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HOW TO GAMBLE AGAINST ALL ODDS

GILAD BAVLY

Department of Statistics and Operations Research
Tel Aviv University

RON PERETZ

Department of Mathematics
London School of Economics and Political Science

ABSTRACT. We compare the prediction power of betting strategies (aka
martingales) whose wagers take values in different sets of reals. A mar-
tingale whose wagers take values in a set A is called an A-martingale.
A set of reals B anticipates a set A, if for every A-martingale there is
a countable set of B-martingales, such that on every binary sequence
on which the A-martingale gains an infinite amount at least one of the
B-martingales gains an infinite amount, too.

We show that for a wide class of pairs of sets A and B, B anticipates
A if and only if A is a subset of the closure of rB, for some r > 0, e.g.,
when B is well ordered (has no left-accumulation points). Our results
answer a question posed by Chalcraft et al. (2012).

1. INTRODUCTION

Player 0, the cousin of the casino owner, is allowed to bet sums of money
only within a set A (a subset of the real numbers). The regular casino play-
ers 1,2,3,... (countably many players) are allowed to make bets only within
another set B. Player 0 announces her betting strategy first; then the regu-
lar players announce theirs. Now the casino owner wants to fix an infinite
sequence of heads and tails, such that player 0 makes infinite gains, while
every regular player gains only a finite amount. Can this be done when, e.g.,
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A is the set of all even integers, and B the set of all odds? We will present
some sufficient and necessary conditions on the pair of sets A and B.

If it cannot be done, we say that B (countably) anticipates A. As it turns
out, the even integers anticipate the odd integers, but not vice versa (see
Theorem 7).

The origins of the countability condition lie in algorithmic randomness,
where computability considerations are involved, as the set of computable
strategies is countable (see also Peretz (2013)).

Chalcraft et al. (2012) showed that when A and B are finite, B anticipates
A if and only if B contains a positive multiple of A. They asked whether
this characterization extends to infinite sets (note that their framework deals
only with computable strategies, while our definitions do not directly con-
cern computability issues; see also Remark 1 below).

Theorem 8 implies a negative answer to this question. Nevertheless, we
present some interesting classes of pairs A,B to which the characterization
does extend. In Theorem 6, A is bounded and B \ {0} is bounded away
from 0; in Theorem 7, B is well ordered.1

Previous work on martingales with restricted wagers (Bienvenu et al.
(2012), Teutsch (2013), Peretz (2013)) employed various solutions in vari-
ous specific situations. The present paper proposes a systematic treatment
that applies to most of the previously studied situations, as well as many
others. Our proofs are elementary and constructive. The proposed con-
struction is recursive: it does not rely on what the martingales do in the
future; therefore we believe our method can be useful in many frameworks
where computational or other constraints may be imposed.

The rest of the paper is organized as follows. Section 2 presents the
definitions, results, and a few examples, as well as a discussion of related
previous work. The next two sections contain proofs. Section 5 points to
open problems and further directions.

2. DEFINITIONS AND RESULTS

A martingale is a gambling strategy that bets on bits of a binary sequence.
Formally, it is a function M : {h, t}∗ → R that satisfies

M(σ) =
M(σh) +M(σt)

2
,

for every string σ ∈ {h, t}∗.

1We can in fact restrict our attention to closed sets (Lemma 3).
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The increment of M at σ ∈ {h, t}∗ is defined as

M ′(σ) = M(σh)−M(σ).

For A ⊂ R+, we say that M is an A-martingale if |M ′(σ)| ∈ A, for
every σ ∈ {h, t}∗.

The empty string is denoted ε and M(ε) is called the initial value of M .
Note that a martingale is determined by its initial value and its increments.

The initial sub-string of length n of a binary sequence, X ∈ {h, t}∞,
is denoted X � n. A martingale M succeeds on X , if limn→∞M(X �
n) = ∞ and M(X � n) ≥ |M ′(X � n)|, for every n. The latter condition
asserts that M doesn’t bet on money it doesn’t have. The set of sequences
on which M succeeds is denoted succ(M). A martingale N dominates
M if succ(N) ⊇ succ(M), and a set of martingales N dominates M if∪

N∈N succ(N) ⊇ succ(M).
The following are non-standard definitions.

Definition 1. A set B ⊆ R+ singly anticipates a set A ⊆ R+, if every A-
martingale is dominated by some B-martingale. If A singly anticipates B
and B singly anticipates A, we say that A and B are strongly equivalent.

Definition 2. A set B ⊆ R+ countably anticipates (anticipates, for short)
a set A ⊆ R+, if every A-martingale is dominated by a countable set of
B-martingales. If A anticipates B and B anticipates A, we say that A and
B are (weakly) equivalent. If B does not anticipate A we say that A evades
B.

Note that both “singly anticipates” and “anticipates” are reflexive and
transitive relations (namely, they are preorders),2 and that single anticipation
implies anticipation. Also, if A ⊆ B then B singly anticipates A.

Remark 1. The motivation for the definition of countable anticipation comes
from the study of algorithmic randomness (see, e.g., Downey and Riemann
(2007)), where it is natural to consider the countable set of all B-martingales
that are computable relative to M (see Peretz (2013)). Formally, a set
B ⊆ R+ effectively anticipates a set A ⊆ R+, if for every A-martingale
M and every sequence X ∈ succ(M), there is a B-martingale, computable
relative to M , that succeeds on X . More generally, one could define in
the same fashion a “C-anticipation” relation with respect to any complexity
class C. Our main focus will be on countable anticipation, and specifi-
cally on sets A and B such that B does not countably anticipate A; and
therefore B does not C-anticipate A for any complexity class C. When we
present cases in which anticipation does hold, the dominating martingales

2The evasion relation is anti-reflexive and is not transitive.
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will usually be fairly simple relative to the dominated martingales. We do
not presume to rigorously address the computational complexity of those
reductions, though.

The topological closure of a set A ⊆ R+ is denoted Ā. The following
lemma says that we can restrict our attention to closed subsets of R+.

Lemma 3. Every subset of R+ is strongly equivalent to its closure.

Proof. Let A ⊂ R+ and let M be an Ā-martingale. Define an A-martingale
S by

S(ε) = M(ε) + 2,

S ′(σ) ∈ A ∩ (M ′(σ)− 2−|σ|,M ′(σ) + 2−|σ|),

where |σ| is the length of σ. Clearly, S(σ) > M(σ), for every σ ∈ {h, t}∗;
therefore succ(S) = succ(M). �

Another simple observation is that for every A ⊆ R+ and r > 0, A is
strongly equivalent to rA := {ra : a ∈ A}. This observation leads to the
next definition.

Definition 4. Let A,B ⊆ R+. We say that A and B are proportional, if
there exists r > 0 such that rA = B. If we only require that rA ⊆ B̄, then
A is proportional to a subset of the closure of B. In that case we say that A
scales into B.

From the above and the fact that A ⊆ B implies that B singly anticipates
A, we have the following lemma.

Lemma 5. If A scales into B, then B anticipates A, for every A,B ⊆ R+.

The next two theorems provide conditions under which the converse of
Lemma 5 also holds.

Theorem 6. For every A,B ⊆ R+, if supA < ∞ and 0 ̸∈ B \ {0}, then B
anticipates A only if A scales into B.

Theorem 7. For every A,B ⊆ R+, if B is well ordered, namely, ∀x ∈
R+ x ̸∈ B \ [0, x], then B anticipates A only if A scales into B.

Chalcraft et al. (2012) studied effective anticipation between finite sub-
sets of R. They showed that (effective) anticipation is equivalent to con-
taining a proportional set on the domain of finite sets. They further asked
whether their result extends to infinite sets. In particular, they asked if Z+

anticipates the set V = {0} ∪ [1,∞). Peretz (2013) showed that the set
{1 + 1

n
}∞n=1 ⊂ V evades (i.e., is not anticipated by) Z+, and the set { 1

n
}∞n=1
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evades V . All of the above results follow immediately from Theorem 6.
Furthermore, any set that contains two Q-linearly independent numbers
(e.g., {1, π}) evades Z+.

In light of Lemma 3, one may rephrase the above question of Chalcraft
et al. (2012) and ask whether, for infinite sets, anticipation is equivalent to
scaling. The answer is still negative (Theorem 8), although Theorems 6 and
7 above gave some conditions under which the equivalence does hold.

Theorem 7 says that if, for example, A = Z+ and B is a subset of Z+

whose density is zero, then A evades B. This is because B is well ordered,
and A does not scale into B (by the zero density). Another example is when
B is the set of all odd integers where, again, A evades B. Note that the set of
even integers is proportional to Z+ and hence is equivalent to Z+. Therefore
the even integers evade the odds, but not vice versa.

Furthermore, we can take any subset of Z+ that does not contain an
“ideal” (i.e., all the integer multiples of some number, namely, a set pro-
portional to Z+). If B is of the form B = Z+ \ {n · ϕ(n)}∞n=1 for some
function ϕ : N → N, then Z+ evades B even when, for example, the func-
tion ϕ grows very rapidly. In particular, the density of B could equal one.

The previous theorems gave some necessary conditions for anticipation.
The next theorem gives a sufficient condition.

Theorem 8. Let A,B ⊂ R+ . For x > 0, let

P (x) = {t ≥ 0 : t · (A ∩ [0, x]) ⊆ B̄ ∪ {0} }.

For any M ≥ 0 let qM(x) = max(P (x) ∩ [0,M ]). If for some M ,∫∞
0

qM(x)dx = ∞, then B singly anticipates A.

This is equivalent to the following seemingly stronger theorem.

Theorem 8∗. Let A,B ⊂ R+. Suppose there is a non-increasing function
f : R+ → R+, such that

(1) B̄ ⊃ f(x) (A ∩ [0, x]), for every x ∈ R+; and
(2)

∫∞
0

f(x) dx = ∞.

Then, B singly anticipates A.

Proof of Theorem 8∗. Let M be an A-martingale. By Lemma 3 we may
assume that B is closed. Define a B-martingale, S, by

S(ε) = f(0)M(ε),

S ′(σ) = f(M(σ))M ′(σ).
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FIGURE 1. Inequality (1)

Let X ∈ {h, t}N such that X ∈ succ(M), and let n ∈ N. Since f is
non-increasing,

(1) S(X � n+ 1)− S(X � n) ≥
∫ M(X�n+1)

M(X�n)
f(x) dx.

It follows by induction that

S(X � n) ≥
∫ M(X�n)

0

f(x) dx,

which concludes the proof, since M(X � n) → ∞ and
∫∞
0

f(x) dx =
∞. �

If, for example, A scales into B, namely, rA ⊆ B̄, the function f in
Theorem 8∗ can be taken to be simply f(x) = r. Also note that when A and
B are finite, such a function f as in the theorem exists iff A scales into B.

The theorem tells us, for example, that although R+ does not scale into
the interval [0, 1], these two sets are (strongly) equivalent: to see that [0, 1]
singly anticipates R+, apply Theorem 8∗ with f(x) = min{ 1

x
, 1}.

Another example is the set A = {2n}+∞
n=−∞ being (strongly) equivalent

to B = {2n}0n=−∞, although A does not scale into B. To see this, apply
Theorem 8∗ with f(x) = min{1/2⌊log2 x⌋, 1}.

We previously saw, by Theorem 7, that A = Z+ evades B = Z+ \
{n · ϕ(n)}∞n=1. Now look at this example in the context of Theorem 8, to
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see that there is no contradiction. Suppose ϕ(n) is increasing, and ϕ(n) →
∞. Then for any x > 0, the set P (x) in the theorem is unbounded, i.e.,
supP (x) = ∞. Nevertheless, fix any choice of M , and note that for every
x large enough, P (x) does not contain any nonzero number smaller than
M , i.e., P (x) ∩ [0,M ] = {0}. Thus, for any choice of M , qM(x) = 0 for
every x large enough. In particular,

∫∞
0

qM(x)dx < ∞.

3. PROOF OF THEOREM 6

Throughout this section A,B ⊂ R+ are two sets satisfying

supA < ∞,

0 ̸∈ B \ {0},
A does not scale into B.

We must show A (countably) evades B.
Since A does not scale into B, one thing that B-martingales cannot do

in general is to mimic A-martingales, not even up to a constant ratio. We
use this idea in order to construct a sequence of heads and tails that will
separate between the two types of martingales.

3.1. Ratio minimization. Let N and M be martingales with N non-negative.
We say that x ∈ {h, t} is the N/M -ratio-minimizing outcome at σ ∈
{h, t}<∞ (assuming M(σ) > 0) if either

(1) N(σ)
M(σ)

> N(σx)
M(σx)

, or

(2) N(σ)
M(σ)

= N(σx)
M(σx)

and M(σx) > M(σ), or
(3) M ′(σ) = N ′(σ) = 0 and x = h.

In words: our first priority is to make the ratio N/M decrease; if this is
impossible (i.e., the increments of N and M are proportional to their value
at σ, and so N/M doesn’t change), then we want M to increase so as to
insure that M(σx) > 0; if that is impossible as well (i.e., both increments
are 0), we set x to be h, for completeness of definition only.

Our definition extends to finite/infinite extensions of σ by saying that
X is the length |X| (possibly |X| = ∞) N/M -ratio-minimizing extension
of σ, if Xt+1 is the N/M -ratio-minimizing outcome at X � t, for every
|σ| ≤ t < |X|.

For any such N , M , and σ the infinite N/M -ratio-minimizing extension
of σ, X , makes the ratio N(X � t)/M(X � t) monotonically converging
to a limit L ∈ R+, as t → ∞. The next lemma will help us argue that the
ratio between the increments N ′(X � t)/M ′(X � t) also converges to L in
a certain sense.
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Lemma 9 (Discrete l’Hôpital rule). Let (an)∞n=1 and (bn)
∞
n=1 be sequences

of real numbers. Assume that an > 0, for every n. If bn/an monotonically
converges to a limit L ∈ R, and sup{ 1

n

∑n
k=1 |ak+1 − ak|} < ∞, then

lim
n→∞

1

n

n∑
k=1

|(bk+1 − bk)− L(ak+1 − ak)| = 0.

Proof. Since 1
n

∑n
k=1 |ak+1−ak| is bounded, 1

n

∑n
k=1(ak+1−ak) is bounded,

too; therefore

(2) lim
n→∞

1

n

n∑
k=1

(bk+1 − bk)− L(ak+1 − ak) = 0.

It remains to prove that

(3) lim
n→∞

1

n

n∑
k=1

[b′k − La′k]+ = 0,

where a′k = ak+1 − ak and similarly b′k = bk+1 − bk.
We may assume w.l.o.g. that bn

an
↘ L (otherwise consider the sequence

(−bn)
∞
n=1). Namely, bk

ak
≥ bk+1

ak+1
, which implies that b′k ≤

bk
ak
a′k; hence

[b′k − La′k]+ ≤
[(

bk
ak

− L

)
a′k

]
+

≤
(
bk
ak

− L

)
|a′k|.

Now (3) follows since bk
ak

converges to L and 1
n

∑n
k=1 |a′k| is bounded. �

Corollary 10. Let M and N be a pair of martingales and σ ∈ {h, t}∗.
Assume that N is non-negative, M(σ) > 0, and M ′ is bounded.3 Let X be
the infinite N/M -ratio-minimizing extension of σ and L = lim

t→∞
N(X�t)
M(X�t) . For

every ϵ > 0 the set

{t : |N ′(X � t)− L ·M ′(X � t)| > ϵ}

has zero density.

Proof. Note that

|N ′(X � t)− L ·M ′(X � t)| =
|(N(X � t+ 1)−N(X � t))− L · (N(X � t+ 1)−N(X � t))| .

3The assumption that M ′ is bounded can be relaxed by assuming only that
1
N

∑N−1
t=0 |M ′(X � t)| is bounded.
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By Lemma 9, we have

lim
n→∞

1

n

n∑
k=1

|N ′(X � t)− L ·M ′(X � t)| = 0,

which implies that the density of the set

{t : |N ′(X � t)− L ·M ′(X � t)| > ϵ}

is zero, for every ϵ > 0. �

The next step is to construct the history-independent A-martingale pre-
scribed by Theorem 6. We formalize the properties of this martingale in the
following lemma.

Lemma 11. Let A,B ⊂ R+. Suppose that supA < ∞ and A does not scale
into B; then there exists a history-independent A-martingale with positive
initial value, M , such that for every non-negative B-martingale, N , and
every σ ∈ {h, t}∗ such that M(σ) > 0, the infinite N/M -ratio-minimizing
extension of σ, X , satisfies

lim
t→∞

N(X � t)
M(X � t) = 0.

Note that the A-martingale, M , does not depend on N or σ, so the same
M can be used against any N at any σ that leaves M(σ) positive.

Proof of Lemma 11. Let {an}∞n=0 be a countable dense subset of A \ {0}.
For every positive integer t, let n(t) ∈ Z+ be the largest integer such that
2n(t) divides t. Define xt := an(t). The sequence {xt}∞t=1 has the property
that the set

(4) {t : |xt − a| < ϵ}

has positive density, for every ϵ > 0 and a ∈ A.
Let M be a history-independent martingale whose increment at time t

is xt, for every t ∈ Z+ (with an arbitrary positive initial value). Let N
be an arbitrary non-negative B-martingale. Suppose that M(σ) > 0 and
let X be the infinite N/M -ratio-minimizing extension of σ and let L =

limt→∞
N(X�t)
M(�t) . Corollary 10 and (4) guarantee that L · A ⊂ B̄. By the

assumption that A does not scale into B, we conclude that L = 0. �

3.2. The casino sequence. In the rest of this section we assume that supA =
inf(B \ {0}) = 1. This is w.l.o.g. since proportional sets are (strongly)
equivalent.
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We begin with an informal description of the casino sequence. Lemma 11
provides a history-independent A-martingale, M , that can be used against
any B-martingale.

Given a sequence of B-martingales, N1, N2, . . ., we start off by ratio-
minimizing against N1. When M becomes greater than N1, we proceed to
the next stage. We want to make sure that N1 no longer makes any gains.
This is done by playing adversarial to N1 whenever he wagers a positive
amount.

At times when N1 wagers nothing (i.e., N ′
1 = 0), we are free to choose

either h or t without risking our primary goal. At those times we turn to
ratio-minimizing against N2, while always considering the goal of keeping
N1 from making gains a higher priority. Since inf {B \ {0}} = 1 > 0, it
is guaranteed that at some point we will no longer need to concern N1, and
hence, at some even further point, M will become greater than N1 +N2.

The process continues recursively, where at each stage our highest prior-
ity is to prevent N1 from making gains, then N2, N3, and so on until Nk;
and if none of N1, . . . , Nk wagers any positive amount, we ratio-minimize
against Nk+1.

When a positive wager of some Ni, i ∈ {1, . . . k}, is answered with
an adversarial outcome, a new index k′ must be calculated, so that M is
sufficient to keep N1, . . . , Nk′ from making gains. That is, M > N1+ · · ·+
Nk′ .

An inductive argument shows that for every fixed k, there is a point in
time beyond which none of N1, . . . , Nk will ever wager a positive amount;
therefore, at some even further point, M becomes greater than N1 + · · · +
Nk+1; hence the inductive step.

The above explains how the value of each Ni converges to some Li ∈ R+,
and the limit inferior of the value of M is at least

∑∞
i=1 Li. In order to make

sure that M goes to infinity we include, among the Nis, infinitely many
martingales of constant value 1.

We turn now to a formal description. As mentioned above, we assume
without loss of generality that supA = inf{B \ {0}} = 1. We additionally
assume that 0 ∈ B, and so we can convert arbitrary B-martingales to non-
negative ones by making them stop betting at the moment they go bankrupt.

Let M be a history-independent A-martingale provided by Lemma 11.
Let N1, N2, . . . be a sequence of non-negative B-martingales. Assume with-
out loss of generality that infinitely many of the Nis are the constant 1 mar-
tingale.

We define a sequence X ∈ {h, t}∞ recursively. Assume X � t is already
defined.
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First we introduce some notation. Denote the value of M at time t by
m(t) = M(X � t), and similarly ni(t) = Ni(X � t), for every i ∈ N. Let

Si(t) =
i∑

j=1

nj(t),

k(t) = max{i : Si(t) < m(t)}, and

S(t) = Sk(t)(t).

Note that the maximum is well defined, since the ni(t) include infinitely
many 1s.

We are now ready to define Xt+1. We distinguish between two cases:
Case I: there exists 1 ≤ j ≤ k(t) such that N ′

j(X � t) ̸= 0; Case II:
N ′

1(X � t) = · · · = N ′
k(t)(X � t) = 0.

In Case I, let i = min{j : N ′
j(X � t) ̸= 0} and define

Xt+1 =

{
t if N ′

i(X � t) > 0,
h if N ′

i(X � t) < 0.

In Case II, Xt+1 is the Nk(t)+1

M−S(t)
-ratio-minimizing outcome at X � t. Ex-

plicitly,

Xt+1 =

t if
N ′

k(t)+1
(X�t)

M ′(X�t) >
nk(t)+1

m(t)−S(t)
,

h if
N ′

k(t)+1
(X�t)

M ′(X�t) ≤ nk(t)+1

m(t)−S(t)
.

Consider the tuple α(t) = (⌊n1(t)⌋, . . . , ⌊nk(t)(t)⌋). In Case I, α(t + 1)
is strictly less that α(t) according to the lexicographic order. In Case II,
α(t) is a prefix of α(t + 1), and so under a convention in which a prefix of
a tuple is greater than that tuple, we have that {α(t)}∞t=1 is a non-increasing
sequence.4 Let k = lim inf

t→∞
k(t). It follows that from some point in time,

α consists of at least k elements; therefore the first k elements of α must
stabilize at some further point in time. Namely, for t large enough we have
⌊ni(t)⌋ = lim

t′→∞
⌊ni(t

′)⌋ < ∞, for every i ≤ k. Since the increments of ni(t)

are bounded below by 1, n1(t), . . . , nk(t) stabilize, too. Also, since m(t) >
S(t), we have lim inf

t→∞
m(t) ≥ limt→∞ Si(t), for every i ≤ lim inf

t→∞
k(t).

Since there are infinitely many i’s for which ni(t) is constantly 1, the proof
of Theorem 6 is concluded by showing that lim inf

t→∞
k(t) = ∞.

4Alternatively, one can use the standard lexicographic order where α(t) is appended
with an infinite sequence of ∞ elements.
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Assume by negation that lim inf
t→∞

k(t) = k < ∞. There is a time T0 such

that nk(t) = lim
t′→∞

nk(t
′) and k(t) ≥ k, for every t > T0. There cannot be

a t > T0, for which k(t) > k and k(t + 1) = k. That would mean a Case
I transition from time t to t + 1 and we would have ni(t + 1) < ni(t), for
some i ≤ k. It follows that k(t) = k, for every t > T0.

From time T0 ratio-minimization against nk+1 takes place. Let l =
lim inf
t→∞

nk+1(t). If l = 0, then nk+1(t) < 1, for some t > T0; at this point

nk+1 stabilizes (otherwise Nk+1 would go bankrupt); therefore nk+1(t) = 0;
therefore k(t) > k, which is not possible. If l > 0, then by Lemma 11,
there must be some time t > T0 in which m(t) > nk+1(t) + Sk(T0) =
nk+1(t) + S(t), which contradicts the definition of S(t).

4. PROOF OF THEOREM 7

To show that if B is well ordered and A does not scale into B, then A
evades B, we construct an A-martingale M , s.t. for any B-martingales
N1, N2, . . . we construct a sequence X on which M succeeds, while every
Ni does not.

We begin with a rough outline of the proof ideas. M always bets on
“heads.” Before tackling every Ni, we first gain some money and “put it
aside.” Then we ratio-minimize against Ni. It will eventually make M suf-
ficiently richer than Ni, so that we can declare Ni to be “fragile” now. This
means that from now on the casino can make Ni lose whenever it is “active”
(i.e., makes a non-zero bet), since M can afford losses until Ni is bankrupt.
When Ni is not active, we can start tackling Ni+1, while constantly making
sure that we have enough money kept aside for containing the fragile oppo-
nents. An important point is to show that once some Ni becomes fragile, it
remains fragile unless a lower-index martingale becomes active.

Let (an) be a sequence that is dense within A \ {0}, and such that each
number in the sequence appears infinitely many times. For example, given
a dense sequence (xn) in A \ {0}, the sequence

x1; x1, x2; x1, x2, x3; x1, x2, x3, x4; . . .

can be used.
Since multiplying A or B by a positive constant does not make a differ-

ence, we may assume w.l.o.g. that a1 = 1, and that inf(B \ {0}) = 1 (B is
well ordered; hence in particular B \ {0} is bounded away from 0).

We construct M and X as follows. Denote m(t) = M(X � t), and
similarly m′(t) = M ′(X � t). Take integers

f(t, k) ≥ max{m(t), |(ak+1 − ak)/ak|}.
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FIGURE 2. γ and the wagers

We take M(ε) = a1. For the first f(0, 1) stages, M ′ = a1. Then, after
stage t = f(0, 1), M ′ = a2 for the next f(t, 2) periods, and after stage
t′ = t + f(t, 2), M ′ = a3 for f(t′, 3) stages, and so on. But this goes on
only as long as no “tails” appears. Whenever a “tails” appears, namely, at
a stage t where Xt = t, we revert to playing from the beginning of the
sequence, i.e., M ′ = a1 for the next f(t, 1) stages (or until another “tails”
appears), then M ′ = a2, etc.

For t ≥ 0 we define the function γ(t), which is similar to m′(t), but
modifies sudden increases of m′ into more gradual ones. At the beginning
of a block of stages where ak is wagered (i.e., where m′(·) = ak), γ equals
ak. If ak+1 ≤ ak, then γ remains ak throughout this block. Otherwise, it
linearly increases until reaching ak+1 exactly at the beginning of the next
block. I.e., suppose m′(t) = ak, and let s ≤ t be the beginning of the block
(of length f(s, k)) of ak wagers. If ak+1 ≤ ak then γ(t) = ak. Otherwise,

γ(t) =
(s+ f(s, k)− t) ak + (t− s)ak+1

f(s, k)
.

Note: (i) γ(t) ≥ m′(t),

(ii) If Xt+1 = t then γ(t+ 1) = a1 = 1,

(iii) If Xt+1 = h then γ(t+ 1)− γ(t) ≤ m′(t).

The last one follows from m′(t) = ak, γ(t+1)−γ(t) ≤ (ak+1−ak)/f(s, k),
and f(s, k) ≥ |(ak+1 − ak)/ak| , by the definition of f .

Let N1, N2, . . . be B-martingales (and assume these martingales never
bet on money that they do not have). Denote ni(t) = Ni(X � t). To define
the sequence X , denote νk(t) = k+n1(t)+. . .+nk(t), and let p = p(t) ≥ 0



HOW TO GAMBLE AGAINST ALL ODDS 14

be the largest integer such that

m(t)− (γ(t)− 1) > νp(t).

N1, . . . , Np(t) are the “fragile” martingales at time t. Define

µ(t) = m(t)− (νp(t) + 1)

and consider two cases. (i) If there exists some index 1 ≤ j ≤ p(t) s.t.
n′
j(t) ̸= 0, let i be the smallest such index, and Xt+1 is chosen adversely

to n′
i. (ii) Otherwise, Xt+1 is chosen by µ/Np+1-ratio-minimizing, i.e., if

µ(t) > 0 and n′
p+1(t)/m

′(t) > np+1(t)/µ(t) then Xt+1 = t, and otherwise
Xt+1 = h .

We now show that these M and X indeed work.

Lemma 12. For any t, if p(t) ≥ i and n′
j(t) = 0 for every j < i, then

p(t+ 1) ≥ i .

Proof of Lemma 12. We prove the following equivalent claim:
(I) If i ≤ p(t) is the smallest index such that n′

i(t) ̸= 0, then i ≤ p(t + 1).
(II) If n′

j(t) = 0 for any j ≤ p(t), then p(t) ≤ p(t+ 1).
In case (II), denote i = p(t). Then in both cases

m(t)− (γ(t)− 1) > νi(t)

is known. Let L(t) designate the LHS of this inequality. We need to show
that L(t + 1) > νi(t + 1). Note that for any j < i, nj(t + 1) = nj(t), and
that if Xt+1 = h then L(t+1) ≥ L(t), since m(t+1) = m(t) +m′(t) and
γ(t+ 1) ≤ γ(t) +m′(t).

(I) In this case the casino makes i lose, hence ni(t+1) ≤ ni(t)−1 (recall
that inf(B \ {0}) = 1); therefore νi(t+1) ≤ νi(t)− 1. If Xt+1 = h we are
done. If Xt+1 = t then m(t+1) = m(t)−m′(t), and γ(t+1) = 1; therefore,
L(t+1) = L(t)−m′(t)+(γ(t)−1) ≥ L(t)−γ(t)+(γ(t)−1) = L(t)−1.

(II) In this case ni(t + 1) = ni(t); hence νi(t + 1) = νi(t). If Xt+1 = h
we are done. If Xt+1 = t then m(t+ 1) = m(t)−m′(t) and γ(t+ 1) = 1.
But Xt+1 = t also implies (by the definition of X) that µ(t) > 0 and
n′
i+1(t)/m

′(t) > ni+1(t)/µ(t). Since n′
i+1(t) is always ≤ ni+1(t), we get

that µ(t) > m′(t). Now, L(t + 1) = (m(t) −m′(t)) − (1 − 1) = m(t) −
m′(t) > m(t)−µ(t) = νi(t)+1, because µ(t) is m(t)− (νi(t)+1). Thus,
L(t+ 1) > νi(t) + 1 > νi(t) = νi(t+ 1). �

Remark: The above argument also proves that M is never bankrupt, i.e.,
m(t) ≥ m′(t), and moreover m(t) ≥ γ(t), as follows.

In the beginning 1 = m(0) ≥ γ(0) = 1. As long as p(t) = 0 we are
in case (II). In this case, if Xt+1 = h then L(t) does not decrease; hence
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m(t) − γ(t) does not decrease. And if Xt+1 = t we just saw that actually
L(t+ 1) > 1 + νi(t+ 1), which implies that m(t)− γ(t) > 0.

Once p(t) > 0, then νi(t) ≥ 1, hence L(t) > νi(t) implies that m(t) −
γ(t) > 0; and Lemma 12 implies that p(t) remains > 0.

Lemma 13. For any i there exists a stage Ti s.t. for any t > Ti , n′
1(t) =

n′
2(t) = . . . = n′

i(t) = 0, and p(t) ≥ i.

Proof of Lemma 13. We proceed by induction over i ≥ 0; namely, the in-
duction hypothesis is that the lemma holds for i−1. Note that the induction
base case i = 0 holds vacuously.5

If p(t0) ≥ i for some stage t0 > Ti−1, then p(t) ≥ i for every t ≥ t0, by
lemma 12. From this stage on, the casino chooses adversely to i whenever
i is active (because the lower-index players are not active). Therefore, i
will be active at no more than ni(t0) stages after t0, since afterwards i has
nothing to wager, and we are done.

So assume by way of contradiction that p(t) = i− 1 for every t > Ti−1 .
Then Xt+1 is µ/Ni-ratio-minimizing. As long as µ(t) ≤ 0 we get “heads”;
therefore, from some stage on, µ > 0 (as every ak appears infinitely many
times, the sum of the wagers will not converge). Denote q(t) = ni(t)/µ(t).
q(t) ≥ 0 is non-increasing and therefore converges to a limit L. Denote
0 ≤ r(t) = ni(t)− Lµ(t).

Suppose there exists some k s.t. the wagers m′(t) never reach beyond
a1, . . . , ak . Hence, there are infinitely many stages t where i over-bets, i.e.,
n′
i(t) > q(t)m′(t). For 1 ≤ j ≤ k, let xj = Laj . Since B is well ordered,

there exists some δj > 0 s.t. (xj, xj + δj) ∩ B = ∅ . Since q(t) → L ,
q(t) < L+min1≤j≤k(δj/aj) for t large enough.

When i over-bets and m′(t) = aj , then r(t+1) = ni(t+1)−Lµ(t+1) ≤
ni(t) − (Laj + δj) − L(µ(t) − aj) = r(t) − δj . When i does not over-
bet, then n′

i(t) ≤ xj = Laj , and r(t + 1) = ni(t + 1) − Lµ(t + 1) ≤
(ni(t) +Laj)−L(µ(t) + aj) = r(t). Therefore r(t) does not increase, and
infinitely many times it decreases by at least δ = min1≤j≤k δj > 0; hence
eventually r(t) < 0, which is a contradiction.

Therefore, there does not exist an index k as above. This implies that
for any j, there is a stage t after which aj is wagered f(t, j) consecutive
times, and Ni does not over-bet (otherwise aj+1 cannot be reached). Now
suppose that L > 0 . Let A0 = {a1, a2, . . .} be the set of all the values that
the sequence (an) takes. A0 is dense in A, and L ·A * B̄ (since A does not

5Incidentally, the inequality defining fragility always holds for p(t) = 0, as m(t) ≥ γ(t)
and ν0(t) = 0 imply that m(t)− (γ(t)− 1) > ν0(t).
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scale into B); therefore, also L ·A0 * B̄. Hence, there exists an a ∈ A0 s.t.
the distance between La and B̄ is δ > 0.

Let ∆ = min{δ/a, δ}. For t larger than some T∆, q(t) < L +∆. Since
a appears infinitely many times in the sequence (an), there exist Ta > T∆

and an index j, s.t. aj = a is wagered f(Ta, j) consecutive times, and at
each of these times n′

i(t) ≤ La − δ, as otherwise n′
i(t) ≥ La + δ, but that

is over-betting since (La + δ)/a = L + δ/a > q(t). Hence, r(t + 1) ≤
ni(t) + La − δ − L(µ(t) + a) = r(t) − δ. But q(Ta) < L + δ; therefore
ni(Ta) < (L + δ)µ(Ta); hence r(Ta) < δµ(Ta). By the definition of f ,
f(Ta, j) ≥ m(Ta) ≥ µ(Ta); therefore after those f(Ta, j) times, r < 0 .
This cannot be; therefore L = 0.

As q(t) → 0, surely q(t) < 1 for large enough t, namely, µ(t) > ni(t).
Since µ(t) = m(t) − (νi−1(t) + 1), we get m(t) > ni(t) + νi−1(t) + 1 =
ni(t)+((i−1)+n1(t)+ . . .+ni−1(t))+1 = i+n1(t)+ . . .+ni(t) = νi(t).
At some stage t, M starts wagering 1. For this t, γ(t) = m′(t) = 1; hence
m(t) − (γ(t) − 1) = m(t) > νi(t), contradicting our assumption that i is
not fragile. �

Lemma 13 states that any Ni is only active a finite number of times,
and therefore it is bounded; it also states that for any i and large enough t,
m(t)− (γ(t)− 1) > νi(t), hence m(t) > νi(t) + (γ(t)− 1) > νi(t)− 1 ≥
i− 1, and therefore m(t) → ∞.

5. FURTHER RESEARCH

It seems possible that our proof of Theorem 7 could be modified so as to
avoid the assumption that B is well ordered. We conjecture that Theorems 6
and 7 could be unified as the following statement.

Conjecture 14. Let A,B ⊂ R+. If 0 ̸∈ B \ {0}, then B anticipates A only
if A scales into B.

The present paper strove to understand the effect of restricting the wager
sets on the prediction power of martingales. As is often the case, under-
standing one thing brings up many new questions. We list just a few.

• Under the assumptions of Theorem 6, A can evade B through a
history-independent martingale. Is it also the case under the as-
sumptions of Theorem 7?

• Are single anticipation and countable anticipation different? That
is, are there sets A,B ⊂ R+, such that B countably, but not singly,
anticipates A?



HOW TO GAMBLE AGAINST ALL ODDS 17

• What can be said about the anticipation relation between sets that do
include 0 as an accumulation point, for example, {2−n}∞n=1, { 1

n
}∞n=1,

and R+?
• Buss and Minnes (2013) introduce martingales defined by proba-

bilistic strategies. How do these martingales behave in our frame-
work?
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