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Abstract

This paper considers the problem of identi�cation and estimation in the �rst-price multi-

unit auction. It is motivated by the auctions of bus routes held in London where bidders

submit bids on combinations of routes as well as on individual routes. We show that

submitting a combination bid lower than the sum of the bids on the constituent routes

does not require cost synergies and can instead serve as a tool to leverage market power

across the di¤erent routes. As a result, the welfare consequences of allowing combina-

tion bidding in the �rst price auction are ambiguous, and depend on the importance of

the cost synergies. We provide conditions for non-parametric identi�cation of the mul-

tidimensional private information in the multi-unit �rst price auction and derive partial

identi�cation results when they are not satis�ed. We propose an estimation method

consisting of two stages: In the �rst stage, the distribution of bids is estimated para-

metrically. In the second stage, the (set of) costs and distribution(s) of costs consistent

with the observed behavior are inferred based on the �rst order conditions for optimally

chosen bids. We apply the estimation method to data from the London bus routes mar-

ket. We quantify the magnitude of cost synergies and assess possible e¢ ciency losses

arising in this market.
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1 Introduction

This paper considers the problem of identi�cation and estimation in the �rst-price multi-

unit auction. It is motivated by the auctions held by the London Transportation authority

to award contracts to service bus routes. Two special features of these auctions are that

several bus routes are auctioned at the same time, and that bidders may submit combination

bids in addition to stand-alone bids. In other words, the London bus routes market is an

example of a combinatorial auction.

Combinatorial auctions allow bidders to transmit rich information regarding the value

they attach to the objects for sale. When bidders value bundles of objects di¤erently than

the sum of the constituent parts, allowing bids for a combination of routes is a necessary

condition for e¢ ciency and optimality. This was well understood by the London Trans-

portation authority. Indeed, two of the motivations for allowing combination bids in the

London bus routes market were: (i) that they would allow bidders to pass on some of the

cost savings resulting from cost synergies between routes through lower bids, and (ii) that

they would enhance the e¢ ciency of the allocation of routes across bidders.

However, allowing combination bids in the �rst price auction may also hurt e¢ ciency

and costs. Section 2 introduces a model of a private value multi-unit �rst price procure-

ment auction that allows for cost synergies between routes. Two distinct motivations for

combination bidding are illustrated. First, combination bidding gives rise to a strategic

e¤ect because bidders�stand-alone bids compete with their combination bids. As a result,

bidders may �nd it pro�table to in�ate their stand-alone bids relative to their combination

bids in order to favor the latter, even in the absence of any cost synergy. Second, when cost

synergies are important, the fact that combination bids do allow bidders to align their bids

better on their costs can help improve e¢ ciency and lower costs. As a result, the welfare

consequences of combination bidding depend on which motivation dominates.

How to disentangle the alternative motivations for combination bidding is an open em-

pirical question. This paper contributes to this question. In doing so, we follow the footsteps

of the seminal papers by Elyakime, La¤ont, Loisel and Vuong (1994) and Guerre, Perrigne

and Vuong (2000) who introduced an indirect approach to the empirical analysis of auc-

tions. The earlier �direct�approaches include those proposed by Donald and Paarsch (1993,

1996), La¤ont and Vuong (1993) and La¤ont, Ossard and Vuong (1995). These approaches

are all intrinsically parametric. The primitives, including the distribution of costs, are given

speci�c parametric forms. The estimation proceeds by choosing the value of the parameters

for which the equilibrium distribution of bids is as close as possible to the empirical distri-

2



bution of bids. These approaches require solving for the equilibrium, which can be di¢ cult

and time-consuming.

Elyakime, La¤ont, Loisel and Vuong (1994) and Guerre, Perrigne and Vuong (2000)

show that bidders��rst order conditions for optimally chosen bids provide an expression

for their private information as a function of their bids and the distribution and density of

equilibrium bids. Since the bids are observable, the theoretical expressions involving the

distribution and density of bids can be replaced with the empirical counterparts suggesting

a two-step estimation method. In the �rst step, the distribution and density of bids are

estimated. In the second step, the private information and the bidders� distribution of

private information is estimated as a residual in the bidders��rst order condition. The

method does not require the computation of equilibrium strategies.

The indirect approach has boosted research on non-parametric identi�cation of auction

models (see Athey and Haile, 2004 for a survey of recent results) and, because the estimation

does not rely on the computation of the equilibrium bid functions, it has led to a rapid

development of auction applications beyond the single object symmetric independent private

value model (e.g. Li, Perrigne and Vuong, 2002, Campo, Perrigne and Vuong, 2003, Jofre-

Bonet and Pesendorfer, 2003 and Athey, Levin and Seira, 2004).

Section 3 studies our identi�cation problem. We assume that bidders assess their winning

probabilities correctly and choose bids to maximize their pro�ts. We also assume that the

observed data capture all the relevant characteristics of the environment. The model is said

to be (non parametrically) identi�ed under these assumptions, if the primitives, i.e. the

costs and the distribution of costs, can be uniquely inferred from the observed data.

As in Guerre, Perrigne and Vuong (2000), our identi�cation arguments are based on the

best response conditions given by the �rst order conditions for optimal bids. Yet, there are

notable di¤erences between our identi�cation problem and theirs.1 First, Guerre, Perrigne

and Vuong build on the known characterization of equilibrium in the single object inde-

pendent private value symmetric �rst price auction to argue that the �rst order condition

for optimal bids identi�es costs, for all bids above the reserve price. In our case, no such

characterization result is available. We prove a new partial characterization result for the

combinatorial �rst price auction that justi�es when the �rst order conditions can be used

for identi�cation (Lemma 1). In some cases, optimal bids satisfy a set of inequalities rather

than a set of equalities and thus �rst order conditions do not completely identify costs.

1Extensions of Guerre, Perrigne and Vuong�s results and the relationship between our results and those

are discussed below under �related literature.�
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Second, optimal bids are characterized by a single �rst order condition in the single object

auction, whereas they are characterized by a system of equations in our case. The conse-

quence is that identi�cation requires an extra step to prove that this system of equations

admits a unique solution (Lemma 2). Third, in the single object independent private value

model, the main source of under-identi�cation is the presence of a reserve price. In our case,

there are additional sources of underidenti�cation. We address each of these systematically

and characterize what can be identi�ed in each case.

Our results are as follows. The multi-unit �rst price auction model is identi�ed when

bidders actively bid, that is, submit bids that have a strictly positive probability of winning,

on all contracts and combinations thereof. In practice however, several factors may reduce

the dimensionality of the observed information. First, not submitting a bid that has a

positive probability of winning on all items can be part of equilibrium behavior. Second,

a constraint on bids, such as a reserve price, or the condition that combination bids must

be lower than the sum of the constituent bids, can further reduce the dimensionality of the

observed information. In these cases, partial identi�cation emerges and a (non singleton)

set of costs and cost distributions is identi�ed.

Section 4 turns to our application and describes the London bus routes market. This

market is particularly well-suited for this kind of analysis. First, there is a common percep-

tion that synergies between routes are prevalent. Second, combination bids are permitted

and play an important role in this market with about 30% of all routes won by combination

bids. Thus, our method allows us to quantify the extent of cost synergies in this market,

and therefore assess the role of combination bids.

Section 5 proposes our estimation method. The estimation proceeds in two stages. In

the �rst stage, the multi-variate joint distribution of bids for all units is estimated. Due

to the multi-dimensionality of the bid vectors, and to incorporate covariates, we consider

a parametric bid density. In the second stage, the costs or the set of costs that rationalize

the bids are inferred by using the �rst order conditions for optimal bids.

Section 6 reports our estimates. We illustrate the bidders�objective function by using

the estimated winning probability. The estimates suggest that bidders may �nd it pro�table

to submit a combination bid less than the sum of stand-alone bids even in the absence of

cost synergies. We report our bound estimates on possible cost synergies. We �nd little

evidence of cost synergies. Our estimates suggest that a route combination costs more than

the sum of stand-alone costs on average. A possible explanation is that the technology of

operating buses in London depends on the garage capacity and the number of garages a
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bidder has available. As the number of buses in the �eet approaches the available garage

capacity it becomes increasingly costly to take on additional buses or routes. At the end of

this section, we use our cost estimates to assess bounds on possible e¢ ciency losses.

Related literature. There is a growing literature on identi�cation and estimation in

auctions. Donald and Paarsch (1993), La¤ont, Ossard and Vuong (1995), Guerre, Perrigne

and Vuong (2000) and others propose identi�cation results and estimation techniques to

infer bidders�private information (Athey and Haile, 2004, provide a survey of identi�cation

results in auctions). The literature focuses to a large extent on the single-unit auction model

and little is known about auctions in which multiple units are sold. Exceptions include the

sequential auctions analyzed by Jofre-Bonet and Pesendorfer (2003) and Donald, Paarsch

and Robert (2005) and the simultaneous auctions of homogenous goods analyzed, among

others, by Hortacsu (2002), Wolak (2003), Fevrier, Preget and Visser (2004), Hortacsu

and Puller (2005) and Kastl (2005). Jofre-Bonet and Pesendorfer propose an estimation

techniques to measure linkages between items sold at sequential auctions. They �nd ev-

idence of substitutes at sequential highway procurement auctions. Hortacsu (2002) and

Fevrier, Preget and Visser (2004) study share auctions for treasury bills, and Wolak (2003)

and Hortacsu and Puller (2005) study electricity auctions. Assuming that the equilibrium

bid functions are strictly decreasing demand functions and generate a residual supply for

bidders that has no kinks, Hortacsu (2002) shows that the private value multi-unit dis-

criminatory auction model is non parametrically identi�ed. Wolak (2003) discusses in more

details how constraints on bids, such as the requirement that bids belong to a price grid,

a¤ect identi�cation. Finally, McAdams (2005) has recently argued that the homogeneous

good multi-unit auction model is only partially identi�ed in general, and that previous ap-

proaches relied on more or less implicit identi�cation assumptions on optimal bids. The

identi�cation problem in share auctions is close to ours in the sense that the model is also

multi-dimensional and identi�cation proceeds via the �rst order condition of optimal bids.

Yet, a key di¤erence between our setting with heterogeneous goods and the share auction

model with homogeneous and divisible goods is that demand is identi�ed by a vector of

costs (c1; :::; cS) 2 R2
m�1 in our setting whereas it is identi�ed by a marginal valuation

function in share auctions. This leads to di¤erent mathematical structures.

The �rst order condition of equilibrium prices as an estimation condition features dom-

inantly in the empirical literature on di¤erentiated products. Goldberg (1995) incorporates

quota constraints into the estimating equations, which result in Kuhn-Tucker conditions

as in our framework. A distinguishing feature of our auction problem is that bidders have
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incomplete information about opponents�costs and bids. In Goldberg, �rms have complete

information about opponents�costs and prices leading to distinct best response conditions.

There has also been a number of recent theoretical analyses of auctions of heterogenous

objects. Among these, Armstrong (2000) and Avery and Hendershott (2000) derive proper-

ties of the optimal multi-unit auction when types are multidimensional and objects may be

substitutes or complements. A central question that these authors address is to what extent

the auctioneer may bene�t from bundling the objects (A seminal contribution to this ques-

tion is Palfrey, 1983). Krishna and Rosenthal (1995) and Branco (1997) study the second

price multi-unit auction with synergies. Milgrom (2000) highlights some perverse e¤ects of

combinatorial bidding in ascending auctions. Our analysis contributes to this literature by

highlighting the motivations and consequences of combination bidding in the combinatorial

�rst price auction. The strategic motivation we uncover is analogous to the bundling moti-

vation in the (decision-theoretic) multi-dimensional screening literature (McAfee, McMillan

and Whinston, 1989, Armstrong, 1996 and Armstrong and Rochet, 1999) but it had never

been pointed out in the auction context.

Finally, the importance of synergies in multi-unit auctions has been emphasized by the

recent experience in FCC spectrum auctions. Ausubel, Cramton, McAfee and McMillan

(1997) and Moreton and Spiller (1998) use a regression analysis to measure synergy e¤ects

in these auctions. Other recent applications of combinatorial auctions include the auctions

for school meals in Chile (Epstein, Henriquez, Catalan, Weintraub and Martinez, 2002)

and corporate procurement applications at Sears and Home Depot. (Cramton, Shoham

and Steinberg, 2006, provide a survey of recent issues and applications in combinatorial

auctions.)

2 Bidding environment

This section introduces the model and highlights its key properties.

2.1 Model

Our model integrates the salient features of the London bus routes market. A procurement

agency (the �buyer�) simultaneously invites bids onm routes fromN risk neutral bidders. A

contract covers a single route or a combination of routes. Each bidder i privately observes

a cost draw, cis 2 R, for each contract. We let S denote the set of routes. To simplify

notations, we adopt the convention that s � S means that s is a non empty subset of S:
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Let ci = (cis)s�S : (Vectors and matrices are in bold, scalars are in standard fonts). We say

there is no cost synergy if cis + cit = cis[t for contracts s and t with s \ t = ;; where cis[t
denotes bidder i�s cost for the combination of contracts s and t. Cost synergies are positive

if costs are strictly subadditive, cis[t < cis + c
i
t, and negative if c

i
s[t > cis + c

i
t.

Information. Bidders�contract costs are independently distributed according to the dis-

tribution Fi(:jX) : Ci � R(2m�1) ! [0; 1]; i = 1; :::N; where X = (x;w) denotes a vector

of observable contract characteristics x and bidder characteristics w: We assume that Fi is

common knowledge and that Fi and Ci satisfy the following condition:

Assumption 1: For all i; Ci has a non empty interior and Fi has a strictly positive and
continuous density on Ci.

Let F be the set of distribution functions that satisfy Assumption 1. The assumption

that Ci has a non empty interior ensures that the distribution is not degenerate and that
bidders�private information is indeed of dimension 2m � 1: The assumption on the density
is �exible. It allows independence and correlation or a¢ liation in bidders� costs across

contracts.

Auction rule. We consider the auction rule used in the London bus routes market. Bidders

may submit bids on all contracts: Let bis denote bidder i�s bid on contract s, and let b
i =

(bi1; :::; b
i
s; :::; b

i
S) 2 R2

m�1. Bidders pay the value of their winning bids and the buyer selects

the winner(s) based on the allocation that minimizes her total payment (�rst price auction).

In the London bus route market, the buyer imposes the additional requirement that bids

be subadditive, that is, bis[t � bis + bit for all s; t such that s \ t = ;. There may also be a
reserve price. Let Rs denote the reserve price for contract s. Bids on or above the reserve

price are rejected. Ties are resolved by randomizing over all cost-minimizing allocations.

Payo¤s. Fix bidder i; and for each contract s � S; de�ne b�is as the value of the cheapest

allocation of the routes in s among bidder i�s opponents. Formally, let PNni(s) de�ne the
set of partitions of s into N � 1 (possibly empty) subsets. Let t = (t1; :::; ti�1; ti+1; :::tN )

denote an element of PNni(s): Then,

b�is = min
t2PNni(s)

X
j 6=i

bjtj (1)

where, by convention, bj; = 0: Note that by construction b
�i
s is subadditive.

Given the auction rules and bidders�risk neutrality, bidder i�s payo¤ is given by (ignoring

ties): (
bis � cis if bis + b

�i
Sns < mint�S; t6=sfb

i
t + b

�i
Snt; b

�i
S g

0 otherwise
(2)

7



2.2 Properties

Not much is known about the general properties of the equilibrium in this auction, beyond

the fact that an equilibrium exists. When the support of costs is bounded, the game satis�es

the conditions of Theorem 1 of Jackson, Simon, Swinkels and Zame (2002) for a (mixed

strategy) equilibrium with endogenous tie-breaking rule. When values are private, we can

argue that whenever ties occur, bidders are indi¤erent among the ways in which they are

resolved.2 Hence, the equilibrium of the extended game with endogenous tie-breaking rule

is also an equilibrium of the original game.

Additionally, we can get some insight into the bidding behavior we may expect at

equilibrium by drawing on the analogy between the bidders�optimization problem in this

auction and that of the multi-product monopolist. To �x ideas consider a two-object auction

(the generalization to more objects is straightforward). Consider bidder i:With two objects,

there are four possible allocations between bidder i and his opponents: bidder i wins object

1 (and one of his opponents wins object 2, if bi1+b
�i
2 corresponds to the cost of the cheapest

allocation), he wins object 2 (and his opponents win object 1), he wins both objects or he

does not win anything.

Now consider object 1: Holding the distribution of the value of the cheapest allocation

among his opponents (b�i1 ; b
�i
2 ; b

�i
12 ) �xed, decreasing b

i
1 increases bidder i�s chance to win

exactly object 1 by lowering the price of allocation that corresponds to bi1 + b
�i
2 relative to

the others. But it decreases bidder i�s chance of winning object 2 or the package because it

could be the case that, had bidder i not lowered bi1; the value of the cheapest allocation was

bi2+b
�i
1 or bi12: Another way to look at this is in terms of the following trade-o¤. The bene�t

to bidder i from lowering his bid on object 1 is that he wins object 1 more often. The costs

are twofold. First, it lowers his pro�t margin whenever he wins object 1. Second, it reduces

his chance of winning object 2 alone or the package of objects 1 and 2. At equilibrium,

of course, bidder i chooses bid bi1 such that this marginal bene�t and these marginal costs

exactly balance one another. This trade-o¤ is at the heart of the multi-unit �rst price

auction: bidders�own bids compete with one another.

This is also a classic price discrimination trade-o¤, analogous to that present in the

multi-product monopolistic pricing problem. When the multi-product monopolist sets his

2A formal proof of this statement is provided in Lemma 1 below. The only di¤erence with analogous

arguments made for single object private value auctions (e.g. Maskin and Riley, 2000, and Jackson et al.,

2002) is that, here, changing the bid on one object not only changes the probability of winning that object

but also changes the probability of winning other objects.
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prices, he takes into account the fact that the price of a product a¤ects both the demand

for this product and the demand for other products.

To make this analogy more transparent, consider the multi-product monopolist problem.

For simplicity, suppose the monopolist is selling two products to a buyer with unit demand

and private information about his value for these products, vs; s 2 f1; 2; 12g: The buyer has
additive preferences, i.e. v1+v2 = v12: The monopolist sets a price, bs; for each product and

for the combination. Then, the buyer will buy product (or bundle) s if vs � bs > vt � bt for
all t 6= s and t � S and vs � bs > 0: Rearranging, and exploiting the fact that preferences

are additive, yields the following payo¤ for the monopolist:3(
bs � cs if bs + vSns < mint�S; t6=sfbt + vSnt; vSg
0 otherwise

(3)

Comparing this expression with that obtained for the bidder in the combinatorial auction,

(2), it is clear that the bidders�optimization problem is identical to that of the monopolist

facing a buyer with additive preferences.4

Consequently, some of the results from the literature on monopolistic multiproduct

pricing apply to describe bidders� best responses in our setting. McAfee, McMillan and

Whinston (1989) derive a su¢ cient condition for bundling to be pro�table for the mo-

nopolist with additive costs. They �nd that when demand is independent across goods �

in our setting, whenever the value of the cheapest allocation among bidder i�s opponents

are additive and independently distributed across products � submitting a price for the

bundle that is lower than the sum of the individual prices is optimal for the monopolist.

Schmalensee (1984) examines the special case of gaussian demands. Armstrong and Rochet

(1999) solve for the global maximization of the multi-product monopolist when valuations

are binary. Their analyses con�rm that bundling (the equivalent of submitting a combi-

nation bid b1[2 < b1 + b2) is pro�table unless there is strong correlation across buyers�

valuations.

Two lessons emerge from the multi-product monopoly pricing literature. First, observ-

ing a combination bid lower than the sum of the bids for the constituent units in our data

is no guarantee that there are underlying cost synergies. Submitting a combination bid

can be pro�table exactly for the same reason why the multi-product monopolist �nds price

discrimination pro�table. Section 3 explores how the additional knowledge about the envi-

3Consider: vs � bs > vt � bt i¤ bs + vt + vSnt[s � vt\s < bt + vs + vSnt[s � vt\s i¤ bs + vSns < bt + vSnt:
4With the caveat of course that the valuations are additive in (3) whereas they are subadditive in (2). In

that sense, (3) is nested in (2).
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ronment a bidder was facing when submitting his bids allows us to disentangle these two

motivations (cost synergies versus strategic price discrimination). Second, correlation in the

values of the cheapest allocation among bidders�opponents across the di¤erent routes is an

important determinant of combination bidding (Schmalensee, 1984, McAfee, McMillan and

Whinston, 1989, Armstrong and Rochet, 1999). The more correlated these values are, the

more likely it is that cost synergies are the main driver of combination bidding. The less

correlated these bids are, the greater the motivation for strategic price discrimination.

2.3 Welfare

In the presence of cost synergies, allowing bidders to convey information about their costs

for the combinations of contracts, in addition to their costs for the individual contracts, is

a necessary condition for e¢ ciency (Groves, 1973, Clarke, 1971) and for optimality (Levin,

1997, Armstrong, 2000 and Avery and Hendershott, 2000). In fact, this is why the pro-

curement authority for the London bus routes allows combination bids in their tendering

process.

It is straightforward to generate examples where, indeed, allowing combination bids in

the multi-unit �rst price auction improves e¢ ciency and lowers procurement costs. In this

subsection, we illustrate through a simple example that allowing combination bids may also

have costs. In the following example, an independent �rst price auction for each contract is

e¢ cient and minimizes the expected procurement cost. Allowing combination bids destroys

e¢ ciency and increases expected procurement costs. In the example, the cause can be

traced back to the strategic (price discrimination) e¤ect identi�ed above.

Example 1: There are two routes and three bidders. Bidders A and B are the �local�

bidders. They care only about one route. Bidder A has cost cA1 for route 1. Bidder B has

cost cB2 for route 2. Bidder C is a global bidder. He has an interest in both routes. (In

the context of our application, one can think of bidder C as having a garage between the

two routes, bidder A has his garage close to route 1 but far from route 2, etc.). Bidder

C�s costs are given by (cC1 ; c
C
2 ; c

C
12) where c

C
12 = cC1 + cC2 (no cost synergy). Costs are

private information and independently distributed across bidders. Moreover, assume that,

at the route level, bidders are symmetric. In other words, cA1 and c
C
1 have the same ex-ante

distribution, and so do cB2 and c
C
2 :

It is instructive to �rst consider the scenario when combination bids are not allowed,

that is, the buyer holds two independent auctions, one for route 1 and the other for route

2. The allocation of each route is independent of the outcome and the bids for the other
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route. Since bidders are symmetric at the individual market level (only bidders A and C

bid on contract 1 and only bidders B and C bid on contract 2), the unique equilibrium

is symmetric and in strictly increasing strategies. Thus, the bidder winning route 1 is the

bidder who has the lowest cost for route 1 and similarly for route 2: the outcome is e¢ cient.

Moreover, if private information is one-dimensional, and conditional on the optimal reserve

price and the usual regularity condition, this simple auction format minimizes procurement

costs (Levin, 1997).5

Now suppose that bidders are allowed to submit combination bids. At equilibrium, the

global bidder will submit bids such that bC12 < bC1 + bC2 : Indeed, consider his optimization

problem. From his perspective, the values of the cheapest allocation of the routes among

his opponents, (b�C1 ; b�C2 ) = (bA1 ; b
B
2 ); are independently distributed (since their costs are

independently distributed) and they are additive, b�C12 = b�C1 +b�C2 . Therefore, the analysis

of McAfee, McMillan and Whinston (1989) applies and bidder C will �nd it advantageous

to submit a non trivial combination bid at equilibrium, bC12 < bC1 +b
C
2 :
6 Combination bidding

must take place in any equilibrium. The intuition is that the combination bid pools the two

contracts together and allows the global bidder to leverage any advantage he has for one

contract into the other. Indeed, suppose that bidder A has a very high cost realization for

route 1. Then, the global bidder has an advantage for that route. If the global bidder only

submits a combination bid, he reduces the toughness of the competition he faces for the

second route because bidder B needs to submit a really low bid to compensate for bidder

A�s high bid and have a chance to win. This mechanism, route linkage through combination

bidding, is analogous to the leverage theory in industrial organization (Whinston, 1989).

In this example, combination bidding hurts e¢ ciency because whether bidder A wins

route 1 or not, no longer depends on bidder A�s and bidder C�s costs only, but also on

bidder B�s cost (through the combination bid of the global bidder).

Moreover, if private information is one-dimensional, the expected procurement cost of

the combinatorial auction is also higher than the expected procurement cost resulting from

two independent �rst price auctions. The argument for this claim relies on a version of the

revenue equivalence theorem (Myerson, 1981). When bidders are risk neutral and private

information is independently distributed across bidders, the expected procurement cost of

5The optimal auction when private information is multidimensional is not known for this setting.
6This argument implicitly assumes that bidder A only submits a bid on route 1 and bidder B only submits

a bid on route 2 at equilibrium. There is also a (degenerate) equilibrium where bidders only submit a bid on

the package (and no bids on the individual contracts). The same conclusion, ine¢ ciency and higher costs,

applies to this equilibrium.
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any incentive compatible allocation mechanism is fully determined by the allocation (see

Levin, 1997, for a derivation that applies to the environment here). We argued above that

the expected cost in the independent auctions case was the minimum attainable (and that

this is the unique allocation that reaches that minimum). We have also just argued that the

allocations di¤er across the two auction formats. Thus, the expected procurement cost in

the combinatorial auction must be strictly higher. By continuity, we can argue that if private

information is multidimensional but su¢ ciently correlated, the independent auctions format

still yields lower procurement costs than the combinatorial auction format.7 Moreover, the

result in McAfee, McMillan and Whinston extends to positive cost synergies and to low

enough negative cost synergies. Thus so does the result in example 1.

Understanding the costs and bene�ts of allowing combination bids is an important policy

question. Example 1 suggests that the question of which format is better for the London

bus routes market is ultimately an empirical one because the answer depends on the nature

and extent of synergies present in the market.

3 Identi�cation

This section describes our identi�cation results for the combinatorial �rst price auction. We

observe data on all bids, contract characteristics and bidder characteristics. We make the

following assumption on the data generation process:

Assumption 2: We observe a cross section of auction data, (bit; i = 1:::; N;Xt)Tt=1 from a

i.i.d. random sample of T independent auctions.8 There is no unobserved contract or bidder

heterogeneity, beyond the privately observed costs. The data is generated by equilibrium

play in which bidders�bids are equal or above their costs (if there are multiple equilibria,

we assume that the same equilibrium is played in all auctions).9

7The revenue equivalence theorem generalizes to environments with multidimensional private information

(see Krishna and Perry, 2000).
8By convention, non submitted bids on some contracts are assigned an arbitrary large value that guar-

antees they never win.
9Equilibrium behavior requires that bidders are best responding to their opponents�equilibrium distribu-

tion of bids. The assumption that bidders play the same equilibrium in all auctions is a common, though not

trivial, assumption in empirical auction works. Bidding on or above costs follows from equilibrium behavior

for bids that win with positive probability, but it is not necessary for bids that have zero probability of

winning. This technical assumption is needed for the proof of Lemma 1 but is otherwise inessential for the

identi�cation argument. Any equilibrium strategy where a bidder bids below his costs can be replaced by

an equilibrium strategy where these bids are at or above costs without a¤ecting bidders�payo¤s.
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The model is said to be (non parametrically) identi�ed if the primitives, i.e. the distri-

butions of costs Fi(:jX) 2 F ; can be uniquely inferred from the observed data under the

assumption that bidders play equilibrium strategies and that the observed data capture all

the relevant characteristics of the environment. The model is said to be partially identi�ed

if Fi can be shown to belong to a proper subset of F for all i:

In this section we �rst discuss the nature of the identi�cation problem in the multi-unit

�rst price auction and derive the needed equilibrium characterization results.

We then derive the conditions under which the model is identi�ed. We �nd that the

combinatorial �rst price auction model is identi�ed if, at equilibrium, bidders submit bids

that have a strictly positive probability to win all contracts (Theorem 1). Unfortunately,

we cannot a priori rule out irrelevant bids (i.e. bids that never win) as part of equilibrium

behavior. In section 3.2, we show that irrelevant bids on some contracts do not a¤ect the

identi�cation of the costs of the other contracts. They remain identi�ed. By contrast,

only bounds on the cost of the contract that received the irrelevant bid are identi�ed. The

potential underidenti�cation of the costs associated to some bid realizations implies that

the distribution of costs is only partially identi�ed. A set of cost distributions rather than

a unique distribution of costs rationalizes the observed bids. However, we argue that the

implied bounds on the distribution can still be used for policy analysis.

Real-life combinatorial auctions may of course di¤er from the benchmark combinatorial

auctions by introducing further constraints on the set of observable bids. In section 3.3, we

examine two such constraints that arise in our application: reserve prices and the constraint

that bids on combinations be lower than the sum of the bids on the constituent parts. Both

constraints introduce an additional level of underidenti�cation. Again, we derive bounds on

the costs and cost distributions when these constraints bind. However, unlike before, the

implied bounds on the distributions of costs do not, in general, provide bounds on policy

outcomes of interest. All distributions of costs consistent with equilibrium behavior must

be used to evaluate such policy outcomes.

3.1 Preliminaries

We start with the general (unconstrained) combinatorial �rst price auction. Bidders submit

bids on all contracts, the auctioneer selects the cheapest bidder-bid allocation and the

winners pay the price of their winning bids. Ties are resolved by randomizing over all

cost-minimizing allocations..

Fix bidder i and let b�i be the 2m � 1 dimensional vector of the values of the cheapest

13



allocation of each bundle among bidder i�s opponents (this was de�ned formally in (1)).

Given m routes, there are 2m possible allocations of the contracts between bidder i and his

opponents. Let Gs(:jX): R2
m�1 ! [0; 1] denote the probability that a bid vector by bidder

i wins exactly contract s; conditional on some covariates X. The functions Gs are non

parametrically identi�ed from the data when all submitted bids and all relevant contract

characteristics are observed. (In the following, we simplify notation by dropping the X

arguments in the Gs functions. They do not play any role in the identi�cation.)

In the combinatorial �rst price auction, bidders solve the following 2m � 1 dimensional
optimization problem:

�i(ci) = max
bi2R2m�1

X
s�S
(bis � cis)Gs(bi) (P1)

Each function Gs is monotonically decreasing in bis (this makes bidder-bid combination

bis+b
�i
Sns more expensive) and monotonically increasing in b

i
t for t 6= s, so Gs is di¤erentiable

almost everywhere (a.e.) and with a bounded derivatives a.e. (Billingsley, 1995, thm 31.2).

Therefore, the objective function in (P1) is also a.e. di¤erentiable.

However, a.e. di¤erentiability of the objective function in (P1) is not enough to use

the �rst order conditions for optimal bids as part of our identi�cation strategy. To clarify

the nature of the problem, de�ne as Bi the set of bidder i�s equilibrium bids. It can be

partitioned into three subsets:

1. Bi1 = fbi 2 Bi : the objective function in (P1) is di¤erentiable at bi and the �rst
order conditions of (P1) identify a unique cost vector cig

2. Bi2 = fbi 2 Bi : the objective function in (P1) is di¤erentiable at bi but the �rst
order conditions of (P1) do not identify a unique cost vector cig

3. Bi3 = fbi 2 Bi : the objective function in (P1) is not di¤erentiable at big

Let �i(:) denote the probability measure of bidder i�s equilibrium bids. Let �(:) denote

the Lebesgue measure. The model is identi�ed if we can associate a density to almost

every cost in �iCi: Given the de�nition of Bi1;Bi2 and Bi3; this will be trivially the case if
�i(Bi1) = 1. The model is partially identi�ed otherwise.

These notations allow us to compare the nature of the identi�cation problem here and

that in Guerre, Perrigne and Vuong (2000). Guerre, Perrigne and Vuong study the inde-

pendent private value single object �rst price auction. Adapting it to a procurement model,

their bidders solve the following optimization problem:

�i(ci) = max
bi2R

(bi � ci)G(bi)
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where G(:) is bidder i�s probability of winning as a function of his bid. Function G is

monotonically decreasing, so this optimization problem is also a.e. di¤erentiable with �rst

order condition:

(bi � ci)G0(bi) = �G(bi) (4)

Guerre, Perrigne and Vuong appeal to the known characterization of the equilibrium in

the independent private values �rst price auction to argue that G0(bi) is strictly positive

everywhere. Thus, we can rewrite (4) as

ci = bi +
G(bi)

G0(bi)
(5)

In words: when the bidders�optimization problem is di¤erentiable, its �rst order condition

always identi�es costs (given bi; there is a unique value for ci that solves (5)). Thus Bi2 = ;.
By contrast, we will see below that Bi2 is not necessarily empty in the combinatorial �rst
price auction. In addition, equilibrium strategies in the independent private values single

object �rst price auction are strictly increasing . Hence �(Bi3) = 0 (which follows from the

fact that the bidder�s optimization problem is a.e. di¤erentiable) implies �i(Bi3) = 0:
Putting both elements together yields �i(Bi1) = 1 : the model is identi�ed on the basis

of the �rst order conditions. But notice that, on the way, Guerre, Perrigne and Vuong have

relied on some knowledge about the nature of equilibrium in the auction.

The next Lemma provides the needed equilibrium characterization results for the com-

binatorial �rst price auction. In particular, it establishes that �i(Bi3) = 0 too in the

combinatorial �rst price auction.

Lemma 1 Consider the private value combinatorial �rst auction model described in Section

2, without a reserve price or with a known reserve price, and with or without combination

bid constraints. Then, in any equilibrium where bidders bid on or above their costs:

(1) Bidders are indi¤erent about the way in which ties that occur with positive probability

are resolved,

(2) limb!b�
P
s�S(bs � cis)Gs(b) =

P
s�S(b

�
s � cis)Gs(b

�) for all b� 2 Bi; such that b� is
bidder i�s optimal bid given costs ci:

(3) �i(Bi3) = 0 for all i:

The proof of Lemma 1 can be found in the Appendix. Part 1 of Lemma 1 ensures that an

equilibrium exists with the London bus routes tie-breaking rule. Part 2 of Lemma 1 says that

bidders�expected equilibrium payo¤ is continuous in their bids, at their equilibrium bids.

A (locally) monotone and continuous function is always left and right di¤erentiable. Thus,
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bidders�expected equilibrium payo¤s are left and right di¤erentiable at their equilibrium

bids. Probabilities of winning are in principle not left and right di¤erentiable at discontinuity

points. However, because bidders are indi¤erent among the ways in which those ties are

resolved, we can adopt without loss of generality the convention that one-sided derivatives

at such points equal their limits. Formally, suppose bi corresponds to a discontinuity

point of Gs with respect to bt: Then its left derivative with respect to bt at bi is de�ned

as @
@bt
Gs(b

i) = limbbi"bi lim"#0 Gs(bbit�";bbi�t)�Gs(bbi)" : Finally, part 3 establishes that there are

no mass point in the distribution of equilibrium bids at kinks in the objective function.10

As a consequence, we can ignore bids in Bi3 for identi�cation purposes because they are
submitted by a zero measure of cost realizations.

3.2 Identi�cation conditions

At any point where bidder i�s objective function is di¤erentiable, his optimal bid vector

must satisfy the �rst order conditions:11

Gt(b
i) +

X
s�S
(bis � cis)

@

@bt
Gs(b

i) = 0 t � S

or, in matrix notation:

rG(bi)[bi�ci] = �G(bi) (6)

where the (2m � 1) by (2m � 1) matrix rG(bi) is de�ned by rGt;s(bi) = @
@bt
Gs(b

i) for

s; t � S and G(bi) is a 2m � 1 x 1 vector with Gs(bi) as components.
The �rst order conditions de�ne a system of linear equations in the unknown costs, ci:

Identi�cation of costs on the basis of the �rst order conditions then reduces to the question

of existence and uniqueness of a solution to this system.

Lemma 2 (Su¢ cient condition for identi�cation) A su¢ cient condition for identi�-

cation in the combinatorial �rst price auction is that rG(bi) is invertible for all i and all
equilibrium bids bi:

Proof. The �rst order conditions in (6) de�ne a system of linear equations in the

unknown cost parameters (the [bi � ci] vector). The invertibility of matrix rG(bi) is a
necessary and su¢ cient condition for a unique solution ci = �i(bi) 2 R2m�1: Thus Bi2 is
10The de�nition of mass points in multi-dimensions is a straightforward extension of their de�nition for

univariate distribution: �i(:) is said to have a mass point at B � Bi if �i(B) > 0 but �(B) = 0:
11This is independent of whether the equilibrium is in pure or mixed strategies. Even if the equilibrium

is in mixed strategies, equilibrium bids must satisfy the �rst order conditions for optimal bids.
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empty: Because �i(Bi3) = 0 by Lemma 1, identi�cation of the distribution of costs F follows
directly.

Note that Lemma 2 says that point identi�cation of the cost vectors is a su¢ cient, but

not a necessary, condition for the identi�cation of the distribution of costs. Indeed, under

some restrictive conditions like independence, multidimensional distributions can be identi-

�ed from the observation of lower dimensional data (Berman, 1963). While the equilibrium

bids submitted by a bidder on the di¤erent contracts are unlikely to be independently

distributed, there is no known result con�rming this.

The next lemma (proved in the Appendix) investigates the properties of matrix rG :

Lemma 3 (Properties of OG) Consider matrixrG(bi) (with elements de�ned by rGt;s(bi) =
@
@bt
Gs(b

i)) evaluated at any optimal bid vector bi by bidder i. Then:

(1) @
@bt
Gt(b

i) � 0 for all t; and strictly so if Gt(bi) > 0.
(2) @

@bt
Gs(b

i) � 0 for all t 6= s:

(3)
P
s�S

@
@bt
Gs(b

i) � 0 for all t; and strictly so for some t if there exists s � S such

that Gs(bi) > 0.

(4) rG(bi) is invertible if Gs(bi) > 0 for all s:
(5) The determinant of any submatrix made from removing some rows and the corre-

sponding columns of rG has sign (-1)r where r is the number of remaining rows/columns if

all bid components in bi except those removed have a strictly positive probability of winning.

Note: Lemma 3 also applies to the Jacobian matrix of the probabilities of winning for the

optimization problem where bidder i is constrained to bid only on a subset K � 2S of the
contracts; instead of all 2m � 1 contracts.

The �rst two properties say that the probability of winning a given route cannot increase

when the bidder increases his bid on that route, while the probability of winning any other

route cannot decrease. Combining these two properties implies that, when a bidder wins a

route with strictly positive probability, increasing his bid on this route must strictly decrease

his probability of winning that route. Otherwise, increasing his bid on that route would

constitute a pro�table deviation, violating the assumption that bi is an optimal bid.

Property 3 says that when a bidder increases one of his bids, his probability of winning

anything cannot increase. Moreover, if he is winning at least one route with strictly positive

probability at bi; his probability of winning anything must be strictly decreasing. (Again,

otherwise, he would have a pro�table deviation.)
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Finally, property 4 relies on properties 1, 2 and 3, and on the property shown in the

Appendix that, at the optimum, bids with a strictly positive probability of winning compete

with one another.

From Lemma 3, rG is invertible when all bids have a strictly positive probability of

winning. However, not all equilibrium bids need to satisfy this condition. Irrelevant bids

(bids that never win) can be optimal from a bidder�s perspective because of the strategic

price discrimination motivation for combination bids: submitting a bid that never wins on

a contract ensures that this bid does not compete with a potentially more pro�table bid.12

Such bids are problematic for identi�cation. Formally, bid bis is irrelevant if Gs(b
i
s;b

i
�s)

= 0 and there exists " > 0 such that Gs(bis � ";bi�s) = 0 (bi�s denotes bidder i�s bids

on the other contracts but s): Suppose bidder i submitted an irrelevant bid on contract s:

Then, any alternative bid vector (bbis;bi�s) with bbis > bis would have been equally optimal for

bidder i; and therefore equally informative. More formally, @
@bs
Gt(b

i) = 0 (small changes

in bis do not a¤ect the probability that bidder i wins contract s or any other contracts) and
@
@bt
Gs(b

i) = 0 for all t. The row and column corresponding to contract s in matrix rG
are all zeros. Therefore rG cannot be inverted and the condition in Lemma 2 fails.

To investigate identi�cation in the presence of irrelevant bids, suppose that, at equi-

librium, bidder i submitted a bid with a strictly positive probability of winning on all

contracts in K � 2S : Let biK denote his bid vector on contracts in K and de�ne by ciK the

corresponding subvector of costs. Consider the following alternative optimization problem:

b�i(ci) = max
biK

X
s2K

(bis � cis) bGs(biK) (P2)

where bGs(:) = Gs(:; b
i
t = 1; t =2 K). Because (P2) is a constrained version of (P1),b�i(ci) � �i(ci) for all ci: The two expressions are equal if the optimal bid in (P1) is such

that bidder i only wins contracts in K with strictly positive probability. When this is

the case, the solutions to the two problems coincide and the �rst order conditions of (P2)

describe equally well the optimal bids:

bGw(biK) +X
s2K

(bis � cs)
@

@bw
bGs(biK) = 0 w 2 K (7)

This jKj dimensional system of linear equations can again be written in matrix notation:

r bG(biK)[biK�ciK ] = � bG(biK): By Lemma 3, matrix r bG(biK) is invertible. Therefore,
costs ciK are identi�ed:

ciK = b
i
K +r bG(biK)�1 bG(biK) (8)

12Armstrong (1996) provides a decision-theoretic example where this property holds at the optimum.
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Irrelevant bids do not a¤ect the identi�cation of the costs of the other bids. This is somewhat

remarkable in this multi-unit auction setting where costs are a priori jointly determined as

the solution to a system of equations. The reason is that, in the case of irrelevant bids, bids

on other contracts do not a¤ect the probability that bidder i wins the contract on which

he submitted an irrelevant bid (it remains zero). Likewise, irrelevant bids do not a¤ect the

probability of winning any of the other contracts. This removes the interdependency among

the �rst order conditions.

Now consider s =2 K: Let bis(bi�s) be the threshold for bis over which it becomes irrelevant
that is:

b
i
s(b

i
�s) = inffbis : bis is irrelevant given bi�sg

(b
i
s(b

i
�s) is a function of bidder i�s bids on the other contracts as well as the support of

competitors�bids.) Since expected pro�t is continuous, it must be that the slope of bidder

i�s expected pro�t to the left of b
i
s(b

i
�s) is positive. Formally,

lim
bs"b

i
s

Gs(bs;b
i
�s) +

X
t2K

(bit � cit)
@

@bs
Gt(b

i
s;b

i
�s) + (b

i
s � cis)

@

@bs
Gs(b

i
s;b

i
�s) � 0 (9)

where the derivatives are all left derivatives.13�14 Given (8), cit; t 2 K; are point identi�ed.
Thus, the only unknown in (9) is cis: Because

@
@bs
Gs < 0; (9) identi�es a lower bound to

the cost cis; c
i
s. Repeating this procedure for every irrelevant bid in b

i and combining with

(8) for the other bids, identi�es a lower bound, ci; to the true cost vector ci : ci � ci (in
the component-wise order). Let �i(:) the function that associates bidder i�s equilibrium bid

vectors to the lower bound cost vector that rationalizes them, i.e. ci = �(bi): We have

FiH(c) = �i(fbi 2 Bi1 [ Bi2 : �(bi) � cg):
Likewise, we can de�ne an upper bound on the costs that rationalize the observed bids.

Let cis = cis if bidder i�s cost on contract s is point identi�ed. Let c
i
s = 1 otherwise. Let

�
i
(bi) = ci; and de�ne FiL(c) = �i(fbi 2 Bi1 [ Bi2 : �(bi) � cg).
The next Theorem summarizes the results thus far:

Theorem 1 (Identi�cation and partial identi�cation) (i) Consider any bid bi 2 Bi1[
Bi2: If Gs(bi) > 0; then cis is point identi�ed. Otherwise, c

i
s � cis; where c

i
s is de�ned by

(9).

13 In (9), the sum is only over t 2 K because @
@bs
Gw(b

i) = 0 for any w =2 K and w 6= s:
14The �rst term in (9) takes into account that Gs may be discontinuous at b

i
s: In that case, see the

discussion after Lemma 1 for the construction of the left derivatives.
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(ii) If all equilibrium bids have a strictly positive probability of winning, the combinatorial

�rst price model is identi�ed. If equilibrium strategies contain bids that have zero probability

of winning, the model is partially identi�ed. Any Fi such that FiH(c) � Fi(c) � FiL(c) for

all c (FiH and FiL de�ned in the text) is consistent with the observed equilibrium.

Proof. We �rst consider the identi�cation of the set of costs associated with each

equilibrium bid bi 2 Bi1 [ Bi2. Suppose that Gs(bi) > 0 for all s: From Lemma 3(4),

the Jacobian matix rG is invertible, and Lemma 2 implies that the costs rationalizing bi

are uniquely determined. Suppose now that Gs(bi) = 0 for some s which means that bi

includes an irrelevant bid. Irrelevant bids correspond to bids in Bi2 for which the arguments
around (8) and (9) establish bounds on their associated costs. This establishes (i) and pins

down the correspondence �i : Bi1 [ Bi2 � R2m�1:
We now turn to the question of the identi�cation of Fi: By Lemma 1(3), we can without

loss of generality focus on bids in Bi1 [ Bi2 because bids in Bi3 are submitted by a zero
measure of costs. When Gs(b

i) > 0 for all s; for all bi in Bi1 [ Bi2 and for all i; �i

is a function for all i and identi�cation of Fi follows from Lemma 2. Otherwise, two

selections of �i of interest are its minimum selection, �i(:); and its maximum selection,

�
i
(:). They generate FiH and FiL de�ned as FiH(c) = �i(fbi 2 Bi1 [ Bi2 : �(bi) � cg) and

FiL(c) = �i(fbi 2 Bi1 [ Bi2 : �(bi) � cg) for c 2 R2
m�1: Because cost ranges are identi�ed,

any Fi 2 F such that FiH � Fi � FiL is consistent with the observed equilibrium.

Theorem 1 provides a partial identi�cation result when equilibrium behavior involves

irrelevant bids. Given the results in Armstrong (1996), this is likely to be a generic case.

Nevertheless, partial identi�cation results can be used for answering policy questions by

estimating policy variables for all cost distributions in the set of cost distributions consistent

with equilibrium behavior. Moreover, bounds on policy variables of interest are often all

we are interested in. The bounds derived in Theorem 1 allow us to compute bounds on the

expected procurement cost in a Vickrey auction or in any other auction where bid functions

are monotonic in costs.15 Note that the bounds on the distribution of costs are essentially

sharp in the sense that FiH and FiL correspond - modulo a slight pertubation to ensure

a continuous density - to feasible cost distributions that is consistent with the observed

equilibrium bids.

15The condition needed here is that the policy variable be monotonic in some (partial) order of the elements

of the set. See Manski and Tamer (2002) for related results in the presence of partial identi�cation. For

another example where the bounds on primitives are directly useful to compute bounds on policy variables

in auctions, see Haile and Tamer (2003).
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An interpretation of Theorem 1 is that identi�cation requires the dimensionality of the

observed information to match that of the information to infer. The set of bids that have

a strictly positive probability of winning determines the dimensionality of the observed

information. Any irrelevant bid introduces a dimension of under-identi�cation, and it is at

the source of the partial identi�cation result of Theorem 1. Pursuing on this intuition, we

can easily prove the following Corollary:

Corollary 1 The multi-unit �rst price auction model is not identi�ed if only stand-alone

bids are permitted (i.e. bi 2 Rm):
The multi-unit �rst price auction model is identi�ed if the following two conditions hold:

(i) costs are additive, i.e. cs[s0 = cs + cs0 for all s; s0 � S with s \ s0 = ?.
(ii) all stand-alone bids have a strictly positive probability of winning, i.e., Gs(bi) > 0 for

s 2 S
These two conditions will be satis�ed if bidders�supports of cost realizations have the same

upper bound and there is no reserve price.

The intuition is straightforward. In the multi-unit auction model, the underlying private

information to infer (the costs cs) is 2m � 1 dimensional. When only stand-alone bids are
permitted, the observed information is at most m dimensional. So, there is no hope to infer

costs, unless the dimensionality of private information is also m (note that additive costs

are ruled out by assumption 1).

Proof. When bids are only permitted on individual routes, the auction e¤ectively

become m independent single object �rst price auctions. The necessary conditions for

optimal bids are the m �rst order conditions. This is a system of m linear equations in

2m � 1 variables (the unobserved ciw). This system is under-identi�ed. Thus costs are not

identi�ed and as a result the model is not identi�ed.

When costs are additive, identi�cation follows from the arguments in Guerre, Perrigne and

Vuong (2000) Campo, Perrigne and Vuong (2003) and Athey and Haile (2005) applied to

the m independent auctions. The conditions of same upper bound to cost realizations and

no reserve price guarantee all equilibrium bids have a strictly positive probability of winning

and the model is identi�ed through the �rst order conditions.

3.3 Other constraints on bidding behavior

Most real-life multi-unit auctions include various restrictions on the set of allowable bids

which may further reduce the dimensionality of the observed information. In this section,
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we show how to extend our identi�cation results and derive identi�cation bounds on the

costs and distributions of costs in these cases. We illustrate our approach by considering two

types of restrictions present in our data. First, the rule of the auction imposes that bids on

a combination of routes must be no greater than the sum of the constituent bids. Second,

London Transport Buses imposes a reserve price. Bidders are not obliged to submit bids

on all routes and some bidders indeed submit bids only on a subset of the routes auctioned.

Our interpretation is that it was not pro�table for these bidders to submit a bid that would

have had a positive chance of winning.

We �rst consider the combination bid constraint. In the presence of combination bid

constraints, the bidders�optimization problem becomes:

max
bi

X
s�S
(bis � cs)Gs(bi)

subject to:

bis � biw + b
i
t for all s; t; w � S such that t \ w = ; and t [ w = s

This optimization is di¤erentiable almost everywhere (and continuous at all optimal bids

from Lemma 1). Its �rst order conditions are given by

Gt(b
i) +

X
s�S
(bis � cis)Gts(bi)�

X
r;w�S

�t=r[w +
X
s;r�S

�s=r[t = 0 8t � S

where �t=r[w is the multiplier of the constraint bit � bir+ b
i
w (�t=r[w � 0). We de�ne a new

column vector D(bi;�) with component Dt(bi;�) = �Gt(bi)�
P
s;r �s=r[t+

P
r;w �t=r[w:

The �rst order conditions can then be rewritten as

rG(bi)(bi � ci) = D(bi;�)

Lemma 3 applies to matrix rG (with the convention that where a combination bid con-

straint binds, the one-sided derivative that satis�es the constraint is used). If all bids have

a strictly positive probability of winning, rG can be inverted and ci solves

ci = bi �rG(bi)�1D(bi;�) (10)

If a subset of the equilibrium bids are irrelevant, rG cannot be inverted. In that case, we

can proceed as before by considering the alternative optimization problem where bidder i

only bids on the contracts K � 2S for which he submitted a bid with a strictly positive
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probability of winning in the original problem:

b�i(ci) = max
biK

X
s2K

(bis � cis) bGs(biK)
s.t. bis � biw + b

i
t for all s; t; w 2 K such that t \ w = ; and t [ w = s

The associated jKj by jKj matrix r bGs(b
i
K) satis�es the conditions of Lemma 3(4) and is

therefore invertible, yielding:

ciK = b
i
K �r bG(biK)�1D(biK ;�) (11)

A direct consequence of expressions (10) and (11) is that the costs of the contracts which

bidder i wins with strictly positive probability at equilibrium are uniquely identi�ed up

to the value of the multiplier �: If no constraint binds so that all multipliers are equal to

zero, the costs are point identi�ed. When any of the constraints binds, bounds on each

cost can be constructed from (11) by exploiting the fact that the multipliers on the binding

constraints are all positive. Formally, let

cis = sup
��0

fcomponent s of vector biK �r bG(biK)�1D(biK ;�)g (12)

cis = inf
��0

fcomponent s of vector biK �r bG(biK)�1D(biK ;�)g (13)

We thus have: ciK � ciK � ciK :
We now turn to reserve prices. When the auction includes reserve prices but no com-

bination bid constraint, the formal treatment of non submitted bids is exactly the same as

that of irrelevant bids, except for the fact that the threshold for irrelevant bids is replaced

by:

b
i
s(b

i
�s) = minfRs; inffbis : bis is irrelevant given bi�sgg

where Rs is the known reserve price on s: Costs associated with bids that have a strictly

positive probability of winning are point identi�ed following (8). Costs associated with

irrelevant bids or non submitted bids are partially identi�ed based on (9) using the new

de�nition of b
i
s(b

i
�s) above.

When the auction includes a reserve price and a combination bid constraint, a binding

reserve price does not always identify a lower bound to the associated cost. To get some

intuition for this result, consider the following two-route auction. Suppose bidder i only

submitted a bid on route 1. Using the earlier results, we can point identify ci1 and place

a lower bound on c12: However, bidder i�s bidding behavior does not place a lower bound
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on c2 if bi1 +R2 < R12. By not submitting a bid that has a positive probability of winning

on route 2, bidder i also ensures that he will never win both routes. This could be a best

response if c12 is very large.

Theorem 2 summarizes what can be identi�ed in the presence of combination bid con-

straints and reserve prices.

Theorem 2 (Partial identi�cation with reserve prices and/or combination bid constraints)

Consider the combinatorial �rst price auction model with reserve prices and, possibly, a

combination bid constraint.

(1) Identi�cation of costs. Consider any equilibrium bid vector bi 2 Bi1 [ Bi2:
(i) Suppose Gs(bi) > 0 for some s � S; then upper and lower bounds to cis are identi�ed

following (12) and (13). In particular, if Gs(bi) > 0 for all s � S and bi satis�es strictly

all combination bid constraints (if any applies), then ci is point identi�ed.

(ii) Suppose Gs(bi) = 0 for some s � S and the auction does not have a combination

bid constraint. Then a lower bound to cis; c
i
s; is identi�ed following (9). If b

i
s(b

i
�s) = Rs

then cis = Rs:

(iii) Suppose Gs(bi) = 0 for some s � S and the auction has a combination bid

constraint. Then a lower bound to cis; c
i
s; is identi�ed following (9) if Gt(b

i) > 0 or

Gt(b
i
s(b

i
�s);b

i
�s) = 0 for all t � s: No bound is identi�ed otherwise.

(2) (Partial) Identi�cation of the distributions of costs. For all i; let �i(:) :

Bi1 [ Bi2 � R2m�1 de�ne the mapping from bidder i�s equilibrium bids to the set of costs

(obtained from the application of (1)) that are consistent with them. Any Fi 2 F such that

F i(c) = �i(fbi 2 Bi1 [ Bi2 : e�i(bi) � cg) for some selection e�i of �i; is consistent with the
observed equilibrium.

Part (1) of Theorem 2 follows from the arguments in the text above, except for the claim

that cis = Rs; which is proved in the Appendix. Part (1) identi�es costs or cost ranges for

bids that correspond to Bi1 and Bi2: Part (2) follows from part (1) given that bids in Bi3
are submitted by a zero measure of costs.

In some cases, the value of � that solves for the bounds in (12) and (13) can be known

a priori. The next Theorem characterizes this value of �:

Theorem 3 Consider any optimal bid bi :

(1) For any s such that Gs(bi) > 0, cis depends positively on the value of �s=t[w; and

negatively on �t=s[w for all t and w:
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(2) Consider any t, w � S such that t \ w = ;: If the combination bid constraint for these
contracts is the only binding combination bid constraint at bi; an upper bound to the synergy

involved between these two contracts is given by the solution ct+ cw � ct[w of the system in

(11) when the Lagrangian multiplier �ft[wg=t[w = 0.

Theorem 3 uses Cramer�s rule and the properties of the determinants to sign how the

solution in (10) and (11) depends on the value of the multiplier. Theorem 3 is silent

concerning how cis depends on �r=t[w for r; t; w 6= s: This relationship cannot be signed on

a systematic basis. Instead, (12) and (13) should be used.

Note that, in principle, we could have generated a lower and upper bound FiL and FiH

to the distribution consistent with the observed bid distribution. However, a consequence

of Theorem 3 is that such FiL and FiH would never be sharp in the presence of a combi-

nation bid constraint, unlike the bounds on the distributions of costs derived in Theorem

1. Because the bounds on costs for di¤erent contracts correspond to di¤erent values of

the multipliers, they do not correspond to a cost realization consistent with the observed

bid. Thus, the upper and lower bounds on the cost distributions do not rationalize the

observed bid distribution. As a result, they are less useful for policy analysis. The whole

set of identi�ed distributions rather than the bounds themselves should be used for such

purposes.

4 The London Bus Market

This section describes the London bus market, gives descriptive summaries of our data and

motivates the empirical speci�cation described in section 6.

The London bus market represents about 800 routes serving an area of 1,630 square

kilometers and more than 3.5 million passengers per day. It is valued at 600 million Pounds

per year (US $1,100 million). Deregulation was introduced by the London Regional Trans-

port Act of 1984. The Transport Act designated London Regional Transport (LRT) as the

authority responsible for the provision and procurement of public transport services in the

Greater London area, as well as the development and operations of bus stations and the

network-wide operational maintenance. Private procurement was encouraged. In order to

enhance competition, LRT, which by virtue of the Transport Act acted as the holding com-

pany for the original public operator London Buses Limited, created a separate tendering

division, independent from its operational division, and split the formerly unitary London

Buses into 12 operational subsidiairies. These were privatized in 1994. In practice, the
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introduction of route tendering was very gradual. The �rst tenders took place in 1985, but

it was not until 1995 that half of the network was tendered at least once.16 Since then,

tendering has reached its steady state regime with 15-20% of the network tendered every

year.

The procurement process. About every two weeks London Transport Buses issues an

invitation to tender which provides a detailed description of upcoming contracts for sale.

The invitation simultaneously covers several routes, usually in the same area of London. For

each route, the invitation provides a complete description of the service for tender including

the routing, service frequency and vehicle type. Contract length is typically �ve years. A set

of pre-quali�ed bidders may submit sealed bids for individual routes. In addition, bidders

may submit a bid for route combinations within the auction. A bid speci�es an annual price

at which the bidder is willing to provide the service.17 There is a period of two months

between the invitation to tender and the tender return date, and another two months before

contracts are awarded. The o¢ cial award criterion is best economic value and the process

follows EU law for fair competition. In practice, this means that the contract is awarded

to the low bidder but deviations at the margin are possible to account for bidder quality

for instance.18 To allow winning bidders to reorganize and order new buses if necessary,

contracts start 8 to 10 months after the award date.

Description of the bid data.19 We have collected data on 179 auctions consisting of a

total of 674 routes o¤ered to bidders between December 1995 and May 2001 (return date).

For each auction and for each route in the auction, the data include the following infor-

mation: (1) contract duration and planned start of the contract (2) route characteristics

including the route start and end points; route type (day route, night route, school service,

16Non-tendered routes remained operated by the subsidiaries of London Buses Limited under a negotiated

block grant. The private operators and the subsidiaries competed for the tendered services.
17London Transport Buses has experimented with di¤erent contractual forms. The majority of contracts

are so called gross cost contracts, in which the revenues collected on the buses accrue to London Transport

Buses and the operator receives a �xed fee for the service. Some contracts are net cost contracts, in which

the operators take responsibility for the revenues. The price for the operator service then consists of those

revenues plus a transfer from (or payment to) London Transport Buses. Finally, net cost contracts may

contain a provision that limits the risk the operator takes in case the revenues were too di¤erent from the

forecast. If bidders are risk neutral, which we assume in our analysis, all three contracts forms are equivalent.
18From the 118 auctions studied in the empirical analysis, a deviation at the margin for some route occurs

on 39 auctions. The empirical analysis revealed no systematic patterns in these considerations that we could

model explicitly. We interpret the considerations at the margin as noise in the awarding process.
19Appendix A provides further details concerning the sources of the data.
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mobility route); annual mileage; bus type (single deck, midibuses, double deck or routemas-

ter); and the peak vehicle requirement;20 (3) the identity of bidders and all their submitted

bids (including bids for combinations of the routes in the auction). For the auctions held

starting in May 2000, the data also contain an internal cost estimate generated by London

Transport Buses for every route. All price data are expressed in December 1995 Pounds.

Contract heterogeneity. There are many dimensions along which the routes in our sample

vary. Route characteristics a¤ect costs and, ultimately, participation and bids. A monetary

measure of contract heterogeneity is the internal cost estimate (ICE) prepared by London

Transport Buses since May 2000. We generated a predicted internal cost estimate based

on a regression of the ICE on route characteristics.21 We found the predicted ICE to be

an accurate assessment of the �nal cost. We considered a regression of the log of bids and

the log of low bids on the log of the internal cost estimate. The log internal cost estimate

explains 93% of the variation in the log bids. In order keep the number of explanatory

variables in our empirical speci�cation small, we use the predicted internal cost estimate to

account for contract heterogeneity.

Most auctions consist of only few routes.22 Our estimation uses the 118 auctions in our

data that have no more than 3 routes. Table 1 provides summary statistics of our bid data

for these auctions.23

Table 1 Descriptive Summary of the Bid Data (Auctions with 1, 2 and 3 routes)

Variable Obs Mean Std Min Max

ln(ICE) 218 13.28 1.29 10.82 15.56

Number-of-Actual-Bidders-per-Auction 118 3.70 1.74 1 8

Number-of-Actual-Bidders-per-Route 218 2.94 1.57 1 7

Log-Stand-Alone-Bid 641 13.12 1.28 9.47 15.87

Log-Combination-Bid 83 14.48 0.74 11.75 15.89

Money-Left-on-Table (%) 177 13.54 20.36 0.06 157.86

20The peak vehicle requirement determines how many buses the winning operator needs to commit to the

contract.
21The route characteristics include the peak vehicle requirement, annual mileage for central London routes

and annual mileage for non-central London routes interacted with bus type dummies (single deck or midibus,

double deck or route master).
22The distribution of routes across tranches in our sample is the following: 50 tranches consist of a single

route, 36 tranches have two routes, 32 tranches have 3 routes, 13 tranches have 4 routes, 10 have 5 routes,

27 tranches have between 6 and 10 routes, and 11 tranches have more than 10 routes.
23The equivalent statistics for the whole sample are very similar.
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On average 3.7 bidders submit at least one bid on an auction. The number of bidders

ranges between 1 and 8. Fewer bids are submitted on individual routes. On average 2.94

bidders submit a bid for an individual route. The number of bids per route ranges between

1 and 7. A total of 44 bidders submit at least one bid on an auction with three routes or

less. Of those, 26 win a contract.

Bidders submit a total of 641 stand-alone bids. The distribution of normalized stand-

alone bids resembles a log-normal distribution. The average stand-alone bid equals 13.1 in

logarithm which amounts to about 490,000 Pounds. Since bidders are committed by their

bids, stand-alone bids de�ne implicitly a combination bid (with value equal to the sum of

the stand-alone bids). We call a combination bid �non trivial�when it is strictly less than

the sum of the component stand-alone bids. On the auctions with two and three routes a

total of 83 non trivial combination bids and 218 trivial combination bids are submitted.24

Reasons invoked by the bidders to o¤er discounts for combinations of routes include the

possibility to share spare vehicles and garage overhead costs in general, and more e¢ cient

organization and coordination of working schedules. Ignoring trivial combination bids, the

discount of a combination bid relative to the sum of stand-alone bids by the same company

equals 4.5% on average. The discount amounts to 3.9% with two-route bids, 7.7% with

3-route bids. When all combination bids are included (i.e. those implicitly de�ned by

stand-alone bids), this discount drops to 1.1% on average (1% for two-route bids and 1.6%

for 3-route-bids).

The market for bus operators. We denote as a �bidder�any bus operator that is active

in the tendered bus services within the local areas of London. As of November 2000, there

were 51 independent pre-quali�ed bidders in the market. After the privatization of the

London Buses subsidiaries in 1994, a substantial reorganization and consolidation of the

industry took place. Since then, the market has stabilized with a C4 ratio around 70%

between late 1996 and 2001.

For each bidder active in the tendered bus services in London, we have a complete history

of its garages (openings/�rst time use for the tendered market and closings, location) since

deregulation, as well as its committed �eet for the tendered market on a monthly basis.

24A trivial combination bid is generated for each non overlapping combination of routes s and t over which

a bidder bid without submitting a bid on route combination s [ t:
The following calculation provides a sense of the censoring present in our data due to the reserve price

and the combination bid constraint imposed by LTB. If all bidders who ever submitted a bid on a route in

a tranche had submitted a bid on all the routes and route combinations in the tranche, we would have 852

stand-alone and 693 combination bids.
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Garages are leased on a long term basis or bought, and a typical garage has capacity for

50-100 buses and serves about 8 routes.

A few elements are worth noting. First, asymmetry among bidders is considerable. The

average bidder has about four garages in London but the number of garages ranges between

0 and 21 across bidders. For example, in November 2000, a total of 10 bidders had one

garage, 4 bidders had two garages, one bidder had 6 garages, one bidder has 7 garages,

one bidder had 9 garages, one bidder had 11 garages, one bidder have 13 garages, and one

bidder has 21 garages. This size asymmetry is also re�ected in the distribution of market

shares in our sample.

Second, despite a fairly concentrated market, an active fringe of small bidders seems to

be providing a certain level of competition. For our whole sample, �entrants�, i.e. bidders

without an established garage at the time of the auction, submitted 10.6% of all the bids,

and bidders with only one established garage submitted another 15.95% of the bids. In our

sample, there was an entrant or a bidder with only one garage bidding on 49.11% of the

routes. Such active fringe would make collusion very di¢ cult to sustain.

Money left on the table and bidder participation. A measure of money left on the

table is the relative di¤erence between the lowest and second lowest stand-alone bid. Table

1 reveals that the money left on the table equals 13.54%. Thus, stand-alone bids �overpay�

by about 110,500 Pounds on average. This suggests that the winning bidder does not know

the competitors�bids and is uncertain about the competitors�bid levels.25

What determines uncertainty in bids? At the bidder level, costs are determined in part

by the actual expenses in capital, labor and fuel incurred in carrying out the contract. But

they also depend on the opportunity of using these resources, especially capital, in other

ways. There is probably little uncertainty among bidders concerning the expected cost of

labor or fuel (there are well functioning markets for these), but opportunity costs may not

be known to other bidders. Our interpretation is that uncertainty in this market is best

viewed as stemming from private information about (opportunity) costs.

An important question for modelling bidding behavior in the London bus routes market

is to determine whether cost uncertainty arises at the �rm, auction, or route level. In other

words, does the opportunity cost vary at the �rm level, the garage level or route level? To

25As the number of bidders increases, the amount �overpaid� decreases. The money left on the table

equals 20.94% when two bids are submitted, 11.51% when three bids are submitted, 9.36% when four bids

are submitted and 7.69% when �ve or more bids are submitted. Even so, with �ve or more bidders the

amount �overpaid�for the average contract equals almost 63,000 Pounds.
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examine these questions we decompose the variation in the bid submission decision.

In the next paragraphs, we examine how much of the variation in the decision variable

is explained by auction �xed e¤ects, route �xed e¤ects, auction-garage and auction-bidder

�xed e¤ects, as well as dead mileage (closest distance from the route to the garage). We

focus on bid submission decisions by bidders with an active garage at the time of the auction

and on auctions of two and three routes. We are left with 3,358 observations. Due to the

large number of explanatory variables, we consider the linear probability model and estimate

it using OLS. The empirical model is y = X� + u; where y = 1 if a bid is submitted and

zero otherwise, X denotes a vector of explanatory variables and u denotes the residual.

Table 2 reports our results for several speci�cations. The individual speci�cations grad-

ually add more variables to X. A description of these is given in the second column, and

their number is given in the third column. The fourth and �fth columns report the R2 and

adjusted R
2
for the speci�cation. We interpret the increase in the fraction of explained

variance as a measure of the importance of the added variables. The last column reports

the value of the F - statistic for the test of joint signi�cance of the explanatory variables

added relative to the previous model. For example, the test statistic for the hypothesis that

auction �xed e¤ects are zero (model (2)) is an F - distributed random variable with (67,

3288) degrees of freedom.

Table 2 Variance Decomposition of the Bid Submission Decision�

Variables Included #var R2 R
2

F

(1) Dead Mileage, linear and quadratic (DM) 3 0.24 0.24 520.75��

(2) DM+Auction Fixed E¤ects (AF) 70 0.28 0.27 3.00��

(2�) DM+Route Fixed E¤ects 170 0.30 0.26 1.63��

(3) DM+AF+ Operator Fixed E¤ects 92 0.31 0.29 4.14��

(4) DM+AF+Depot Fixed E¤ects 159 0.40 0.37 6.83��

� Auctions with 2 and 3 routes. �� indicates signi�cance at 1% level.

Models (2) and (2�) test competing interpretation of the sources of uncertainty common

to all bidders: at the auction or at the route level. Model (2�) does somewhat worse on

the basis of the adjusted R
2
than model (2) suggesting that there may be little common

shocks to bidders at the route level. We tested the null that route �xed e¤ects are zero when

auction �xed e¤ects are present. The test statistic is an F - distributed random variable with

(100, 3188) degrees of freedom. It is equal to 0.73. We cannot reject the null hypothesis

that route �xed e¤ects are zero once auction �xed e¤ects are accounted for. We conclude

that there are no route level shocks common to all bidders. For this reason, models (3) and
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(4) build on model (2).

According to the R2 in model (4) about 60% of the variation remains unexplained. The

unexplained part comes from the remaining uncertainty as to whether a bidder submits a

bid on a given route after controlling for dead mileage, garage �xed e¤ects and auction �xed

e¤ects. We may interpret this uncertainty as a bidder speci�c idiosyncracy arising at the

route and auction level. Notice also, that the order in which we add variables may a¤ect

the contribution to the R2. We looked at permutations of the order and found no major

di¤erences.

The empirical evidence suggests the following origins for the cost uncertainty: First,

there is no evidence of cost shocks common to all bidders at the route level after controlling

for auction �xed e¤ects since route �xed e¤ects are not signi�cant. Second, a substantial

part of the uncertainty in bidders�decisions is explained by bidder asymmetry captured

by dead mileage, bidder �xed e¤ects and garage �xed e¤ects. Third, there is considerable

residual uncertainty for each bidder arising at the route and auction level.

Summary and conclusions. The evidence presented in this section supports the view

that a multi-unit combinatorial �rst price auction with private values and multi-dimensional

private information is a reasonable model for the London bus routes market. We argue these

points in turn.

Multi-unit combinatorial : The auction appears the proper level of analysis for this

market. First, the temporal simultaneity of the auction for the routes in the same auction,

their geographic proximity as well as the existence of combination bids requires that we

analyze them at the same time. Second, several elements suggest that inter-auction e¤ects

may not be very important. The delay of 10 months between the award date and the start of

the contract reduces the role for capacity in this market. In addition, combination bidding

is motivated in part by (local) cost synergies among routes, but di¤erent auctions tend

to cover di¤erent geographical areas. The geographic dispersion of the auctions together

with local nature of the business reduces the interactions among auctions and bidders. We

calculated that an average bidder in our sample bid on an auction every 5 months only.

Private Values: Most of the inputs used by bidders have well-functioning markets. In

addition, our bidders are experienced so we expect them to be able to forecast accurately

their costs, in the sense that cost forecasts by competitors should not lead to revise their

own cost estimates. Finally, the fact that we did not �nd evidence of common shocks at

the route level lends further support to this hypothesis.

Multi-dimensional private information: Our speci�cation is �exible. It allows for cost
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correlation across routes, but does not assume it. This �exibility seems important in view

of the evidence presented in table 2.

5 Estimation Method

This section describes our estimation approach and illustrates it�s implementation in prac-

tice.

Our estimation approach consists of two steps: In the �rst step, the bid density is

estimated and the implied probability of winning is obtained. In the second step, we use the

results of section 3 to infer costs or cost ranges that rationalize the observed bids. Section

5.1 describes the details of our parametric speci�cation of the bid density which takes

into account bidder and contract speci�c covariates. Section 5.2 describes the estimation

procedure to infer the parameters of the bid density. Section 5.3 takes the bid density

function as given and describes our method to infer costs.

As described in section 3, we observe data on a cross section of auctions t = 1; : : : T .

Let bit denote the bid vector of bidder i submitted for the contracts in auction t. Let

Xt = (xt;w1t; : : : ;wNt) denote the contract and bidder characteristics of auction t and

Xts denote the subset of characteristics relevant for contract s in auction t. Let w�i;t

denote the vector of characteristics for bidders other than bidder i. We sometimes also

write Xit = (xt;wit;w�i;t), where superscript i indicates that bidder characteristics are

evaluated from bidder i�s perspective.

Assumption 1 in section 2 implies that bidder i�s bid vector in auction t is stochasti-

cally independent from bidder j�s bid vector, conditional on observable characteristics. We

assume that characteristics Xt are observable to all bidders and the econometrician. We do

not consider bidder or contract heterogeneity that is not observed to the econometrician.

Unobserved contract heterogeneity in single unit auctions is studied in Krasnokutskaya

(2004). Finally, if there are multiple equilibria, we assume that our data are generated by

a single equilibrium selection.

5.1 Bid Density Function

This section describes our speci�cation of the bid density function.

As proposed in Guerre, Perrigne and Vuong (2000), non-parametric techniques can be

used to estimate the bid distribution. Non-parametric estimators permit �exibility in the

shape of the bid distribution but, at the same time, require many data points to obtain
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precise estimates. The data requirement increases quickly with the dimensionality of the

distribution, as is illustrated in Silvermann (1986). Our bidding model is multi-dimensional

and the dimensionality increases further due to the combination bids. Since the size of our

data set is small, we consider a parametric speci�cation instead.

Our parametric framework enables us to take covariates into account. In particular,

bidder heterogeneity is an important element of London bus auctions. We incorporate bidder

heterogeneity into the analysis in three ways: First, we account for e¢ ciency di¤erences

between bidders re�ected in bidder size and measured by the number of available garages.

Second, we take into account the locational speci�cs of the market by measuring the distance

between the garage and the route26 to account for bidder speci�c transportation costs.

Third, we explicitly distinguish two types of bidders: regular and fringe. Regular bidders

have a garage within a eight mile radius of a route in the auction. Fringe bidders do

not have a garage yet, or their garage is further than eight miles away from any route in

the auction. Distinguishing between regular and fringe bidders allows us to account for

behavioral di¤erences between bidders that bid regularly and bidders that bid once on a

single contract or on few occasions only.

The statistical model for latent bids b� by bidder i on auction t with mt routes is based

on a multi-variate normal density, �(�jXit;�), with covariates Xit and parameter vector
� = (�;�). We assume that a logarithmic transformation of bids minus the logarithm of

the internal cost estimate, ICE, is distributed as follows:

ln(b�)� ln(ICE) s �(�jXit;�)

where � denotes a multi-variate normal density and the �rst element of the parameter

vector, �(Xit) denotes the (2m
t�1) dimensional vector of means of log bids and the second,

�
�
Xit
�
, is a (2m

t � 1) by (2mt � 1) covariance matrix. We assume that the mean �s is a
linear function of characteristics,

�s(X
it) = �s �Xit,

where the variables in Xit include bidder i�s closest distance from the garage to the start

(or ending) point of route (combination) s � St measured in logs, the logarithm of the

number of garages of bidder i and an indicator variable that equals one if the bidder is a

fringe bidder.

26The distance of a bidder to a route is de�ned as the minimum distance between the route start (or end)

point and any garage of the bidder.
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Three restrictions on bids characterize the boundaries of the bid support: First, latent

bids for a combination of items that are greater than the sum of constituent bids are not

observed. Second, a stand-alone bid that is larger than a combination bids involving the

stand-alone contract is not observed. Third, latent bids above the reserve price supremum

are not observed. As in La¤ont, Ossard and Vuong (1995), we can incorporate the bid

restrictions by de�ning the observed bid as a function of the latent bid. Speci�cally, we

de�ne the observed bid as equal to the supremum of reserve price, Rs, when the latent bid

is not observed. We de�ne the observed bid as equal to the sum of stand-alone bids if this

sum is less than the latent bid and if every constituent stand-alone bid in the sum is less

than its reserve price. We de�ne the observed constituent bid on a route (combination) as

equal to the combination bid involving that route if the latent constituent bid exceeds the

combination bid. Formally, we de�ne a mapping g = (g1; : : : ; gs; : : : ; gS)
0
that transforms

latent bids, b� 2 <2m�1++ ; into observed bids, b 2<2m�1++ , that satisfy these constraints,

b = g(b�;R). A typical component s � S of the mapping g is given by:

gs(b
�;R) = min

 
Rs; min

s1;s2�S;s1[s2=s;s1\s2=?;b�s1�Rs1 ;b
�
s2
�Rs2

(b�s; b
�
s1 + b

�
s2);mins0�S

bs[s0

!
Henceforth, we use this convention and restrict attention to observed bids. Thus, the

support of observed bids by bidder i is given by

B =
�
b 2 <2m�1++

��bs � Rs; bs[s0 � bs + bs0 ; and bs � bs[s0 for all s; s
0 � S with s 6= s0

	
:

(14)

and we assume that the supremum of reserve prices are additive, Rs[s0 = Rs + Rs0 for all

s; s0 � S with s 6= s0. Notice that all bids in the interior of the support B are relevant bids
as de�ned in section 3. Irrelevant bids may arise on the boundary of the bid support, for

example, when the constituent bid constraint, bs � bs[s0 , is binding.

The total number of bidders at an auction consists of regular and fringe bidders. The

set of regular bidders is described by our garage data which include detailed information on

all garage locations. The number of fringe bidders is not observed in the data and needs to

be estimated. The maximum number of fringe bidders submitting a bid equals three on any

auction. We use this number as an estimate for the potential number of fringe bidders. The

maximum number of fringe bidders is a supere¢ cient estimator as it converges at a rate

faster than our parameter estimates. Thus, the estimate of the number of fringe bidders

does not a¤ect the distribution of the remaining parameter estimates asymptotically.

Estimation: There is a large literature on estimation methods of the parameters of

a lognormal density function, see Gri¢ ths (1980). Proposed methods include maximum
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likelihood and the method of moments. Maximum likelihood yields consistent and e¢ -

cient estimates of the parameters (�;�) as the number of auctions T gets large. Yet, the

likelihood function involves multi-variate integrals. These integrals arise due to the combi-

nation, stand-alone and reserve price restriction. Numerical calculation of the integrals and

the likelihood function can be computationally intensive. The method of moments provides

an alternative estimation method to maximum likelihood that yields consistent estimates

as the number of auctions T increases, see Hansen (1982). Numerical calculation of the mo-

ment conditions can also be computationally intensive for a multi-variate truncated density.

However, simulation estimators (McFadden (1989) and Pakes and Pollard (1989)) provide

an elegant solution to this problem.27 The next section describes our simulated methods of

moment estimator for the density of bids.

5.2 A Simulated Method of Moments Estimator

We consider a method of moments estimator that is based on the moments of observed bids.

For computational reasons, we consider the logarithmic transformation of observed bids nor-

malized by the internal cost estimate, B = ln(b)�ln(ICE). Let (B)1 = (B1; : : : ; BS) denote
the vector of �rst moments of log normalized bids, (B)2 = ((B1B1); (B1B2) ; : : : ; (BSBS))

denote the vector of second moments of log normalized bids, and so on. Notice, that the

expected di¤erence between the observed and theoretical moment when evaluated at the

true parameter value �0 is zero:

E
h
(Bit)k � E

h
BkjXit;� = �0

ii
= 0

Given this condition together with some standard regularity conditions, we can adopt the

method of moments estimator described in Hansen (1982). Unfortunately, E
�
BkjXit;�

�
is

the kth moment of a truncated multi-variate normal random variable, which is numerically

time-consuming to calculate. We solve the integration problem by replacing the di¢ cult to

calculate expected value with a simulated, unbiased estimate. To see this, notice that the

expected kth order moment of the observed bid can be written as

E
h
BkjXit;�

i
=

Z
� � �
Z �

log(g(";Rt))k
�("jXit;�)

'(")

�
'(")d"1 � � � d"St

by multiplying and dividing the integrand by the multi-variate importance function '(�),
which we assume equal to the product of univariate normal densities, '(") = �s�St ("s) and

27Methods based on simulating the likelihood function are less attractive because the simulation error

enters non-linearly and may bias the estimates.
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where  (�) denotes a univariate normal density with unit variance. The mapping g(";Rt)
normalizes bids by using the internal cost estimate and takes the reserve price, stand-alone

and combination bid restriction into account. So, a typical component of the mapping g is

given by gs(";R
t) = gs(exp(") � ICEt;Rt)=ICEts.

Given a �xed set of L random draws, b" = �b"1; : : : ;b"L�, from the multi-variate impor-

tance function '(�) for each bidder and auction, we de�ne the estimate, cBk, for bidder i on
auction t as: cBk(Xit;�;b"it) = 1

L

LX
l=1

"
log(g

�b"itl;Rt�)k�(b"itljXit;�)
'(b"itl)

#

Observe that the estimate cBk(Xit;�;b"it) is continuously di¤erentiable in the parameter
vector � and it is an unbiased estimator of E

�
BkjXit;�

�
,

cBk(Xit;�;b"it) = E
h
BkjXit;�

i
+ bvk.

Under regularity conditions which are satis�ed here, McFadden (1989) and Pakes and Pol-

lard (1989) show that a method of moments technique is still appropriate to estimate �

when the estimate cBk replaces the theoretical analogue. We consider two sets of moment
conditions. First, the �rst moment of observed bids:

M1 (�) =
X
i;t

X
s�St

h
Bits � cB1s (Xit;�;b"it)i �Wit1

s

whereWit1
s is a row vector of instruments for the �rst moment of the normalized bid Bits .

The second set of moment conditions is based on the second moment of observed bids and

accounts for the correlation between (combination) bids:

M2 (�) =
X
i;t

X
s;s0�St

h
(Bits �Bits0 )�

dB2
ss0
(Xit;�;b"it)i �Wit2

ss0

where Wit2
ss0
is a row vector of instruments for the second moment of the normalized bid

Bits �Bits0 . The method of moment estimation technique is based on the restriction that the
moment condition is uncorrelated with the exogenous dataW = (W1;W2). LetM denote

the column vector of moment conditions,

M (�) = (M1 (�) ;M2 (�))
0 ;

where the dimensionality of the vector of moment conditions is at least as large as there are

parameters in �. An estimate b� is chosen to minimize a quadratic distance measure
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M(�)0AM(�)

for some positive de�nite matrix A. A preliminary estimate b�0 is obtained by setting A
equal to the identity matrix. Then, a new weighting matrix is calculated as the inverse

of the sample variance of the individual moment conditions, bA =
h

1P
tN

tV ar
h
M(b�0)ii�1,

where N t equals the number of bidders in auction t. A second and �nal estimate, b�, is
then obtained from the use of this moment condition. The estimate b� is consistent andpP

tN
t
�b� � �0� is asymptotically normally distributed with zero mean and covariance

matrix �
1 +

1

L

��
E
@

@�
M

0 bAE @

@�
M

��1
;

see for example Pakes and Pollard (1989).

A Monte Carlo study revealed that the estimator is well behaved even for small number

of observations. Moreover, the �rst two moments, k = 1; 2, are su¢ cient to identify the

parameter vector �.

5.3 Inference of Costs

This section describes our technique to infer costs for a typical auction t. For simplicity of

exposition we omit the auction superscript. The primitive for our inference procedure is the

density of observed bids. The bid density allows us to obtain an expression for the density

of opponents� low bids and the probability of winning. Costs and the cost distribution

function can then be inferred based on the �rst order condition for optimal bids.

Let h(bi1; :::; b
i
s; :::; b

i
S jb�;Xi) denote the estimated probability density function evaluated

at bids by bidder i on all the subsets of S conditional on Xi. For simplicity of exposition, we

denote the secret reserve prices of the auctioneer as bids submitted by bidder zero
�
b0s
�
s�S ,

and write the density of reserve prices as h(b01; :::; b
0
s; :::; b

0
S jb�;X0). This notational convention

allows us to include the reserve prices in the set of bids by i�s opponents. The probability

that bidder i�s bid (vector) bi wins exactly contract s conditional on Xi, Gs(bijb�;Xi) can
be written as a function of the density of the cheapest allocation of the routes in S among

bidder i�s opponents conditional on Xi, which we denote as h(1)(:jb�;Xi). Notice further
that the density h(1)(:jb�;Xi) can be expressed directly as a function of the bid densities
h(:jb�;Xj) for j = 0; : : : ; N . The analytical expressions involves multi-dimensional integrals
which are complex to calculate numerically.
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Following Judd (1998), we solve the described integration problem using Monte Carlo in-

tegration methods. The method is based on the law of large numbers and can be explained as

follows: For each bidder j 6= i we draw a bid (vector) from the density h(:jb�;Xj) conditional
on the characteristics Xj . Additionally, a random reserve price (vector) is drawn from the

reserve price distribution and included in the set of bids. We then determine the cheapest

allocation of the contracts in S among bidder i�s opponents (b�ijb�;Xi) = (b�i1 ; :::; b�iS jb�;Xi)
as de�ned in equation (1). We repeat this exercise L times by repeatedly drawing bids and

determining the cheapest allocation of the routes in S among bidder i�s opponents. The

�pseudo data�of cheapest allocations, (b�iljb�;Xi)Ll=1, is then used directly to approximate
the probability that bidder i wins exactly route s with the bid bi contained in the interior

of the support B,28 Gs(bijb�;Xi). The empirical frequency of this event is given by:
Gs(b

ijb�;Xi) = Pl 1fbid bi wins exactly route sj (b�iljb�;Xi)g
L

,

where 1fxg = 1 if x is true and 0 otherwise. By the law of large numbers, the approxi-

mation error vanishes as L increases.29 The partial derivative @Gs=@bt, can be calculated

numerically by using one sided di¤erences with "(L) appropriately chosen.30 The numerical

di¤erence yields,

@Gs(b
ijb�;Xi)
@bt

=
Gs(b

i
1; :::b

i
t; :::; b

i
S jb�;Xi)�Gs(bi1; :::bit � "; :::; biS jb�;Xi)

"
.

Section 3 describes how to obtain the cost range associated with the bid vector bi based

on the Kuhn-Tucker conditions for optimal bids. The Kuhn Tucker conditions are fully

characterized with the estimates of Gs, @Gs=@bt in hand. As is explained in section 3, the

cost range can be either a singleton, or a path or a higher dimensional area. Moreover,

the cost range can be calculated by varying the Lagrange multiplier(s) between 0 and 1.
Finally, we observe that our numerical approximation entails an error and the error becomes

negligible as L increases.

28For a bid bi on the boundary of the support, the probability of winning equals the limiting winning

probability of a sequence of interior bids that converges to bi. By continuity of the assumed bid density and

the randomness of the reserve price, the winning probabilities in the sequence will converge to the winning

probability at the boundary. Thus, we may approximate the winning probability of a boundary bid with

the winning probability of a close by interior bid.
29A smooth approximation of Gs is obtained by employing a kernel estimator, or similar smoother, on the

pseudo data, see Silverman (1986).
30The derivative on the boundary of the bid support can be approximated by the derivative evaluated at

close by interior bids.
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6 Estimation Results

This section describes our estimates. We report the parameter estimates of the bid density

functions in section 6.1. Section 6.2 illustrates the bidder objective function and optimal

bids. Finally, section 6.3 illustrates our estimates for cost synergy bounds and assesses

bounds on potential e¢ ciency losses due to the auction rule.

6.1 Estimates

Our data do not include information on the auctioneer�s reserve prices. Reserve prices are

kept secret and bidders do not know the reserve prices at the time of bid submission.31

To account for the reserve price in the estimation, we presume that a secret reserve price

is drawn independently for each route from a uniform distribution with interval support.

The boundary points of the reserve price support are assumed linear in the internal cost

estimate. Reasonable candidates for the linear coe¢ cient can be inferred from the ratio

of accepted bid to the internal cost estimate. Excluding two single route auctions which

are outliers32 an upper bound to this ratio equals 1:45. We use this number as an upper

bound for our analysis. As a lower bound for the secret reserve prices we use the internal

cost estimate. Altering the reserve price rule would not a¤ect our statistical model of bids.

In fact, in the estimation of the bid density, we lower the upper reserve price bound from

1:45 to 1:3 times the internal cost estimate to diminish possible errors stemming from the

presumed reserve price rule.33 For our cost estimates, the e¤ect of the presumed secret

reserve price is to smooth the simulated winning probability for bids that approach the

upper reserve price bound, and thus to reduce the estimated bidders�markup over costs.

The reason for the reduced markup is that the secret reserve price has a similar e¤ect on the

calculus of bidding as adding an additional bidder. It enhances competition in the auctions

and results in reduced markups over costs.

Parameter speci�cation and instruments: There are a number of natural restrictions

to impose on the way the parameters enter the bid density of regular bidders. The parame-

ters should be invariant with respect to permutations of the indices of sets of routes. For

31Our data include a total of �ve rejected bids.
32The two excluded auctions have accepted winning bids that are 52 and 108 percent above the internal

cost estimate. These auctions consist of single contracts with an internal cost estimate of less than 50,000

Pounds. The internal cost estimate is two standard deviations below the mean internal cost estimate and

possibly erroneously measured.
33A total of six bid observations become truncated due to the reduced upper boundary point.
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the mean the invariance implies that dead mileage and other covariates should have the

same e¤ect for each contract, or formally �s = �� , for all s; � such that jsj = j� j. For the
covariance matrix the restriction implies that the matrix � should be symmetric and that

the covariance between routes one and two should equal the covariance between routes one

and three, and so on. Formally, the restriction can be stated as �s;s = ��;� , �s;� = ��;s,

�s;u = ��;u and �u;s = �u;� for all s; � such that jsj = j� j; and s; � 6= u.

In the estimation of the mean, we want to control for contract and bidder heterogeneity.

Contract heterogeneity is accounted for by dividing bids by the internal cost estimate. As

bidder speci�c explanatory variables for regular bidders we include linear and quadratic

expressions of the logarithm of dead mileage and the logarithm of the number of garages of

bidder i. We include a FRINGE dummy variable that equals one if the bid is submitted by a

fringe bidder and zero otherwise. Typically, fringe bidders do not have a garage established

at the time of bid submission, and we adopt the convention that the logarithm of the dead

mileage variable and the number of garage variable is equal to zero for fringe bidders. Thus,

the coe¢ cient on the FRINGE dummy takes into account the mean of fringe bids and is

measured relative to a regular bidder with no garages and dead-mileage equal to zero. This

yields the following speci�cation for �is:

�is = �0 + �1DEAD-MILEAGE-i-s+ �2 (DEAD-MILEAGE-i-s)
2

+ �3NO-GARAGES-OF-i+ �4FRINGE

For a single route auction the covariance matrix � equals the parameter �1. For multi-route

auctions we specify the elements �s;� of the covariance matrix � as follows:

�s;� = �11fs=� , and s is a single routeg + �21fs 6=� and s\�=;g + �31fs 6=� and s\� 6=;g

+ �41fs=� , and s is a combination routeg

The �rst and last constant account for diagonal elements in �, while the second and third

constant account for o¤ diagonal elements. The �rst constant accounts for the variance

of a single route bid and the last constant accounts for the variance of a combination bid.

We distinguish two o¤-diagonal e¤ects depending on whether contracts s and � have a

non-empty intersection or not.

As instruments for the moment condition any of the exogenous data are admissible.

These include all bidder and auction speci�c variables on each auction and the powers

of these variables. The total number of instruments has to equal at least the number
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of parameters. For the mean of route combination s on auction t for bidder i we select

the following �ve instruments: a constant, the dead mileage of regular bidder i to route

(combination) s, the dead mileage of bidder i to route (combination) s squared, the number

of garages of bidder i and a dummy variable that equals one if the bid is submitted by a

fringe bidder. For the second moment between bids bs and b� for bidder i we select four

dummy variables as instruments. The dummies are the indicator functions de�ned in the

speci�cation of �s;� .34 The total number of instruments equals the number of parameters

in the model, which guarantees identi�cation.

As described in section 4, we estimate the parameters using the method of simulated

moments.

The estimates are reported in Table 3. The covariance estimates reveal the following: The

covariance estimate for bids on distinct routes, or �unrelated�routes, is positive and equals

0.09. It is signi�cantly di¤erent from zero. The covariance estimate for �related� routes,

that is for a combination of routes and a bid on a constituent stand-alone route, is negative

and equals -0.04. It is signi�cantly di¤erent from zero.

An alternative measure of bid correlation is the correlation coe¢ cient. Our parameter

estimates imply a positive correlation between two stand-alone bids with a correlation co-

e¢ cient of about 0.21. A bid for a combination of routes and a constituent stand-alone bid

are negatively correlated with a correlation coe¢ cient of about -0.17. Bids for �related�

routes may exhibit a di¤erent correlation than bids for �unrelated� routes if there is a

possible lack of synergies, or if there are strategic e¤ects present. We will explore these

alternative explanations below. The variance estimate of a log stand-alone bid equals 0.42.

The variance estimate of a combination bid is smaller and equals 0.11. The di¤erence in

the variance estimate for stand-alone and combination bids is signi�cant.

The estimates reveal the following for the mean regular bid: The bidder speci�c variables

have the expected e¤ects: Firms with a garage located further away from the route submit

higher bids than �rms with a garage close by. The distance variable is signi�cant. At the

sample average values of explanatory variables, a one percent increase in distance increases

the bid by 0.68 percent. Larger �rms bid less aggressively. A one percent increase in the

34Speci�cally, the �rst dummy equals one when s = � , and s is a single route, and zero otherwise. The

second dummy equals one when s 6= � and s \ � = ;, and zero otherwise. The third dummy equals one
when s 6= � and s \ � 6= ;, and zero otherwise. And the fourth dummy equals one when s = � , and s is a

combination route, and zero otherwise.

41



Table 3 Parameter Estimates for the Distribution of Bids�

Observations 1525 1525 1525

Constant -0.2818 -0.2799 0.5616

(0.449) (0.5970) (0.586)

Dead-Mileage-i 0.2265 0.2259 0.2362

(0.032) (0.059) (0.068)

Dead-Mileage-i-SQ -0.1428 -0.1413 -0.5611

(0.250) (0.374) (0.369)

No-Garages-i 0.2236 0.2234 -0.0256

(0.005) (0.008) (0.126)

Fringe 1.1791 1.1771 0.2494

(0.447) (0.594) (0.624)

�1 0.4168 0.4185 1.5732

(0.101) (0.1223) (3.737)

�2 0.0865 0.0831 0.6284

(0.041) (0.038) (1.4649)

�3 -0.0352 -0.0337 -0.0577

(0.017) (0.014) (0.221)

�4 0.1063 0.1019 0.5277

(0.053) (0.041) (1.277)

Available Capacity-i 0.0010

(0.060)

�5 -0.1191

(0.168)
� All continuous explanatory variables are in logarithm. Standard errors are in parenthesis.

number of garages increases the bid by 0.23 percent. Fringe bidders submit higher bids

than non-fringe bidders. The di¤erence in log bids between a fringe and a non-fringe bidder

equals 1.18.

Synergies across auctions: The covariance estimates indicate that (stand-alone) bids

submitted from the same garage are positively correlated. It may be possible that the bid

correlation extends beyond the current auction as bids from the same garage submitted at

di¤erent auctions may be related as well. For example, it may be the case that a bidder

with garage capacity already committed to earlier won contracts may be reluctant (or

eager) to win another contract. As is shown in Jofre-Bonet and Pesendorfer (2003) the

inter auction e¤ects can be measured consistently by using a dynamic bidding game. In

London bus auctions considerable time elapses between auctions and consecutive auctions
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typically consist of routes located in distinct geographic areas of London. So, we may expect

that the intertemporal e¤ects are less important. However, we may examine whether inter

auction e¤ects are present.

The second column in Table 3 reports estimates in which the capacity committed to

routes won in prior auctions is included as an additional explanatory variable. The capac-

ity variable is constructed as the total number of buses already committed at the garage

divided by the maximum number of buses ever in operation at this garage. As is evident

in Table 3, the coe¢ cient of the capacity variable is not signi�cantly di¤erent from zero

and the inclusion of the additional variable does not a¤ect the other variables�coe¢ cients

signi�cantly. The evidence suggests that intertemporal capacity e¤ects may not be impor-

tant for London bus route auctions, or that the capacity at the garage is a poor measure

of intertemporal e¤ects. It is also possible that the auctioneer when deciding which routes

to o¤er in an auction takes potential synergies already into account and o¤ers the routes

with potential synergies in one auction. Indeed, the auctioneer tends to o¤er routes within

a geographic area at the same time which may explain the absence of intertemporal e¤ects.

Variance in bids: Our empirical speci�cation normalizes bids by the internal cost estimate

which yields a standard deviation of log bids that varies proportionally with the internal

cost estimate. It may be possible that the bid standard deviation is of a richer functional

form that goes beyond this proportional formula. For example, it may be the case that

the standard deviation of log bids is larger on small than on large routes. To account for

this possibility, we consider an augmented speci�cation in which the variance of log bids

(normalized by the internal cost estimate) is multiplied with the internal cost estimate to

the power of �5. If the coe¢ cient �5 is di¤erent from zero, then the standard deviation of

normalized bids can shrink or increase with the internal cost estimate. If the coe¢ cient �5

is not di¤erent from zero, then the richer speci�cation coincides with the speci�cation in

column one.

The estimates of the augmented variance model are reported in column three of Table 3.

The coe¢ cient for the internal cost estimate is negative but not signi�cantly di¤erent from

zero. We cannot reject the null that the coe¢ cient �5 is equal to zero. Thus the augmented

variance speci�cation is rejected vis-a-vis the speci�cation in column one. The rejection

of the augmented variance model may indicate also that our data are not su¢ ciently rich

to characterize the dependence of the variance on covariates and auction characteristics in

more detail.

Goodness of �t: An economically relevant measure to the auctioneer is the procurement
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cost of the �nal allocation. We use this measure to assess the goodness of �t of our estimates.

The procurement cost is de�ned as the cheapest bidder bid allocation across all routes in

the auction. We look at bids only, and leave the auctioneer�s secret reserve prices aside in

the calculation of the procurement cost. To control for auction heterogeneity, we divide the

procurement cost realization by the internal cost estimate. We de�ne our goodness of �t

measure as the sample average ratio of the procurement cost realization to the internal cost

estimate.

In the data, the procurement cost average equals 88.28 percent of the internal cost esti-

mate with a standard deviation of 22.33 percent. In order to calculate the model predicted

procurement cost, we take 10,000 simulation draws and determine the average predicted

cost across all auctions for each simulation draw. The simulated measure is lower than the

observed measure and equals 84.56. The standard deviation of the simulated measure equals

2.36 percent. We cannot reject the null that the two means are equal at the 90% con�dence

interval. We can conclude that our estimates predict the procurement cost reasonably well.

We also examined whether di¤erences between the simulated and observed procurement

cost depends on the internal cost estimate. Dividing our data into small and large auctions,

grouped by using the criterion whether the internal cost estimates is below or above the

median value, reveals that our estimates slightly over-predict the procurement cost for

small contracts and under-predicts it for large contracts. Yet, the relationship is weak. A

regression revealed that the internal cost estimate accounts for 2 percent in the variation of

the ratio of observed to simulated procurement cost only.

Bids on the boundary of the bid support indicate that one or more bidding constraints

are binding. As is explained in section 3, a binding bidding constraint does not allow us to

fully identify the cost vector. Instead, the cost vector is partially identi�ed only.

Partial identi�cation is an important element of our application. We illustrate this issue

for one and two route auctions: For single route auctions, we �nd that no constraint is bind-

ing on 98 of 551 observations, or 18% of all observations. The remaining bid observations

exceed the reserve price supremum, and partial identi�cation emerges thus on 82% of all

single route auction observations.

For two route auctions, no constraint is binding on 4 out of 210 observations. Two

percent of all observations yield a fully identi�ed cost vector. Partial identi�cation arises

due to distinct bidding constraints. Exactly one bid exceeds the reserve price supremum

on 7% of all observations, exactly two bids exceed the reserve price supremum on 10% of

all observations, and the combination bid constraint is binding on 14% of all observations.
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For the remaining observations all reserve price constraints are binding and a lower bound

to the cost vector is identi�ed only.

The next section illustrates the bidder objective function and the optimal bid choices.

6.2 Illustration of the Estimates

With the bid density estimates at hand a bidder�s decision problem can be illustrated. We

select a hypothetical two route auction containing the route with the median internal cost

estimate and assume that both routes have an internal cost estimate equal to the sample

median internal cost estimate. The number of potential bidders and all other covariates are

taken from an auction observation of a typical bidder with 17 potential opponents. The

cost for the stand-alone routes are assumed identical and equal to 94% of the internal cost

estimate. The cost for the combination of the two routes is assumed to equal twice the cost

of a stand-alone route. We take a random sample of bids from the estimated bid density and

the secret reserve price distribution. Then, we determine the bidder´s chances of winning.

By re-sampling 5; 000 times we obtain a discrete probability distribution function of winning

probabilities as a function of the own bids. To facilitate the graphical illustration, we smooth

the chances of winning using a kernel estimator.

[Figure 1 about here]

Figure 1 depicts the bidder�s objective function on the vertical axis varying the combi-

nation and stand-alone bids on the horizontal axis. The combination bid on the horizontal

axis is rescaled by the factor of 1=2 to make the combination bid levels comparable with the

stand-alone bid. The solid line depicts the value of the objective function varying the com-

bination bid and holding the stand-alone bids �xed at the optimal levels. The dashed line

illustrates the value of the objective function varying both stand-alone bids simultaneously,

i.e. b1 = b2, and holding the combination bid �xed at the optimal level. The solid line

illustrates that the value of the objective function increases initially, and then decreases,

as the combination bid increases. At a combination bid of about 3 million Pounds, the

combination bid constraint becomes binding, and the objective function is �at from then

onwards. The peak in the objective function occurs to the left of the �at area illustrating

that the optimal combination bid is less than the sum of stand-alone bids. The dashed

line increases for most of the range. At a stand-alone bid of about 1:3 million Pounds, the

combination bid constraint stops binding, and the objective function has a kink increasing

more steeply from then on. Eventually, the objective function becomes �at as the reserve
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Figure 1: Objective Function
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price constraint becomes binding. The optimal stand-alone bids arises at about 1:5 million

Pounds which occurs shortly before the �at area at which the reserve price constraint is

binding.

Figure 1 illustrates also that the objective function appears to be well behaved with

a single maximum. Our identi�cation and inference arguments require that bidders�bids

correspond to the global maximum of their expected payo¤ functions and are thus optimal

bid choices given the opponents� bids. As the �rst order condition is necessary but not

su¢ cient for equilibrium, we need to verify that bids correspond to a global maximum of

the estimated payo¤ function before proceeding with the inference based on the �rst order

condition.35 As a check that the global maximum requirement is satis�ed for our data

and estimated bid distributions, we conduct the following exercise. For all observed bid

vectors we determine whether these bids correspond to a global maximum of the estimated

expected payo¤ function. To do so, we numerically calculate the optimal bid choice for the

inferred cost estimate for every observation in single and two route auctions. An exact match

between the optimal bid choice and the observed bid choice cannot be expected due to the

numerical approximation error in the cost inference and in the optimal bid calculation. Yet,

for small approximation errors, we may expect that the optimal bid vector is close to the

observed bid vector.36 We examine the issue for single route and two auctions. We �nd that

for 99 percent of our observations, every component of the numerically calculated optimal

bid vector lies within a one percent radius of the observed bid.37 This numerical validation

is no proof but it gives us su¢ cient con�dence to proceed to estimate cost synergies.

Illustration of the optimal bid choices varying costs: Earlier we argued that even

in the absence of cost savings a combination bid may be lower than the sum of stand-

alone bids when there is not too much correlation in the value of the cheapest allocation

among opponents across contracts. We may illustrate the magnitude of the estimated

correlation in opponents�low bids by taking random samples repeatedly from the bid density

35For single unit auctions, Guerre, Perrigne and Vuong (2000) show that the �rst order condition together

with the condition that the bid density has a monotone hazard rate provide necessary and su¢ cient condition

for optimality of each bidder�s best response. For multi-unit auctions, we are not aware of a condition on

the bid density that would guarantee the su¢ ciency of the �rst order condition. Instead, we compare the

observed bid vectors to the bid vectors that maximize the estimated expected payo¤ function.
36The empirical objective function can be viewed as the true objective function plus a computational

error. The computational error comes from the numerical calculation of the inverse matrix of an already

numerically approximated gradient matrix. When the computational error is small, the solution will be close

to the observed bid by the theorem of the maximum.
37The one percent threshold is not reached for one single-route and for eight two-route observations.
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for the hypothetical auction and determining the low bid for each sample. We �nd that

the correlation between low stand-alone bids is positive and equals 0.06. The correlation

between the low stand-alone bid and the low combination bid is positive and of larger

magnitude. It equals 0.36. The positive correlation involving the low stand-alone bid and

the low combination bid is in part induced by the combination bid constraint which requires

that a combination bid is at most as large as the sum of stand-alone constituent bids. For

other routes characteristics and auctions we found correlations of similar magnitudes. The

small amount of correlation for stand-alone bids suggests that even without cost savings we

may expect that a bidder�s combination bid may be less than the sum of stand-alone bids.

Next, we illustrate the pro�t maximizing bids for a range of cost draws.

[Figure 2 about here]

Figure 2 depicts optimal bid choices varying the bidder�s cost of the route contracts.

We consider here the same auction observation and bidder as in Figure 1. We make the

following assumption about costs: The cost for the stand-alone routes are identical and the

cost for the combination of the two routes equals twice the cost of a stand-alone route. The

solid line denotes the combination bid divided by two, the dashed line equals the stand-alone

bid, and the dotted line is the 45 degree line. The pro�t maximizing bids are calculated at a

set of cost points and a line is drawn to connect the solutions. Due to numerical calculation

errors arising in the construction of the winning probabilities and also in the optimization

routine, the resulting line is not smooth.

Figure 2 shows that the combination bid is less than the sum of stand-alone bids for all

the cost range. The di¤erence between the sum of stand-alone bids and the combination

bid decrease gradually from 380,000 to 30,000. The relative di¤erence, normalized by the

cost, ranges between 30 and 45 percent. Figure 2 also illustrates the bidder�s markup as the

di¤erence between the bid and the 45 degree line. The markup decreases monotonically as

the cost increases. The markup of the combination bid ranges between 2% and 50% of the

cost.

As described earlier, on average, the relative di¤erence between the sum of stand-alone

bids and the combination bid in the data equals 1.1%, which is substantially smaller than

the hypothetical di¤erence in the absence of cost synergies depicted in Figure 2. The low

observed di¤erence suggests that there could be lack of cost synergies for London bus routes.

We will assess this hypothesis in more detail next.
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Figure 2: Optimal Bids
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6.3 Synergy Estimates

The cost synergy can be inferred based on the inverse of the estimated bid mapping as is

explained in section 3. Let �it denote the cost synergy measure for bidder i on auction

t. It equals the di¤erence between the sum of stand-alone costs minus the cost for the

combination of routes and is normalized by the absolute value of the sum of stand-alone

costs:

�its� =
cits + c

it
� � cits[�

jcits + cit� j
for s; � � St

We take the absolute value of the sum of costs in the normalization as the sum of cost

estimates may be negative.38 The synergy measure is un-determined when a single stand-

alone bid is submitted only as there are two degrees of underidenti�cation re�ected in cits[�
and cit� . For this reason, we omit observations with isolated stand-alone bids and calculate

the synergy measure only for those observations for which at least two stand-alone bids

are submitted. As is explained in section 3, point identi�cation of costs is achievable if

a (full set of) non-trivial combination bid(s) is submitted in addition to stand-alone bids.

When a trivial combination bid is submitted, we evaluate the synergy measure by setting

the Lagrange multiplier of the combination bid constraint to zero. The resulting synergy

measure provides an upper bound on the magnitude of the cost synergy �its� .

For two route auctions there are a total of 57 bids with at least two stand-alone bids.

We omit 67 observations in which one stand-alone bid is submitted only. A total of 25 of the

57 observations have a combination bid less than the sum of stand-alone bids. The inferred

cost synergy measure is positive on 24 of 57 occasions. The median cost synergy measure

is negative and equals -0.11. The estimates imply that the route combination costs at least

11% more than the individual routes separately.

A similar picture emerges when we consider three route auctions. Again, we include bid

observations to calculate the synergy measure �s� when the bids satisfy one of these three

conditions: (i) the submitted bids do not violate any constraint; (ii) the combination bid

constraint between routes s and � is binding but no other constraint is binding; (iii) the

stand-alone bids bs and b� are submitted and no stand-alone or combination bid involving

the third route is submitted (all other bids are above the reserve price bound). For three

route auctions there are a total of 46 observations satisfying the criterion. A total of 36

of the 46 observations have a combination bid less than the sum of stand-alone bids. To
38Negative estimates of the opportunity costs for bus operators could arise due to costs of stopping the

bus operation completely and laying o¤ the workforce, or due to long term contractual costs such as rental

agreements (for garages or buses).

50



evaluate the synergy measure when the combination bid constraint is binding, we set the

Lagrange multipliers of the combination bid constraints to zero, which provides an upper

bound on the magnitude of cost synergies. The inferred synergy measure is positive on

15 of 46 occasions only. The median cost synergy measure is negative and equals -0.24.

As the measure is an upper bound on the potential cost synergy, we can conclude again

that the combination of routes in a three route auction does not cost less than the sum

of stand-alone costs. The synergy estimates appear qualitatively robust to changes in the

assumed support of the reserve price distribution.39

The evidence suggests that a bidder�s cost tends to increase by more than the sum of

stand-alone costs. The technology appears to exhibits decreasing returns to scale. A possible

explanation is that the technology of operating buses depends on the garage capacity. As the

number of buses in the �eet approaches the garage capacity it becomes increasingly costly

to take on additional buses or routes. Possible cost savings emerging from the sharing of

spare buses and bus servicing are outweighed by cost increases due to the limited garage

size.

A bound on the e¢ ciency losses of the auction format can be inferred in the following

way: First, our cost estimates give us a lower bound on the cost of the winning allocation.40

Second, we infer costs for the remaining observed bids that did not win but that have point

identi�ed costs. We may examine whether it would have been more e¢ cient to award one

or more routes to one of these losing bids. We ignore losing bids with partially identi�ed

costs, and our comparison yields a lower bound to the e¢ ciency loss only.41 We illustrate

our �ndings for the 36 auctions which consist of exactly two routes: We �nd that the low

cost allocation di¤ers from the observed allocation on 20 of 36 occasions with a median

e¢ ciency loss equal to 7.8% of the internal cost estimate.

We can also distinguish whether the ine¢ ciency arises when a combination bid won or

when a stand-alone bid won. We �nd that the main source of ine¢ ciencies is the combination
39Reducing the support of the reserve prices from [1; 1:45] to [1:2; 1:45], has the following e¤ects: The

median cost synergy estimate equals -0.30 for two route auctions and -0.13 for three route auctions.
40A lower bound on the cost of the winning allocation is obtainable as the winning bid is always observed.

If two stand-alone bids win, or if a combination bid wins both routes and the combination bid constraint is

not binding, then the cost is point identi�ed. If a combination bid wins, and the combination bid constraint

is binding, then a lower bound to the cost of the winning allocation is identi�ed.
41As described in section 3, if the upper bound of the reserve price is binding for a stand-alone bid and

not for the other stand-alone bid, then the cost associated with the �rst stand-alone bid is not bounded

from below due to the pressence of the combination bid constraint. Notice though that this concern arises

for non-winning bids only, as a winning bid is below the reserve price by de�nition.

51



bid. On 13 of 20 occasions the contract was awarded to a combination bid although an

award to separate bidders would have been more e¢ cient. On the remaining 7 auctions

the ine¢ ciency arises due to asymmetries as the low cost bidder�s bid exceeds the bid of

another bidder although the other bidder has a higher cost. This suggests that the strategic

motive for combination bidding described in section 2 may be an important element for

combination bidding.

7 Conclusions

This paper has analyzed several aspects of the �rst price combinatorial auction: theory,

identi�cation, estimation and empirical analysis. We have analyzed bidders�incentives to

use combination bids in such auctions and identi�ed a strategic motivation for doing so

that is akin to price discrimination in multi-product pricing. We have derived conditions

for the model to be identi�ed, and more importantly, proposed a method for characterizing

bounds on the costs and distribution of costs when these conditions fail. We have proposed

a method to estimate the distribution of bids and the probabilities of winning on the basis

of data from a combinatorial auction, and have applied it to the data we collected for the

auctions of London bus routes. Based on our theoretical analysis and our identi�cation

results, we have looked at empirical evidence for cost synergies in the London bus market.

All four aspects of our problem deserve further research. First, a full characterization

of equilibrium in the combinatorial �rst price auction (including algorithms to compute the

equilibrium) and further results on revenue/cost ranking of auction formats would be use-

ful. Second, our identi�cation results suggest that partial identi�cation of the distribution

of costs is likely to be the rule rather than the exception in multi-unit auction data sets.

We need new results that allow us to answer meaningful policy questions even when the

primitives are only partially identi�ed (an example along these lines for single-unit English

auctions is Haile and Tamer, 2003). Partial identi�cation has also implications for the po-

tential generalization of our results to a¢ liated settings. Existing identi�cation results with

a¢ liation use bidders�bids as a su¢ cient statistic for their private signal when identifying

the probabilities of winning. Partial identi�cation means that a bid no longer identi�es a

single cost. Thus generalization to a¢ liated settings is no longer trivial. Third, we have

attributed the unexplained variations in the bid data to bidder speci�c private information,

and assumed that there is no unobserved route and bidder heterogeneity. Our assumption

is satis�ed if the econometrician has access to the same information as market participants.
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While this assumption is common in most of the empirical auction literature, the question

whether the estimation method can be extended to accommodate unobserved heterogeneity

is a challenging one.
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8 Appendix A: Proofs

Lemma 1: Consider the private value combinatorial �rst auction model described in Section

2, without a reserve price or with a known reserve price, and with or without combination

bid constraints. Then, in any equilibrium where bidders bid on or above their costs:

(1) Bidders are indi¤erent about the way in which ties that occur with positive probability

are resolved,

(2) limb!b�
P
s�S(bs � cis)Gs(b) =

P
s�S(b

�
s � cis)Gs(b

�) for all b� 2 Bi; such that b�

is bidder i�s optimal bid given costs ci:

(3) �i(Bi3) = 0 for all i:

Proof of Lemma 1: (1) and (2): Consider bidder i. Let zs = mint6=sfb�iSnt+bt; bS ; b
�i
S g�b

�i
Sns

where b�is were de�ned in (1): Bidder i�s probability of winning exactly route (or route

combination) s 6= S, Gs; given his submitted bid b is

Pr(bs < zs) + � Pr(bs = zs)

where � 2 [0; 1] is induced by the tie-breaking rule. This probability is discontinuous with
respect to bs at b if zs has a mass point, say at bzs. We need to consider three cases depending
on what causes the mass point at bzs :
1. bs + b�iSns ties with positive probability with b

�i
Snt + bt or bS (but not with b

�i
S ) :

Let Go(b) be the probability that bidder i does not win anything with bid b or, in

other words, that the winning bid is b�iS : By construction, Go(b) = 1 �
P
sGs(b):

It is continuous in bs at b since, by assumption, bs + b�iSns does not tie with positive

probability with b�iS : Thus, so is
P
sGs(b): This implies that the only way in which it

could be optimal to submit bs is if (bs� cs) is equal to the pro�t bidder i makes from
the other allocations with which it ties. Otherwise, submitting a bid on route s slightly

above or slightly below bs is a pro�table deviation. Thus, when a tie occurs, bidder i

is indi¤erent about the way in which the tie is resolved. Moreover, his expected payo¤

is continuous.

2. bs + b�iSns ties with positive probability with b
�i
S (but no other bids).

(a) Consider �rst the case where the tie-breaking rule is such that lim"#0Gs(bs �
";b�s) � Gs(b) > 0 (for example, if the allocation is random in case of ties). If

bs � cs > 0; submitting bs � " strictly increases bidder i�s expected pro�t for " small
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enough. If bs � cs = 0 but Gs(bs + ";b�s) > 0 for some " > 0; submitting bs + " is a

pro�table deviation. Thus the only way in which bs could be part of an equilibrium

is if bs � cs = 0 and Gs(bs + ";b�s) = 0 for all " > 0.42 But then expected payo¤ is

again continuous. Moreover, bidder i is again indi¤erent about the way in which the

tie is resolved.

(b) To complete the argument we argue that lim"#0Gs(bs � ";b�s) � Gs(b) = 0

cannot happen in positive probability ties.43 To see this, suppose �rst that bidder j is

responsible for the mass point in b�iS �b
�i
Sns: His bid on S ties with positive probability

with his bid on Sns: Thus, applying the argument in point 1 above means that his
payo¤ from winning either allocation is the same. Given assumption 1, the set of costs

satisfying this condition has zero measure, a contradiction with the fact that bidder

j causes a mass in the distribution of b�iS � b�iSns. The same reasoning holds if bidder

j is responsible for the mass in the distribution of b�iS and bidder k is responsible

for the mass in the distribution of b�iSns: Likewise if instead of a single bidder being

responsible for the mass point, several bidders having a mass on subsets of S (resp.

Sns) are responsible for the mass points.

3. bs + b�iSns ties with positive probability with b
�i
S and some other bids.

We can combine the arguments from the two previous scenarios to conclude the bid-

der is indi¤erent about the ways ties are resolved and that expected payo¤ is again

continuous.

Note that none of the arguments above relied on a particular structure on the bids. Thus

they continue to hold when a combination bid constraint is imposed. The proof also extends

to reserve prices. Reserve prices can be considered as bids submitted by the buyer, with

the exception that no best response requirements is placed on them. The only place where

the argument above relies on the behavior of bidder i�s opponents is in part (b) of point

2, which is never relevant for reserve prices given that lim"#0Gs(bs � ";b�s) � Gs(b) > 0

always for reserve prices. This establishes statements (1) and (2) of Lemma 1.

We now proceed to proving statement (3) of Lemma 1. Note �rst that, by Lemma 1(2), the

only non di¤erentiability points of bidders�expected payo¤ correspond to kinks. The rest

of the proof proceeds in three steps:

42bs � cs < 0 is ruled out by assumption 2.
43This argument is only needed for proving part (1) of the Lemma. It is not needed to prove continuity

of the equilibrium payo¤s under the London bus routes tie-breaking rule.
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Step 1: Kinks that can induce mass points in the distribution of bids.

Not all kinks are candidates to induce a mass point in the distribution of best response

bids. Consider bidder i�s optimization problem, maxb2R2m�1
P
s�S(bs � cs)Gs(b) for some

�xed cost c: Denote by @
@bs
Gt(b)jleft and @

@bs
Gt(b)jright, the left and right derivatives of Gt

with respect to bs at b: A necessary condition for kinks to generate a mass in bidder i�s

distribution of best response bids is that, for some t � S and some b;

Gt(b) +
X
s�S
(bs � cs)

@

@bt
Gs(b)jleft � 0 � Gt(b) +

X
s�S
(bs � cs)

@

@bt
Gs(b)jright (15)

with at least one inequality strict. Intuitively, suppose (15) is sati�ed for b and c: Then it

is also satis�ed for b and c0 in the neighborhood of c: Bids b such that

Gt(b) +
X
s�S
(bs � cs)

@

@bt
Gs(b)jleft � 0 � Gt(b) +

X
s�S
(bs � cs)

@

@bt
Gs(b)jright

with at least one inequality strict are never a best response for bidder i with cost c:

Practically, consider zs = mint6=sfb�iSnt + bt; bS ; b
�i
S g � b�iSns; the bid on s that bidder i must

beat in order to win s: Kinks that are candidates to induce mass point bidding correspond

to upward jumps in the density of zs because they imply @
@bs
Gs(b)jleft > @

@bs
Gs(b)jright and

@
@bt
Gs(b)jleft � @

@bt
Gs(b)jright: Bids at downward jumps cause @

@bs
Gs(b)jleft < @

@bs
Gs(b)jright

and @
@bt
Gs(b)jleft � @

@bt
Gs(b)jright and can thus never be best responses.

Step 2: zS = mins 6=Sfbis + b�iSns; b
�i
S g has no kink in its distribution that generate mass

points in the distribution of best response bids by bidder i:

Fix bi�S and de�ne zS = mins 6=Sfbis + b�iSns; b
�i
S g with support in [zS ; zS ]: Note that any

bidder-bid combination with realization in [zS ; zS) has a strictly positive probability of

winning. Thus the bids that make up for those allocations must be strictly above costs.

Suppose the distribution of zS has a kink at bzS that induces a mass point in the distribution
of best response bids by bidder i: From step 1, this kink must be caused by an upward jump

in its density at bzS : Upward jumps can happen for two reasons:
1. The random variables bis+ b

�i
Sns and b

�i
S do not all have the same support and bzS is at

the lower bound of the support of one of these variables.

2. The random variables bis+b
�i
Sns or b

�i
S have a discontinuous density for values for which

they have a strictly positive probability of winning.
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We �rst consider the case where the kink happens at the boundary of the support of b�iS or

because of a discontinuity of its density. Towards a contradiction suppose that, as a result,

�i(febi 2 Bi : ebiS = bzSg) > 0. We consider two subcases:
1. There exists j 6= i such that the density of bjS has an upward jump at bzS . Bidder j�s
bid ties with strictly positive probability with biS : From lemma 1(1), it must be that

bjS = cjS . This contradicts optimality because this bid wins with strictly positive

probability. We conclude that the kink cannot be caused by a discontinuity in the

density of bjS after all.

2. There exist j; k 6= i such that the density of bjSnt + b
k
t is discontinuous at bzS when

bjSnt + b
k
t = b�iS = zS : (note: if the kink is made of more than two bids, the same

reasoning applies). Because bjSnt + bkt is the sum of two independently distributed

random variables, its density is continuous on its support and vanishes to zero at the

boundary of its support, ruling out a kink unless one of bjSnt or b
k
t has a mass point.

Suppose, without loss of generality, that bkt has a mass point at x: Let b
j
Snt;L denote

the lower bound of the support of bjSnt: We have bzS = x + bjSnt;L: Consider bidder j.

His bid bjSnt;L ties with positive probability with b
i
S : By lemma 1(1), b

j
Snt;L = cjSnt:

This contradicts optimality because this bid wins with strictly positive probability.

We conclude that the kink cannot be caused by a kink in the distribution of bjSnt+ b
k
t :

We next consider the case where the kink happens at the lower bound of the support of

bis + b�iSns for some s; or at an upward jump in the density of b
i
s + b�iSns. Let x = bzS � bis:

Suppose that the resulting kink implies that, at equilibrium, �i(febi 2 Bi : ebiS = ebis + x;

GiS(
ebi) > 0 and Gis(ebi) > 0g) > 0. We consider two subcases.
1. There exists j 6= i such that the density of bjSns has an upward jump at x: Bidder j�s

bid ties with strictly positive probability with bidder i�s bid on S: Thus from Lemma

1(1), it must be that bjSns = cjSns: This contradicts optimality because this bid wins

with strictly positive probability. We conclude that the kink at bzS cannot have been
caused by a discontinuity in the density of bjSns:

2. There exists k; j 6= i; such that the density of bkw + b
j
w0 (w \ w0 = ? and w [ w0 = Sns);

is discontinuous at x: Because is the sum of two independently distributed random

variables, it must be that one of them has a mass point. Suppose bkw has a mass point

at y: Thus x = y + bjw0;L (b
j
w0;L is the lower bound of the support of b

j
w0): Consider
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bidder j : his bid on w0 ties with positive probability with biS : Thus b
j
w0;L = cjw0 : This

contradicts optimality because this bid has a strictly positive probability of winning.

We conclude that zS has no kink that generates mass points in the distribution of bids by

bidder i.

Step 3: zt = mins 6=tfbis + b�iSns; b
�i
S ; b

i
Sg � b�iSnt; t 6= S; has no kink that generates a mass

point in the distribution of best response bids by bidder i:

Random variable zt di¤ers from zS in two respects. First, the presence of biS in the de�nition

of zt means that mins 6=tfbis+ b�iSns; b
�i
S ; b

i
Sg has necessarily a mass point at its upper bound,

biS : Second, the fact that zt is the di¤erence between two random variables means that a

necessary condition for zt to have a kink is that one of mins 6=tfbis+ b�iSns; b
�i
S ; b

i
Sg or b

�i
Snt has

a mass point and that the other does not have a vanishing density at its boundaries (unless

mins 6=tfbis + b�iSns; b
�i
S ; b

i
Sg and b

�i
Snt are perfectly correlated which could only be the case if

N = 2 but, in this case, zS has also a kink and thus this case is covered by the previous

one). We distinguish four cases:

1. The kink in zt is due to the mass point in the distribution of mins 6=tfbis+ b�iSns; b
�i
S ; b

i
Sg

at biS :

This creates an upward jump in the density of zt at biS � b�iSnt;H , where b
�i
Snt;H is

the lower bound to b�iSnt. Suppose that as a result �
i(febi 2 Bi : ebit + b�iSnt;H = ebiS ;

Git(
ebi) > 0g) > 0. We consider two subcases:

(a) There exists j 6= i such that bjSnt = b�iSnt;H . Bidder j�s bid ties with positive prob-

ability with b�jS ; implying that bjSnt = cSnt (Lemma 1(1)). But this contradicts

optimality given that this bid has a strictly positive probability of winning.

(b) There exists j; k 6= i such that bjw;H + bkw0;H = b�iSnt;H (w \ w0 = ? and w [ w0 =
Snt): Because by assumption b�iSnt has a non vanishing density at b

�i
Snt;H ; it must

be that j or k has a mass on their bids. Suppose j has a mass at bjw;H : Consider

bidder k: His bid ties with strictly positive probability with biS ; implying that

bjw = cw (Lemma 1(1)). But this contradicts optimality given that this bid has

a strictly positive probability of winning.

2. The kink in zt is due to a mass point in the distribution of b�iSns at x when Gs > 0:

This creates an upward jump in the density of zt at bis + x � b�iSnt;H (b�iSnt;H is the

upper bound to b�iSnt): Suppose that, as a result, �
i(febi : ebit �ebis = x� b�iSnt;H ; Gs(ebi);

Gt(ebi) > 0g) > 0 holds. We consider two subcases.
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(a) There exists j 6= i such that bjSnt = b�iSnt;H . If j is not responsible for the mass

at x; his bid ties with positive probability with b�jS ; implying that bjSnt = cSnt

(Lemma 1(1)). This contradicts optimality given that this bid has a strictly

positive probability of winning. If, instead j is responsible for the mass at x;

then his bids on Sns and Snt tie with positive probability. By Lemma 1(1), he
must be indi¤erent between the pro�ts he makes from both bids. A contradiction

with the mass that he places at x:

(b) There exists j; k 6= i such that bjw;H + bkw0;H = b�iSnt;H (w \ w0 = ? and w [ w0 =
Snt): Because by assumption b�iSnt has a non vanishing density at b

�i
Snt;H ; it must

be that j or k has a mass on their bids. Suppose j has a mass at bjw;H : Consider

bidder k: Suppose bidder k is not responsible for the mass in the distribution of

b�iSns: Then, his bid ties with positive probability with b
�k
S implying ckw0 = bkw0;H :A

contradiction with the fact that this bid wins with strictly positive probability. If

instead bidder k is responsible for the mass in b�iSns Then his bids on Sns and w
0

tie with positive probability. By lemma 1(1), he must be indi¤erent between the

pro�ts he makes from both bids. A contradiction with the mass that he places a

mass at x:

3. The kink in zt is due to a mass point in the distribution of b�iS at x: This creates an

upward jump in the density of zt at x � b�iSnt;H : Suppose that as result, �(
ebi : ebit =

x� b�iSnt;H ; Gt > 0) > 0. Same arguments as before.

4. The kink in zt is due to a mass point in the distribution of b�iSnt : this case is identical

to case 2 above, once we consider zs instead of zt:

Steps 2 and 3 imply that there is no kink in bidder i�s objective function that induces a mass

point in the distribution of his best response bids. Thus �(Bi3) = 0 implies that �i(Bi3):
This concludes the proof for statement (3). Q.E.D.

Lemma 3: Consider matrix rG(bi) (with elements de�ned by rGt;s(bi) = @
@bt
Gs(b

i))

evaluated at any optimal bid vector bi by bidder i. Then:

(1) @
@bt
Gt(b

i) � 0 for all t; and strictly so if Gt(bi) > 0.
(2) @

@bt
Gs(b

i) � 0 for all t 6= s:

(3)
P
s
@
@bt
Gs(b

i) � 0 for all t; and strictly so for some t if there exists s � S such that

Gs(b
i) > 0.

(4) rG(bi) is invertible if Gs(bi) > 0 for all s:
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(5) The determinant of any submatrix made from removing some rows and the corre-

sponding columns of rG has sign (-1)r where r is the number of remaining rows/columns if
all bid components in bi except those removed have a strictly positive probability of winning.

Proof of Lemma 3: (1), (2) and (3): Given m routes, there are 2m possible allocations

between bidder i and his opponents: Either bis + b�iSns generates the cheapest allocation, in

which case bidder i wins exactly contract s, or b�iS yields the lowest cost, in which case

bidder i does not win anything.

Any increase in bit makes the allocation that corresponds to b
i
t+b

�i
Snt more expensive relative

to the other ones, but it otherwise does not a¤ect the relative ranking of bis+b
�i
Sns; s 6= t; and

b�iS : Hence the probability that any of these competing allocations wins cannot decrease:
@
@bt
Gs � 0 for s 6= t. Likewise, the probability that allocation bit+ b

�i
Snt wins cannot increase:

@
@bt
Gt � 0: Finally,

P
s
@
@bt
Gs � 0 for all t (since

P
sGs corresponds to one minus the

probability that b�iS wins).

If bit has a strictly positive probability of winning, i.e. Gt > 0, @
@bt
Gt must be strictly

negative, for otherwise increasing bit by epsilon would make bidder i strictly better o¤

(given the previous argument, raising bit does not hurt the expected pro�t bidder i makes

from his other bids), a contradiction with the fact that bi is optimal:

We now show that
P
s
@
@bt
Gs < 0 for some t when bi contains at least one bid that has a

positive probability of winning: Towards a contradiction, suppose that
P
s
@
@bt
Gs = 0 for

all t: This means that the support of mins�Sfbis + b�iSnsg is distinct from the support of b�iS
(none of bidder i�s bids compete with b�iS ).

44 Since one of bidder i�s bids wins sometimes:45

min
s�S

fbis + b�iSnsg � b�iS ; for all realizations of b
�i (16)

Since bi is optimal

max
b�i

fmin
s�S

fbis + b�iSns � b
�i
S gg = 0

(for otherwise increasing all bids by epsilon would be a pro�table deviation for bidder i).

But this means that b�iS competes at least with one of bidder i�s bids. Hence
P
s
@
@bt
Gs < 0

for at least one t:

(4) We introduce the notation �contract 0�with the convention that bi0 = 0, Snf0g = S,

and say that bidder i wins contract 0 when b�iS corresponds to the winning allocation. With

this de�nition, G0 = 1�
P
sGs:

44The random variables here are b�i; bi is �xed.
45The expression in (16) implicitly assumes that the supports of mins�Sfbis + b�iSnsg and b

�i
S are convex.

It is straightforward to adapt the argument to non convex supports.
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The following de�nition will be useful:

De�nition: 
 � S [ f0g forms a connected chain of substitutes if, for all s and s0 � 


(s 6= s0 and s0 6= 0); either @
@bs0

Gs > 0 or there exist w1; :::; wn � 
 such that @
@bw1

Gw1s >

0; @
@bw2

Gw1 > 0; :::;
@
@bs0

Gwn > 0:

Claim 1: If Gs(bi) > 0 for all s � S, then 
 = S [ f0g forms a connected chain of
substitutes.

Proof: By property (1), @
@bs
Gs < 0; so any contract s � S must be connected with at

least one other contract. By property (3), contract 0 is connected to at least one other

contract. Now, if two contracts in 
 are not connected, they must exist at least two disjoint

sets of contracts in 
, with no contract in the �rst set connected with a contract in the

other set. We prove that if Gs(bi) > 0 for all s � S; then 
 forms a connected chain

of substitutes. Towards a contradiction, suppose that set fs; tg and the rest form two

disjoint sets of contracts (the focus on a set of two contracts is without loss of generality).

Consider the following random variables, minfbit+ b�iSnt; b
i
s+ b

�i
Snsg and minw 6=t;sfb

i
w+ b

�i
Snwg:

Since all bids have a positive probability of winning, sometimes minfbit + b�iSnt; b
i
s + b

�i
Snsg �

minw�
;w 6=t;sfbiw + b�iSnwg (bidder i wins contract s or t) and sometimes minfb
i
t + b

�i
Snt; b

i
s +

b�iSnsg � minw�
;w 6=t;sfb
i
w+b

�i
Snwg: Hence minfb

i
t+b

�i
Snt; b

i
s+b

�i
Snsg = minw�
;w 6=t;sfb

i
w+b

�i
Snwg

must happen for some realization of b�i given that bi is optimal (if those supports were

disjoint there would be a scope for a pro�table deviation). Therefore, s or t must compete

directly with some w in the other set, i.e. @
@bt
Gw or @

@bs
Gw > 0: A contradiction.

We can now prove that detrG < 0 (so that rG is invertible). The proof is by induction.

Property (3) holds strictly for at least one contract. We relabel the rows and columns of

matrix rG such that the sum of the elements in the �rst row is strictly negative (this does

not change the value of the determinant):X
s

@

@b1
Gs < 0 (17)

Consider the linear transformation L1 on the columns ofrG that adds to column s 6= 1, �1s
times column 1 such that @

@b1
Gs + �1s

@
@b1
G1 = 0 for s 6= 1 (notice, �1s � 0 and

P
�1s < 1

given (17)): This leaves the �rst row of matrixrG with all zeros except in the �rst position.

Denote the resulting matrix by L1rG and let [L1rG] be matrix L1rG from which the

�rst row and the �rst column have been removed. Since determinants are invariant to linear

transformations, detrG = detL1rG = @
@b1
G1 det[L1rG]:

We claim that the resulting 2m x 2m matrix [L1rG] satis�es properties (1) to (3) of the
original matrix, including the strict inequalities. Property (1): The diagonal elements of
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matrix [L1rG] are equal to @
@bs
Gs + �1s

@
@bs
G1: Since the @

@bs
Gt elements satisfy properties

(1) to (3) and �1i < 1; we have @
@bs
Gs + �1s

@
@bs
G1 < 0: Property (2): The o¤-diagonal of

the new matrix are equal to @
@bs
Gt + �1t

@
@bs
G1 � 0 since it is a sum of positive elements.

Property (3): The sum of the row elements of the [L1rG] matrix is equal to
P
s 6=1

@
@bt
Gs+

@
@bt
G1
P
s 6=1 �1s � 0 since

P @
@bt
Gs � 0 and

P
s 6=1 �1s < 1: To show that this inequality

holds strictly for at least one row of the new matrix [L1rG], we need to consider two
cases. First, if any of the elements @

@bs
G1 of the �rst column of the original matrix was

strictly positive, then since
P
s 6=1 �1s < 1; there exists a row in the new matrix such that

condition (3) holds strictly. If @
@bs
G1 = 0 for all s 6= 1, contract 1 is directly connected only

to contract 0: But then by claim 1, it must be that one of the remaining contracts, say t;

is also connected to contract 0: This means that
P
s
@
@bt
Gs < 0 for that contract t in the

original matrix, and in the new matrix:

Repeating the argument leads to sign(detrG) = sign(�1)2m�1 < 0:
To prove the last part of the claim we show that any submatrix made fromrG by removing

some rows and the corresponding columns has the same properties (1) to (3), including the

strict inequalities. The proof then proceeds as before. Q.E.D.

Theorem 2: Consider the combinatorial �rst price auction model with reserve prices and,

possibly, a combination bid constraint.

(1) Identi�cation of costs. Consider any equilibrium bid vector bi 2 Bi1 [ Bi2:
(i) Suppose Gs(bi) > 0 for some s � S; then upper and lower bounds to cis are identi�ed

following (12) and (13). In particular, if Gs(bi) > 0 for all s � S and bi satis�es strictly

all combination bid constraints (if any applies), then ci is point identi�ed.

(ii) Suppose Gs(bi) = 0 for some s � S and the auction does not have a combination

bid constraint. Then a lower bound to cis; c
i
s; is identi�ed following (9). If b

i
s(b

i
�s) = Rs

then cis = Rs:

(iii) Suppose Gs(b
i) = 0 for some s � S and the auction has a combination bid

constraint. Then a lower bound to cis; c
i
s; is identi�ed following (9) if Gt(b

i) > 0 or

Gt(b
i
s(b

i
�s);b

i
�s) = 0 for all t � s: No bound is identi�ed otherwise.

(2) (Partial) Identi�cation of the distributions of costs. For all i; let �i(:) :

Bi1 [ Bi2 � R2m�1 de�ne the mapping from bidder i�s equilibrium bids to the set of costs

(obtained from the application of (1)) that are consistent with them. Any Fi 2 F such that

F i(c) = �i(fbi 2 Bi1 [ Bi2 : e�i(bi) � c)g) for some selection e�i of �i; is consistent with the
observed equilibrium.

Proof of Theorem 2:
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Part (1). (i) and the �rst part of (ii) follow directly from the arguments in the main text.

We prove that if b
i
s(b

i
�s) = Rs then cis = Rs when there is no combination bid constraint.

When the reserve price binds, limbbs"Rs Gs(bbs;bi�s) > 0. From Lemma 1(1), we can consider

without loss of generality that Gs(Rs;bi�s) = 0: Since bidder i did not submit a bid on

contract s below the reserve price, the following must hold for all bbs < Rs :

X
t6=s
(bit � ct)Gt(bbs;bi�s) + (bbs � cs)Gs(bbs;bi�s) �X

t6=s
(bit � ct)Gt(Rs;bi�s) (18)

Because limbbs"Rs Gt(bbs;bi�s) = Gt(Rs;b
i
�s); for all t 6= s; the claim follows directly from the

fact that limbbs"Rs Gs(bbs;bi�s) > 0: This completes the proof for (ii).
We now consider the case where there is a combination bid constraint. The di¤erence with

the previous argument is that a bid on contract s can de�ne a bid on contract w � s: Thus a

bidder may not want to submit a bid on a contract s for fear that doing so would generate,

via the combination bid constraint, a bid on contract w that has a positive probability

of winning. Formally, the equivalent of expression (9) is now (s is a contract such that

Gs(b
i) = 0; Gt(b

i) > 0 for t 2 K)

lim
bs"b

i
s

Gs(bs;b
i
�s) +

X
t2K

(bit � cit)
@

@bs
Gt(b

i
s;b

i
�s) + (b

i
s � cis)

@

@bs
Gs(b

i
s;b

i
�s)

+
X

w�s;Gw(bi)=0 but Gw(b
i
s;b

i
�s)>0

(b
i
s + b

i
wns � c

i
w)

@

@bs
Gw(b

i
s;b

i
�s) � 0

Unlike before we now have several unknows in this expression, cis as well as the c
i
w�s if

there exists w � s;Gw(b
i) = 0 but Gw(b

i
s;b

i
�s) > 0. Proceeding by iteration, one could

�rst identify cost ranges for the ciw�s: c
i
w � ciw: However, with binding combination bid

constraints, the left derivative @
@bs
Gw(b

i
s;b

i
�s) is negative thus the bounds on c

i
w are useless

to pin down a bound on cis: If there is no w such that w � s;Gw(b
i) = 0 but Gw(b

i
s;b

i
�s) > 0;

then the last term disappears and we are back to (9).

Part (2): The arguments in part (1) covered all the bids in Bi1 and Bi2 which is enough
given that by Lemma 1(3), bids in Bi3 are submitted by a zero measure of costs. The rest
of the claim follows. Q.E.D.

Theorem 3: (1) For any bundle s that wins with strictly positive probability, cis depends

positively on the value of �s=t[w; and negatively on �t=s[w for all s; t and w:

(2) Consider any t and w such that t \ w = ;: If the combination bid constraint for these
contracts is the only binding combination bid constraint at the optimum, an upper bound to
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the synergy involved between these two contracts is given by the solution ct + cw � ct[w of

the system in (11) when the Lagrangian multiplier �ft[wg=t[w is set equal to zero.

Proof of Theorem 3:

Preliminaries: The proof uses the following properties of determinants: (1) Determinants

are invariant to linear transformations of rows or columns, (2) permuting rows (or columns)

just changes the sign of the determinant, (3)

det

2664
a11 + b11 :: a1N

:: ::

aN1 + bN1 :: aNN

3775 = det

2664
a11 :: a1N

:: ::

aN1 :: aNN

3775 + det

2664
b11 :: a1N

:: ::

bN1 :: aNN

3775 ; and (4)
the multiplication of any row or column by a constant, multiplies the value of the determi-

nant by that constant.

Proof of Part (1): Consider any equilibrium bid vector bi. Let K � 2S be the set of all

contracts which bi wins with strictly positive probability and let biK denote the bids in

bi restricted to K (similarly, ciK denote the cost vector associated with K): >From the

derivation in the main text,

(biK�ciK)r bG(biK) = D(biK ;�)
where

D(biK ;�) = � bG(biK) +X
r

X
t;w�r; t\w=;;

jtj�jwj

�r=t[wIr=t[w

with Ir=t[w, the jKj x 1 vector with entry 1 in the row corresponding to contract r and
entry -1 in the rows corresponding to contracts t and w:

Let AsB denote matrix A whose column corresponding to contract s has been replaced by

vector B: Cramer�s rule together with properties (3) and (4) of determinants imply that

bis � cis =
1

detr bG detr bGsD(b
i
K ;�)

=
1

detr bG [�detr bGs
bG+

X
r2K

X
t;w�r; t\w=;;

jtj�jwj

�r=t[w detr bGsIr=t[w ]
Step 1: detr bGrIr=t[w = 0 or, if not, sign(detr bGrIr=t[w) = sign(-1

jKj�1).

Proof: r bGrIr=t[w is the jKj by jKj matrix r bG whose column r is replaced by a column

with +1 at row r; and -1 at rows t and w: De�ne Lr as the operator that adds the values

associated with row r to rows t and w so that LrrGrIr=t[w becomes a matrix with a zero

column at position r except for the �1�entry at row r: De�neM as the jKj � 1 by jKj � 1
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matrix made of matrix Lrr bGrIr=t[w from which the row and the column corresponding to

contract r have been removed. By construction and property (1) of determinants, detM =

detLrr bGrIr=t[w = detr bGrIr=t[w :

MatrixM has the following properties: (a) All diagonal elements are negative. This follows

from Lemma 3(1) for the rows associated with contracts 6= t and w. The diagonal elements

for rows t and w are @
@br
Gt +

@
@bt
Gt and @

@br
Gw +

@
@bw

Gw respectively, which are also nega-

tive by Lemma 3(3). (b) All o¤-diagonal elements are positive. Again this follows directly

from Lemma 3(2) in the case of rows 6= t; w: For rows t and w; the diagonal elements are
@
@br
Gu+

@
@bt
Gu , u 6= r; t; and @

@br
Gu+

@
@bw

Gu; u 6= r; w; which are positive by Lemma 3(2). (c)

The sum of the column elements are negative for every column. Consider for example col-

umn u: The sum of its elements are
P
x 6=r;t;w

@
@bx

Gu+ (
@
@br
Gu+

@
@bt
Gu) + (

@
@br
Gu+

@
@bw

Gu);

in other words, the change in the probability of winning u when all bids are marginally in-

creased (with the constraint that br = bt+ bw): Clearly, this cannot increase the probability

that the bidder wins contract u:

We can now apply a similar induction technique as used in Lemma 3 to prove that, if detM

is not zero, sign(detM) = sign(�1jKj�1): The two di¤erences relative to the proof in Lemma
3 are that we work on the columns instead of the rows and that all inequalities are weak.

De�ne operator P 1 which operates on the rows of matrix M and adds to row u 6= 1; �u1

such thatMu1+�u1M11 = 0 (�u1 � 0 and
P
u �u1 � 1):46 It is straightforward to check that

the resulting matrix, P 1M, satis�es properties (a) through (c). Therefore we can reiterate

this process until the end or until the �rst column of the resulting matrix is all zeroes. This

proves the claim.

Step 2: detr bGtIr=t[w = 0 or, if not, sign(detr bGtIr=t[w) = � sign(-1jKj�1):

Proof: Matrix r bGtIr=t[w corresponds to matrix r bG; whose column t has been replaced
by a column with +1 at position r and �1 at positions t and w: In particular, note that
position (t; t) is equal to �1: De�ne the operator Lt that adds row r to row w and adds

row t to row r so that only a �1 at position t remains in column t: De�ne M as the

jKj � 1 by jKj � 1 matrix made of matrix Ltr bGtIr=t[w from which the row and the

column corresponding to contract t have been removed. By construction and property (1)

of determinants, detM = �detLtr bGtIr=t[w = �detr bGtIr=t[w :

MatrixM has the following properties: (a) All diagonal elements are negative. This follows

from Lemma 3(1) for the rows associated with contracts 6= r and w. The diagonal elements

46 If M11 = 0, the �rst column contains only zero entries given properties (b) and (c) so we are done.
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for rows r and w are @
@br
Gr+

@
@bt
Gr and @

@br
Gw+

@
@bw

Gw respectively, which are also negative

by Lemma 3(3).

(b) All o¤-diagonal elements are positive, except for the entry in row w and column r. Again

this follows directly from Lemma 3(2) in the case of rows 6= r; w: The o¤-diagonal entries

in row r are equal to @
@br
Gu +

@
@bt
Gu , u 6= r; t: These are positive given Lemma 3(2). The

o¤-diagonal entries in row w are equal to @
@br
Gu +

@
@bw

Gu; u 6= t; w: Again these are posi-

tive except when u = r: (c) The sum of the column elements are negative for every column.

Consider for example column u: The sum of its elements are
P
x 6=r;t;w

@
@bx

Gu + (
@
@br
Gu +

@
@bt
Gu)+(

@
@br
Gu+

@
@bw

Gu); in other words, the change in the probability of winning u when

all bids are marginally increased (with the constraint that bs = bt+bw): Clearly, this cannot

increase the probability that the bidder wins bundle s:

We can now proceed as before by operating on columns u 6= r; w until the matrix is reduced

to a 2 by 2 matrix (corresponding to the columns r and w): We will then argue that this

2 by 2 matrix has negative entries except at position (2; 1) so its determinant is positive.

The claim then follows from the fact that this number must be multiplied by the product

of jKj � 2 negative numbers.
Formally, de�ne the operator P u (u 6= r; w) on M that adds �xu time row u onto row x;

x 6= u; such Mxu+�xuM uu = 0 (note �xu � 0 and
P
�xu � 1): The resulting matrix has a

zero column at position u except for M uu: Thus detM equals M uu times the determinant

of matrix M from which row u and column u have been removed. It is easy to check

that this resulting matrix satis�es conditions (a) through (c) above. The only non obvious

condition is condition (b). This follows because both
P
x6=r;t;w

@
@bx

Gr + (
@
@br
Gr +

@
@bt
Gr)

and
P
x 6=r;t;w

@
@bx

Gr + (
@
@br
Gr +

@
@bw

Gr) are negative (these expressions correspond to the

change in the probability of winning r when all bids but w - resp. t - are raised with the

constraint that br = bt + bw): Applying operator P u for all u 6= r; t; w yields the 2 by 2

matrix mentioned above. Hence sign(detM) = (�1jKj�3):

Part (1) of Theorem 3 then follows from steps 1 and 2 and the fact that sign(detr bG) =
sign(�1jKj):

Proof of Part (2): The only non zero multiplier is �ft[wg=t[w: From part (1), the costs

identi�ed by setting it equal to zero correspond to upper bounds to ct and cw and a lower

bound to cft[wg: This identi�es the maximum level of synergy consistent with the observed

behavior: ct + cw � cft[wg: QED.
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9 Appendix B: Data sources and coding issues

9.1 Data sources:

London Buses� tendering program: For each auction and route in the auction, this

document provides the tender issue date, the tender return date, the planned start of the

contract, the contract duration, together with the start and end point of the routes in the

auction.

Bid evaluation documents: These are London Transport Buses internal documents

assessing the bids received for one to several routes in a auction. These documents provide

information on all route characteristics, including the identity of the incumbent when this

is an existing route, the bids received (including combination bids), the identity of the

bidders and, most of the time, the garage from which they plan to operate the route.47

These documents analyze the bids received and make an award recommendation. When

this recommendation deviates from the lowest price criterion, the criterion used is detailed

and justi�ed.

Route history: History of all the London Bus routes since 1934, compiled by the London

Omnibus Traction Society (LOTS). For each route, this data contains information on the

identity of the bus bidder, the garage from which operation is carried out, the bus type and

peak vehicle requirements (PVR) for weekdays, Saturdays and Sundays. For our analysis

we have used weekdays PVR.

Garage history: Document compiled by the London Omnibus Traction Society (LOTS)

since the deregulation in 1985. Provides information on openings, closings and transfers

of bus garages used for London bus routes. This document is also our primary source of

information for entry, mergers and acquisition (secondary sources included London Buses

internal memos, companies�websites and LOTS�London Bus and Tram �eetbook publica-

tions).

Price de�ator: Bids are de�ated (Dec. 1995) based on the LTB in�ation index formula for

the bus services, a weighted index for the retail petroleum prices (5%), labor prices (65%)

and retail price index (30%). The data comes from the UK Energy Trends and the UK

Monthly Digest of Statistics.

47Missing values for the garage locations were completed using the bidder�s closest garage to any of the

end points of the route at the time of the tender return.
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9.2 Coding issues:

Route Alternatives: London Transport Buses sometimes speci�es alternative speci�ca-

tions for a route (di¤erent bus types, frequencies or routing, for example). By convention,

we have coded only the bid information related to the awarded service speci�cation.

Age of vehicle: Vehicle age is the only dimension of the o¤er, besides price, that is not

speci�ed by London Buses. Hence, bidders often submit di¤erent bid - vehicle age combi-

nations. In the data, we have coded the bids for both existing and new buses. However, we

did not �nd evidence that would suggest a trade-o¤ between age and bid levels in the award

decision. Rather, London Transport Buses seems to evaluate bids holding the age dimension

constant, and award decisions are in practice indistinguishable from the award decisions of

a contracting authority that would randomize between the age category it prefers, and then

selects the best bid within that category. As a result, strategic interactions between the bids

along the age dimension can be ignored, and in our empirical analysis, we have focused on

the bids submitted for the age category that has attracted bids from the greatest number

of bidders.

Auctions: By de�nition, an auction is a set of routes auctioned at the same time. For our

analysis, we have split several of the original auctions into independent subauctions when the

following criteria were satis�ed: (1) The two subsets of routes were in distinct geographical

areas of London, (2) No combination bids were submitted across the two subsets of routes,

and (3) The bids received on the two di¤erent subsets of routes originate from two di¤erent

sets of bidders, or at least from two di¤erent sets of garages.

9.3 Computational Details

We describe here the practical details of the computational approach.

Winning probabilities: As described in section 4, the winning probabilities can be con-

structed in two ways: (i) simulated and (ii) simulated and smoothed. Simulated winning

probabilities result in a step function, and with su¢ ciently many simulation draws the

approximation will be accurate. Simulated and smoothed winning probabilities are addi-

tionally treated with a kernel smoother. The simulated and smoothed winning probabilities

are suitable for optimization algorithms as they can be evaluated quickly and yield a smooth

objective function.

We use the simulated winning probabilities with a large number of simulation draws of

50; 000 in the cost inference. In the construction of the objective function in Figures 1 and
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2, and in the validity check of the �rst order condition, we use simulated and smoothed

winning probabilities based on 5; 000 simulation draws.

The computational details of the construction of winning probabilities is the following:

We draw opponents�bids from the estimated normal bid density using the normal random

variable generator built into the software package GAUSS. We then determine the cheapest

allocation for all possible subsets of routes from the set of low opponents�bids following

equation (1). We repeat this process 5; 000 times for simulated and smoothed winning

probabilities and 50; 000 times for simulated winning probabilities. These simulations give

us the pseudo data to assess winning chances.

The simulated winning probabilities are then the empirical cumulative distribution func-

tion based on the simulated pseudo data. The function is a step function.

To avoid discrete jumps in the winning probabilities, the simulated and smoothed win-

ning probabilities use the simulated pseudo data with a kernel estimator. The kernel esti-

mator uses a product of normal kernels and a bandwidth equal to the standard deviation of

low opponents bid prices for all items times 2=25. The bandwidth is chosen based on visual

inspection.

Optimization: In the consistency check of the �rst order conditions and in the construc-

tion of Figure 2, we calculate optimal bids for each observation by using the optimization

algorithm supplied in the software package GAUSS. In the consistency check of the �rst

order condition, we start the algorithm at three distinct and randomly chosen values. In the

construction of the �gure, we experiment with alternative starting values based on adjacent

points to �nd the maxima.

Cost inference: We employ simulated winning probabilities based on a sample of 50; 000

simulated data points. To calculate the gradient of the probability of winning, we take the

di¤erential evaluated at a one percent change in the bid vector. If the resulting derivative

is zero, we take the di¤erential evaluated at a �ve percent of the bid. The inverse matrix

of the gradient is calculated numerically using the software package GAUSS.
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