use the World Climate Research Pro-

gramme (WCRP) CMIP3 multimodel archive of control

simulations to study the internal variability simulated by

the state-of-the-art climate models (Solomon et al. 2007).

For completeness, we have used all the control simula-

tions, regardless of drifts. We will comment on the effect

of drifts in the control segments on the final results in

section 3.

a. Detection and attribution

The detection of climate change is the process of

demonstrating that climate has changed in some well-

defined statistical sense, without providing a reason for

that change. Attribution of causes of climate change is

the process of establishing the most likely causes for the

detected change with some defined level of confidence

(Solomon et al. 2007). In this work, we aim to detect and

attribute climate change by estimating the contribution

to the observational record Tobs of each of the response

temperaturesTi calculated using Eq. (1). In other words,

we want to obtain the amplitudes bi in the following

expression:

Tobs 5Tb1 u , (2)

where T is a matrix with n 1 1 columns, including the n

forced responses Ti, and a constant term to remove the

mean. The variable u is a stochastic term that represents

the internal climate variability with covariance matrix is

given by V 5 E(uuy). Under the assumption that u is

multivariate normal (Allen and Tett 1999), the optimal

scaling factors, b 5 (b1, b2, . . . , bn11) are given by

(Kmenta 1971)

b̂5 (TyV21T)21TyV21Tobs (3)

and their variance

V(b̂)5 (TyV21T)21 , (4)

where y is used to denote the transpose of a matrix.

In this work, following standard detection and attri-

bution studies, we consider the following external forc-

ings: greenhouse gases, sulfates, volcanic, and solar. It has

long been recognized, however, that the detection and

attribution results are sensitive to the omission of po-

tentially important forcings and/or internal modes of

variability. Likewise, if signals that have some degree of

collinearity are included, this can affect the robustness

of the results. This will be tested in section 3a by per-

forming the detection and attribution study considering

solar, volcanic, and all anthropogenic forcing together

instead of separating greenhouse gases and sulfates into

two different signals. The robustness of the detection and

attribution statistics to separating other modes of in-

ternal variability such as ENSOorAtlanticmultidecadal

15 MAY 2014 IMBERS ET AL . 3479

http://www.pik-potsdam.de/~mmalte/rcps/
http://www.pik-potsdam.de/~mmalte/rcps/
www.cru.uea.ac.uk/cru/data/temperature/
www.cru.uea.ac.uk/cru/data/temperature/
www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html


oscillation (AMO) from the noise u in Eq. (2) has been

analyzed in Zhou and Tung (2013) and Imbers et al.

(2013). In particular, in Imbers et al. (2013), the forced

temperature responses to anthropogenic, solar, volcanic,

and ENSO and/or AMO are obtained from a series of

studies that use different statistical models to single out

each forced temperature response. Using the same ap-

proach as in this paper, it is found that the ANT de-

tection statistic is robust in all cases.

Typically, detection of anthropogenic climate and its

attribution to external forcings requires defining space-

and time-dependent response patterns (Solomon et al.

2007; Stone et al. 2007). These patterns are obtained

fromGCM transient simulations. On the other hand, the

spatiotemporal structure of internal variability in V is

estimated from averaging GCMs’ control simulations

over space, time, and model ensembles. These calcula-

tions are high dimensional and require sensible trunca-

tion of the space and time domain using techniques such

as principal components analysis.

In this paper we use a simpler version of the detection

and attribution approach since we analyze only the

globalmean surface temperature, introducing parametric

models to characterize the global mean internal vari-

ability u explicitly as a stationary stochastic process. In

other words, we formulate the detection and attribution

problem as in Eq. (2), but with u as a function of sto-

chastic parameters that are estimated simultaneously

with the scaling factors b̂ using a minimum squared error

algorithm.

The first challenge is to choose an adequate stochastic

representation for the internal variability. The difficul-

ties finding the appropriate stochastic model are due to

the uncertainties in characterizing internal variability

from the observational record, which, as discussed be-

fore, is contaminated by the external forcings and is too

short relative to the long time scales potentially relevant

to the current climate variability . In particular, in the

observed record, it is not clear how to separate the de-

cadal from centennial or even longer time scales (Percival

et al. 2001). Given these uncertainties in the character-

ization of the internal climate variability, we choose to

describe it using two models that span a wide range of

plausible temporal autocorrelations (Vyushin and

Kushner 2009). This choice is important to address the

fact that GCM simulations do not necessarily capture all

the modes of internal variability in the system, certainly

not variability at longer time scales than centennial. We

then choose stochastic processes that allow us to explore

how the results of detection and attribution of climate

change would change if the internal variability has either

long or short memory and assume that this is a necessary

(not sufficient) test to evaluate the robustness of the

results under a wide range of plausible characterizations

of the memory of the climate system.

b. Short-memory process: AR(1)

The best known and simplest stochastic representa-

tion for discrete geophysical time series is the AR(1)

model (Ghil et al. 2002; Bretherton andBattisti 2000). In

the continuous time domain, the AR(1) process corre-

sponds to diffusion, which, in turn, is the simplest pos-

sible mechanism of a physical process with inertia and

subjected to random noise. In the context of climate, this

model was first introduced by Hasselmann (1979) to

describe the internal variability of the climate system

under the assumption of time scale separation between

oceanic and atmospheric dynamics. In this framework,

the faster dynamics of the atmosphere can be modeled

as white noise acting on the slower and damped dynamics

of the ocean. Thus, the AR(1) is the simplest model that

can explain the ‘‘weather ’’ and the ‘‘climate’’ fluctuations

as two components of the internal variability. Mathe-

matically, the AR(1) is a stationary stochastic process

that can be written as

ut 5 a1ut211 a0�t , (5)

where E(ut) 5 0, a1, and a0 are parameters and �t rep-

resents white noise, that is, E(�t�t0)5 dtt0 . The autoco-

variance function of this process is determined by a0 and

a1 as follows:

vAR1(t)5
a20

12 a21
a
jtj
1 , (6)

where t is the time lag. Notice that a1 controls the de-

caying rate of the autocorrelation function, and in that

sense, we can associate it to the memory of the system.

On the other hand, a0 is related to the amplitude of the

white noise in the system. From Eq. (6), the covariance

matrix V results:

VAR1
i,j 5

a20
12 a21

a
ji2jj
1 . (7)

Equation (5) models the memory of the process such

that, at a given time t, the state of the system is a linear

function of the previous state (t 2 1) and some random

noise with amplitude a20 jittering, thusmoving the system

away from equilibrium. The autocovariance of the pro-

cess, Eq. (6), decays exponentially with time, so the

system has always a much better memory of the near

past than of the distant past. The variable a1 can take any

value in the interval [0, 1), a1 5 0 represents the limit in

which the system is purely white noise, and a1/ 1 is the
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extreme in which a system is dominated by inertia. In our

case, we are characterizing annual global mean temper-

ature internal variability with this model, so we are trying

to quantify the impact of the natural fluctuations in the

year-to-year variation.

In the detection and attribution analysis, the para-

metric form of the covariance matrix, Eq. (7), is used to

simultaneously determine the optimal scaling factors

bi in Eq. (3) and the parameters a1 and a0 of the climate

noise in Eq. (5) following the Hildreth–Lu method

(Kmenta 1971).

c. Long-memory process: FD

There is empirical evidence that the spectrum of global

mean temperature is more complex than the spectrum of

an AR(1) process (e.g., Huybers and Curry 2006). Dif-

ferent power-law behaviors have been identified in

globally and hemispherically averaged surface air tem-

perature (Bloomfield 1992; Gil-Alana 2005), station sur-

face air temperature (Pelletier 1997), and temperature

paleoclimate proxies (Huybers and Curry 2006). These

findings suggest that in order to thoroughly test the sen-

sitivity of the detection and attribution statements to the

representation of internal variability, modeling it with

other than a short-memory process such as the AR(1)

model might be in order. We then alternatively assume

that the global mean temperature internal variability

autocorrelation decays algebraically, allowing for all time

scales to be correlated. This long time correlation will

clearly have an effect on the statistical significance of the

anthropogenic signal [see Eq. (4)].

Long-memory models were motivated initially by

hydrology studies (Hurst 1951, 1957) and have been

employed to model paleoclimatic time series (e.g.,

Huybers and Curry 2006; Pelletier 1997). An spectrum

corresponding to algebraic decaying correlations can

be constructed for a prescribed range of frequencies

as the sum of AR(1) processes or as solutions of more

complex stochastic differential equations (Erland

et al. 2011; Kaulakys et al. 2006; Granger 1980). There-

fore, a plausible justification to use a long-memory pro-

cess to represent the internal variability of the global

mean temperature is that it could be thought as the re-

sult of the superposition of several diffusion processes

[AR(1)].

Applying the law of parsimony, we choose a long-

memory process with the same level of complexity as the

AR(1) model. The FD model (Beran 1994; Percival

et al. 2001; Vyushin and Kushner 2009; Vyushin et al.

2012) is defined as a stationary stochastic process with

zero mean u such that

ut 5 (12B)2d�t , (8)

where B is the backshift operator, that is, But 5 ut21

(Beran 1994). The model is fully specified by the pa-

rameters d and the standard deviation se of the white

noise �t. The autocovariance function is given by the

equation

vFD(t)5
s2
e sin(pd)G(12 2d)G(t1 d)

pG(t1 12 d)
. (9)

As a result, the covariance matrix becomes

VFD
i,j 5

s2
e sin(pd)G(12 2d)G(ji2 jj1 d)

pG(ji2 jj1 12 d)
. (10)

For large t, the autocorrelation function satisfies limt/‘

vFD(t) 5 jtj2d21 (Beran 1994). From this expression,

one can see that the autocorrelation decays algebrai-

cally, thus the name ‘‘long memory.’’ Since d controls

the decaying rate of the autocorrelation function, it can

be associated to the memory of the system, while se is

characterizes the amplitude of the white noise.

Similarly to the AR(1) case, we use this covariance

matrix, Eq. (10), and Eqs. (2) and (3) to simultaneously

determine the scaling factors bi and the parameters

d and se following the Hildreth–Lu method (Kmenta

1971).

3. Results

a. Robustness of detection statistics

To test the robustness of the detection statistics, we

find simultaneously the scaling factors bi and the sto-

chastic parameters of the internal variability u, using

generalized linear regression to solve Eq. (2). Notice

that when u is modeled as an AR(1) or an FD process,

the noise covariancematrixV in Eqs. (3) and (4) is given

by Eqs. (7) or (10), respectively. The best estimates of

the scaling and noise parameters are chosen as those that

minimize the residual white noise in u (Kmenta 1971).

Using the Akaike information criteria, we find that both

models for u are equally skillful at representing the in-

ternal variability given the observational record used in

our analysis.

Figure 1 shows the values of the optimal scaling fac-

tors with their 95% confidence intervals using theAR(1)

(gray line) and the FD (black line) models, when Tobs is

theHadCRUT3 global mean temperature record for the

period 1850–2005. In the detection and attribution ap-

proach, a signal is detected when the corresponding

scaling factor is different from 0 with 95% confidence,

while the attribution of a signal requires confidence in-

tervals that include one (Allen and Stott 2003; Allen and

Tett 1999).When the scaling factors are larger or smaller
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than one, the simulated forced responses are assumed to

be over- or underestimated by the climate model used to

simulate them.

Therefore, in order to test the robustness of the de-

tection statistics, we need to evaluate the statistical sig-

nificance of the scaling factors and the uncertainty in the

determination of the stochastic models’ parameters. A

scaling factor b is defined as statistically significant if the

null hypothesis (b 5 0) can be rejected with 95% con-

fidence. A standard approach to find the confidence in-

terval is to define the z score as z score5bi/V(bi)
1/2; if

this quantity i sampled from, for instance, a t distribution

with more than 60 degrees of freedom, the scaling factor

b will result statistically significant with 95% confidence

when the z score $2 (Kmenta 1971). In our analysis,

because of the correlations present in the noise models,

an estimation of the number of degrees of freedom is

problematic. We use instead a Monte Carlo approach

that allows a testing of the null hypothesis as follows. For

each of the noise models [AR(1) or FD] we generate,

using the optimal values of the models’ parameters 1000

surrogate samples with the same length as the observed

record (156 yr). We then replace Tobs in Eq. (2) by each

of these surrogate series and perform the generalized

linear regression with the four forced responses on the

right-hand side of the equation, the aim of this exercise

being to estimate the optimal values of the scaling factors

b and the u parameters that best fit each of the surrogate

series. We can then perform an empirical evaluation of

the null hypothesis: for any given value of the z score or,

equivalently, the size of the confidence interval, we aim to

find what is the proportion of cases where the scaling

factor b is different from 0. In particular, the value of the

z score that gives b different from 0 in, at most, 5% of the

cases determines the 95% confidence interval. We find

that for the GHG signal, the z score is 2.22 in the case of

theAR(1)model and 2.45 in the case of the FDmodel. In

addition, and since we expect that because of the sto-

chastic nature of the noise models there will be some

uncertainty in the determination of their parameters, the

values of the noise model parameters estimated with this

Monte Carlo approach provide an estimate of the un-

certainty of the best fit noise model parameters when

regressing the forced responses on Tobs in Eq. (2).

Figure 1 shows that for our detection model, the

greenhouse gas signal is detected and attributed, the

volcanic signal is only detected, and the solar signal is not

detected nor attributed for both models of internal vari-

ability. In the case of the sulfates forcings, the result de-

pends on the representation of the internal variability.

The robustness of the GHG signal detection can be

analyzed using Fig. 2, when the internal variability is

characterized by the AR(1) model or by the FD model

in the top or bottom panels, respectively. The horizontal

and vertical axes show the white noise amplitude and

memory parameters, respectively, and the contour lines

indicate the significance level of the scaling factor bGHG.

The diamond symbol shows the best fit of internal var-

iability (for each model) when the observed record Tobs

is the HadCRUT3 data for the period 1850–2005. The

uncertainty in the estimation of the best fit, computed

using the Monte Carlo approach, is shown as the gray

cloud of points. It is clear that even when taking into

account this uncertainty in the parameters, the signifi-

cance of the detection of the greenhouse gas signal is not

affected.

As expected, the significance of the greenhouse gas

signal is lower when we represent the internal variability

as an FD than as an AR(1) process. We find that both

stochastic models’ best fit have similar white noise am-

plitude, showing that statistically they are similarly good

at explaining variability, given that this is the residual

of the linear fit. The bigger difference between the two

models arises in the memory parameter.

In the case of the AR(1), a1 is bounded between a1 5
0.25 and a1 5 0.70, and the best estimate is a1 5 0.53. In

a short-memory process, we can translate these values

into a decay time, which is a well-defined time scale

given by t521/ln(a1) in units of years (Kmenta 1971).

Using the range of values of a1 above, the uncertainty in

the decay time remains below 10yr. This means that, ac-

cording to the AR(1) model, we can explain the fluctua-

tions of internal variability by being affectedmainly by the

previous few years and some random white noise.

FIG. 1. The 95% confidence intervals of the scaling factors bi

derived from the multiregression of observed temperature changes

onto the BDM estimates of the forced responses. The internal

variability is represented by an AR(1) model (gray line) or an FD

model (black line) for the period 1850–2005.
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FIG. 2. (top) Significance of the GHG signal as a function of the two stochastic parameters of

the AR(1) model: a1 in the y axis and a20 in the x axis. The best fit of the observed record is

displayed (diamond), showing that the significance is much greater than 2.22 (thick blue con-

tour line) even considering the uncertainty of the Monte Carlo experiment (cloud of gray

points). Best fits of the CMIP3 control segments of the same length as the observed record are

shown with numbers, where each number represents a GCM (1–22). A total of 33 non-

overlapping segments were selected. (bottom) Significance of the GHG signal as a function of

the two stochastic parameters of the FDmodel: d in the y axis and s2 in the x axis. The best fit of

the observed record is displayed (diamond), showing its significance is greater than 2.45 (thick

blue contour line), even considering the uncertainty of the Monte Carlo experiment (cloud of

gray points).
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In the case of the FD model, the uncertainty in the

estimation of d is much larger and spans almost all the

allowed values from nearly white noise, d5 0.12, to d5
0.5, with a best estimate of d5 0.43. All these values are

broadly consistent with the result in Huybers and Curry

(2006). In particular, we find that there is a 10% prob-

ability of the estimated parameter corresponding to a

nonstationary process (i.e., d/ 0.5). Using Eq. (10), we

find that, for d close to the limiting value 0.5, the am-

plitude of the resulting variations would be inconsistent

even with relatively high-variance reconstructions of

paleoclimatic data over the past 1–2 millennia (Esper

et al. 2012). The presence of poorly known forced re-

sponses on these time scales makes it difficult to use

paleoclimate data as an explicit quantitative constraint

in our analysis, but it does suffice to indicate that the

relative stability of the climate of theHolocenewould be

unlikely if internal variability of the climate systemwere

to conform to an FD process with very high values of d.

Based on these arguments, we can ignore the values of d

close to the nonstationary limit (d/ 0.5). Furthermore, in

the appendix, we explore how the estimation of the sto-

chastic model parameters depends on the length of the

time series considered and show that values of the pa-

rameters corresponding to nonstationary processes are

likely to be an artifact of the short length of the time series.

For an algebraically decaying autocorrelation func-

tion, there is no associated time scale; therefore, a long-

memory process does not have a decay time (Beran

1994). Nevertheless, to have an intuition about the time

scales associated to particular values of d, one can cal-

culate the time it takes for the autocorrelation function

to reduce to 1/e of its initial value [in analogy with the e-

folding time for the AR(1) model]. For the best fit value

of d 5 0.43, for instance, this calculation gives a much

longer time than the length of the observational record

(156 yr). This suggests that, according to this model, in

the 156-yr-long record all points are highly correlated.

Overall, we find that, despite the very different time scales

that are relevant for the AR(1) and FD characteriza-

tions of internal variability, the GHG signal detection

statistics are robust for both models.

One interesting question that can be explored using our

results is how wrong one would have to get the model

parameters of the internal variability in order to change

the detection statement of the greenhouse gas signal. In

the case of the AR(1) model, we find that the greenhouse

gas signal would become not statistically significant in a

world in which higher values of a1 and/or a0 were needed

to describe internal variability. In Fig. 2 (top), we see that,

to loose statistical significance, one would have to in-

crease the time correlation characterized by a1 to more

than 0.8 or triple the white noise parameter a0.

Thus, the detection statistics for the AR(1) model are

very sensitive to the memory parameter and relatively

less sensitive to the amount of white noise in the process.

Thus, in terms of the global mean temperature internal

variability as simulated by GCMs, our findings suggest

that the relevant aspect that should be taken into ac-

count in a robustness test should be the models’ ability

to capture correctly the temporal correlations more than

the total variance, which is in turn conditioned by their

ability to capture themost relevant dynamical processes,

their couplings, and feedback mechanisms.

For the FD process, we find a different result. In Fig. 2

(bottom), we can see that, for the estimated se, there is

no d for which the process has a greenhouse gas scaling

factor that is not statistically significant. Thus, this sug-

gests that the greenhouse gases detection results are

robust under changes in the memory parameter. In fact,

for very high values of d, one would still need to double

the amplitude of the white noise to change the detection

statistics. Results in the appendix suggest that, with

a longer observational record, we would have estimated

a smaller d, but also that the estimated white noise

amplitude would not increase significantly. This suggests

that if the observed record is relatively short to accu-

rately characterize the memory in the FD model, the

detection of the greenhouse gas signal would still be

robust when the length of the record increases. In terms

of the global mean temperature simulated by GCMs,

our results using an FDmodel suggest that the emphasis

should be placed on accurately depicting the amplitude

of the white noise in order to be confident about the

detection and attribution statistics.

In conclusion, our results suggests that, in the pre-

sumably more realistic case in which the internal

variability of the global mean temperature is best char-

acterized by a process whose temporal structure lies

somewhere in between that of an AR(1) and an FD

process, both its temporal correlation structure and the

white noise amplitude are important for assessing the

robustness of the signals.

To close this section, we include a brief discussion

about the robustness of the detection results to the

inclusion of the last 7 yr of observations (up until 2012)

and the potential effect of the collinearity of the green-

house gas and sulfates temperature responses. We used

the HadCRUT4 dataset to include the last 7 yr of data

in Tobs. Differences between the HadCRUT3 global

mean temperature time series and the median of the

HadCRUT4 global mean temperature time series re-

sult in slightly different values of the scaling parame-

ters (see Table 1). Therefore, in order to ensure that the

results are comparable, we use only HadCRUT4 data

to analyze potential dependencies on the inclusion of
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the more recent observations and to the number of

signals considered.

Figure 3 shows the results of this sensitivity analysis.

We observe that if, instead of SUL andGHG signals, we

only consider a single total ANT signal, the scaling

factors for the latter are smaller than theGHGones (see

Table 1). However, the ANT signal remains detectable

for both characterizations of internal variability. Simi-

larly, when adding the last 7 yr of the observed record,

the GHG and the ANT signals remain detectable for

both noise models, but attribution is lost in the case of

the GHG.

b. CMIP3 control runs

In this section, we use the same techniques as above to

evaluate the control simulations used in the detection

and attribution of climate change included in the Fourth

Assessment Report (AR4) of the Intergovernmental

Panel on Climate Change (IPCC).Our goal is to get some

insight about the controls’ potential limitations to esti-

mate internal variability and how this might impact in the

robustness of the detection and attribution statistics.

We take annual global mean temperature segments

from the CMIP3 control simulations that have the same

length as the observational record, 156 yr, and fit them to

an AR(1) and an FD model. Thus, we characterize each

control by a set of parameters: a1 and a20 when using an

AR(1)model and d and s2
e for the FDmodel. The results

are indicated in Fig. 2 by numbers representing different

GCMs’ control segments (see Table 2). In both cases, the

spread of points is larger than the spread of the Monte

Carlo experiment that characterizes the uncertainty in

the estimation of the parameters of the internal vari-

ability for the observed record. Note that the number of

control segments for each GCM depends on the avail-

able number of years of the control simulation in the

CMIP3 database. We have taken segments of controls

that are fully nonoverlapping and assume that they are

independent realizations. Only in the case of the

HadCM3 andCGCM3models is the number of segments

(identified by numbers 22 and 1, respectively, in both

panels of Fig. 2) large enough to get some intuition about

the uncertainty in the estimate of the parameters for

those particularGCMs’ controls. The spread of the points

corresponding to each of these two models suggests that,

had we had many more control segments, the uncer-

tainty in the estimation of the parameters would have

been given by a cloud of points with a similar spread as

the uncertainty estimate for the parameters correspond-

ing to the observational record (gray cloud), and that

both uncertainty estimates would have had a significant

overlap. However, there are other models for which this

is not the case.

The control segments we are investigating are not

identical to the ones used in the detection and attribution

studies, as their intradecadal variability is typically

smoothed (5-yr means) and segments with drift are dis-

carded (Stone et al. 2007). The argument for smoothing

the temporal variability of the control segments for the

IPCCAR4 is that somemodes of internal variability such

as ENSO (with a 2–7-yr characteristic scale of variability)

are often not properly depicted by all the GCMs, and this

would subsequently introduce errors in the estimate of

the covariance matrix. In addition, control segments with

drifts are discarded attributing the drifts to numerical

errors. In our case, the control segments with a drift

(Stone et al. 2007) are few and correspond to those with

the highest memory parameter values. In the case of the

FD model, these are the segments with d 5 0.5 in Fig. 2

(bottom), and in the case of the AR(1) model, the a1
values are such that they all lie around the contour line for

which the GHG scaling factor is not statistically signifi-

cant (thick blue contour line).

Interestingly, we find in the appendix that there is

a very high correlation between the estimates of a1 and d

and the amplitude of white noise for any given control

segment. From the point of view of our analysis, one

reason for this is that both stochastic models can sepa-

rate the same amount of correlated data from the white

noise, and each model explains the dynamics with a dif-

ferent memory parameter according to the relevant

covariance matrix. As a result, although the underlying

physical assumptions are very different in these two

models, we find that the numerical value of the auto-

correlation function of both models are very similar for

the first 156 yr, as expected.

To finish this section, we analyze the power spectra of

the climate models’ control runs and the observations.

In Fig. 4, we show the power spectra of the CMIP3

models’ control segments and the power spectra of the

residuals from the best fit to Tobs, that is, Tobs 2 b̂T. The

TABLE 1. Scaling factors b obtained from the linear regression

when using HadCRUT4 observations for two time periods (1850–

2005 and 1850–2012), and the forced temperature responses to

VOL, SOL, GHG, and SUL forcings, or to VOL, SOL, and ANT

forcings.

AR(1)

1850–2005

AR(1)

1850–2012

FD

1850–2005

FD

1850–2012

VOL 0.46 0.48 0.51 0.53

SOL 2.26 2.03 1.14 0.99

GHG 0.94 0.71 0.91 0.66

SUL 2.47 1.44 2.04 0.93

VOL 0.54 0.52 0.55 0.53

SOL 0.98 1.24 0.58 0.83

ANT 0.76 0.71 0.81 0.73
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latest residuals are the unexplained fluctuations of the

climate in our model, after removing the temperature

response to the forcings. The figure shows that the power

spectra of the residuals are very similar independently

of whether the internal variability is characterized as an

AR(1) (thick gray line) or an FD process (black line).

Since the power spectrum is the Fourier transform of the

autocorrelation function, finding similar power spectra is

equivalent to finding similar covariance matrices; hence,

this figure is consistent with our previous findings about

the similarity in magnitude of the autocorrelation func-

tions of the fitted internal variability to the 156-yr ob-

served record. It is clear that a much longer time series is

required to appreciate more significant differences in the

variability simulated by the two stochastic models.

We can also analyze the link between the ability of

a GCM to model different modes of internal variability

and the implications for the significance of detection

and attribution. It is clear from Fig. 4 that some control

segments display peaks corresponding to the ENSO sig-

nal with unrealistic high amplitudes, as shown by the high

power at the 2–5-yr frequency range. However, Fig. 2

shows that most of these control segments fall in the area

of the plots that correspond to a significant greenhouse

gas signal. Consistentlywith the findings inAllen andTett

(1999), this analysis suggests that an accurate depiction of

all modes of internal variability might not be required to

ensure the robustness of the detection statistics under our

detection model.

Finally, our analysis points toward the need to de-

velop a wider range of techniques to assess the robust-

ness of detection and attribution of climate change. The

‘‘consistency test’’ described in Allen and Tett (1999) is

equivalent to look at the power spectra of GCM runs

FIG. 3. The 95% confidence intervals of the scaling factors bi derived from the multiregression of observed tem-

perature changes onto the BDM estimates of the forced responses to the signals (top) VOL, SOL, and ANT and

(bottom)VOL, SOL,GHG, and SUL. The internal variability is represented by anAR(1)model (gray line) or an FD

model (black line) for (left) the period 1850–2005 and (right) the period 1850–2012 using HadCRUT4.
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and compare their (typically) decadal internal variabil-

ity with the decadal internal variability retained in the

residuals of the fit to the observed record. The aim of

this test is mainly to discard the possibility of over-

attributing climate change to the anthropogenic signal

only because climate models underrepresent decadal

variability. However, studying just the amplitude (or

power) of internal variability in Fig. 4 does not give us

information about all the possible impacts that a model

imperfection might have on the detection and attribution

statistics. Thus, there is a need to develop techniques that

provide a way to evaluate the impact of specific modes

of variability and their interactions, and not just their

amplitude, on the detection and attribution of climate

change. Many interesting studies have been developed

recently (e.g., DelSole et al. 2011), but more work is

needed. One advantage of our method is that it does not

require the depiction of modes of internal variability ac-

curately, but instead, we can test different assumptions

and hypotheses about the internal variability structure by

assuming that it can be represented by different physi-

cally plausible stochastic models. The generalization of

this approach taking into account spatial patterns of

variability is work in progress.

4. Conclusions

The IPCC very likely statement that anthropogenic

emissions are affecting the climate system is based on

the statistical detection and attribution methodology,

TABLE 2. CMIP3 general circulation models used partly on the IPCC AR4. The order on the table is the same as the numbering in

Figs. A1 and A2.

Model Full model name Institute

CGCM3 Canadian Centre for Climate Modelling and Analysis

(CCCma) Coupled Global Climate Model, version 3

CCCma, Canada

CGCM3.1(T63) CCCma Coupled Global Climate Model, version 3.1

(T63 spatial resolution)

CCCma, Canada

CNRM-CM3 Centre National de Recherches M�et�eorologiques

(CNRM) Coupled Global Climate Model, version 3

M�et�eo-France/Centre National de Recherches

M�et�eorologiques (CNRM), France

CSIRO-Mk3.0 Commonwealth Scientific and Industrial Research

Organisation (CSIRO), Mark 3.0

CSIRO Atmospheric Research, Australia

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory (GFDL)

Climate Model, version 2.0

U.S. Department of Commerce/National Oceanic

and Atmospheric Administration

(NOAA)/GFDL, United States

GFDL-CM2.1 GFDL Climate Model, version 2.1 U.S. Department of Commerce/NOAA/GFDL,

United States

GISS-AOM Goddard Institute for Space Studies (GISS)

Atmosphere–Ocean Model

GISS, United States

GISS-AOM

GISS-EH GISS Model EH GISS, United States

GISS-ER GISS ER GISS, United States

FGOALS-g1.0 Flexible Global Ocean–Atmosphere–Land System

Model gridpoint, version 1.0

LASG/Institute of Atmospheric Physics, China

FGOALS-g1.0

FGOALS-g1.0

INM-CM3.0 Institute of Numerical Mathematics (INM) Coupled

Model, version 3.0

INM, Russia

IPSL-CM4 L’Institut Pierre-Simon Laplace (IPSL) Coupled

Model, version 4

IPSL, France

MIROC3.2(hires) Model for Interdisciplinary Research on Climate 3.2,

high-resolution version

Center for Climate System Research (University

of Tokyo), NIES, and Frontier Research Center

for Global Change (JAMSTEC), Japan

ECHO-G ECHAM and the global Hamburg Ocean Primitive

Equation

Meteorological Institute of the University of Bonn,

Germany; Meteorological Research Institute of

KMA, South Korea; and Model and Data Group

ECHAM5/MPI-OM ECHAM5/Max Planck Institute Ocean Model Max Planck Institute for Meteorology, Germany

MRI-CGCM2.3 Meteorological Research Institute (MRI)

Coupled Global Climate Model, version 2.3

MRI, Japan

CCSM3 Community Climate System Model, version 3 National Center for Atmospheric Research (NCAR),

United States

PCM1 Parallel Climate Model 1 NCAR, United States

UKMO-HadCM3 Met Office Hadley Centre Coupled Model, version 3 Met Office Hadley Centre, United Kingdom
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which in turn is strongly dependent on the character-

ization of internal climate variability as simulated by

GCMs.

The understanding of the internal climate variability

has been identified as one of the hardest geophysical

problems of the twenty-first century (e.g., Ghil 2001).

One of the barriers we face to advance our understanding

is the lack of long enough reliable observational records.

We are then left with the problem of having to charac-

terize internal natural variability with a relatively short

observational record that is in fact contaminated by nat-

ural and anthropogenic forcings. The alternative to that is

to use control simulations of GCMs, with the limitations

in this case imposed by the fact that many aspects of the

internal variability are poorly represented by the climate

models (Newman et al. 2009; DelSole and Shukla 2010;

Klein et al. 1999). The way in which these inaccuracies

might bias the statistical significance of the detection and

attribution results is hard to identify.

In this paper, we test the robustness of the detection

and attribution statements in the case of global mean

surface air temperature, under different representations

of such variability. We use two different physically plau-

sible stochastic models to represent the internal climate

variability and investigate the impact of these choices

on the significance of the scaling factors in the detection

and attribution approach. The two simple stochastic

models are chosen to span a wide range of plausible

temporal autocorrelation structures and include the short-

memory first-order autoregressive [AR(1)] process and

the long-memory fractionally differencing (FD) pro-

cess. We find that, independently of the representation

chosen, the greenhouse gas signal remains statistically

significant under the detection model employed in this

paper. Thus, our results support the robustness of the

IPCC detection and attribution statement for global

mean temperature change.

Our results also emphasize the need to apply a wider

variety of test to assess the robustness of detection and

attribution statistics. Previous studies carried out a

‘‘residual consistency test,’’ which is used to assess the

GCMs’ simulated variability on the scales that are re-

tained in the analysis (Allen and Tett 1999), and tests

involving doubling the amplitude of the simulated vari-

ability (Tett et al. 1999). However, in the past, variations

in the correlation (and hence the memory) of the data

have not been taking into account in the sensitivity tests.

In the context of our study, the residual consistency

test mentioned above is equivalent to exploring the

sensitivity of the detection of the greenhouse gas sig-

nal to variations in the amplitude of the white noise

(i.e., shifts on the horizontal direction only in both the

top and bottom panels of Fig. 2). We see that for the

AR(1) process, this consistency test is not very helpful,

and a more appropriate robustness test should include

constraining the values of the correlation parameter.

For an FD process, however, the consistency test ade-

quately explores the robustness of the results, as vary-

ing the amplitude of the white noise can change their

significance.

We conclude by emphasizing that in this study, head-

line attribution conclusions for GHG and total anthro-

pogenic forcings were found to be insensitive to the

choice between two representations of internal variability

that were deliberately chosen to span a broad range of

behaviors. Nevertheless, we did find that the significance

of detection results were affected by the choice of a short-

memory versus a long-memory process, indicating a need

for checks on not only the variance but also the auto-

correlation properties of internal variability when de-

tection and attribution methods are applied to other

variables and regional indices.
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FIG. 4. Spectra from the individual GCM control simulations

(gray), and the spectra of the residuals of the linear fit to Tobs:

Tobs 2 b̂T, when the internal variability is modeled as an AR(1)

(thick gray line) and an FD (black line) process. We use a loga-

rithmic scale in the horizontal axis (period) and the vertical axis

(spectral density).
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APPENDIX

Estimating the Stochastic Parameters

We use a HadCM3 control simulation of 1000 yr to

assess how the uncertainty of the stochastic parameters

depends on the length of the segment, and we refer to

this as a finite size effect. We estimate the stochastic

parameters from the same control simulation, but in-

crease its length by 20 yr in each step, starting from 99 yr.

We do this for both stochastic models considered in this

paper, the AR(1) and FD models. In Figs. A1 and A2,

the horizontal axis shows the length of the segment and

the vertical axis shows the estimated parameter. Figure

A1 shows the result for the AR(1) model; in this case,

the estimated a1 oscillates around a fixed value from the

beginning. Figure A2 shows the results for the FDmodel;

in this case, d decreases its value until the segment is

reaching a length of 300 yr. Given that the observed re-

cord is of 156 yr and that the best estimate of the white

noise amplitude is larger than what we found for the long

HadCM3 control run, we can expect an overestimation of

FIG. A1. AR(1) results of estimating (top) a1 and (bottom) a20 as a function of the length of the

control segment sampled from the 1000-yr-long HadCM3 control run.

FIG. A2. FD results of estimating (top) d and (bottom) se as a function of the length of the

control segment sampled from the 1000-yr-long HadCM3 control run.
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the d parameter in the observed 156 yr. Thus, we expect

that the 10% probability of d being such that d. 0.5 for

the Monte Carlo estimation of uncertainty would de-

crease if we had a longer record.

We also investigated the correlation between the

memory parameters and the white noise parameters

when fitting an AR(1) and an FD stochastic model to

the CMIP3 control segments. Figure A3 (top) shows a

very high correlation between a1 and d; each color rep-

resents a different GCM. Figure A3 (bottom) shows a

very high correlation between a20 and se.
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