H. Paul Williams and J. N. Hooker Integer programming as projection

Management Science Group Working paper

Original citation:

Williams, H. Paul and Hooker, J. N. (2014) Integer programming as projection. Working Paper, LSEOR 13.143. Management Science Group, Department of Management, The London School of Economics and Political Science, London, UK.

Originally available from London School of Economics and Political Science
This version available at: http://eprints.Ise.ac.uk/55426/
Available in LSE Research Online: January 2014
© 2014 The London School of Economics and Political Science
LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.Ise.ac.uk) of the LSE Research Online website.

Integer Programming as Projection

H. P. Williams
London School of Economics
H.P.Williams@lse.ac.uk

J. N. Hooker
Carnegie Mellon University
jh38@andrew.cmu.edu

January 2014

Abstract

We generalise polyhedral projection (Fourier-Motzkin elimination) to integer programming (IP) and derive from this an alternative perspective on IP that parallels the classical theory. We first observe that projection of an IP yields an IP augmented with linear congruence relations and finite-domain variables, which we term a generalised $I P$. The projection algorithm can be converted to a branch-and-bound algorithm for generalised IP in which the search tree has bounded depth (as opposed to conventional branching, in which there is no bound). It also leads to valid inequalities that are analogous to Chvátal-Gomory cuts but are derived from congruences rather than rounding, and whose rank is bounded by the number of variables. Finally, projection provides an alternative approach to IP duality. It yields a value function that consists of nested roundings as in the classical case, but in which ordinary rounding is replaced by rounding to the nearest multiple of an appropriate modulus, and the depth of nesting is again bounded by the number of variables.

First published in Great Britain in 2014
by the Management Science Group, Department of Management London School of Economics and Political Science
Copyright © The London School of Economics and Political Science, 2014 The contributors have asserted their moral rights.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior permission in writing of the publisher, nor be circulated in any form of binding or cover other than that in which it is published.
Working Paper No: LSEOR 13.143

Integer Programming as Projection

H. P. Williams
London School of Economics
H.P.Williams@lse.ac.uk

J. N. Hooker
Carnegie Mellon University
jh38@andrew.cmu.edu

January 2014

Abstract

We generalise polyhedral projection (Fourier-Motzkin elimination) to integer programming (IP) and derive from this an alternative perspective on IP that parallels the classical theory. We first observe that projection of an IP yields an IP augmented with linear congruence relations and finite-domain variables, which we term a generalised $I P$. The projection algorithm can be converted to a branch-and-bound algorithm for generalised IP in which the search tree has bounded depth (as opposed to conventional branching, in which there is no bound). It also leads to valid inequalities that are analogous to Chvátal-Gomory cuts but are derived from congruences rather than rounding, and whose rank is bounded by the number of variables. Finally, projection provides an alternative approach to IP duality. It yields a value function that consists of nested roundings as in the classical case, but in which ordinary rounding is replaced by rounding to the nearest multiple of an appropriate modulus, and the depth of nesting is again bounded by the number of variables.

1 Introduction

We propose an alternative perspective on integer programming that is based on projection. It begins with the observation that the projection of an integer programming (IP) problem is not an IP problem. More precisely, the projection of an IP problem's feasible set onto a subset of variables is not the feasible set of an IP. It is the feasible set of a system of linear integer inequalities and congruence relations, where the congruence relations define a sublattice of the integer lattice. This suggests that an IP problem can be viewed more generally as an inequality constrained problem over a sublattice of the integer lattice, rather than exclusively over the entire integer lattice as in conventional IP. We will call this a generalised IP problem.

The projection problem for generalised IP can be solved by introducing integer auxiliary variables with finite domains, and taking advantage of a generalised Chinese Remainder Theorem. The auxiliary variables are not, generally, the same as slack/surplus variables.

By projecting out all the original variables, the optimization problem can be transformed to one that minimises over a system of congruence relations that involve only the auxiliary variables. A problem of optimising over possibly infinite domains is therefore transformed to one of optimising over finite domains.

This perspective leads to an alternative theory of cutting planes, branching algorithms, and IP duality. The projection algorithm yields valid inequalities that are analogous to Chvátal-Gomory cuts, except that they are derived from congruences rather than rounding, and their rank is bounded by the number of variables. This contrasts with the classical classical Chvátal rank, which has no bound related only to the number of variables [4]. In addition, the projection algorithm can be converted to a branching algorithm that branches on integer auxiliary variables rather than the original integer variables, and in which the possible branches are defined by congruence relations. The depth of the tree is again bounded by the number of variables, whereas a conventional branching tree has unbounded depth. Finally, by applying the projection algorithm to an IP problem with general righthand sides, one can obtain a value function that is analogous to a Chvátal function [1] in that it contains nesting rounding operations. However, rather than rounding to the nearest integer, one rounds to the nearest multiple of an appropriate modulus. Unlike a Chvátal function, the depth of nesting (which is analogous to cutting plane rank) is bounded by the number of variables, and the function can be obtained by one pass through the model.

We begin with a brief review of projection and duality in linear programming (LP), to clarify how it is generalised for the IP case. We then show by example how to project a generalised IP and prove the correctness of the projection method. We also interpret the projection method as generating cuts analogous to Chvátal-Gomory cuts. We then modify the projection method to produce a branching method that is easily augmented to a branch-and-cut method by solving relaxations. Finally, we show how to construct a value function and prove its correctness.

2 LP Projection

A polyhedron can be projected onto a subspace using Fourier-Motzkin elimination [2, 6]. We will suppose the polyhedron is described by the constraint set of an LP in the following form, where A is an $m \times n$ integral matrix and b is integral:

$$
\begin{align*}
\min & z \\
\text { subject to } & -c x \geq-z \\
& A x \geq b \tag{1}\\
& x \in \mathbb{R}^{n}
\end{align*}
$$

We assume that any nonnegativity constraints on the variables are represented in the above constraints. Fourier-Motzkin elimination relies on the following elementary lemma, which we prove to allow comparison with a parallel result (Theorem 3) that we will prove for IP projection.

Lemma 1 Suppose $a_{i j}, a_{k j}>0$ for all $i \in I, k \in K$. Then
(a) There exists $x_{j} \in \mathbb{R}$ such that $a_{i j} x_{j} \geq f_{i}$ and $-a_{k j} x_{j} \geq g_{k}$ for all $i \in I, k \in K$ if and only if
(b) $a_{k j} f_{i}+a_{i j} g_{k} \leq 0$ for all $i \in I, k \in K$.

Proof. (a) \Rightarrow (b). This is obtained by taking a linear combination of each pair of inequalities $a_{i j} x_{i} \geq f_{i},-a_{k j} x_{i} \geq g_{k}$, using multipliers $1 / a_{i j}$ and $1 / a_{k j}$, respectively.
(a) $\Leftarrow(\mathrm{b})$. The inequalities in (a) can be written $f_{i} / a_{i j} \leq x_{j} \leq-g_{k} / a_{k j}$ for all i, k. But from (b) we have that $f_{i} / a_{i j} \leq-g_{k} / a_{k j}$ for all i, k. We can therefore let $x_{j}=\max _{i}\left\{f_{i} / a_{i j}\right\}$ (or $\min _{k}\left\{-g_{k} / a_{k j}\right\}$), and the inequalities in (a) are satisfied.

The lemma implies that any variable x_{j} can be eliminated from (1) by removing each pair of inequalities that have the form $a_{i j} x_{j} \geq f_{i},-a_{k j} x_{j} \geq g_{k}$ with $a_{i j}, a_{k j}>0$, and replacing each pair with the inequality $a_{k j} f_{i}+a_{i j} g_{k} \leq 0$. The variables x_{j} can be successively eliminated, in any order, until the constraints of (1) are replaced by inequalities of the form $z \geq \ell$. The minimum value of z can be immediately read from these. It can be shown $[3,7]$ that after the elimination of r variables, any resulting inequality that depends on more than $r+1$ of the original inequalities is redundant (implied by the other inequalities).

Note that projecting out any subset of variables from an LP results in another LP. We will see that an analogous property does not hold for integer programming. In general, projecting out variables from an IP results in a disjunction of IPs.

We can illustrate projection with a small example (Fig.1).

$$
\begin{array}{rll}
\min & z & \\
\text { subject to } & -x_{2} \geq-z & \text { C0 } \\
& 2 x_{1}+x_{2} \geq 13 & \text { C1 } \tag{2}\\
& -5 x_{1}-2 x_{2} \geq-30 & \text { C2 } \\
& -x_{1}+x_{2} \geq 5 & \text { C3 } \\
& x_{1}, x_{2} \in \mathbb{R} &
\end{array}
$$

The optimal solution is $\left(x_{1}, x_{2}, z\right)=\left(2 \frac{2}{3}, 7 \frac{2}{3}, 7 \frac{2}{3}\right)$, with binding constraints C1 and C3. Eliminating x_{1} yields $z \geq x_{2}, x_{2} \geq 5$, and $x_{2} \geq 7 \frac{2}{3}$. Eliminating x_{2} from this yields $z \geq 5$ and $z \geq 7 \frac{2}{3}$. This confirms the optimal value $7 \frac{2}{3}$.

Suppose now that we perturb the right-hand sides of (2) as follows:

$$
\begin{array}{ll}
\min z & \mathrm{C} 0 \\
-x_{2} \geq-z & \mathrm{C} 1_{\Delta} \\
2 x_{1}+x_{2} \geq 13+\Delta_{1} & \mathrm{C} 2_{\Delta} \\
-5 x_{1}-2 x_{2} \geq-30+\Delta_{2} & \mathrm{C} 3_{\Delta} \tag{3}\\
-x_{1}+x_{2} \geq 5+\Delta_{3} &
\end{array}
$$

Figure 1: Illustration of a linear (integer) programming problem. Black dots are integer feasible solutions, with $\left(x_{1}, x_{2}\right)=(2,9)$ optimal. The small open circle is the optimal solution of the LP.

We can perform the same projection operations while carrying through the perturbations. This yields $z \geq 5+5 \Delta_{1}+2 \Delta_{2}$ and $z \geq 7 \frac{2}{3}+\frac{1}{3} \Delta_{1}+\frac{10}{3} \Delta_{3}$. From this we can write a value function

$$
v\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)=\max \left\{5+5 \Delta_{1}+2 \Delta_{2}, 7 \frac{2}{3}+\frac{1}{3} \Delta_{1}+\frac{2}{3} \Delta_{3}\right\}
$$

that gives the optimal value as a function of the perturbations. The coefficient of each Δ_{i} in the larger argument of the max when $\Delta_{1}=\Delta_{2}=\Delta_{3}=0$ is a dual multiplier corresponding to constraint i. Because the second term is larger when the $\Delta=0$, the dual multipliers are $\left(\frac{1}{3}, 0, \frac{2}{3}\right)$. They can be interpreted as marginal costs or shadow prices.

3 IP Projection

In analogy with the LP case, we consider an IP in the following form:

$$
\begin{align*}
\min & z \\
\text { subject to } & -c x \geq-z \\
& A x \geq b \tag{4}\\
& x \in \mathbb{Z}^{n}
\end{align*}
$$

A generalised IP can be written

$$
\begin{align*}
\min & z \\
\text { subject to } & -c x-h u \geq-z \\
& A x+B u \geq b \\
& r^{i} x+s^{i} u \equiv \rho_{i}\left(\bmod m_{i}\right), i \in I \tag{5}\\
& x \in \mathbb{Z}^{n} \\
& u_{j} \in D_{j} \subset \mathbb{Z}_{\geq 0}, j=1, \ldots, p
\end{align*}
$$

where $u=\left(u_{1}, \ldots, u_{p}\right)$ are auxiliary variables restricted to finite domains D_{1}, \ldots, D_{p}.
When projecting out an integer variable x_{j}, we can no longer infer $f_{i} / a_{i j} \leq x_{j} \leq-g_{k} / a_{k j}$ as in the proof of Lemma 1. However, we can project out integer variables by strengthening the resultant inequalities. The idea can be illustrated using the example (2) with integer variables x_{1}, x_{2}. This is a classical IP with no congruence relations, but we will see that the same method applies to generalised IPs.

Step 1. We first project out x_{1}. We obtain the following from the constraint pairs shown:

$$
\begin{align*}
5\left(-x_{2}+13\right) & \leq 5 \cdot 2 x_{1} \leq 2\left(-2 x_{2}+30\right) & & \text { from C1,C2 } \\
-x_{2}+13 & \leq 2 x_{1} \leq 2\left(x_{2}-5\right) & & \text { from C1,C3 } \tag{6}
\end{align*}
$$

Because the middle term of the first line is divisible by $5 \cdot 2$, we can increase the term $-x_{2}+13$ on the left to the nearest multiple of 2 (unless it is already a multiple of 2) without violating the inequality. We do this by introducing an integer auxiliary variable $u_{1} \in\{0,1\}$. This yields the system on the left below, which implies the system on the right:

$$
\begin{aligned}
& 5\left(-x_{2}+13+u_{1}\right) \leq 5 \cdot 2 x_{1} \leq 2\left(-2 x_{2}+30\right) \quad \Rightarrow \quad x_{2} \geq 5+5 u_{1} \\
& -x_{2}+13+u_{1} \equiv 0(\bmod 2), u_{1} \in\{0,1\}
\end{aligned} \quad x_{2} \equiv u_{1}+1(\bmod 2), u_{1} \in\{0,1\}
$$

The congruence relation $-x_{2}+13+u_{1} \equiv 0(\bmod 2)$ reflects the fact that $-x_{2}+13+u_{1}$ is a multiple of 2 . (We could have just as well introduced a surplus variable on the right.) We similarly strengthen the second line of (6) to obtain:

$$
\begin{aligned}
& -x_{2}+13+u_{1} \leq 2 x_{1} \leq 2\left(x_{2}-5\right) \\
& -x_{2}+13+u_{1} \equiv 0(\bmod 2), \quad u_{1} \in\{0,1\}
\end{aligned} \quad \Rightarrow \quad 3 x_{2} \geq 23+u_{1}, ~ l l o u_{2} \equiv u_{1}+1(\bmod 2), u_{1} \in\{0,1\}
$$

Putting these together, we have the projected system

$$
\begin{array}{ll}
-x_{2} \geq-z & \mathrm{C} 0 \\
x_{2} \geq 5+5 u_{1} & \mathrm{C} 12 \\
3 x_{2} \geq 23+u_{1} & \mathrm{C} 13 \tag{7}\\
x_{2} \equiv u_{1}+1(\bmod 2), u_{1} \in\{0,1\} &
\end{array}
$$

Step 2. We now wish to project out x_{2} from the system (7). The system is now a generalised IP with a congruence relation, which requires an extension of the above idea. We first obtain the following by pairing inequalities, as before:

$$
\begin{array}{ll}
5+5 u_{1} \leq x_{2} \leq z & \text { from C0, C12 } \\
23+u_{1} \leq 3 x_{2} \leq 3 z & \text { from C0, C13 } \tag{8}
\end{array}
$$

Because $x_{2} \equiv u_{1}+1(\bmod 2)$, we can increase the left-hand term in the first line until it is congruent to $u_{1}+1(\bmod 2)$. Introducing an auxiliary variable u_{12}, we obtain the system on the left below:

$$
\begin{aligned}
& 5+5 u_{1}+u_{12} \leq x_{2} \leq z \\
& 5+5 u_{1}+u_{12} \equiv u_{1}+1(\bmod 2), u_{12} \in\{0,1\}
\end{aligned} \quad \Rightarrow \quad z \geq 5+5 u_{1}+u_{12}, ~=\quad u_{12} \equiv 0 \bmod 2, u_{12} \in\{0,1\}
$$

It is clearly desirable that only one congruence in the system (7) contain x_{2}, so that we can use this kind of reasoning. We indicate below how this can be achieved in general. The second line of (8) gives

$$
\begin{aligned}
& 23+u_{1}+u_{13} \leq 3 x_{2} \leq 3 z \\
& 23+u_{1}+u_{13} \equiv 3 u_{1}+3(\bmod 6)
\end{aligned} \quad \Rightarrow \quad z \geq \frac{1}{3}\left(23+u_{1}+u_{13}\right)
$$

Note that u_{12} can be fixed to zero and dropped from the problem. We therefore have the projected system

$$
\begin{align*}
& z \geq 5+5 u_{1} \\
& z \geq \frac{1}{3}\left(23+u_{1}+u_{13}\right) \tag{9}\\
& 4 u_{1}+u_{13} \equiv 4(\bmod 6), u_{1} \in\{0,1\}, u_{13} \in\{0, \ldots, 5\}
\end{align*}
$$

Step 3. We have reduced the original IP to the problem of minimising z subject to a system (9) of inequalities and congruences that involve only z and the auxiliary variables u_{1}, u_{13}. We can solve the problem, in principle, by enumerating solutions of the congruence in (9), and taking note of the minimum value of z in each. The two solutions are listed in Table 1, where the tightest bound on z in each scenario is shown in boldface. The minimum of these is the optimal value of z, namely $z=9$, corresponding to $\left(u_{1}, u_{13}\right)=(0,4)$. Since the bound of 9 comes from C0 and C13, we have $23+u_{1}+u_{13}=3 x_{2}$ from C13, or $x_{2}=9$. Since C13 comes from C1 and C3, we have $5\left(-x_{2}+13+u_{1}\right)=5 \cdot 2 x_{1}$ from C1, or $x_{1}=2$. The optimal solution is therefore $\left(x_{1}, x_{2}, z\right)=(2,9,9)$.

Table 1: Solution of the projected system.

u_{1}	u_{13}	$5+5 u_{1}$	$\frac{1}{3}\left(23+u_{1}+u_{13}\right)$
0	4	5	$\mathbf{9}$
1	0	$\mathbf{1 0}$	8

When the variable x_{j} to be projected out occurs in several congruences, we wish to replace the congruences with an equivalent single congruence containing x_{j}. This can be accomplished as follows using a generalised Chinese Remainder Theorem (GCRT). Without loss of generality, we suppose the congruences have the form $\alpha x_{j} \equiv d_{s}\left(\bmod m_{s}\right)$ for $s \in S$. The GCRT can then be stated as follows.

Theorem 2 (Generalised Chinese Remainder) Consider a system of congruences $\mathcal{C}=\left\{\alpha x_{j} \equiv d_{s}\left(\bmod m_{s}\right) \mid s \in S\right\}$, and let $M=l c m\left\{m_{s} \mid s \in S\right\}$ and $m_{s}^{\prime}=M / m_{s}$. Then we have: (i) $d_{s} \equiv d_{t}\left(\bmod \operatorname{gcd}\left(m_{s}, m_{t}\right)\right)$ for all $s, t \in S$, (ii) there is a set of integers λ_{s} satisfying $\sum_{s} \lambda_{s} m_{s}^{\prime}=1$, and (iii) integer x_{j} solves \mathcal{C} if and only if it solves

$$
\begin{equation*}
\alpha x_{j} \equiv \sum_{s \in S} \lambda_{s} m_{s}^{\prime} d_{s}(\bmod M) \tag{10}
\end{equation*}
$$

The multipliers λ_{s} can be obtained using the well-known Euclidean algorithm.
Proof. Claim (i) can be obtained by subtracting the congruences of \mathcal{C} in pairs. Claim (ii) is a well-known consequence of the Euclidean algorithhm. To show (iii), suppose first that integer x_{j} satisfies the congruences in \mathcal{C}. Taking a linear combination of the congruences in \mathcal{C} with multipliers $\lambda_{s} m_{s}^{\prime}$, we obtain (10). Conversely, suppose x_{j} satisfies (10). Because $d_{s} \equiv d_{t}\left(\bmod \operatorname{gcd}\left(m_{s}, m_{t}\right)\right)$ for all $s, t \in S$, we have

$$
\sum_{s \in S} \lambda_{s} m_{s}^{\prime} d_{s} \equiv \sum_{s} \lambda_{s} m_{s}^{\prime} d_{t}\left(\bmod \underset{s \in S}{\operatorname{gcd}}\left\{\lambda_{s} m_{s}^{\prime} \operatorname{gcd}\left(m_{s}, m_{t}\right)\right\}\right)
$$

for any $t \in S$, which implies

$$
\begin{equation*}
\sum_{s \in S} \lambda_{s} m_{s}^{\prime} d_{s} \equiv \sum_{s} \lambda_{s} m_{s}^{\prime} d_{t}\left(\bmod \underset{s \in S}{\operatorname{gcd}}\left\{m_{s}^{\prime} \operatorname{gcd}\left(m_{s}, m_{t}\right)\right\}\right) \tag{11}
\end{equation*}
$$

But $\operatorname{gcd}_{s \in S}\left\{m_{s}^{\prime} \operatorname{gcd}\left(m_{s}, m_{t}\right)\right\}=m_{t}$ because $m_{s}^{\prime}=M / m_{s}$. Given this and (ii), (11) simplifies to

$$
\begin{equation*}
\sum_{s \in S} \lambda_{s} m_{s}^{\prime} d_{s} \equiv d_{t}\left(\bmod m_{t}\right) \tag{12}
\end{equation*}
$$

Also (10) implies

$$
\alpha x_{j} \equiv \sum_{s \in S} \lambda_{s} m_{s}^{\prime} d_{s}\left(\bmod m_{t}\right)
$$

which, together with (12), implies $\alpha x_{j} \equiv d_{t}\left(\bmod m_{t}\right)$. Since $t \in S$ is arbitrary, x_{j} satisfies the congruences in \mathcal{C}.

The general projection method relies on the following theorem.

Theorem 3 Suppose $a_{i j}, a_{k j}>0$ for all $i \in I, k \in K$. Then
(a) There exists $x_{j} \in \mathbb{Z}$ such that $a_{i j} x_{j} \geq f_{i}$ and $-a_{k j} x_{j} \geq g_{k}$ for all $i \in I, k \in K$, and such that $\alpha x_{j} \equiv d(\bmod m)$,
if and only if
(b) $d \equiv 0(\bmod \beta)$, where $\beta=\operatorname{gcd}(\alpha, m)$; there exist $\lambda_{\alpha}, \lambda_{m} \in \mathbb{Z}$ satisfying $\lambda_{\alpha} m+\lambda_{m} \alpha=\beta$; and there exists $u_{i} \in\left\{0,1, \ldots, a_{i j} m / \beta-1\right\}$ such that $a_{k j}\left(f_{i}+u_{i}\right)+a_{i j} g_{k} \leq 0$ for all $i \in I, k \in K$, and $f_{i}+u_{i} \equiv \lambda_{m} a_{i j} d / \beta\left(\bmod a_{i j} m / \beta\right)$ for all $i \in I$.

Proof. (a) $\Rightarrow(\mathrm{b})$. We can write the inequalities in (a) as

$$
\begin{equation*}
a_{k j} \alpha f_{i} \leq a_{i j} a_{k j} \alpha x_{j} \leq-a_{i j} \alpha g_{k} \tag{13}
\end{equation*}
$$

for all i, k. From the congruence in (a), $a_{i j} a_{k j} \alpha x_{j} \equiv a_{i j} a_{k j} d\left(\bmod a_{i j} a_{k j} m\right)$. Thus if we let $y=a_{i j} a_{k j} \alpha x_{j}$, we obtain $y \equiv 0\left(\bmod a_{i j} a_{k j} \alpha\right)$ and $y \equiv a_{i j} a_{k j} d\left(\bmod a_{i j} a_{k j} m\right)$. Applying part (i) of the GCRT to these two congruences, we get $d \equiv 0(\bmod \beta)$. From part (ii), there are integers $\lambda_{\alpha}, \lambda_{s}$ for which $\lambda_{\alpha} \operatorname{lcm}(\alpha, m) / \alpha+\lambda_{m} \operatorname{lcm}(\alpha, m) / m=1$. Since $\operatorname{lcm}(\alpha, m) / m=\alpha / \beta$, this is equivalent to $\lambda_{\alpha} m+\lambda_{m} \alpha=\beta$, as claimed in (b). From part (iii), we have $y \equiv \lambda_{m} a_{i j} a_{k j} \operatorname{lcm}(\alpha, m) d / m\left(\bmod a_{i j} a_{k j} \operatorname{lcm}(\alpha, m)\right)$, which implies the congruence $y \equiv \lambda_{m} a_{i j} a_{k j} \alpha d / \beta\left(\bmod a_{i j} a_{k j} \operatorname{lcm}(\alpha, m)\right)$, again because $\operatorname{lcm}(\alpha, m) / m=\alpha / \beta$. So from (13) we have

$$
\begin{equation*}
a_{k j} \alpha f_{i}-\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \leq \gamma \leq-a_{i j} \alpha g_{k}-\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \tag{14}
\end{equation*}
$$

where γ is an integer multiple of $a_{i j} a_{k j} \operatorname{lcm}(\alpha, m)$. Since $d \equiv 0(\bmod \beta), \beta$ divides d, and the leftmost expression in (14) is an integer multiple of $a_{k j} \alpha$. So we can add $a_{k j} \alpha u_{i}$ to the left-hand side of (14), and we have

$$
\begin{equation*}
a_{k j} \alpha\left(f_{i}+u_{i}\right) \leq \gamma+\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \leq-a_{i j} \alpha g_{k} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k j} \alpha\left(f_{i}+u_{i}\right)-\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \equiv 0\left(\bmod a_{i j} a_{k j} \operatorname{lcm}(\alpha, m)\right) \tag{16}
\end{equation*}
$$

Inequality (15) implies the inequality in (b). Congruence (16) simplifies to

$$
f_{i}+u_{i}-\lambda_{m} a_{i j} d / \beta \equiv 0\left(\bmod a_{i j} m / \beta\right)
$$

which implies the congruence in (b). We can also restrict u_{i} to $\left\{0,1, \ldots, a_{i j} m / \beta-1\right\}$. For if u_{i} were greater than $a_{i j} m / \beta-1$ then the original inequalities and congruences would still be valid if $a_{i j} m / \beta-1$ were subtraced from u_{i}.
$(\mathrm{a}) \Leftarrow(\mathrm{b})$. The inequalities in (b) can be written

$$
\begin{equation*}
-\frac{g_{k}}{a_{k j}} \geq \frac{f_{i}+u_{i}}{a_{i j}} \tag{17}
\end{equation*}
$$

for all i, k. From (b) we have that $d \equiv 0(\bmod \beta)$, so that d / β is integral. Also from (b),

$$
\begin{equation*}
f_{i}+u_{i} \equiv \lambda_{m} a_{i j} d / \beta\left(\bmod a_{i j} a_{k j} m / \beta\right) \tag{18}
\end{equation*}
$$

Because d / β and m / β are integral, this implies $f_{i}+u_{i}$ is an integer multiple of $a_{i j}$. We can therefore let

$$
\begin{equation*}
x_{j}=\max _{i}\left\{\frac{f_{i}+u_{i}}{a_{i j}}\right\} \tag{19}
\end{equation*}
$$

and x_{j} is integral. This and (17) imply $-g_{k} / a_{k j} \geq x_{j}$, or $-g_{k} \geq a_{k j} x_{j}$. To show $a_{i j} x_{j} \geq f_{i}$, we note that

$$
a_{i j} x_{j} \geq a_{i j} \frac{f_{i}+u_{i}}{a_{i j}} \geq f_{i}
$$

because $u_{i} \geq 0$. Finally, we show $\alpha x_{j} \equiv d(\bmod m)$. From (19), we have that $x_{j}=$ $\left(f_{i}+u_{i}\right) / a_{i j}$ for some i. So (18) implies that $x_{j} \equiv \lambda_{m} d / \beta(\bmod m / \beta)$, and therefore $\alpha x_{j} \equiv \lambda_{m} \alpha d / \beta(\bmod m / \beta)$. This implies the following due to $\lambda_{\alpha} m+\lambda_{m} \alpha=\beta$ in (b):

$$
\alpha x_{j} \equiv\left(d-\lambda_{\alpha} m d / \beta\right)(\bmod m / \beta)
$$

which implies $\alpha x_{j} \equiv d(\bmod m / \beta)$. But this implies $\alpha x_{j} \equiv d(\bmod m)$ because it is given in (b) that β divides d.

We now describe a step of the projection algorithm as it applies to a generalised IP problem. We suppose that the current system $(\mathcal{S}, \mathcal{C})$ consists of a set \mathcal{S} of inequalities and a set \mathcal{C} of congruences in variables z, x_{j}, and u_{i}, and finite domains $u \in D$. We then project out variable x_{j} as follows. We first apply the GCRT to all congruences in \mathcal{C} containing x_{j} to obtain a single congruence that can be written $\alpha x_{j} \equiv d(\bmod m)$. We then consider all pairs of inequalities in \mathcal{S} of the form $a_{i j} x_{i} \geq f_{i}$ and $-a_{k j} x_{j} \geq g_{k}$ for which $a_{i j}, a_{k j}>0$. We introduce an auxiliary variable u_{i} for each i, and for each pair we generate the inequality $a_{k j}\left(f_{i}+u_{i}\right)+a_{i j} g_{k} \leq 0$ along with the congruence $f_{i}+u_{i} \equiv \lambda_{m} a_{i j} d / \beta\left(\bmod a_{i j} m / \beta\right)$ as given in Theorem 3. The multiplier λ_{m} can be obtained by using the Euclidean algorithm to find multipliers $\lambda_{\alpha}, \lambda_{m}$ for which $\lambda_{\alpha} \operatorname{lcm}(\alpha, m) / \alpha+\lambda_{m} \operatorname{lcm}(\alpha, m) / m=1$. Finally, we update the system $(\mathcal{S}, \mathcal{C})$ by removing from \mathcal{S} all inequalities containing x_{j}, adding to \mathcal{S} all generated inequalities, adding to \mathcal{C} all the associated congruence relations, and adding $u_{i} \in\left\{0, \ldots, a_{i j} m / \beta-1\right\}$ to the domains.

To solve a generalised IP problem, we suppose the problem is given in the form $(\mathcal{S}, \mathcal{C})$ with domains $u \in D$, as above. It can be viewed as an optimization problem subject to the inequalities \mathcal{S} in variables x_{j}, over the integer sublattice defined by the congruence relations in \mathcal{C}. In a conventional IP problem, the congruences in \mathcal{C} are simply $x_{j} \equiv 0(\bmod 1)$, which require integrality, and there are no variables u_{i}. We sequentially project out variables x_{1}, \ldots, x_{n}, which yields a system $\left(\mathcal{S}^{\prime}, \mathcal{C}^{\prime}\right)$ in which \mathcal{S}^{\prime} contains only z and variables u_{i}, and \mathcal{C}^{\prime} contains only u_{i} s. The inequalities in \mathcal{S}^{\prime} have the form $z \geq v_{t}(u)$, and the optimal value of the problem is $\min _{u}\left\{\max _{t}\left\{v_{t}(u)\right\} \mid \mathcal{C}, u \in D\right\}$. The original problem is therefore transformed to one in which the variables u_{i} have finite domains.

The above results follow from those of an earlier paper [5], while the results to follow are new.

4 Projection Cuts

Projection supplies the information necessary to derive valid inequalities for IP as it does for LP. Like Chvátal-Gomory cuts, the inequalities can be derived by a linear combination and strengthening operation in which the multipliers are obtained from projection steps. However, the strengthening operation relies on a congruence relation rather than rounding, and the desired congruence relation is likewise obtained from a projection step. We will refer to valid inequalities derived in this fashion as projection cuts.

This can be illustrated by the example (2). In step 1 of the projection, C 1 and C 2 were combined to yield the projection cut C12. This cut can be obtained by a linear combination of these inequalities in which the multipliers (given on the left below) are those used to combine C 1 and C 2 in (6).

$$
\begin{array}{lll}
\text { (2) } & -5 x_{1}-2 x_{2} \geq-30 & \mathrm{C} 2 \tag{5}\\
\hline & x_{2} \geq 5+5 u_{1} & \mathrm{C} 12
\end{array}
$$

Before taking the linear combination, C 1 is strengthened to obtain C^{\prime} using the same integer auxiliary variable u_{1} that was used in computing the projection. The cut is valid when $x_{2} \equiv u_{1}+1(\bmod 2)$ and $u_{1} \in\{0,1\}$, which are the same conditions under which the auxiliary variable was added in the projection step.

Projection cut C13 is similarly derived from step 1 of the projection. Step 2 of the projection yields two projection cuts from which x_{1}, x_{2} have been eliminated. One cut is $z \geq 5+5 u_{1}$, where $u_{1} \in\{0,1\}$, from which we can conclude only that $z \geq 5$. The second is $z \geq \frac{1}{3}\left(23+u_{1}+u_{13}\right)$, where $4 u_{1}+u_{13} \equiv 4(\bmod 6), u_{1} \in\{0,1\}$, and $u_{13} \in\{0, \ldots, 5\}$. Because the congruence relation has two solutions $\left(u_{1}, u_{13}\right)=(0,4),(1,0)$, we can conclude from this cut only that $z \geq 8$.

Thus each cut is associated with a system of congruence relations and a variable domain under which it is valid. The projection algorithm allows one to derive cuts from which all $x_{j} \mathrm{~s}$ have been eliminated. The optimal value of the original problem is the minimum of z subject to these cuts and congruence relations considered simultaneously. In the example, the two bounds on z yield a bound of 9 when $\left(u_{1}, u_{13}\right)=(0,4)$ and 10 when $\left(u_{1}, u_{13}\right)=(1,0)$. The optimal value is therefore 9 .

In general, we can define a projection cut as a nonnegative linear combination of two valid inequalities, one of which is strengthened. To make this precise, we define a concept of rank analogously with Chvátal-Gomory cuts. Let \mathcal{S} be a system of linear inequalities in variables $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$, and let \mathcal{C} be a system of congruences in variables x and $u=\left(u_{1}, \ldots, u_{t}\right) \in D \subset \mathbb{Z}_{\geq 0}^{t}$. A rank 1 projection cut for $(\mathcal{S}, \mathcal{C})$ is any nonnegative linear combination of $a_{i j} x_{j} \geq f_{i}+u_{i}$ and an inequality in \mathcal{S}, where $a_{i j} x_{j} \geq f_{i}$ belongs to \mathcal{S} and a congruence of the form $\alpha x_{j} \equiv d(\bmod m)$ belongs to \mathcal{C}. The rank 1 cut is associated with the congruence relation

$$
\begin{equation*}
\alpha\left(f_{i}+u_{i}\right) \equiv a_{i j} d\left(\bmod a_{i j} m\right) \tag{20}
\end{equation*}
$$

and domain $u_{i} \in\left\{0, \ldots, a_{i j} m-1\right\}$. The cut is valid when all (x, u) satisfying $(\mathcal{S}, \mathcal{C})$, congruence $(20), u \in D$, and $u_{i} \in\left\{0, \ldots, a_{i j} m-1\right\}$ also satisfy the cut.

A rank k projection cut for $(\mathcal{S}, \mathcal{C})$ is a rank 1 cut for some system $\left(\mathcal{S}^{\prime}, \mathcal{C}^{\prime}\right)$ consisting of cuts of rank $k-1$ or less for $(\mathcal{S}, \mathcal{C})$ and their associated congruences and domains, provided it is not a rank 1 cut for any such system of cuts with rank less than $k-1$. A projection cut is any rank k projection cut for finite k.

Theorem 4 Any projection cut for $(\mathcal{S}, \mathcal{C})$ is valid for $(\mathcal{S}, \mathcal{C})$.
Proof. It is enough to show that any rank 1 cut for $(\mathcal{S}, \mathcal{C})$ is valid, because then it follows by induction than any rank k cut is valid. Because a nonnegative linear combination of valid inequalities is valid, we can show that a rank 1 cut is valid by showing that $a_{i j} x_{j} \geq f_{i}+u_{i}$ is valid for $(\mathcal{S}, \mathcal{C})$ when $a_{i j} x_{j} \geq f_{i}$ is in $\mathcal{S},(20)$ holds, $u \in D$, and $u_{i} \in\left\{0, \ldots, a_{i j} m-1\right\}$. Equivalently, we wish to show

$$
\begin{equation*}
\alpha a_{i j} x_{i j}-a_{i j} d \geq \alpha\left(f_{i}+u_{i}\right)-a_{i j} d \tag{21}
\end{equation*}
$$

is valid under these conditions. However, we know that $\alpha a_{i j} x_{i j}-a_{i j} d \geq \alpha f_{i}-a_{i j} d$ is valid, because $a_{i j} x_{i j} \geq f_{i}$ belongs to \mathcal{S}. Also the congruence $\alpha x_{j} \equiv d(\bmod m)$ implies that the left-hand side of (21) is multiple of $a_{i j} m$. The inequality (21) is therefore valid if u_{i} is the smallest nonnegative integer for which the right-hand side is a multiple of $a_{i j} m$. For this, it suffices that (20) hold and $u_{i} \in\left\{0, \ldots, a_{i j} m-1\right\}$.

We can also show that projection yields projection cuts.
Theorem 5 Each step of the integer projection method produces rank 1 projection cuts for the system $(\mathcal{S}, \mathcal{C})$ from which the cuts are derived.

Proof. Each inequality generated by projection has the form

$$
\begin{equation*}
a_{k j}\left(f_{i}+u_{i}\right)+a_{i j} g_{k} \leq 0 \tag{22}
\end{equation*}
$$

and is derived from $a_{i j} x_{j} \geq f_{i},-a_{k j} x_{j} \geq g_{k} \in \mathcal{S}$. We wish to show that (22) is a rank 1 projection cut for $(\mathcal{S}, \mathcal{C})$. We first note that (22) is a linear combination of $a_{i j} x_{j} \geq f_{i}+u_{i}$ and $-a_{k j} x_{j} \geq g_{k}$, using multipliers $a_{k j}, a_{i j}>0$, respectively. Because $\alpha x_{j} \equiv d(\bmod m)$ is in \mathcal{C}, it remains only to show that $u_{i} \in\left\{0, \ldots, a_{i j} m-1\right\}$ and that (20) holds. The projection step yields the congruence relation

$$
\begin{equation*}
\alpha\left(f_{i}+u_{i}\right) \equiv \alpha \lambda_{m} a_{i j} d / \beta\left(\bmod a_{i j} m / \beta\right) \tag{23}
\end{equation*}
$$

where $\lambda_{\alpha} m+\lambda_{m} \alpha=\beta$. Substituting $\beta-\lambda_{\alpha} m$ for $\lambda_{m} \alpha$, this becomes

$$
\alpha\left(f_{i}+u_{i}\right) \equiv a_{i j} d / \beta\left(\bmod a_{i j} m / \beta\right)
$$

This implies (20) since β divides d. Also, the projection step yields $u_{i} \in\left\{0, \ldots, a_{i j} m / \beta-1\right\}$, which implies $u_{i} \in\left\{0, \ldots, a_{i j} m-1\right\}$.

Figure 2: Projection-based branching tree for example (2).

Projection cuts of sufficiently large (but finite) rank can prove optimality, in a manner somewhat parallel to Chvátal-Gomory cuts. Let \mathcal{S} be the set of inequalities in the IP problem (4). Let $\left(\mathcal{S}^{\prime}, \mathcal{C}^{\prime}\right)$ be a system of projection cuts for (\mathcal{S}, \emptyset), and $u \in D$ the associated domains. We will say that $\left(\mathcal{S}^{\prime}, \mathcal{C}^{\prime}\right)$ and $u \in D$ prove that solution value z^{*} is optimal for (4) when \mathcal{S}^{\prime} contains only variables z and u, and z^{*} is the minimum of z subject to $\left(\mathcal{S}^{\prime}, \mathcal{C}^{\prime}\right)$ and $u \in D$. Theorem 3 allows us to conclude that projection cuts of finite rank prove optimality for any given IP problem. In particular,

Corollary 6 If \mathcal{S} is the constraint set for the IP problem (4), some system of projection cuts for (\mathcal{S}, \emptyset) with rank at most n, together with their associated congruences and domains, proves the optimal value of (4).

The optimal value 9 of the example (2) is proved by the projection cuts $z \geq 5+5 u_{1}$ and $z \geq \frac{1}{3}\left(23+u_{1}+u_{13}\right)$, together with the congruence $4 u_{1}+u_{13} \equiv 4(\bmod 6)$ and domains $u_{1} \in\{0,1\}$ and $u_{13} \in\{0, \ldots, 5\}$.

5 Solution by Branching

The above analysis of integer projection leads to a branching algorithm for the generalised IP problem $(\mathcal{S}, \mathcal{C}), u \in D$. Each time a variable x_{j} is projected out, we branch on the auxiliary variables u_{i} created during the projection step. This means that no auxiliary variables appear in the branches. The process is repeated at each branch, until none of the original variables x_{j} remain. If the original problem contains variables u_{i}, we branch on them (as well as the auxiliary variables) at the root node.

This can be illustrated using the example (2), for which the branching tree appears in Fig. 2. At the root node of the tree, we carry out step 1 above, which yields the projected
system (7). Now, rather than branch on x_{1}, we branch on $u_{1} \in\{0,1\}$.
Left branch, $u_{1}=0$. Here (7) simplifies to

$$
\begin{align*}
& -x_{2} \geq-z \\
& x_{2} \geq 5 \tag{24}\\
& 3 x_{2} \geq 23 \\
& x_{2} \equiv 1 \bmod 2
\end{align*}
$$

We now project out x_{2}, which yields

$$
\begin{array}{lll}
5+u_{12} \leq x_{2} \leq z & \Rightarrow & z \geq 5+u_{12} \\
23+u_{13} \leq 3 x_{2} \leq 3 z & z \geq \frac{1}{3}\left(23+u_{13}\right) \\
5+u_{12} \equiv 1(\bmod 2), u_{12} \in\{0,1\} & u_{12} \equiv 0(\bmod 2), u_{12} \in\{0,1\} \\
23+u_{13} \equiv 3(\bmod 6), u_{13} \in\{0, \ldots, 5\} & u_{13} \equiv 4(\bmod 6), u_{13} \in\{0, \ldots, 5\}
\end{array}
$$

Only one branch $\left(u_{12}, u_{13}\right)=(0,4)$ satifies the congruence. In this branch, the problem is to minimise z subject to $z \geq 5$ and $z \geq 9$, yielding the bound $z \geq 9$.

Right branch, $u_{1}=1$. Here (7) simplifies to

$$
\begin{align*}
& -x_{2} \geq-z \\
& x_{2} \geq 10 \tag{25}\\
& 3 x_{2} \geq 24 \\
& x_{2} \equiv 0 \bmod 2
\end{align*}
$$

Projecting out x_{2}, we get

$$
\begin{array}{lll}
10+u_{12} \leq x_{2} \leq z & \Rightarrow & z \geq 10+u_{12} \\
24+u_{13} \leq 3 x_{2} \leq 3 z & & z \geq 8+\frac{1}{3} u_{13} \\
10+u_{12} \equiv 0(\bmod 2), u_{12} \in\{0,1\} & u_{12} \equiv 0(\bmod 2), u_{12} \in\{0,1\} \\
24+u_{13} \equiv 0(\bmod 6), u_{13} \in\{0, \ldots, 5\} & u_{13} \equiv 0(\bmod 6), u_{13} \in\{0, \ldots, 5\}
\end{array}
$$

Only one branch $\left(u_{12}, u_{13}\right)=(0,0)$ is possible, at which the problem is to minimise z subject to $z \geq 10$ and $z \geq 8$, yielding the bound $z \geq 10$.

The optimal solution occurs at the left leaf node, with $z=9$ and $\left(u_{1}, u_{12}, u_{13}\right)=(0,0,4)$.

We can introduce a branch-and-bound mechanism by solving a relaxation at each node. The solution of the relaxation can also indicate how to branch, as in traditional branch and bound, because we can branch on a variable x_{j} that violates its associated congruence $x_{j} \equiv d(\bmod m)$. The simplest relaxation is an LP relaxation obtained by dropping the congruences.

Figure 3: Projection-based branch-and-bound tree for example (2).

For example, the LP relaxation of (2) at the root node has solution $\left(x_{1}, x_{2}, z\right)=$ $\left(2 \frac{2}{3}, 7 \frac{2}{3}, 7 \frac{2}{3}\right)$ (Fig. 3). Because x_{1} and x_{2} must satisfy the implicit congruence $x_{j} \equiv 0(\bmod 1)$ for $j=1,2$, we can project out either variable and branch on the corresponding auxiliary variable. We choose to project out x_{1} and branch on u_{1}. Solving the LP relaxation of (24) in the left branch yields $\left(x_{2}, z\right)=\left(7 \frac{2}{3}, 7 \frac{2}{3}\right)$. Because x_{2} violates $x_{2} \equiv 1(\bmod 2)$, we must project out x_{2}. The LP relaxation of (25) in the right branch has solution $\left(x_{2}, z\right)=(10,10)$. Because 10 is greater than the incumbent value of 9 , it is unnecessary to project out x_{2} and branch further. In addition, x_{2} satisfies $x_{2} \equiv 0(\bmod 2)$, which in itself obviates the necessity of further branching.

Note that it may be necessary to branch even when all the variables x_{j} are integral in the LP solution. The relevant criterion is whether they satisfy their respective congruences.

6 A Value Function and Dual Solution

We can obtain a value function by applying the projection algorithm to inequalities with perturbed right-hand sides. To illustrate the idea, consider the constraint C 1 in example (2), which is $2 x_{1}+x_{2} \geq 13$. While projecting out x_{1} we used the strengthened inequality

$$
\begin{equation*}
-x_{2}+13+u_{1} \leq 2 x_{1} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
-x_{2}+13+u_{1} \equiv 0(\bmod 2) \tag{27}
\end{equation*}
$$

and $u \in\{0,1\}$. Suppose we now perturb the right-hand side of C 1 to obtain the constraint $2 x_{1}+x_{2} \geq 13+\Delta$, so that (26) becomes $-x_{2}+13+\Delta+u_{1} \leq 2 x_{1}$. This inequality is not
generally valid, given congruence (27). However, we can strengthen C1 in a different way by adding $\Delta+\bmod _{2}\left(u_{1}-\Delta\right)$ rather than u_{1} :

$$
\begin{equation*}
-x_{2}+13+\Delta+\bmod _{2}\left(u_{1}-\Delta\right) \leq 2 x_{1} \tag{28}
\end{equation*}
$$

where $\bmod _{m}(a)$ is the remainder after dividing a by m. This has the same effect as (26) when $\Delta=0$. To ensure validity, we need the congruence

$$
\begin{equation*}
-x_{2}+13+\Delta+\bmod _{2}\left(u_{1}-\Delta\right) \equiv 0(\bmod 2) \tag{29}
\end{equation*}
$$

However, this is equivalent to congruence (27), because $u_{1} \equiv \Delta+\bmod _{m}\left(u_{1}-\Delta\right)(\bmod m)$ due to the obvious fact that $u_{1}-\Delta \equiv \bmod _{m}\left(u_{1}-\Delta\right)(\bmod m)$. It is easy to show that

$$
\begin{equation*}
\Delta+\bmod _{m}\left(u_{1}-\Delta\right)=u_{1}+\left\lceil\Delta-u_{1}\right\rceil_{m} \tag{30}
\end{equation*}
$$

where $\lceil a\rceil_{m}=m\lceil a / m\rceil$ is a rounded up to the nearest multiple of m. So (28) can be written

$$
-x_{2}+13+u_{1}+\left\lceil\Delta-u_{1}\right\rceil_{2} \leq 2 x_{1}
$$

By incorporating this idea into the projection algorithm, we can derive a value function. Consider again the perturbed example (3).

Step 1. To project out x_{1}, we combine $\mathrm{C} 1_{\Delta}$ and $\mathrm{C} 2_{\Delta}$ to obtain

$$
5\left(-x_{2}+13+u_{1}+\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}\right) \leq 5 \cdot 2 x_{1} \leq 2\left(-2 x_{2}+30\right)
$$

This yields

$$
x_{2} \geq 5+5 u_{1}+5\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+2 \Delta_{2} \quad \mathrm{C} 12_{\Delta}
$$

where $x_{2} \equiv u_{1}+1(\bmod 2)$ as before. We combine $\mathrm{C} \Delta 1$ and $\mathrm{C} \Delta 3$ to obtain

$$
3 x_{2} \geq 23+u_{1}+\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+2 \Delta_{3} \quad \mathrm{C} 13_{\Delta}
$$

Step 2. To eliminate x_{2}, we combine C 0 and $\mathrm{C} 12_{\Delta}$ to obtain

$$
5+5 u_{1}+u_{12}+5\left\lceil\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+2 \Delta_{2}-u_{12}\right\rceil_{2} \leq x_{2} \leq z
$$

This yields

$$
\begin{equation*}
z \geq 5+5 u_{1}+u_{12}+\left\lceil 5\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+2 \Delta_{2}-u_{12}\right\rceil_{2} \tag{31}
\end{equation*}
$$

where $u_{12} \equiv 0(\bmod 1)$ and $x_{12} \in\{0\}$. Note the nesting of functions $\lceil\cdot\rceil_{m}$, which is analogous to the nesting of rounding operations in a Chvátal function. Because $u_{12}=0$ and $\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}$ is even, the bound (31) simplifies to

$$
z \geq 5+5 u_{1}+5\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+\left\lceil 2 \Delta_{2}\right\rceil_{2} \quad \mathrm{C} 012_{\Delta}
$$

We similarly combine C 0 and $\mathrm{C} 13_{\Delta}$ to obtain

$$
3 z \geq 23+u_{1}+u_{13}+\left\lceil\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+2 \Delta_{3}-u_{13}\right\rceil_{6} \quad \mathrm{C} 013_{\Delta}
$$

Table 2: Lower bounds for perturbations in individual constraints i.

		Bound from C012			Bound from C013		
u_{1}	u_{13}	$i=1$	2	3	$i=1$	2	3
0	4	$5+5\left\lceil\Delta_{1}\right\rceil_{2}$	$5+\left\lceil 2 \Delta_{2}\right\rceil_{2}$	5	$9+\frac{1}{3}\left\lceil\Delta_{1}-4\right\rceil_{6}$	9	$9+\frac{2}{3}\left\lceil\Delta_{3}-2\right\rceil_{3}$
1	0	$10+5\left\lceil\Delta_{1}-1\right\rceil_{2}$	$10+\left\lceil 2 \Delta_{2}\right\rceil_{2}$	10	$8+\frac{1}{3}\left\lceil\Delta_{1}-1\right\rceil_{6}$	8	$8+\frac{2}{3}\left\lceil\Delta_{3}\right\rceil_{3}$

where $4 u_{1}+u_{13} \equiv 4(\bmod 6)$ and $u_{13} \in\{0, \ldots, 5\}$.
Step 3. We now have a value function from $\mathrm{C} 012_{\Delta}$ and $\mathrm{C} 013_{\Delta}$:

$$
v\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)=\min _{u_{1}, u_{13}}\left\{\max \left\{\begin{array}{l}
5+5 u_{1}+5\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+\left\lceil 2 \Delta_{2}\right\rceil_{2}, \\
\frac{1}{3}\left(23+u_{1}+u_{13}+\left\lceil\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}+2 \Delta_{3}-u_{13}\right\rceil_{6}\right)
\end{array}\right\}\right\}
$$

where the minimum is taken over u_{1}, u_{13} satisfying $u_{12} \equiv 0(\bmod 2), 4 u_{1}+u_{13} \equiv 4(\bmod 6)$, $u_{1} \in\{0,1\}$, and $u_{13} \in\{0, \ldots, 5\}$. In this case, the congruences have only two solutions $\left(u_{1}, u_{13}\right)=(0,4),(1,0)$.

The function simplifies when we analyze perturbations of one constraint at a time:

$$
\begin{aligned}
& v\left(\Delta_{1}\right)=\min _{\left(u_{1}, u_{13}\right)=(0,4),(1,0)}\left\{\max \left\{\begin{array}{l}
5+5 u_{1}+5\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}, \\
\frac{1}{3}\left(23+u_{1}+u_{13}+\left\lceil\left\lceil\Delta_{1}-u_{1}\right\rceil_{2}-u_{13}\right\rceil_{6}\right)
\end{array}\right\}\right\} \\
& v\left(\Delta_{2}\right)=\min _{\left(u_{1}, u_{13}\right)=(0,4),(1,0)}\left\{\max \left\{\begin{array}{l}
5+5 u_{1}+\left\lceil 2 \Delta_{2}\right\rceil_{2}, \\
\frac{1}{3}\left(23+u_{1}+u_{13}\right)
\end{array}\right\}\right\} \\
& v\left(\Delta_{3}\right)=\min _{\left(u_{1}, u_{13}\right)=(0,4),(1,0)}\left\{\max \left\{\begin{array}{l}
5+5 u_{1} \\
\frac{1}{3}\left(23+u_{1}+u_{13}+\left\lceil 2 \Delta_{3}-u_{13}\right\rceil_{6}\right)
\end{array}\right\}\right\}
\end{aligned}
$$

The resulting bounds in for the two solutions $\left(u_{1}, u_{13}\right)=(0,4),(1,0)$ of the congruences appear in Table 2. These bounds are graphed in Figs. 4-6.

As in the case of an LP value function, the coefficient of Δ_{i} in the term that governs when $\Delta=0$ can be interpreted as a dual multiplier. There are two differences from LP, however. One is that we take a minimum over a maximum rather than simply a maximum. For example, when $\Delta=0$, the expression for $v\left(\Delta_{1}\right)$ becomes $\min \{\max \{5,9\}, \max \{10,8\}\}=9$, so that the minimising value of $\left(u_{1}, u_{13}\right)$ is $(0,4)$ and the second term $9+\frac{1}{3}\left\lceil\Delta_{1}-4\right\rceil_{6}$ of the max governs.

The second difference is that marginal cost can be a discontinuous function of Δ_{i}. In the LP case, the dual multiplier for Δ_{1} is $\frac{1}{3}$ when $\Delta=0$, meaning that optimal cost increases linearly with Δ_{1} (at rate $\frac{1}{3}$) in some neighborhood of $\Delta_{1}=0$. In the IP case, the dual multiplier is again $\frac{1}{3}$ when $\Delta_{1}=0$, but the change in cost is $\frac{1}{3}\left\lceil\Delta_{1}-4\right\rceil_{6}$ rather than $\frac{1}{3} \Delta_{1}$. This means that there is no change until $\Delta_{1}-4$ reaches a multiple of 6 , at which point the cost changes by $\frac{1}{3} \cdot 6$. The dual multiplier can therefore be interpreted as a "jerky" shadow price. It indicates the average marginal cost, but the actual cost function is a step function.

Figure 4: Value function $v\left(\Delta_{1}\right)$ for constraint 1.

Figure 5: Value function $v\left(\Delta_{2}\right)$ for constraint 2.

Of course, the shadow price changes when a different term of the value function begins to govern, as in the case of LP.

To show that projection creates a value function for an general IP problem, we must extend Theorem 3 to deal with perturbed right-hand sides. Interestingly, the perturbations do not affect the congruences, and the perturbation terms Δ_{i} appear only in the generated

Figure 6: Value function $v\left(\Delta_{3}\right)$ for constraint 3.
inequalities. The inequalities $a_{i j} x_{j} \geq f_{i}$ and $-a_{k j} x_{j} \geq g_{k}$ in Theorem 3 are replaced with $a_{i j} x_{j} \geq f_{i}+\bar{\Delta}_{i}$ and $-a_{k j} x_{j} \geq g_{k}+\bar{\Delta}_{k}$ to account for the effect of perturbations on generated inequalities. Thus $\bar{\Delta}_{i}=\bar{\Delta}_{k}=0$ when all the perturbations are zero.

Theorem 7 Suppose $a_{i j}, a_{k j}>0$ for all $i \in I, k \in K$. Then
(a) There exists $x_{j} \in \mathbb{Z}$ such that $a_{i j} x_{j} \geq f_{i}+\bar{\Delta}_{i}$ and $-a_{k j} x_{j} \geq g_{k}+\bar{\Delta}_{k}$ for all $i \in I$, $k \in K$, and such that $\alpha x_{j} \equiv d(\bmod m)$,
if and only if
(b) $d \equiv 0(\bmod \beta)$, where $\beta=\operatorname{gcd}(\alpha, m)$; there exist $\lambda_{\alpha}, \lambda_{m} \in \mathbb{Z}$ satisfying $\lambda_{\alpha} m+\lambda_{m} \alpha=\beta$; and there exists $u_{i} \in\left\{0,1, \ldots, a_{i j} m / \beta-1\right\}$ such that

$$
\begin{equation*}
a_{k j}\left(f_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}\right)+a_{i j}\left(g_{k}+\bar{\Delta}_{k}\right) \leq 0 \tag{32}
\end{equation*}
$$

for all $i \in I, k \in K$, and $f_{i}+u_{i} \equiv \lambda_{m} a_{i j} d / \beta\left(\bmod a_{i j} m / \beta\right)$ for all $i \in I$.
Furthermore, if $\bar{\Delta}_{i}=\bar{\Delta}_{k}=0$, then inequality (32) reduces to $a_{k j}\left(f_{i}+u_{i}\right)+a_{i j} g_{k} \leq 0$.
Proof. We first note that if $\bar{\Delta}_{i}=\bar{\Delta}_{k}=0$, then in (32) we round $-u_{i}$ up to the nearest multiple of $a_{i j} m / \beta$, which is zero because $0 \leq u_{i}<a_{i j} m / \beta$. Thus (32) reduces to $a_{k j}\left(f_{i}+u_{i}\right)+a_{i j} g_{k} \leq 0$.
(a) \Rightarrow (b). We can write the inequalities in (a) as

$$
\begin{equation*}
a_{k j} \alpha\left(f_{i}+\bar{\Delta}_{i}\right) \leq a_{i j} a_{k j} \alpha x_{j} \leq-a_{i j} \alpha\left(g_{k}+\bar{\Delta}_{k}\right) \tag{33}
\end{equation*}
$$

for all i, k. If we let $y=a_{i j} a_{k j} \alpha x_{j}$, then we can show as in the proof of Theorem 3 that $d \equiv 0(\bmod \beta), \lambda_{\alpha} m+\lambda_{m} \alpha=\beta$ for some $\lambda_{\alpha}, \lambda_{m} \in \mathbb{Z}$, and the congruence relation $y \equiv \lambda_{m} a_{i j} a_{k j} \alpha d / \beta\left(\bmod a_{i j} a_{k j} \operatorname{lcm}(\alpha, m)\right)$ holds. From the congruence relation and (33), we have

$$
\begin{equation*}
a_{k j} \alpha\left(f_{i}+\bar{\Delta}_{i}\right)-\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \leq \gamma \leq-a_{i j} \alpha\left(g_{k}+\bar{\Delta}_{k}\right)-\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \tag{34}
\end{equation*}
$$

where γ is an integer multiple of $a_{i j} a_{k j} \operatorname{lcm}(\alpha, m)$. Since β divides d, the leftmost expression in (34) is an integer multiple of $a_{k j} \alpha$. So we can add the term

$$
\begin{equation*}
a_{k j} \alpha\left(-\bar{\Delta}_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}\right) \tag{35}
\end{equation*}
$$

to the left-hand side of (34), where the expression $s_{i}=-\bar{\Delta}_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}$ takes a value in $\left\{0, \ldots, a_{i j} a_{k j} \operatorname{lcm}(\alpha, m) /\left(a_{k j} \alpha\right)-1\right\}=\left\{0, \ldots, a_{i j} m / \beta-1\right\}$. We therefore have

$$
\begin{equation*}
a_{k j} \alpha\left(f_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil a_{a_{i j} m / \beta}\right) \leq \gamma+\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \leq-a_{i j} \alpha\left(g_{k}+\bar{\Delta}_{k}\right) \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k j} \alpha\left(f_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}\right)-\lambda_{m} a_{i j} a_{k j} \alpha d / \beta \equiv 0\left(\bmod a_{i j} a_{k j} \operatorname{lcm}(\alpha, m)\right) \tag{37}
\end{equation*}
$$

Inequality (36) implies (32). Congruence (37) simplifies to

$$
f_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}-\lambda_{m} a_{i j} d / \beta \equiv 0\left(\bmod a_{i j} m / \beta\right)
$$

which implies the congruence in (b) because $\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}$ is a multiple of $a_{i j} m / \beta$. Finally, $s_{i}=\bmod _{a_{i j} m / \beta}\left(u_{i}-\bar{\Delta}_{i}\right)$ due to (30). Because we need only consider values $0, \ldots, a_{i j} m / \beta-1$ for s_{i}, we generate the required values by restricting u_{i} to $\left\{0, \ldots, a_{i j} m / \beta-1\right\}$.
$(\mathrm{a}) \Leftarrow(\mathrm{b})$. The inequalities in (b) can be written

$$
\begin{equation*}
-\frac{g_{k}+\bar{\Delta}_{k}}{a_{k j}} \geq \frac{f_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}}{a_{i j}} \tag{38}
\end{equation*}
$$

for all i, k. From (b) we have that $d \equiv 0(\bmod \beta)$, so that d / β is integral. Also from (b),

$$
f_{i}+u_{i} \equiv \lambda_{m} a_{i j} d / \beta\left(\bmod a_{i j} a_{k j} m / \beta\right)
$$

Because d / β and m / β are integral, this implies $f_{i}+u_{i}$ is an integer multiple of $a_{i j}$. We also have that $\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}$ is a multiple of $a_{i j} m / \beta$ and therefore $a_{i j}$. So we can let

$$
x_{j}=\max _{i}\left\{\frac{f_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}}{a_{i j}}\right\}
$$

and x_{j} is integral. This and (38) imply $-\left(g_{k}+\overline{\Delta_{k}}\right) / a_{k j} \geq x_{j}$, or $-g_{k} \geq a_{k j} x_{j}+\bar{\Delta}_{k}$. To show that $a_{i j} x_{j} \geq f_{i}+\bar{\Delta}_{i}$, we note that

$$
a_{i j} x_{j} \geq a_{i j} \frac{f_{i}+u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}}{a_{i j}} \geq f_{i}+\bar{\Delta}_{i}
$$

because $u_{i}+\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}=\bar{\Delta}_{i}+\bmod _{a_{i j} m / \beta}\left(u_{i}-\bar{\Delta}_{i}\right) \geq \bar{\Delta}_{i}$ due to (30). Finally, it can be shown as in the proof of Theorem 3 that $\alpha x_{j} \equiv d(\bmod m)$.

We can now describe, in general, a step of the projection method applied to an IP (4) with perturbed right-hand sides $b_{i}+\Delta_{i}$. If x_{j} is to be eliminated from the current system $(\mathcal{S}, \mathcal{C})$, we apply the GCRT to the congruences in \mathcal{C} containing x_{j} to obtain a single congruence $\alpha x_{j} \equiv d(\bmod m)$. We then consider all pairs of inequalities in \mathcal{S} of the form $a_{i j} x_{j} \geq f_{i}+\bar{\Delta}_{i},-a_{k j} x_{j} \geq g_{k}+\bar{\Delta}_{k}$ for which $a_{i j}, a_{k j}>0$. When projecting out the first variable, $\bar{\Delta}_{i}=\Delta_{i}$ and $\bar{\Delta}_{k}=\Delta_{k}$. We generate the inequality (32) and associate it with the congruence $f_{i}+u_{i} \equiv \lambda_{m} a_{i j} d / \beta\left(\bmod a_{i j} m / \beta\right)$ and the domain $u_{i} \in\left\{0, \ldots, a_{i j} m / d-1\right\}$. The multiplier λ_{m} can be obtained by using the Euclidean algorithm as before. We then update the system $(\mathcal{S}, \mathcal{C})$ by removing from \mathcal{S} all inequalities containing x_{j}, adding to \mathcal{S} all generated inequalities, adding to \mathcal{C} all the associated congruence relations, and adding $u_{i} \in\left\{0, \ldots, a_{i j} m / \beta-1\right\}$ to the domains. If x_{ℓ} is the next variable to be eliminated from a generated inequality (32), we write (32) in the form $a_{i j} x_{\ell} \geq f_{\ell}+\bar{\Delta}_{\ell}$, where $\bar{\Delta}_{\ell}=$ $a_{k j}\left\lceil\bar{\Delta}_{i}-u_{i}\right\rceil_{a_{i j} m / \beta}+a_{i j} \bar{\Delta}_{k}$.

When all variables x_{j} have been eliminated, the result is a system $\left(\mathcal{S}^{\prime}, \mathcal{C}^{\prime}\right)$ and domains $u \in D$ such that \mathcal{S} contains only z and $u_{i} \mathrm{~s}$, and \mathcal{C} contains only $u_{i} \mathrm{~s}$. The inequalities in \mathcal{S} provide bounds of the form $z \geq v_{t}(u, \Delta)$. Due to Theorem 7, this describes the projection onto z, and the function

$$
v(\Delta)=\min _{u}\left\{\max _{t}\left\{v_{t}(u, \Delta)\right\} \mid \mathcal{C}, u \in D\right\}
$$

is therefore the optimal value of the perturbed IP problem (4). In other words, $v(\Delta)$ is a value function for (4). It is clear from the form of (32) that $v(\Delta)$ contains nested roundings $\lceil\cdot\rceil_{m}$. Because n variables are eliminated, the depth of the nesting is at most n.

7 Conclusion

We generalised LP projection (Fourier-Motzkin elimination) to IP projection. This leads to a new branching algorithm in which the depth of the tree is bounded by the number of variables in the IP, in contrast to conventional IP branch-and-bound methods, where there is no bound. It also leads to a complete family of cutting planes where the maximum rank is also bounded by the number of variables in the original IP. Finally, a value function for an IP is produced, in which the optimal objective value is given as a function of the right-hand sides. This provides a duality result for IP analogous to that for LP.

Some related results for the more general case of mixed integer/linear programming (MILP) appear in [9]. These results lead to an analytic solution of the MILP when applied only to the constraints binding in the LP relaxation; that is, when applied to an MILP over a cone.

References

[1] Chvátal, V., Edmonds polytopes and a heirarchy of combinatorial problems, Discrete Mathematics 4 (1973) 305-337.
[2] Fourier, J.B.J., Solution d'une question particulière du calcul des inégalités, Oeuvres II, Paris (1826) 317-328.
[3] Kohler, D.A., Projections of convex polyhedral sets, Operations Research Center, University of California, Berkeley (1967).
[4] Schriver, A., Theory of Integer and Linear Programming,Wiley (1986) Chichester, UK.
[5] Williams, H.P., Fourier-Motzkin Elimination extended to integer programming problems, Journal of Combinatorial Theory, 21 (1976) 118-123.
[6] Williams, H.P., Fourier's method of linear programming and its dual, American Mathematical Monthly, 93 (1986) 681-695.
[7] Williams, H.P., The Dependency diagram of a linear programme, Working paper LSEOR 13.138, Management Science Group, London School of Economics (2013).
[8] Williams, H.P, The general solution of a mixed integer linear programme over a cone, Working paper LSEOR 13.139, Management Science Group, London School of Economics (2013).
[9] Williams, H.P., The Dependency diagram of a mixed integer programme, Working paper LSEOR 13.137, Management Science Group, London School of Economics.

