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Abstract

This paper considers nonparametric identification of a two-stage entry and bidding
model for auctions which we call the Affiliated-Signal (AS) model. This model assumes
that potential bidders have private values, observe imperfect signals of their true values
prior to entry, and choose whether to undertake a costly entry process. The AS model
is a theoretically appealing candidate for the structural analysis of auctions with en-
try: it accommodates a wide range of entry processes, in particular nesting the Levin
and Smith (1994) and Samuelson (1985) models as special cases. To date, however, the
model’s identification properties have not been well understood. We establish identifica-
tion results for the general AS model, using variation in factors affecting entry behavior
(such as potential competition or entry costs) to construct identified bounds on model
fundamentals. If available entry variation is continuous, the AS model may be point
identified; otherwise, it will be partially identified. We derive constructive identifica-
tion results in both cases, which can readily be refined to produce the sharp identified
set. We also consider policy analysis in environments where only partial identification
is possible, and derive identified bounds on expected seller revenue corresponding to a
wide range of counterfactual policies while accounting for endogenous and arbitrarily
selective entry. Finally, we establish that our core results extend to environments with
asymmetric bidders and nonseperable auction-level unobserved heterogeneity.
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Introduction

Endogenous participation plays a major role in real-world auction markets. Empirical auc-

tion studies routinely find that large proportions of eligible bidders elect not to submit bids.

For example, Hendricks, Pinske, and Porter (2003) report an overall participation rate of less

than 25 percent in US Minerals Management Service “wildcat auctions” held from 1954-1970.

Li and Zheng (2009) find that only about 28 percent of planholders in Texas Department of

Transportation mowing contracts actually submit bids. Similar results have been reported

for timber auctions (Athey, Levin, and Seira (2011), Li and Zhang (2010a; 2010b)), in online

auction markets (Bajari and Hortacsu (2003)), and in other procurement settings (Kras-

nokutskaya and Seim (2011)). Further, it is well-known that endogenous participation can

overturn core predictions of classical auction theory: for instance, Levin and Smith (1994)

show that the possibility of entry can lead to a zero optimal reserve price, and Li and Zheng

(2009) show that it can cause a seller to prefer less potential competition. These observations

in turn reinforce the growing emphasis on accounting for entry in empirical applications.

While the economic importance of endogenous participation in auction markets is well

understood, there is still no clear consensus regarding how to account for entry in structural

analysis. To ensure identification, most studies incorporating entry do so via one of two

polar entry paradigms: that of Samuelson (1985) (the S model), in which potential bidders

observe own values exactly prior to entry, or that of Levin and Smith (1994) (the LS model),

in which potential bidders have no information on own values prior to entry. These models

are econometrically appealing because they simplify selection, but involve stark restrictions

which (improperly enforced) can substantially distort structural results.1 Consequently,

several recent studies have begun to explore structural analysis based on a more general
1For instance, consider an independent private values (IPV) setting where the seller’s value is normalized

to zero. Then the optimal reserve price is zero in the LS model (see Levin and Smith (1994)), but can be
positive when entry involves selection, as shown in Li and Zheng (2012). Structural estimation based on an
incorrect LS specification would force a researcher to the conclusion that the optimal reserve price is zero.
Marmer, Shneyerov, and Xu (2007) and Roberts and Sweeting (2010b) discuss parameter bias and policy
implications resulting from improper entry specifications; Roberts and Sweeting (2010b) and Gentry (2010)
provide simulation evidence on the potential magnitudes of the biases involved.
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entry framework we call the Affiliated-Signal (AS) model. First proposed in Ye (2007), this

framework embodies the following basic structure: potential bidders have private values,

observe imperfect signals of their true values prior to entry, choose whether to undertake a

costly entry process, then (conditional on entry) learn their exact values and submit bids.

The AS model naturally generalizes the S and LS models to accommodate endogenous and

arbitrarily selective entry; applications include Marmer, Shneyerov, and Xu (2007), who

propose nonparametric specification tests of the AS, S, and LS models, and Roberts and

Sweeting (2010a; 2010b), who estimate a parametric variant of the AS model using data on

California timber auctions.2 To date, however, identification in the AS model has not been

well understood. This uncertainty in turn both limits the AS model’s use in applications

and motivates our current investigation.

This paper explores identification in auctions with endogenous and selective entry, seek-

ing to characterize information nonparametrically available under the general AS model.

For clarity, we focus discussion on the special case where the post-entry mechanism is a

second-price auction, but our fundamental insights extend immediately to first-price, as-

cending, and Dutch auctions, and indeed to any standard auction (in the sense of Riley

and Samuelson (1981)) for which an appropriate value recovery rule is known. Within this

general class of mechanisms, we establish the following four results. First, we map observed

variation in entry behavior (induced by factors such as potential competition or entry costs)

into identified bounds on AS fundamentals, where continuous entry variation permits point

identification and discrete entry variation yields partial identification. Second, we explore

pointwise sharpness of these identified bounds, first deriving a test to verify whether given

bounds are sharp, then using this condition as the basis for an algorithm to construct the

pointwise sharp identified set. Third, we translate our bounds on fundamentals into bounds

on expected seller revenue corresponding to a wide range of counterfactual auction mech-

anisms, which account for endogenous and selective AS entry. Finally, we extend our core
2Notably, both applications find the imperfect selection permitted by the AS model to be economically

important.
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results to environments with asymmetric bidders and nonseparable unobserved auction-level

heterogeneity. We thereby characterize information nonparametrically available in a general

class of auction mechanisms under endogenous and arbitrarily selective entry, illustrate the

capacity of this information to support a rich set of counterfactual policy analyses, and es-

tablish that these conclusions apply even in more complicated econometric environments.3

To our knowledge, these represent the first identification results applicable outside the polar

S and LS cases, and provide a formal theory of identification to complement the large and

growing empirical literature on auctions with entry.4

While our focus on selective entry is distinctive, our work builds on a large and influential

literature on nonparametric identification in auctions. The possibility of such identification

was first demonstrated by Guerre, Perrigne, and Vuong (2000) for first-price auctions with

independent private values, and has been extended to many other environments in more

recent studies; see, e.g., Li, Perrigne, and Vuong (2000) and Li, Perrigne, and Vuong (2002)

for first-price auctions with conditionally independent and affiliated private values, Athey and

Haile (2002) for other standard auction formats, Krasnokutskaya (2011) and Hu, McAdams,

and Shum (2011) for auctions with unobserved heterogeneity, and Athey and Haile (2005) for

a comprehensive survey of the literature. The primary focus of this literature is recovery of

model primitives such as the distribution of values from observables such as the distribution

of bids. While these results represent an essential point of departure for our current study,

recovery of values per se is not our primary interest. Rather, we seek to derive restrictions on
3It should be emphasized, however, that our main focus in this work is nonparametric identification,

not nonparametric inference. Consequently, while we derive nonparametric bounds on model primitives and
other quantities of policy interest, we do not develop asymptotic distribution theory for these bounds. In this
respect, we follow several prior studies, e.g. Athey and Haile (2002), Haile and Tamer (2003) and Manski
and Tamer (2002).

4To our knowledge, the only other study touching on nonparametric identification in the AS model is
the previously-cited work by Marmer, Shneyerov, and Xu (2007), which proposes nonparametric specifica-
tion tests for the S, LS, and AS models. These tests depend on quantiles of the ex post distribution of
values among entrants, so a key first step is to show the quantities required are identified. This analysis
parallels our discussion of directly identified objects in Section 2.1 below. Beyond this point, however, our
investigations diverge: Marmer, Shneyerov, and Xu (2007) use directly identified objects to test competing
entry specifications, whereas we use them to derive bounds on AS fundamentals. Note that these results
are natural complements in applications: Marmer, Shneyerov, and Xu (2007) indicate when the general AS
model is required, while we characterize what can be learned in cases where it is required.
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ex ante fundamentals taking as given ex post quantities already known to be identified, where

the key identification challenge is that ex post quantities represent an unknown selection of

model fundamentals. As noted above, therefore, our core identification results apply to any

standard auction such that an appropriate value recovery rule is known.5

Our results also contribute to two fields of inquiry in econometrics more broadly. The

first of these is the literature on selection, which since at least the work of Heckman (1976)

has been a central subfield of econometrics. This literature is too broad to survey in de-

tail here; for current purposes, the key distinction is that we consider selection within an

auction game, which naturally directs econometric analysis. The second is the literature on

partial identification, also a substantial subfield in econometrics.6 As noted above, our core

results imply point identification of fundamentals where entry variation is continuous, but

only identified bounds where entry is discrete. This result parallels the typical finding that

discrete regressors induce partial identification in nonparametric regression contexts; see.,

e.g., Chesher (2005), Magnac and Maurin (2008), and Chesher and Smolinski (2010) among

others. Among studies which considers partial identification in auctions specifically, our

work is most similar in spirit to Haile and Tamer (2003), who relax assumptions on bidding

behavior to obtain bounds on model fundamentals and counterfactual revenue in ascending

auctions, and Tang (2011), who provides bounds for counterfactual revenue in auctions with

affiliated values. Relative to both, however, we consider a very different problem (auctions

with entry) and relax a different set of assumptions (those governing the nature of selec-

tion). We thus contribute both to the literature on auctions with entry specifically and to

discussion on broader problems of interest in econometrics.

The rest of this paper is organized as follows. Section 1 describes the AS model, and
5Under standard assumptions, this class of mechanisms includes first-price, second-price, English and

Dutch auctions; see Athey and Haile (2005) for further details. An interesting extension we do not consider
in detail is to environments where the ex post value distribution is only partially identified; our core intuition
seems likely to extend, but formalization becomes somewhat more involved.

6This literature was pioneered by Charles Manski; see Manski (2003) for a summary of early contributions.
Recent contributions include Manski and Tamer (2002), Tamer (2003), Molinari (2008), Fan and Park (2009),
Chesher and Rosen (2011), and Komarova (2012) to name just a few.
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outlines key features of the entry equilibrium. Section 2 presents our core identification,

partial identification, and sharpness results. Section 3 explores policy analysis under partial

identification in the AS model, deriving bounds on expected seller revenue corresponding to

a wide range of counterfactual mechanisms. Section 4 extends our core identification results

to environments with unobserved heterogeneity and asymmetric bidders. Finally, Section 5

concludes. Supplemental material is provided in three appendices: Appendix A illustrates

our key results through a range of numeric examples, Appendix B describes how to apply

our basic results under other auction mechanisms, and Appendix C gives formal proofs of

all results.

1 The AS model: Setup and equilibrium

Our goal in this study is to explore the ability of auction models to yield policy-relevant

insights without strong a priori assumptions on the nature of selection. We formalize this

investigation in the context of the AS model, a framework which allows bidders to select into

entry based on preliminary signals, but which imposes minimal assumptions on the nature

of this selection. This section formally defines the AS model and derives its key equilibrium

predictions. These in turn provide the groundwork for our subsequent identification anal-

ysis. We maintain the following notational conventions throughout: stars (e.g. s∗) denote

equilibrium quantities, hats (e.g. ŝ) denote quantities whose identification follows trivially

from standard results in the literature, and bars (e.g. s̄) denote fixed values.

1.1 Model setup

Consider allocation of an indivisible good among N potential bidders via a two-stage auction

game, where bidders have independent private values for the good being sold. Timing of this

game is as follows. First, in Stage 1, each potential bidder i observes a private signal Si of

her (unknown) private value Vi, and all potential bidders simultaneously choose whether to
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enter the auction. Entry involves payment of an entry cost c, which may be interpreted as

any combination of opportunity, value discovery, and bid preparation costs. Next, in Stage

2, the n bidders who chose to enter in Stage 1 learn their actual valuations vi and submit

bids for the object being sold. Finally, auction outcomes are determined by the rules of the

auction mechanism, which are common knowledge to all participants. For current purposes,

we assume that bidders observe the number of potential bidders N prior to entry, but (as

in most sealed-bid procurement settings) do not observe the number of entrants n until the

auction concludes. Allowing n to be observed prior to bidding would slightly change some

details of the derivation, but would not alter any of our core results.7

Let F (v, s) denote the joint distribution linking Stage 2 values Vi to Stage 1 signals Si.

We impose the following structure on this distribution:

Assumption 1. Each bidder i draws value-signal pairs (Vi, Si) from a joint distribution

F (v, s) satisfying the following properties:

1. The random variable Vi has positive support on a bounded interval V, and the joint

distribution function F (v, s) is continuous in (v, s).8

2. For each bidder i, the conditional distribution of Vi is stochastically ordered in Si:

s′ ≥ s implies F (v|s′) ≤ F (v|s).

3. The random pairs (Vi, Si) are independent across bidders: (Vi, Si) ⊥ (Vj, Sj) for all

j 6= i.

4. WLOG, we normalize first-stage signals Si to have a uniform marginal distribution on

[0, 1]: Si ∼ U [0, 1].
7As noted above, our choice to focus on unknown n is motivated by our belief that this best reflects

the institutional structure typical of sealed-bid lettings, where measures of potential competition such as
planholders and active firms are plausibly common knowledge, but the set of bids received is revealed only
after the auction concludes. In circumstances where known n is considered a preferable assumption, the
main change in the argument would be to allow bidding strategies and bid distributions to depend on n.

8Note that we impose continuity on F (v, s) but not on F (v|s). This permits us to nest the perfectly-
selective S case, under which F (v, s) = min{Fv(v), s} is continuous (for continuous Fv(·)) but F (v|s) =
1[v ≥ F−1

v (s)] is not.
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Condition 1.1 is standard, and Condition 1.2 formalizes the sense in which higher signals

are “good news.” Condition 1.3 generalizes the standard Independent Private Values frame-

work to incorporate Stage 1 signals. Finally, Condition 1.4 is without loss of generality since

monotone transformations preserve information. Note that in place of Condition 1.2, prior

work has typically imposed the stronger condition of affiliation between Vi and Si in the

sense of Milgrom and Weber (1982); see, e.g., Ye (2007) and Marmer, Shneyerov, and Xu

(2007). This in turn motivates our “Affiliated-Signal” label. As stochastic ordering alone is

sufficient for all results, however, we prefer to employ this slightly weaker restriction.

To ensure a well-behaved equilibrium, we impose one additional regularity condition on

the conditional distribution F (·|·):

Assumption 2. The integral
´
V F (y|S)dy exists and is continuous in S at each S ∈ [0, 1].

Note that this is a weaker restriction than continuity of F (y|s) in (y, s). This extra

generality matters here for the following reason: Assumption 2 formally nests the perfectly

selective S model, whereas the standard continuity assumption can only approach it as a

limit.9 Assumption 2 thus permits us to derive results which subsume either polar case.

Most prior work on identification in auctions has considered recovery of private values

Vi from observed bids Bi; see Athey and Haile (2002) for a comprehensive survey. This

is not our focus here. Rather, starting from objects already known to be identified, we

seek to derive bounds on underlying AS fundamentals. To highlight this distinction, we

frame our discussion in terms of the simplest possible mechanism: a second-price sealed-bid

auction. We stress, however, that this is only for expositional convenience: all core results

extend readily to any auction in the class considered by Riley and Samuelson (1981) (any
9In particular, the S model assumes signals are perfectly informative, which given our normalization of

uniform S implies F (y|s) = 1[y ≥ F−1
v (s)]. We then have:
ˆ
V
F (y|s)dy ≡

ˆ v̄

F−1
v (s)

1dy.

Assumption 1.1 implies that Fv(·) is continuous and strictly increasing, so the inverse F−1
v (s) exists and is

continuous. Hence the S model satisfies Assumption 2.
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RS auction), such that the ex post distribution of values among entrants is identified from

observation of Stage 2 bids.10 This will of course involve minor differences in detail, which

we discuss more fully in Appendix B.

1.2 Equilibrium

We seek to characterize entry and bidding behavior in a symmetric pure strategy Bayesian

Nash equilibrium of the AS model.11 Temporarily suppose that the Stage 1 entry decision

involves an entry threshold s̄ ∈ [0, 1] such that bidder i chooses to enter if and only if si ≥ s̄;

the proof establishes that any equilibrium in the class considered has a payoff-equivalent

threshold representation. The (selected) distribution of values among entrants at threshold

s̄ is then

F ∗(v; s̄) ≡ 1

1− s̄

ˆ 1

s̄

F (v|t) dt. (1)

When the Stage 2 mechanism is a second-price auction, it is a weakly dominant strategy

for entrants to bid values. An entrant with value v thus outbids any given potential rival

when that rival either does not enter (probability s̄) or enters and draws a value below v

(probability (1 − s̄)F ∗(v; s̄)). Let F ∗1:N−1(v; s̄) denote the probability that an entrant with

value v wins against N − 1 potential rivals who enter according to s̄. By independence, we

then have:

F ∗1:N−1(v; s̄) ≡ [s̄+ (1− s̄)F ∗(v; s̄)]N−1 . (2)

10As discussed in Riley and Samuelson (1981), the class of RS auctions includes any anonymous mechanism
such that only the high bidder wins, under which there is a unique symmetric, monotonic bidding strategy.
Stage 2 identification results are known for a variety of RS auctions, of which the most important are the
first-price, second-price, English, and Dutch bidding rules. See Athey and Haile (2005) for further details.

11As usual, there may exist other, asymmetric equilibria. Note that these could in principle be nested by
our discussion of bidder asymmetry in Section 4.2: simply introduce a set of trivial bidder types. For the
moment, we focus on the symmetric case.
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By standard arguments in mechanism design, the expected Stage 2 profit of an entrant

drawing value vi against N − 1 potential rivals at entry threshold s̄ is then12

π(vi; s̄, N) =

ˆ vi

0

F ∗1:N−1(y; s̄)dy.

Now consider the Stage 1 entry decision of a bidder with signal si. Facing N − 1 rivals who

enter according to s̄, this bidder’s expected profit from competing in Stage 2 is

Π(si; s̄, N) ≡ EV [π(Vi; s̄, N)|si]

=

ˆ v̄

0

[1− F (y|si)] · F ∗1:N−1(y; s̄)dy. (3)

Bidder i will choose to enter whenever expected net profit from entry is positive; i.e. whenever

Π(si; s̄, N) ≥ c.

Now consider any candidate equilibrium threshold s∗. By standard arguments, if s∗ implies

nontrivial entry, a bidder drawing signal Si = s∗ must be indifferent to entry when facing

N − 1 potential rivals who also enter according to s∗:

Π(s∗; s∗, N) ≡ c.

Since Π(si; s̄, N) is increasing in si and strictly increasing in s̄, this breakeven condition

uniquely determines the equilibrium threshold s∗. We formalize this intuition via the follow-

ing proposition:

Proposition 1. Under Assumptions 1 and 2, any symmetric pure strategy Bayesian Nash

equilibrium has a payoff-equivalent equilibrium in which Stage 1 entry decisions involve a

signal threshold s∗ such that bidder i enters if and only if Si ≥ s∗. This threshold is uniquely
12See, e.g., Krishna (2009) for details.
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determined as follows.

• If Π(0; 0, N) > c, then s∗ = 0 and all potential bidders always enter.

• If Π(1; 1, N) < c, then s∗ = 1 and no potential bidder ever enters.

• Otherwise, s∗ satisfies the breakeven condition

Π(s∗; s∗, N) ≡ c, (4)

where Π(si; s
∗, N) is defined as in Equation (3).

Further, considered as a function of (c,N), the equilibrium threshold s∗(c,N) satisfies the

following monotonicity properties:

• For any N ≥ 1, s∗(c,N) is continuous and weakly increasing in c, with strict mono-

tonicity whenever s∗(c,N) ∈ (0, 1).

• For any c ≥ 0, N ′ > N implies s∗(c,N ′) ≥ s∗(c,N). If in addition s∗(c,N) ∈ (0, 1),

then s∗(c,N ′) > s∗(c,N) and s∗(c,N ′) ∈ (0, 1).

While our discussion assumed a second-price auction in Stage 2, this result in fact applies

under a wide range of Stage 2 mechanisms. In a companion paper (Gentry and Li (2012)),

we show that the characterizations of equilibrium profit Π(si; s̄, N) and the equilibrium entry

threshold s∗ in Proposition 1 extend to any mechanism in the class considered by Riley and

Samuelson (1981): that is, any anonymous auction with a unique symmetric equilibrium

such that bidding strategies are monotonic.13 This class of mechanisms in turn contains the

standard first-price, second-price, English, and Dutch rules, which together encompass the

vast majority of auctions seen in practice. In Appendix B, we state a version of Proposition

1 which applies to other mechanisms; for completeness, the proof in Appendix C establishes

this more general result.
13See formal statement and additional discussion in Appendix B. For completeness, the proof of Proposition

1 in Appendix C establishes the result for the general case.
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2 Identification in the AS model

We consider identification based on a large sample of auctions from an AS process L, where

for each auction ` the following variables are observed: number of potential bidders N`,

number of entrants n`, and a vector of submitted bids b`. In applications, Nl is typically

proxied by variables such as number of planholders (e.g. Li and Zheng (2009)) or number

of bidders in related auctions (e.g. Roberts and Sweeting (2010a)) and n` is taken to be

the number of bids submitted. Optionally, the econometrician may also observe a vector of

auction-level instruments Z, which are assumed to shift entry behavior without affecting the

fundamental distribution F (v, s). In the symmetric case considered here, natural candidates

for inclusion in Z would be entry fees or other factors affecting auction-level entry costs. For

the moment, we formalize this notion by permitting entry costs to vary deterministically

across auctions ` as a function of Z: c` = c(z`), where c` is the cost realization prevailing

in auction `.14 In environments with asymmetric bidders, Z could also include the types

of bidder i’s rivals; we consider this extension in Section 4.2 below.15 As usual, all results

generalize immediately to any further set of auction-level covariates X`: simply repeat all

arguments conditional on realization x.

To identify the joint distribution F (v, s), we must be able to attribute at least some

observable variation to changes in the dimension S; i.e. to observables affecting equilibrium

entry behavior through channels other than F (v, s). In the current context, this requires

either variation in N` on a nontrivial set N , or variation in Z` on a nontrivial set Z. For the

moment, we assume this variation is excludable in the following sense:

Assumption 3. For all N ∈ N and z ∈ Z, F (v, s|N, z) = F (v, s) and c(N, z) = c(z), with

all equalities conditioned also on x if further covariates are observed.
14Our discussion of unobserved heterogeneity in Section 4.1 relaxes this restriction to permit entry costs

to vary stochastically across auctions, where cost realizations are observed to bidders but not the econome-
trician.

15The asymmetric case introduces the additional complication of potential multiple equilibria, which leads
us to discuss it separately as an extension.
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Excludable variation in N` is frequently cited as a basis for auction-related hypothesis

testing: for instance, Haile, Hong, and Shum (2003) use such variation to construct a test

for common values, and MSX use it to construct tests for competing entry specifications.

Excludable variation in z` directly extends the long tradition of instrumental variables in

econometrics.16 We therefore adopt Assumption 3 as a baseline. In Section 4.1, however,

we establish that our results in fact extend to the much more general case of excludability

conditional on the realization of an nonseparable unobserved auction-level random variable

U .

Finally, for the moment, we assume that L is an AS process involving no unobserved

heterogeneity:

Assumption 4. Outcomes (N`, n`,b`) represent repeated draws from symmetric equilibrium

play under AS fundamentals F (v, s) and c(·) which are either invariant across auctions or

invariant conditional on covariates x if these are observed.

While this restriction is quite typical in applications, it is also strong in the sense that

it implicitly requires the econometrician to observe the same auction-level information as

potential bidders. Consequently, while we maintain Assumption 4 to establish intuition, we

also consider identification under nonseparable unobserved heterogeneity, interpreted as an

auction-level factor U known to bidders but not the econometrician. As noted above, Section

4.1 establishes that our baseline results in fact extend to this much more general case.

2.1 Directly identified objects

For each (N, z) ∈ L, a large sample from process L will directly identify two statistical

objects. First, given an arbitrary entry threshold s̄, the probability that any particular

bidder enters is simply 1 − s̄. We can thus identify the entry threshold ŝN(z) prevailing at
16Recent work using instrumental variables to address identification of nonparametric models includes

Chesher (2005) for nonparametric identification of models with discrete endogenous variables and Berry and
Haile (2010b) for nonparametric identification of multinomial choice demand models, to name only a few.

13



each (N, z) directly from observed entry decisions:

ŝN(z) ≡ 1− E[n|N, z]
N

.

Second, in a second-price auction, it is a weakly dominant strategy to bid values. The

distribution of values F̂ (v|N, z) prevailing at each (N, z) is thus identical to the corresponding

conditional distribution of bids Ĝ(b|N, z):

F̂ (v|N, z) ≡ Ĝ(v|N, z).

It is straightforward to establish identification of F̂ (v|N, z) under other common auction

types using well-known results in the literature. Our fundamental results extend to any of

these. See Appendix B for further discussion.

Next relate the objects above to their equilibrium counterparts. In equilibrium, the

probability that bidder i enters is 1 − s∗N(c), and the distribution of values conditional on

entry is F ∗(v; s∗N(c)) ≡ F (v|Si ≥ s∗N(c)). It follows that

s∗N(c(z)) ≡ ŝN(z) (5)

and

F ∗ [v; s∗N(c(z))] ≡ F̂ (v|N, z). (6)

Finally, consider variation across (N, z) ∈ L. Let S denote the set of entry thresholds

identified by process L:

S ≡ {s ∈ [0, 1]|s = ŝN(z) for some (N, z) ∈ L}. (7)

We can then restate the observations above as follows: the objects directly identified by

process L are the threshold set S itself and the ex post distribution F ∗(v; ŝ) for each ŝ ∈
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S. The threshold set S thus summarizes the information generated by entry and bidding

behavior under AS process L.

2.2 Complete variation: point identification

We begin with the ideal case: suppose the econometrician observes a set of instruments Z

(with support on some set Z) which induce an identified set S having nonempty interior.

Since N is discrete by construction, this supposition requires at least one element of Z to

be continuous. As above, elements in Z must be excludable in the sense that shift entry

behavior without affecting F (v, s); we here focus on cost shifters for simplicity.

Choose any ŝ ∈ int(S), and consider the conditional distribution F (·|ŝ). By Equation

(1), we have

F ∗(v; ŝ) ≡ 1

1− ŝ

ˆ 1

ŝ

F (v|t)dt.

which in turn implies

F (v|ŝ) = − ∂

∂ŝ
[(1− ŝ)F ∗(v; ŝ)]. (8)

But ŝ and F ∗(v; ŝ) are identified for all ŝ ∈ S. Consequently, if ŝ ∈ int(S), we can obtain

the RHS derivative exactly by taking limits of identified quantities. It follows that F (·|ŝ) is

point-identified for all ŝ ∈ int(S).17

In turn, point identification of F (·|s) permits point identification of c(z). To see this,

choose any z ∈ Z which induces nontrivial entry: that is, such that ŝN(z) ∈ (0, 1) for some

N ∈ N . By Proposition 1 and identity (6), c(z) must then satisfy the breakeven condition

c(z) ≡
ˆ v̄

0

[1− F (y|ŝN(z))] ·
[
ŝN(z) + (1− ŝN(z))F̂ (y|N, z)

]
N−1dy.

Thus identification of F (·|S) at S = ŝN(z) implies identification of c(Z) at Z = z. It follows
17At the cost of somewhat more cumbersome notation, the argument extends immediately to the closure

of the set.
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that c(z) is point-identified at any z ∈ Z such that ŝN(z) ∈ int(S) for some N ; that is, for

any realization z inducing local variation in entry.

Combining these observations leads to the AS-model equivalent of a full-support condi-

tion: the AS model is point-identified (almost) everywhere if we observe data generated at

(almost) every ŝ ∈ (0, 1). Our next proposition formalizes this intuition.

Proposition 2. Suppose the econometrician observes instruments Z satisfying Assumption

4, which have positive support on a set Z ⊂ Rk. Then the following statements hold:

1. If ŝ ∈ int(S), then F (·|S) is point-identified at S = ŝ.

2. If ŝN(z) ∈ int(S) for some N ∈ L, then c(Z) is point-identified at Z = z.

3. If cl(S) = [0, 1], then F (v|s) is fully identified: that is, point-identified almost every-

where.

One could also state sufficient conditions for full identification in terms of model funda-

mentals: for instance, if c(Z) spans the interval [0, v̄], then any threshold ŝ ∈ [0, 1] will be an

equilibrium for some z.18 In practice, however, such conditions are difficult to check, whereas

restrictions on S can be verified directly. We therefore prefer to state results in terms of the

identified set S.

2.3 Incomplete variation: partial identification

While the case of complete entry variation is useful as an ideal, there are many applications

of interest where it will not hold. In particular, most auction studies either assume that

bidders are symmetric or consider a discrete set of bidder types. While such applications

typically control for a set of auction-level covariates X, these are often difficult to exclude

a priori from the distribution F (v, s|x). Consequently, all informative entry variation will
18Note that when c = 0 it is always a best response to enter (since Π(si; s̄, N) ≥ 0), and when c = v̄ it is

always a best response not to enter (since Π(si; s̄, N) ≤ v̄ with certainty). Appendix C establishes continuity
of Π(si; s̄, N) in its first two arguments, which in turn implies the full-support condition required.
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arise through changes in potential competition, and the set of thresholds S(x) prevailing

at each x will necessarily be discrete. Furthermore, even in applications with excludable

covariates, elements of Z may be either discrete or otherwise insufficient to induce complete

entry variation. This section develops identification results applicable to such more general

cases, deriving identified bounds on AS fundamentals under arbitrary entry variation which

nest the conclusions of Proposition 2 as a special case. As above, we abstract from further

discussion of nonexcludable covariates X, but all results extend immediately conditional on

x.

More precisely, our goal in this section is as follows: taking the identified threshold set S

as given, derive a map from observed entry variation as given into identified bounds on AS

fundamentals. This map naturally extends the logic of Proposition 2: where local variation

in ŝ is available, calculate the derivative (8) exactly; everywhere else, approximate via small

finite differences ∆ŝ:

F (v|ŝ) ≈ −∆[(1− ŝ)F ∗(v; ŝ)]

∆ŝ
. (9)

We now formalize this intuition. Define nearest-neighbor functions t+(s) and t−(s) as follows:

t+(s) =


inf {t ∈ S|t > s} if max{S} > s;

1 otherwise.

t−(s) =


sup {t ∈ S|t < s} if min{S} < s

0 otherwise.

By construction, t+(s) and t−(s) are then the nearest upper and lower neighbors of s in S

(or uninformative values where such neighbors are missing). For each ŝ ∈ S, evaluating (9)

at these neighbors will produce two natural approximations to F (v|ŝ):

17



F̌+(v|ŝ) =


limt↑t−(ŝ)

{
(1−t)F ∗(v;t)−(1−ŝ)F ∗(v;ŝ)

ŝ−t

}
if t−(ŝ) ∈ S;

1 otherwise.
(10)

F̌−(v|ŝ) =


limt↓t+(ŝ)

{
(1−ŝ)F ∗(v;ŝ)−(1−t)F ∗(v;t)

t−ŝ

}
if t+(ŝ) ∈ S;

0 otherwise.
(11)

By definition, F̌+(v|ŝ) and F̌−(v|ŝ) are identified for all ŝ ∈ S, and by stochastic ordering it

can be shown that they also bound F (·|ŝ):

F̌+(v|ŝ) ≥ F (v|ŝ) ≥ F̌−(v|ŝ)∀v, ŝ;

with equality if ŝ ∈ int(S). Thus F̌+(v|ŝ) and F̌−(v|ŝ) provide a basis for partial identifica-

tion of F (·|s), a result we formalize in the next proposition.

Proposition 3 (Bounds on F (v|s)). For any s ∈ [0, 1], define F+(v|s) and F−(v|s) as

follows:

F+(v|s) =


F̌+(v|s) if s ∈ S;

F̌+[v|t−(s)] if s /∈ S.

F−(v|s) =


F̌−(v|s) if s ∈ S;

F̌−[v|t+(s)] if s /∈ S.

Then F+(v|s) and F−(v|s) are identified, represent distributions over [v, v̄], and bound

F (v|s):

F+(v|s) ≥ F (v|s) ≥ F−(v|s),

with equality whenever s ∈ int(S).

It only remains to translate identified bounds on F (·|s) into identified bounds on c(·).
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As above, at any (N, z) with nontrivial entry, the corresponding entry threshold ŝN(z) must

satisfy the breakeven condition

c(z) ≡
ˆ v̄

0

[1− F (y|ŝN(z))] ·
[
ŝN(z) + (1− ŝN(z))F̂ (y|N, z)

]
N−1dy. (12)

The RHS integral is identified up to F (·|ŝN(z)) and is decreasing in F (y|ŝN(z)) at each

y. Thus substituting the identified bounds F+(·|ŝN(z)) and F−(·|ŝN(z)) into (12) yields

identified bounds on c(·) at z:

c+
N(z) =

ˆ v̄

0

[
1− F−(y|ŝN(z))

]
·
[
ŝN(z) + (1− ŝN(z))F̂ (y;N, z)

]
N−1dy. (13)

c−N(z) =

ˆ v̄

0

[
1− F+(y|ŝN(z))

]
·
[
ŝN(z) + (1− ŝN(z))F̂ (y;N, z)

]
N−1dy (14)

As usual, pooling these restrictions across N will generate tighter bounds on c(z), which in

turn yields the following proposition:

Proposition 4. Choose any (N, z) ∈ L with nontrivial entry, define c+
N(z) and c−N(z) as

above, and construct c+(z) and c−(z) as follows:

c+(z) = min
N∈N

c+
N(z)

c−(z) = max
N∈N

c−N(z).

Then c+(z) and c−(z) are identified and c+(z) ≥ c(z) ≥ c−(z), with equality if s̄N(z) ∈ int(S)

for some N ∈ N .19

Thus, to recapitulate: given an identified set S, we obtain identified bounds on the

AS fundamentals F (v|s) and c(z). These bounds collapse to equalities on the interior of S,

thereby extending the special case of complete entry variation in Proposition 2 to the general

case of an arbitrary entry set. Propositions 3 and 4 thus define a map from observed entry
19Obviously, at any (N, z) such that entry is trivial (ŝN (z) = 0), only the upper bound would apply.
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variation into identified sets in a general class of auctions with endogenous and selective

entry.

2.4 Sharp identification

While the bounds in Proposition 3 represent natural, intuitive, and directly estimable ap-

proximations to F (v|s), they do not exploit all information in the model. In particular,

pooling bounds on c(·) across N generates a set of cross-equation restrictions, which might

in principle lead to sharper bounds on F (v|s). This section characterizes the sharp identified

set in the AS model. The argument proceeds as follows: we first derive a necessary and

sufficient condition to determine whether any given bounds are sharp, then discuss how to

use this condition to construct the sharp identified set. We thus characterize in an important

sense what can be known in environments with entry; that is, what can be inferred from an

economic model of entry per se, without parametric restrictions on the nature of selection.

For clarity, we focus discussion on the baseline case where all entry variation is induced by

N , but all results extend readily to incorporate excludable instruments Z.20

Let c̃ denote any scalar and F̃ (V |S) denote any conditional distribution having support

on V × [0, 1], and define a candidate model for process L as follows:

Definition 1. A candidate model for process L is a pair {F̃ (·|·), c̃} such that F̃ (·|·) implies

a joint distribution satisfying Assumption 1, and {F̃ (·|·), c̃} rationalizes observed outcomes

as an equilibrium under Proposition 1.

We now unpack this definition. For each N ∈ N , define a functional transformation
20Obviously, if the instruments Z induce complete entry variation, the AS model will be fully identified

and our bounds will be trivially sharp. Otherwise, the question of sharpness will remain relevant. As a
general rule, however, more informative entry variation will produce bounds which are more likely to be
sharp, which motivates our focus on the least informative N -only case.
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T̂N(·), a function λ̂N(·), and a constant κ̂N as follows:

T̂N(F ) ≡ −
ˆ
F (y) ·

[
ŝN + (1− ŝN) · F̂ (y|N)

]N−1

dy. (15)

λ̂N(y) ≡ (1− ŝN) · F̂ (y|N) (16)

κ̂N ≡
´ [

ŝN + (1− ŝN)F̂ (y|N)
]N−1

dy. (17)

By construction, these objects are identified for all N ∈ L, and by equilibrium we have

c ≡
ˆ

[1− F (y|ŝN)] ·
[
ŝN + (1− ŝN) · F̂ (y|N)

]N−1

dy

≡ κ̂N + T̂N [F (y|ŝN)]

for each N ∈ N . We can thus restate the restrictions generated by the AS model as follows:

Lemma 1 (Candidate model). {F̃ (·|·), c̃} is a candidate model for process L if and only if

the following conditions hold:

1. Ordered distribution: for each s ∈ [0, 1], F̃ (·|s) is a distribution, and F̃ (·|s) is stochas-

tically ordered in s:

s′ ≥ s implies F̃ (·|s′) ≤ F̃ (·|s). (18)

2. Selection: for each y ∈ [v, v̄] and for all N ∈ L,

λ̂N(y) =

ˆ 1

ŝN

F̃ (y|s)ds. (19)

3. Equilibrium: for each N ∈ L,

T̂N

[
F̃ (·|ŝN)

]
+ κ̂N = c̃. (20)

We next formally define the terms pointwise identified set and pointwise sharp identified

set :
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Definition 2 (Pointwise identified and pointwise sharp). A set F ⊂ [0, 1]×V×S is pointwise

identified if every candidate distribution F̃ (·|·) is a selection from F : that is, if for each

candidate model {F̃ (·|·), c̃}, the tuple (F̃ (y|s), y, s) ∈ F for all y ∈ V and s ∈ S. The

pointwise identified set F is pointwise sharp if for every tuple (Γ, v, s) ∈ F , there exists a

candidate model {F̃ (·|·), c̃} such that Γ = F̃ (y|s).

It is clear that the set implied by Proposition 3 is a pointwise identified set, as any

candidate model belongs to this set. Let F be either this set or any pointwise identified

subset of it, and consider establishing sharpness at a point (Γ̄, ȳ, s̄) on the upper envelope of

F . For there to exist a candidate model {F̃ (·|·), c̃} passing through (Γ̄, ȳ, s̄), the maximum

expected profit across all distributions feasible at (Γ̄, ȳ, s̄) must be at least as large as c−.

But the maximum expected profit will occur at the minimal feasible distribution, which

can be immediately ascertained from F . Extending this intuition leads to a formal test for

pointwise sharpness of F :

Proposition 5. Let F be a pointwise identified set, c+ and c− be as in Proposition 4, and

F+(y|s) = max{Γ|(Γ, y, s) ∈ F} and F−(y|s) = min{Γ|(Γ, y, s) ∈ F} be the bounds on F (·|·)

implied by F . For each point (ȳ, s̄k) ∈ V × S, define an upper test function F̈+
ȳk(·) and a

lower test function F̈−ȳk(·) as follows:

F̈+
ȳk(y) ≡


F−(y|s̄k) if y < ȳ

max {F−(y|s̄k), F+(ȳ|s̄k)} if y ≥ ȳ;

F̈−ȳk(y) ≡


min {F+(y|s̄k), F−(ȳ|s̄k)} if y < ȳ

F+(y|s̄k) if y ≥ ȳ.

Then F is pointwise sharp if and only if for each ȳ ∈ V and s̄k ∈ S,

κ̂k + T̂k

[
F̈+
ȳk(·)

]
≥ c− (21)
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and

κ̂k + T̂k

[
F̈−ȳk(·)

]
≤ c+. (22)

Note that by construction F̈+
ȳk(y) and F̈−ȳk(y) represent the minimal feasible distribution

attaining F+(·|·) and the maximal feasible distribution attaining F−(·|·) at (ȳ, s̄k), respec-

tively. Proposition 5 thereby implement the intuition described above.

A crucial point in Proposition 5 is that the conditions given are both necessary and

sufficient: that is, Proposition 5 is both a test for and a characterization of the pointwise

sharp identified set. This fact in turn suggests an algorithm for constructing the pointwise

sharp identified set: beginning from an initial identified set F0 implied by Proposition 3, test

sharpness at each (ȳ, s̄) ∈ V×S. At each (ȳ, s̄) where at least one bound is infeasible, discard

all points failing the corresponding condition, and iterate until no further improvement is

possible. The next proposition formalizes details of this algorithm:

Proposition 6. Let F0 be the pointwise identified set implied by Proposition 3, and consider

the following iterative algorithm (where Fj is the pointwise identified set at the jth iteration):

1. For each s̄ ∈ S, obtain the upper and lower bounds on F (·|s̄) implied by Fj:

F+
j (y|s) = max{Γ|(Γ, y, s) ∈ Fj}

F−j (y|s) = min{Γ|(Γ, y, s) ∈ Fj}.

2. For each k ∈ N and ȳ ∈ V, evaluate κ̂k + T̂k

[
F̈+
ȳk(·)

]
≥ c−. If true, keep F+

j+1(ȳ|ŝk) =

F+
j (ȳ|ŝk). Otherwise, find the unique constant Γ+

ȳk such that

c− = κ̂k + T̂k
[
max{F−j (Y |ŝk),1[Y ≥ ȳ] · Γ+

ȳk}
]
,

and update F+
j+1(ȳ|ŝk) = Γ+

ȳk.
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3. For each k ∈ N and ȳ ∈ V, evaluate κ̂k + T̂k

[
F̈−ȳk(·)

]
≤ c+. If true, keep F−j+1(ȳ|ŝk) =

F−j (ȳ|ŝk). Otherwise, find the unique constant Γ−ȳk such that

c+ = κ̂k + T̂k
[
min{F+

j (Y |ŝk),1[Y ≤ ȳ] · Γ−ȳk}
]
,

and update F−j+1(ȳ|ŝk) = Γ−ȳk.

4. Obtain a new identified set Fj+1 corresponding to these updated bounds:

Fj+1 =
{

(Γ, y, s)|Γ ∈
[
F−j+1(y|s), F+

j+1(y|s)
]}
.

The resulting sequence {Fj} converges to a fixed point, which is the pointwise sharp identified

set.

The key to Proposition 5 is that order of rejection is irrelevant: refinement of (say) the

upper bound F+ at point (ȳ, ŝk) depends on values of F+ at no other point, and a tighter

lower bound F−(·|·) can only change the decision at F+(ȳ|ŝk) from “accept” to “reject.”

Hence ordering of the algorithm will not affect the set of points eventually rejected. Note

also that while Proposition 5 allows for more general cases, convergence in our numerical

examples (Appendix B) was always achieved in a single step. This is not surprising since

the algorithm discards all points inconsistent with identified set Fj−1 at iteration j.

Finally, Propositions 5 and 6 imply that improvement in existing bounds on F (v|s) is

possible only by comparing feasible expected profits with the bounds c+ and c− in Proposition

4. This in turn implies that even refinement of F can yield no further information on c:

Corollary 1. The bounds c+ and c− defined in Proposition 4 are sharp.

Appendix A applies the results in Propositions 5 and 6 to a set of numerical examples,

comparing initial identified bounds to the sharp identified set for a variety of selectivity

parameters and competition structures. The clear and encouraging message of these com-

parisons is that scope for improvement on Proposition 3 is minimal: in almost all cases, our
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initial bounds were sharp everywhere they were informative. Exceptions to this rule were

of necessity quite artificial: large gaps early in an otherwise consecutive sequence of com-

petition levels, in which case improvement is sometimes possible over the gap. Thus while

our results indicate when and how the bounds in Proposition 3 can be refined, simulation

evidence suggests that such refinement will seldom be required in practice.

2.5 Bounds in the S and LS cases

To conclude this section, we explore how our proposed bounds behave applied to data gen-

erated by the S and LS polar cases. As noted above, the S model corresponds to the limit

case in which Stage 2 values are a deterministic function of Stage 1 signals. In particular,

to preserve the normalization Si ∼ U [0, 1], we set vi ≡ F−1
v (si). In this case, F (v|ŝ) is

degenerate for each ŝ ∈ S, with all mass at v̂ = F−1
v (ŝ). Meanwhile, the bounds F+(v|ŝ)

and F−(v|ŝ) in Proposition 3 will in general be well-defined distributions. Hence F+(v|ŝ)

and F−(v|ŝ) do not collapse to F (v|ŝ), and consequently derived bounds on c(·) also do not

collapse.

Results for the LS special case are more favorable. Recall that the LS model can be

formally nested in the AS model by assuming that Stage 2 values are independent of Stage

1 signals. For any (v, s), independence implies

F ∗(v; s) = F (v|s) = Fv(v).

By definition of F+(v|s) and F−(v|s) in Proposition 3, this equality in turn implies that

informative bounds on F (v|s) will collapse to Fv(v) for any s. As long as N contains at least

three elements, at least one s ∈ S(z) will have two informative bounds at each z ∈ Z, and

bounds at this s will point-identify both Fv(v) and c(z). At least in terms of identification,

therefore, estimation based on the general AS model entails only minor losses relative to

estimation based on the more restrictive LS polar case.
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3 Policy analysis under partial identification

Counterfactual policy analysis is a leading motive for structural estimation. Such analysis is

straightforward when model fundamentals are point identified, but becomes more challeng-

ing when they are only partially identified. This is particularly true in the AS model: policy

choices will affect outcomes directly, through the Stage 1 entry threshold s∗ and through the

selected Stage 2 distribution F ∗(·; s) and valid counterfactual analysis must account for all

three effects. This section addresses this problem directly, using the objects identified above

to construct bounds on counterfactual revenue which apply to a wide range of counterfactual

policies under endogenous and arbitrarily selective entry. We thus establish that nonpara-

metric analysis based on the AS model can yield practically relevant policy insights even in

the presence of partial identification.

More precisely, the problem addressed in this section can be stated as follows: given a

counterfactual mechanism M satisfying certain regularity properties, construct bounds on

the expected equilibrium revenue R∗M(N) that would obtain if the auctions in L were instead

run according to M at competition N . We address this problem within a general class of

counterfactual mechanisms we call RS auctions (after the work of Riley and Samuelson

(1981)), which includes standard first-price, second-price, English, and Dutch auctions:

Definition 3. A RS auction is any bidding mechanism having the following properties:

1. Mechanism rules are anonymous.

2. If award is made, it is to the bidder submitting the highest bid.

3. Entry and bidding realizations affect the auctioneer’s award decision only through the

highest bid.21

21This restriction rules out mechanisms where the auctioneer makes award decisions conditional on, e.g.,
realized number of entrants. Note that the statement permits award decisions to be random conditional on
the highest bid, or to depend on auction-level characteristics or covariates.
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4. For any distribution of rival values, there exists a unique symmetric bidding equilibrium

such that bids submitted are strictly increasing in bidder values.

As noted by Riley and Samuelson (1981), the key determinant of equilibrium outcomes

in any RS auction M is the award rule αM(·) : R → [0, 1] in the direct equivalent to M ,

where αM(Y ) represents the probability that M results in sale when the maximum reported

value among bidders is Y . For instance, a public reserve price would correspond to the award

rule αM(y) = 1[y ≥ r], and a secret reserve price to the award rule αM(y) = Fr(β(y)). For

current purposes, we impose the following additional regularity conditions on the mechanism

M :

Assumption 5. Let R−i ∈ {0 ∪ V}N−1 denote values reported by rivals of bidder i (where

type zero indicates no entry). The counterfactual mechanism M is an RS auction with a

direct equivalent such that:

1. The award rule αM(y) is weakly increasing in the maximum entrant value y.

2. Expected Stage 2 profit of a low-type bidder (entrant with value v) is weakly decreasing

in each element of R−i.22

3. WLOG, M is specified such that the expected payment of an entrant reporting value

vi ≤ v is

1[n = 1]

{
α(vi)vi −

ˆ vi

0

α(y)dy

}
+ ρM(R−i), (23)

where ρM(w−i) is a symmetric nondecreasing function.

Conditions 1 and 2 of Assumption 5 are standard, and satisfied in the vast majority of

mechanisms seen in practice. Condition 3 looks more restrictive, but in fact is without loss

of generality since it applies only to out-of-equilibrium reports vi ≤ v . This latter fact is

important in ensuring generality of our results, so we state it formally as a lemma:
22Since a low-type bidder only wins when no other bidder enters, the main function of this condition is to

rule out hypothetical mechanisms where the auctioneer provides subsidies for high realizations of rival types.
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Lemma 2. Any RS auction satisfying Conditions 5.1 and 5.2 is payoff- and performance-

equivalent to some RS auction also satisfying Condition 5.3.

While perhaps not obvious from the initial statement, our primary motive for adopting

the normalization in Assumption 5.3 is that it intuitively nests the leading special cases of

interest. We illustrate this fact via two simple examples:

Example 1. Consider a first-price auction with a reserve price r ≤ v . This structure can

be nested under Assumption 5.3 by setting α(y) = 1[y ≥ r] and ρ(·) = 0.

Example 2. Consider a second-price auction with a secret reserve price r ∼ Fr(·) and an

entry fee e > 0. This structure can be nested under Assumption 5.3 by setting α(y) = Fr(y)

and ρ(·) = e.

For the moment, we further assume ρM(·) ≥ 0; roughly speaking, that the mechanism

does not involve transfers to non-winning bidders. In the simple examples above, this is

equivalent to requiring a non-negative entry fee:

Assumption 6. ρM(R−i) ≥ 0 for all rival reports R−i.

As noted above, this assumption will be satisfied in most real-world auction mechanisms.

It is not required to characterize expected revenue, but greatly simplifies analysis of mono-

tonicity.

Having thus framed the problem, our argument proceeds in three steps. We first char-

acterize expected revenue generated by mechanism M under arbitrary (potentially out-of-

equilibrium) competition structure (N, s̄):

Lemma 3. Expected seller revenue under RS auction M at competition structure (N, s̄) is

given by

RM (N, s̄) =

ˆ v̄

v0

{αM (y)[y − λM (y;N, s̄)] + [1− αM (y)]v0} dF ∗1:N (y; s̄) +N(1− s̄)E[ρM |N, s̄] (24)
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where

λM(v;N, s) ≡


0 if αM(v) = 0;

´ v
v0

αM (t)
αM (v)

· F
∗
1:N−1(t;s)

F ∗1:N−1(v;s)
dt otherwise.

Further, considered as a function of s̄, RM(s̄;N) satisfies the following properties:

1. RM(N, s̄) is identified for any s̄ ∈ S.

2. RM(N, s̄) is decreasing in s̄ for all N .

We next consider counterfactual entry. When entry is endogenous, the equilibrium thresh-

old s∗M will depend on M , and when F (v|s) and c(·) are not point identified, we cannot de-

termine this dependence exactly. However, we can use the bounds on fundamentals derived

above to bound the counterfactual entry behavior induced by M :

Lemma 4. Let c+(z) and c−(z) be identified bounds on c(z), F+(·|s) and F−(·|s) be identified

bounds on F (·|s), and s∗M(N, z) be the (unknown) equilibrium entry threshold induced by

counterfactual mechanism M at (N, z). Define s+
M(N, z) and s−M(N, z) as follows:

s+
M(N, z) =


inf{s ∈ S|ΠM(N, s|F+) > c+(z)} if ∃such s;

1 otherwise

s−M(N, z) =


sup{s ∈ S|ΠM(N, s|F−) < c−(z)} if ∃such s;

0 otherwise

where ΠM(N, s|F ) denotes expected profit of an entrant drawing from distribution F under

mechanism M given competition (N, s):

ΠM(N, s|F ) =

ˆ v̄

v0

αM(y)[1− F (y)]F ∗1:N−1(y; s)dy − E[ρM |s].
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Then s+
M(N, z) and s−M(N, z) are identified and

s+
M(N, z) ≥ s∗M(N, z) ≥ s−M(N, z),

with equality if s∗M(N, z) ∈ int(S).

It only remains to combine these results. Lemma 3 establishes that conditional coun-

terfactual revenue RM(N, s̄) is identified for all s̄ ∈ S and decreasing in s̄ for all N , while

Lemma 4 provides identified bounds s+
M(N, z) ∈ S and s−M(N, z) ∈ S on the counterfactual

entry threshold s∗M(N, z) induced by M . Substituting s+
M(N, z) and s−M(N, z) into RM(N, ·)

thus produces identified bounds on true counterfactual revenue R∗M(N, z) under M :

Proposition 7. Choose any (N, z), define s+
M(N, z) and s−M(N, z) as in Lemma 4, and let

R∗M(N, z) be (unknown) expected revenue under mechanism M at (N, z). Define R+
M(N, z)

and R−M(N, z) as follows:

R−M(N, z) =


RM

(
N, s+

M(N, z)
)
) if s+

M(N, z) ∈ S(L)

0 otherwise

R+
M(N, z) =


RM

(
N, s−M(N, z)

)
if s−M(N, z) ∈ S(L)

ŘM(N, 0) otherwise,

where

ŘM (N, 0) =

ˆ v̄

v0

{
αM (y)[y −

ˆ y

v0

αM (t)

αM (y)
· F
∗(t; minS)N−1

F ∗(y; minS)N−1
]dt+ [1− αM (y)]v0

}
dF ∗1:N (y; minS)+NE∗[ρM ; minS]

is a semi-informative upper bound applicable when s−M(N, z) ≡ 0.23

Then R+
M(N, z) and R−M(N, z) are identified and R+

M(N, z) ≥ RM(N, z) ≥ R−M(N, z),

with equality if s∗M(N, z) ∈ int(S).
23In particular, ŘM (0;N) is the revenue that would result if all potential bidders always enter but draw

values from distribution F ∗(·; minS). Since minS ≥ 0, we know F ∗(v; minS) ≤ F ∗(v; 0), so ŘM (0;N) ≥
RM (0;N) ≥ RM (sM ;N). Further, since minS ∈ S, Ř(0;N) is identified.
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We thus obtain identified bounds on expected revenue applicable to a wide range of coun-

terfactual mechanisms under endogenous and arbitrarily selective entry. Given appropriate

choice ofM , these bounds specialize immediately to policy instruments such as reserve prices

and entry fees.24 Appendix 2 illustrates our counterfactual bounds in a range of numerical

examples, which together suggest their information content is encouragingly good. We thus

establish that the AS model can support a rich variety of counterfactual and policy analyses

under minimal assumptions on the nature of entry.

4 Extensions

4.1 Unobserved heterogeneity

Our discussion thus far has maintained Assumption 4, under which auction-level fundamen-

tals {F`(·|·), c`} are presumed to depend (at most) on observables Z and X. In practice,

however, bidder behavior will often depend on auction-level factors not observed by the

econometrician, and in such cases Assumption 4 may fail to hold. Building on recent devel-

opments in the econometrics literature, this section extends our core identification results to

a set of environments with unobserved heterogeneity, where this heterogeneity is not con-

strained to enter via any particular functional form. We thus establish the relevance of our

results in a much broader class of models than have been heretofore considered.

In particular, consider introduction of an auction-level random variable U , which is ob-

servable to all potential bidders but not to the econometrician. This random variable is

assumed to auction-level fundamentals {F`(·|·), c`} through its realizations u`, leading to the

following relaxation of Assumption 4:

Assumption 7. For each auction ` generated by process L, F`(v, s) = F (v, s|u`) and c` =

c(z`|u`), both potentially conditional on further covariates X.
24In the special case of a public reserve price, our revenue bounds can also be translated into bounds on

the seller’s optimal reserve price following Haile and Tamer (2003), though in practice such bounds tend to
be wide.
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Let Fu(·) denote the distribution of the unobserved random variable U , and U ⊂ R

denote its support. We impose the following additional structure on this new economic

environment:

Assumption 8. The random variables {(V1, S1), ..., (VN , SN);U} satisfy the following prop-

erties:

1. Conditional independence: for all potential bidders i and j, (Vi, Si) ⊥ (Vj, Sj)|U .

2. Stochastic ordering: for all (v, s), u′ ≥ u implies F (v|s, u′) ≤ F (v|s, u).

3. Entry ordering: for all N , u′ ≥ u implies s∗N(u′) ≤ s∗N(u).

Condition 8.1 extends the IPV model to accommodate unobserved heterogeneity, Con-

dition 8.2 ensures that higher realizations of U are “good news,” and Condition 8.3 specifies

that entry is more likely at higher realizations u. Interestingly, while the last condition

corresponds closely to intuition, it is not a consequence of the first two; there exist funda-

mentals satisfying stochastic ordering for which s∗N(u) can be increasing. But decreasing

s∗N(u) is clearly the economic leading case, and in particular can be shown to hold if V is

either additively or multiplicatively separable in U . Thus Assumption 8 represents a natural

generalization of Assumption 1 to environments with unobserved heterogeneity.

As above, we assume the number of potential bidders N`, the number of entrants n`, and

the vector of submitted bids b` are observed for each auction. Let s∗N(z;u) and G∗(b|N, z;u)

be the equilibrium entry threshold and equilibrium distribution of bids corresponding to

realization u ∈ U at (N, z). If U were observed, these objects could be estimated directly

for each u, and identification would follow as in Section 2. In practice, however, entry and

bid decisions will directly identify only averages of s∗N(z;U) and G∗(b|N, z;u) across U :

ŝN = EU [s∗N(z;U)]

Ĝ(b|N) = EU [G∗ (b|N, z;U)] .
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The identification problem induced by unobserved heterogeneity can thus be stated as fol-

lows: recover s∗N(z;U), G∗(b|N, z;U) and Fu(U) from quantities identified without seeing

u. Our solution to this problem builds on the work of Hu, McAdams, and Shum (2011),

who propose several novel results on identification in auctions with nonseparable unobserved

heterogeneity.25 As in Section 2.4, we assume for clarity that all entry variation is induced

by N , but all results extend to excludable instruments Z.

4.1.1 Identification under unobserved heterogeneity

For the moment, we focus on the case where U is discrete; that is, where U is a finite set (we

discuss the continuous case briefly below). Let K denote the cardinality of U , and normalize

U = {1, ..., K} without loss of generality. Following Hu, McAdams, and Shum (2011), the

argument will invoke discretization of the bid space, formally defined as follows:

Definition 4. A discretization is any one-to-one, onto mapping D : [0, v̄]→ U ; that is, any

partition of the bid space into K intervals. Let di ≡ D(bi) denote the interval corresponding

to bid bi, and Di ≡ D(Bi) denote the corresponding random variable.

Define a realized bid Wi for each potential bidder i as follows: Wi = Bi if i enters and

Wi = 0 otherwise. By construction, the resulting random variables (W1, ...,WN) follow a

mixed joint distribution, with mass points on the zero axes representing probabilities of

non-entry. Let Ĝw(W1, ...,WN |N) denote the joint distribution of (W1, ...,WN) at N , and

ĝw(W1, ...,WN |N) denote the corresponding mixed joint density (with the convention that

points on any zero axis represent probability masses).

As in Hu, McAdams, and Shum (2011), recovery of the equilibrium conditional dis-

tribution G∗w(Wi|N ;u) from the identified joint distribution Ĝw(W1, ...,WN |N) requires an

auxiliary distributional assumption. For any two bidders j and k and any discretization D,
25See Hu (2008) for further development of the underlying identification argument; Krasnokutskaya (2011)

considers identification in the special case of auctions with additively (or multiplicatively) separable unob-
served heterogeneity.
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let M̂dj ,dk(N) be the matrix characterizing the (identified) joint distribution of the discretized

variables Dj ≡ D(Wj) and Dk ≡ D(Wk) at N :

M̂dj ,dk(N) =

[
Pr {Dj = j′, Dk = k′|N}

]
{j′,k′}∈U×U

We then impose the following full-rank condition on M̂dj ,dk(N):

Assumption 9. For each N ∈ N such that N ≥ 3, there exists a discretization D such that

M̂dj ,dk(N) has rank K.

As noted in Hu, McAdams, and Shum (2011), this condition follows automatically when

the maximum realized bid is increasing in u. Assumption 9 is therefore without loss of

generality in a first-price auction under Assumption 8 above, or in a second-price auction

when the upper limit of V is increasing in u. Further, since M̂dj ,dk(N) is identified for any

D, the underlying rank condition can be readily verified in applications. Hence Assumption

9 is unlikely to be a major practical constraint.

We can now apply Lemma 1 in Hu, McAdams, and Shum (2011) to establish identification

of the equilibrium distribution G∗w(Wi|N ;U) and the heterogeneity distribution Fu(U |N)

prevailing at competition level N :

Lemma (Hu, McAdams, and Shum (2011)). Suppose U is finite, Assumptions 7-9 are sat-

isfied, and N ≥ 3. Then G∗w(Wi|N ;U) and Fu(U |N) are identified from Ĝw(W1, ...,WN |N).

Finally, note that identification of G∗w(Wi|N, u) at any u implies identification of s∗N(u)

and G∗(b|N ;u) for that u:

G∗w(b|N ;u) ≡ s∗N(u) + [1− s∗N(u)]G∗(b|N ;u),

so

s∗N(u) ≡ G∗w(0|N ;u)
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and

G∗(b|N ;u) =
G∗w(b|N ;u)−G∗w(0|N ;u)

1−G∗w(0|N ;u)
.

In turn, given identification of s∗N(u) and G∗(b|N ;u) at each u, we can apply results from

Section 2 to obtain identified bounds on F (v|s;u) and c(u). Thus all results above can be

extended to accommodate nonclassical, nonseperable unobserved heterogeneity.

4.1.2 Further discussion

We conclude this subsection with three further comments. First, the discussion above de-

liberately permitted U to enter both F (v|s; ·) and c(·). The entry ordering assumption 8.3

imposed an equilibrium restriction on entry induced by U , so this relationship is not entirely

arbitrary. In practice, however, it is still more general than typically seen; most applications

allow U to enter F (v|s; ·) or c(·) but not both. The results above of course specialize to

either special case.

Second, while only noted in passing above, the results here yield identification of the

heterogeneity distribution Fu(·|N) at each N . We can therefore relax the excludability

restrictions in Assumption 3 to excludability of N conditional on U : e.g.

F (v, s|N,U) = F (v, s|U).

So long as Pr(N |U) has nondegenerate support at each U , all results above immediately

extend. This represents a substantial generalization of prior approaches in the literature,

and may be of considerable value in applications where endogeneity of N is a concern.

Finally, though the discussion above took U to be discrete, the underlying logic extends

readily to the continuous case. As in Hu, McAdams, and Shum (2011), the cost of this

extension is a stronger nonparametric completeness condition, which replaces Assumption 9

above:

Assumption (Nonparametric completeness, continuous U). For all bidders i, j, functions
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h(·) having bounded conditional expectation, and observed N ≥ 3,

1. E[h(Wk)|wi;N ] = 0 for all wi ∈ {0× V} implies h(wk) = 0 for all wk ∈ {0× V}.

2. E[h(U)|wi;N ] = 0 for all wi ∈ {0× V} implies h(u) = 0 for all u ∈ U .

These restrictions correspond closely to those required in other nonparametric identifica-

tion settings (e.g. Newey and Powell (2003) and Berry and Haile (2010a,b)), and essentially

guarantee that the distributions Fu(·|N) and G∗w(Wi|N ;U) decomposing Ĝw(W1, ...,WN |N)

into a product of marginals are unique. See Hu and Shiu (2012) for further discussion and

sufficient conditions. Granted this additional condition, however, the argument is otherwise

very similar. We can thus generalize our core results to a broad class of environments with

nonclassical and nonseperable unobserved heterogeneity, obtaining partial identification of

model fundamentals and policy outcomes accounting for endogenous and arbitrary selective

entry.

4.2 Bidder asymmetry

A second potential extension of our results is to environments with asymmetric bidders. In

particular, suppose process L involves a set T of potential bidder types, which are observable

both to potential bidders and to the econometrician. Let Fτi(v, s) and cτi(·) denote the signal-

value distribution and entry cost function of a bidder with type τi ∈ T , and τ` ∈ T N` be

the vector of type realizations in auction `. The type space T can be either discrete or

continuous; we require only that continuous types affect model fundamentals continuously.

Further suppose a single type-symmetric equilibrium is played at each type vector τ ,

and let s∗(τ) be the corresponding vector of type-specific equilibrium entry thresholds. A

repeated sample from auctions with type vector τ will then permit identification of the type-

specific threshold s∗τi(τ) and ex post bid distribution G∗τi(·;s
∗
τi

(τ)) for each type τi at τ , and

pooling across other type vectors τ̃ containing τi will generate a set of type-specific identified

thresholds Sτi . Identification of type-specific fundamentals can then proceed as above.
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The key additional complication under bidder asymmetry is that there may exist multiple

type-symmetric equilibria at any type vector τ . If more than one such equilibrium is played

with positive probability, observed entry and bidding decisions will represent an unknown

mixture distribution, and identification may break down. This problem is the focus of

much ongoing research, and a full treatment is beyond the scope of this paper. As typical

in applications, therefore, we simply assume that the equilibrium played is either directly

observed or depends deterministically on τ . Granted this restriction, however, asymmetry

may in fact substantially improve identification; in particular, a continuous typeset T will

typically induce a continuous identified set Sτi , thus permitting point identification as in

Section 2.2.

5 Conclusion

In this paper, we explore a general approach to identification in auctions with entry based on

a framework we call the AS model. In the process, we make three core contributions to the

related literature. First, we derive a general map from observed entry variation to identified

bounds on model fundamentals, where complete variation yields point identification and

incomplete variation yields partial identification. This map is directly implementable, applies

to a broad class of auction mechanisms under arbitrarily selective entry, and can readily be

refined into the sharp identified set. Second, we translate identified bounds on fundamentals

into bounds on expected revenue under a wide range of counterfactual mechanisms, again

accounting for endogenous and selective entry. We therefore demonstrate that the AS model

can yield practically relevant policy insights even in applications with incomplete entry

variation. Finally, we discuss extensions to environments with asymmetric bidders and

nonseperable unobserved heterogeneity, thus establishing the relevance of our findings within

an even broader class of economic environments. We thus both characterize what can be

learned without parametric restrictions on selection and illustrate this information’s capacity
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to yield insights on auctions with entry.

While our main focus thus far has been nonparametric identification, our results also pro-

vide a straightforward basis for nonparametric estimation because they are constructive. In

particular, all objects established as directly identified in Section 2.1 have standard nonpara-

metric estimators, and plugging these in to subsequent results in turn produces consistent

estimators for our sharp nonparametric bounds. Especially in the partially-identified case,

however, deriving asymptotic properties for these nonparametric estimators turns out to be

quite challenging, both due to the multiple steps involved and because properties of the ini-

tial steps will be mechanism-dependent. For current purposes, therefore, we therefore choose

to focus on nonparametric identification rather than nonparametric inference.26 In applica-

tions, particularly those involving high-dimensional covariates or unobserved heterogeneity,

it may instead be desirable to adopt a parametric or semiparametric approach. For the

former, see (e.g.) Roberts and Sweeting (2010a,b), who consider estimation of a paramet-

ric log-normal AS model incorporating rich normally-distributed unobserved heterogeneity.

For the latter, one natural approach would be to combine nonparametric estimation of ex

post identified quantities with a parametric copula Cθ(·) for the joint distribution F (v, s).

Variation in the entry threshold ŝ will then induce a set of equality restrictions which must

be jointly satisfied by (θ0, F0(·)) at each v ∈ V , and under standard regularity conditions

point identification follows so long as the dimensionality of θ is less than the cardinality of

S.27 In both cases, our results provide insight on the role of parametric restrictions as data
26In this respect, we follow many other notable recent studies: e.g. Athey and Haile (2002) on auctions,

Chesher (2005) on models with discrete covariates, Berry and Haile (2010b,a) on multinomial choice models,
Chesher and Smolinski (2010) on sharp identified sets for discrete variable IV models, and Chesher and Rosen
(2011) on sharp identified sets for binary response models. These studies each provide valuable insight on
information nonparametrically available within their respective applications, but do not explore details of
nonparametric inference.

27In particular, adding and subtracting
´ s

0
F (v|t)dt to the RHS of Equation 1 and simplifying produces

the following identity:

F ∗(v; s) =
F (v, 1)− F (v, s)

1− s
.

Rearranged and combined with the copula restriction F (v, s) ≡ Cθ(F (v), s), this in turn implies

(1− ŝ)F ∗(v; ŝ) ≡ F (v, 1) + Cθ(F (v, 1), ŝ) for each ŝ ∈ S.
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smoothers vis-a-vis their role in driving analysis. Given our finding that fully nonparametric

analysis has substantial capacity to yield policy-relevant conclusions on auctions with entry,

we interpret our results quite positively in this respect.

Finally, while our analysis thus far has been framed in the context of auctions, many of

our key insights could apply to environments with selection more generally. In particular, our

core partial identification results in Section 2 may be relevant in any structural model where

agents select into a binary (or ordered) decision based on an imperfect signal. Potential

examples include selection into geographic markets in industrial organization, or selection

into treatment in labor applications. The key restriction is that our results require Stage

2 “values” to be identified, with the corresponding advantage of producing pointwise sharp

bounds on both joint and marginal distribution of fundamentals. We are exploring these

connections in ongoing research.

Treating F (v, 1) as a parameter for each v ∈ V and solving for (θ, F (v, 1)) will yield a set of candidate
models at each v ∈ V. The true model (θ0, F0(·)) will be a selection from this set satisfying the further
restriction that F0(v, 1) is a distribution across v. So long as this solution is unique, the model will be
semiparametrically identified.
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Appendix A: Numerical examples

Sections 2 and 3 develop identified bounds for model fundamentals and seller revenue in auctions
with arbitrarily selective entry. In this appendix, we explore a simple numeric example designed to
illustrate what these theoretical identified bounds might look like in practice. Consistent with our
emphasis in the rest of the paper, this example focuses on identification, not estimation: the figures
that follow illustrate the bounds that would obtain in an infinite auction sample. Nevertheless, this
exercise illustrates the kind of information that could in principle be recovered using the methods
developed above.

Our parametric specification is as follows. We model the joint distribution F (v, s) using a
Gaussian copula Cρ(Fv, s), where the marginal distribution Fv(·) ∼ N(µ = 100, σ = 10) and the
entry cost is c = 2. These numeric values are chosen to be qualitatively similar to estimates in
the literature.28 The correlation parameter ρ measures the degree of dependence between s and
v, with ρ = 0 generating the no-selection case and ρ → 1 approaching the perfect-selection case.
In what follows, we present results for ρ = 0.2, ρ = 0.75, and ρ = 0.95, representing minimally,
moderately, and highly selective DGPs respectively. Except where noted otherwise, we assume
potential competition N varies exogenously on the set N = {2, 3, ..., 16}.

A.1: Bounds on fundamentals

We first illustrate the bounds on model fundamentals derived in Section 2.3. Given the para-
metric specifications above, it is straightforward to calculate the set of equilibrium entry thresholds
S = {s∗2, ..., s∗16} satisfying the the breakeven condition (4) at each value of ρ considered. These and
the corresponding ex post distributions F ∗(v; s∗N ) are the objects identified by a standard (N,n,b)
sample, and the raw inputs into our fundamental bounds.

Given these identified threshold sets S, we next use Proposition 3 to obtain identified bounds
F+(·|s) and F−(·|s) on F (·|s). These bounds imply an identified set F in three-dimensional space,
for which we provide two sets of graphical representations below. First, Figure 1 compares the S
dimension of our bounds for two values of v across ρ. The “stairstep” nature of these bounds in
s follows from lack of information on F ∗(v; s) at points outside the identified set S. Meanwhile,
Figure 2 illustrates the V dimension of our bounds at a selection of thresholds s∗N in S. Note the
lack of informative upper (lower) bounds at the minimum (maximum) of S, a point to which we
return when discussing sharpness below.

We note three further points on Figures 1 and 2. First, our bounds on F (·|s) become tighter
as S becomes less informative. This is not surprising, since we know they yield point identification
in the no-selection LS case (since then F ∗(v; s) ≡ F (v|s) ≡ Fv(v) by definition). Second, higher
competition levels induce smaller steps in s∗N , which in turn tends to yield tighter bounds on
F (·|s). This pattern obviously depends somewhat on particular the DGP selected, but insofar as
the marginal change in expected profit is decreasing in N is likely to be reasonably robust. Finally,
as in Proposition 4, we can translate bounds on F (v|s) into bounds on c. In the current examples
these bounds are quite tight: c ∈ [1.990, 2.010] when ρ = 0.2, c ∈ [1.977, 2.024] when ρ = 0.75, and
c ∈ [1.985, 2.016] when ρ = 0.95, where as above true c = 2.

28See, e.g., Roberts and Sweeting (2010a; 2010b) and Li and Zheng (2009) for examples.
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Figure 1: Bounds on F (v|s) across S, N = {2, ..., 16}
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(a) Bounds at v = 95, ρ = 0.2
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(b) Bounds at v = 105, ρ = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s (Stage 1 signal of bidder i)

F
(v

|s
) 

an
d 

bo
un

ds

 

 
True F(v|s)
IDed bounds

(c) Bounds at v = 95, ρ = 0.75
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(d) Bounds at v = 105, ρ = 0.75
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(e) Bounds at v = 95, ρ = 0.95
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Figure 2: Bounds on F (v|s) across V , N = {2, ..., 16}
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(a) Bounds on F (v|s∗N ) for selected N , ρ = 0.2
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(b) Bounds on F (v|s∗N ) for selected N , ρ = 0.75
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(c) Bounds on F (v|s∗N ) for selected N , ρ = 0.95
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A.2 Sharp identified set

We next discuss refinement of bounds obtained as in the last subsection into the pointwise sharp
identified set. Toward this end, we first apply the test of sharpness in Proposition 5 to the initial
bounds above. At points where this test fails, we then apply the refinement in Proposition 6 to
obtain the pointwise sharp identified bounds.

From the perspective of Proposition 3, the results of this procedure are quite encouraging: for
all three baseline DGPs, our initial bounds are pointwise sharp everywhere they are informative.
Refinement is possible at some points with uninformative initial bounds, and in all these cases the
procedure in Proposition 6 yields the pointwise sharp identified set in a single iteration from its
starting point. Not surprisingly, the largest improvements are achieved where the initial bounds are
widest; Figure 4a plots initial and final bounds for ρ = 0.95 as an illustrative example. Thus while
the results in Section 2.4 indicate when and how the bounds in Proposition 3 can be refined into
the sharp identified set, the numerical results presented here strongly suggest that this extra step
will typically be unnecessary in applications.

We conclude this section with a counterexample: a sample DGP in which initially informative
bounds can be further refined. Not surprisingly given the discussion above, this example is also
of necessity artificial: bounds on c contain relatively little information on F (v|s), so to induce
refinement we need both tight bounds on c and a large gap in identified entry thresholds. The
discussion above suggests such a pattern is most likely to obtain when the DGP involves a large
gap in N at low competition levels, so for clarity we consider the extreme case N = {2, 15, 16}.
Figure 4b plots the results, which as expected show substantial gains in the sharp identified set. In
practice, however, it is difficult to envision applications where such large gaps in competition arise
naturally, and even adding a single intermediary point (N = 9, Figure 4c) is sufficient to dissipate
most gains. Hence in applications Proposition 3 alone likely to be sufficient.

A.3 Bounds on counterfactuals

Finally, following Section 3, we translate the bounds on F (v|s) and c obtained above into
identified bounds on counterfactual seller revenue. While results in Section 3 are defined more
broadly, for simplicity we here focus on the special case of a public reserve price r; we also assume
the no-sale outcome yields value v0 = 40 to the seller. As in Section 3, we first use Lemma 4 to
bound the counterfactual entry equilibrium s∗r(N) corresponding to each candidate reserve price r,
then use Proposition 7 to map these candidate thresholds into bounds on counterfactual revenue
R∗r(N). These bounds will obviously depend on both the underlying DGP and the particular N
in question; we illustrate results at N = 4 and N = 9 for each value of ρ considered. Bounds on
counterfactual entry are plotted in Figure 4, bounds on counterfactual revenue are plotted in Figure
5.

On balance, the results in Figures 4 and 5 suggest that our counterfactual bounds can be
quite informative: while richer identified sets will obviously improve precision, even variation in
N alone is sufficient to generate economically meaningful restrictions on the objects of interest.
In particular, using only in-sample variation, the revenue bounds in Figure 5 yield a remarkably
accurate impression of the potential revenue implications of a binding reserve price, in a fashion
which accounts fully for endogenous and selective bidder response. Thus the results in Sections 2
and 3 can support robust policy analysis even in the presence of partial identification induced by
endogenous and arbitrarily selective entry.
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Figure 3: Pointwise sharp bounds on F (v|s), ρ = 0.95, various N
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(a) Sharp bounds on F (v|s∗N ) at selected N , N = {2, 3, ..., 16}
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(b) Sharp bounds on F (v|s∗N ) at selected N , N = {2, 15, 16}
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(c) Sharp bounds on F (v|s∗N ) at selected N , N = {2, 9, 15, 16}
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Figure 4: Bounds on counterfactual entry threshold s∗r(N), N = {2, ..., 16}
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(a) Bounds on s∗r(N) at N = 4, ρ = 0.2
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(b) Bounds on s∗r(N) at N = 9, ρ = 0.2

40 50 60 70 80 90 100 110 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Counterfactual reserve price r

C
ou

nt
er

fa
ct

ua
l t

hr
es

ho
ld

 s
*(

r)
 a

nd
 b

ou
nd

s

 

 

True s*(r)
IDed bounds

(c) Bounds on s∗r(N) at N = 4, ρ = 0.75
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(d) Bounds on s∗r(N) at N = 9, ρ = 0.75
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(e) Bounds on s∗r(N) at N = 4, ρ = 0.95
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(f) Bounds on s∗r(N) at N = 9, ρ = 0.75
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Figure 5: Bounds on counterfactual revenue R∗r(N), N = {2, ..., 16}
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(a) Bounds on R∗r(N) at N = 4, ρ = 0.2
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(b) Bounds on R∗r(N) at N = 9, ρ = 0.2
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(c) Bounds on R∗r(N) at N = 4, ρ = 0.75
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(d) Bounds on R∗r(N) at N = 9, ρ = 0.75
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(e) Bounds on R∗r(N) at N = 4, ρ = 0.95
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(f) Bounds on R∗r(N) at N = 9, ρ = 0.75
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Appendix B: Other mechanisms

For expositional convenience, our discussion thus far has focused on the case where the Stage
2 auction is run according to simple second-price sealed bid rules. As noted throughout the text,
however, our underlying arguments extend to most other standard auctions. In this appendix, we
briefly sketch details of this more general argument.

As in Section 3, we consider extension of our underlying results to the general class of mechanisms
we call RS auctions, formally described in Definition 3. As above, we define the award rule αM (y)
corresponding to mechanism M as the equilibrium probability that M results in sale when the
maximum realized value among entrants is Y = y; this award rule can be deterministic as with
a public reserve price (α(y) = 1[y ≥ r]), or stochastic as in the case of a secret reserve price
(α(y) = Fr(β(y))). We maintain the regularity conditions in Assumption 5: namely, that a low-type
bidder weakly prefers less potential competition, and that the award rule α(y) is weakly increasing
in y.29 Further, as discussed in the introduction, our main focus in this paper is to obtain identified
bounds on AS fundamentals taking as given quantities whose identification is well-established in
the literature. For current purposes, therefore, we impose the following preliminary identification
assumption:

Assumption (Stage 2 identification). At each (N, z) ∈ L, the mechanism M is such that un-
der the hypothesis of equilibrium play, the distribution of values corresponding to bids submitted is
nonparametrically identified.

Mechanisms under which this assumption is known to hold include first-price, second-price,
ascending, and Dutch auctions; we outline arguments applicable to each of these mechanisms below.
See Athey and Haile (2005) for a comprehensive survey of the literature.

As above, the first step in our extended identification argument is to characterize equilibrium
entry behavior within the class of mechanisms considered. Toward this end, we extend Proposition
1 to accommodate a general RS auction M :

Proposition (Equilibrium in RS auctions). Let M be an RS auction satisfying Assumption 5,
and αM (·) and ρM (·) be the award rule and low-type payment function induced by M . Then when
competing against N − 1 potential rivals who enter according to s̄, an entrant with value vi in Stage
2 expects profit

πM (vi; s̄, N) =

ˆ v

0
αM (y) · F ∗1:N−1(y; s̄)dy − E[ρM |N, s̄]

and a potential entrant with signal si in Stage 1 expects Stage 2 profit

ΠM (si; s̄, N) =

ˆ v

0
[1− F (y|si)] · αM (y) · F ∗1:N−1(y; s̄)dy − E[ρM |N, s̄].

Further, any symmetric pure strategy equilibrium has an equivalent equilibrium in which Stage 1
entry decisions can be characterized by a signal threshold s∗ such that bidder i enters if and only if
Si ≥ s∗. This threshold is uniquely determined as follows:

29We also impose a normalization on the out-of-equilibrium award rule α(y), but as noted in
Lemma 2 this is without loss of generality.
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• If ΠM (0; 0, N) > c, then s∗ = 0 and all potential bidders always enter.

• If ΠM (1; 1, N) < c, then s∗ = 1 and no potential bidder ever enters.

• Otherwise, s∗ satisfies the breakeven condition

ΠM (s∗; s∗, N) ≡ c.

Finally, considered as a function of (c,N), the equilibrium threshold s∗(c,N) is increasing in
both arguments, strictly if s∗(c,N) ∈ (0, 1).

This proposition establishes that the key features of equilibrium entry behavior which our iden-
tification argument exploits (a breakeven threshold increasing in entry costs and potential com-
petition) in fact generalize to any RS auction satisfying Assumption 5. Given the auxiliary as-
sumption of Stage 2 identification, it is then straightforward to extend our identification argument
to any mechanism in the class considered: at each (N, z) ∈ L, observed entry frequencies will
identify the equilibrium threshold s∗(N, z), and observed bids will identify the ex post distribution
F ∗ (v; s∗(N, z)). Partial identification of model fundamentals can then proceed as in Section 2.

It only remains to discuss conditions under which the auxiliary assumption of Stage 2 identi-
fication is reasonable. Not surprisingly, both the equilibrium bid function βM (·;N, z) and the set
of bids observed will depend on idiosyncratic features of the mechanism in question, and a general
treatment of Stage 2 identification is beyond the scope of this paper. For current purposes, there-
fore, we simply discuss feasibility under the four standard auction rules: first-price, second-price,
English, and Dutch. See Athey and Haile (2002, 2005) for further details.

First-price auctions

Suppose the mechanism M is a first-price auction: the high bidder wins and pays the amount
bid. In this case, an entrant with value vi facing N − 1 rivals who enter according to s∗ chooses bid
b∗i to solve the following optimization problem:

max
b

(vi − b) ·G∗M (b;N, s∗),

where G∗M (b;N, s∗) is the equilibrium probability that bid b results in award under mechanism M
at competition (N, s∗).30 The optimal b∗i must satisfy the first-order condition

(vi − b∗i )g∗M (b∗i ;N, s
∗)−G∗M (b∗i ;N, s

∗) = 0, (25)

and by hypothesis of equilibrium this solution will be unique. As noted by Guerre, Perrigne,
and Vuong (2000), we can therefore invert Equation (25) to obtain the inverse bidding function
ξM (·;N, z) corresponding to observables (N, z):

vi ≡ b∗i +
G∗M (b∗i ;N, s

∗
N (z))

g∗M (b∗i ;N, s
∗
N (z))

≡ ξM (b∗i ;N, z).

30Note that in principle this probability could depend on both rival bids and mechanism-dependent
factors such as reserve prices.
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Under the hypothesis of equilibrium behavior, G∗M (b;N, s∗N (z)) is the empirical frequency with which
bid b results in award under M at observables (N, z), and g∗M (b;N, s∗N (z)) is the derivative of this
quantity with respect to b. Hence both G∗M (·;N, s∗N (z)) and g∗M (·;N, s∗N (z)) are identified for any
(N, z), which in turn permits identification of the inverse bidding function ξM (·;N, z). Identification
of F ∗(v;N, z) ≡ G∗M

(
ξ−1
M (v;N, z);N, s∗N (z)

)
follows immediately.

Second-price auctions

As is well-known, in a second-price auction it is a dominant strategy to bid values. Hence
identification of ξM (·) is trivial: ξM (b;N, z) ≡ b for all (N, z). Identification can then proceed as in
text.

English auctions

Theoretical work on English (ascending) auctions tends to focus on the special case of an as-
cending button auction: the auction proceeds by means of an continuously ascending price, bidders
drop out as the auction proceeds, and the last bidder standing wins the auction at the currently
posted price. As is well known, when bidders have private values this auction format is strategically
equivalent to a second-price auction: it is a dominant strategy for each bidder to remain in until
the posted price exceeds their willingness to pay. Hence posted prices at which bidders drop out
can be interpreted as reflecting valuations of the exiting bidders.

Relative to the cases considered above, however, an English auction involves two additional com-
plications. First, by construction, the highest bidder’s willingness-to-pay is never revealed. Hence
data on bids can reveal (at most) valuations for n− 1 losing entrants; and nonparametric analysis
must therefore correct for the fact that only a set of order statistics are observed. Fortunately,
there exist well-known results for achieving this; see the relevant sections in, e.g., Athey and Haile
(2005) for details. Second, in many real-world applications, the data-generating process is not a
true button auction but a sequence of discrete ascending bids. In such cases the second-highest
bid need not be identical to the second-highest value, leading to partial identification of the corre-
sponding value distribution; see Haile and Tamer (2003) for further discussion. While we do not
formally consider this partially identified case, in principle many of our fundamental insights should
extend; in particular, replacing ex post distributions with appropriate upper and lower bounds in,
e.g., Proposition 3 will leave all relevant inequalities unchanged. We leave this as an extension for
future work.

Dutch auctions

The Dutch auction mechanism essentially represents the opposite of an English button auction:
the auctioneer posts a continuously declining price, with the object awarded to the first bidder
indicating willingness to buy. As is well known, the Dutch auction format is strategically equivalent
to the first-price sealed bid auction format, with the highest bid satisfying the same first-order
condition as in Guerre, Perrigne, and Vuong (2000). Analytically, the main additional complication
in a Dutch auction is that only the highest bid is observed; this is analogous but opposite to the
problem noted in button auctions above. Again, however, in an IPV environment it is possible to
use standard results on order statistics to map the distribution of the maximum entrant value into
the ex post distribution of values among entrants. Partial identification of AS fundamentals can
then proceed as in Section 2.

49



Appendix C: Proofs

Proof of Proposition 1. For completeness, we establish the general version of Proposition 1 given
in Appendix B, which characterizes entry and bidding behavior in the symmetric pure strategy
Bayesian Nash Equilibrium of any RS auction satisfying Assumption 5. As in text, let F ∗1:N−1(v; s̄)
be the probability that the maximum rival value is below v:

F ∗1:N−1(v; s̄) ≡ [Pr(Sj ≤ s̄) + Pr(Vj ≤ v ∩ Sj ≥ s̄)]N−1

= [Pr(Sj ≤ s̄) + Pr(Vj ≤ v)− Pr(Vj ≤ v ∩ Sj ≤ s̄)]N−1

= [s̄+ Fv(v)− F (v, s̄)]N−1

= [s̄+ F (v, 1)− F (v, s̄)]N−1

Note the following properties of F ∗1:N−1(v; s̄):

• F (v, s) is continuous in (v, s) by Assumption 1.1, so F ∗1:N−1(v; s̄) is continuous in (v, s̄) for
any N .

• F ∗1:N−1(v; s̄) is increasing in s̄ for all (v,N):

s̄− F (y, s̄) = s̄−
ˆ s̄

0

ˆ v

0
dF (y|t) · 1dt

= s̄−
ˆ s̄

0
F (y|t)dt,

so ∂{s̄− F (y, s̄)}/∂s̄ = 1− F (y|s̄) ≥ 0.

By the Revelation Principle (see Krishna (2009)), any mechanism with an equilibrium in pure
strategies has an equivalent direct mechanism such that participants truthfully report types. We
can therefore restrict attention WLOG to direct mechanisms with truthful equilibria. In particular,
letM be an arbitrary direct mechanism involving allocation rule Q(v;E) and payment rule P (v;E),
where E ≡ (s̄, N) is an entry structure and v is a vector of (realized) bidder values, and let
q(vi;E) ≡

´
V−i

Q(vi,v−i, E)f(v−i|E)dv−i and p(vi;E) ≡
´
V−i

P (vi,v−i, E)f(v−i|E)dv−i be the
expected allocation and payment functions facing bidder i given entry E.

Now consider an arbitrary bidder with value vi ∈ V , and permit bidders to report any signal z
in Z = [0, v̄]. For truth-telling to be an equilibrium, we must have

π(vi;E) ≡ q(vi;E) · vi − p(vi;E) ≥ max
z∈Z
{q(z;E) · vi − p(z;E)}.

It follows that π(vi;E) is the maximum of a family of affine functions, which in turn implies that
π(·;E) is a convex function on V.

By the Integral Form Envelope Theorem (see Milgrom (2004)), this restriction in turn implies
that any incentive-compatible direct mechanism must yield equilibrium bidder profit π(·;E) of the
form

π(v;E) = π0(E) +

ˆ v

v
q(y;E) dy,

where π0(E) is the (mechanism-determined) profit of the lowest entering bidder.
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Now consider RS auctions specifically. Let α(·) be the probability award is made when the
highest reported value is y. By Definition 3, the probability of allocation to an entering bidder with
value y is

q(y;E) = α(y) · Pr(Sj ≥ s̄ ∩ Vj ≤ y ∀j)
= α(y) ·

∏
j 6=i

Pr(Sj ≥ s̄ ∩ Vj ≤ y)

= α(y) · F ∗1:N−1(y; s̄),

and under Assumption 5 low-type profits π0(E) are

π0(E) ≡ s̄N−1α(v)v −
ˆ v

0
α(y)dy − E∗[ρ|s̄, N ],

where the low-type payment function ρ(·) is defined as in Assumption 5 and E∗[ρ|s̄, N ] is the
expectation of ρ(·) conditional on rivals entering according to s̄. The expected Stage 2 profit of an
entrant with value v facing N − 1 potential rivals who enter according to threshold s̄ is therefore

π(v; s̄, N) =

ˆ v

0
α(y) · F ∗1:N−1(y; s̄)dy − E[ρ|N, s̄]. (26)

Next consider ex ante expected profit of an entrant with signal si:

Π(si; s̄, N) ≡ E[π(V ; s̄, N)|Si = si]

=

ˆ v̄

v

ˆ v

0
α(y) · F ∗1:N−1(y; s̄)dy dF (v|si)− E[ρ|N, s̄]

=

ˆ v

0
[1− F (y|si)] · α(y) · F ∗1:N−1(y; s̄)dy − E[ρ|N, s̄],

where the third equality follows by changing order of integration. Note the following properties of
Π(si; s̄, N):

• F (y|si) is decreasing in si for all y by stochastic ordering, so Π(si; s̄, N) is increasing in si.
F ∗1:N−1(y; s̄) is increasing in s̄ for all y from above, so Π(si; s̄, N) is increasing in s̄. F ∗1:N−1(y; s̄)
is decreasing in N for all y, so Π(si; s̄, N) is decreasing in N .

• Π(s; s̄, N) is continuous in (s; s̄). For any pairs (s, s̄) and (s′, s̄′),∣∣α(y)F ∗1:N−1(y; s̄)− α(y)F ∗1:N−1(y; s̄′)
∣∣ ≤ α(y)

∣∣F ∗1:N−1(y; s̄)− F ∗1:N−1(y; s̄′)
∣∣

≤
∣∣F ∗1:N−1(y; s̄)− F ∗1:N−1(y; s̄′)

∣∣ ,
and∣∣F (y|s) · F ∗1:N−1(y; s̄)− F (y|s′) · F ∗1:N−1(y; s̄′)

∣∣ ≤ ∣∣F (y|s) · F ∗1:N−1(y; s̄)− F (y|s) · F ∗1:N−1(y; s̄′)
∣∣

+
∣∣F (y|s) · F ∗1:N−1(y; s̄′)− F (y|s′) · F ∗1:N−1(y; s̄′)

∣∣
= F (y|s)

∣∣F ∗1:N−1(y; s̄)− F ∗1:N−1(y; s̄′)
∣∣

+F ∗1:N−1(y; s̄′)
∣∣F (y|s)− F (y|s′)

∣∣
≤

∣∣F ∗1:N−1(y; s̄)− F ∗1:N−1(y; s̄′)
∣∣

+
∣∣F (y|s)− F (y|s′)

∣∣ .
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It follows that∣∣Π(s; s̄, N)−Π(s′; s̄′, N)
∣∣ ≤ ˆ v̄

0
α(y)

∣∣F ∗1:N−1(y; s̄)− F ∗1:N−1(y; s̄′)
∣∣ dy

+

ˆ v̄

0
α(y) ·

∣∣F (y|s) · F ∗1:N−1(y; s̄)− F (y|s′) · F ∗1:N−1(y; s̄′)
∣∣ dy

≤ 2

ˆ v̄

0

∣∣F ∗1:N−1(y; s̄)− F ∗1:N−1(y; s̄′)
∣∣ dy

+

ˆ v̄

0

∣∣F (y|s)− F (y|s′)
∣∣ dy

= 2

ˆ v̄

0

∣∣F ∗1:N−1(y; s̄)− F ∗1:N−1(y; s̄′)
∣∣ dy

+

∣∣∣∣ˆ v̄

0
F (y|s)dy −

ˆ v̄

0
F (y|s′)dy

∣∣∣∣ ,
where the last equality follows by monotonicity of F (y|s) and F ∗1:N−1(y; s̄) in s̄. As |s− s′| →
0, the first term converges to zero by continuity of F ∗1:N−1(y; s̄) in s̄, and the second term con-
verges to zero by continuity of

´
V F (y|s)ds in s under Assumption 2. Hence |Π(s; s̄, N)−Π(s′; s̄′, N)| →

0 as |s− s′| → 0, so Π(s; s̄, N) is continuous in (s; s̄).

Now consider a symmetric equilibrium in threshold strategies. If Π(0; 0, N) ≥ c, entry at Stage 1 is
a dominant strategy. If Π(1; 1, N) ≤ c, remaining out is a dominant strategy. Otherwise, we seek
an interior equilibrium s∗ ∈ (0, 1) such that a marginal entrant (potential bidder with signal s∗) is
exactly indifferent to entry:

Π(s∗; s∗, N) ≡ c. (27)

First establish existence of s∗. Π(si; s̄, N) is continuous and increasing in its first two arguments,
and Π(0; 0, N) > c > Π(1; 1, N) by hypothesis. Consequently at least one s∗ solving 27 will exist.
Since Π(si; s̄, N) is increasing in si, all bidders with Si ≥ s∗ will (weakly) prefer to enter, and all
bidders with Si < s∗ will (weakly) prefer to remain out. Hence “enter if Si ≥ s∗” is a best response
to itself, and s∗ constitutes a threshold equilibrium.

Next establish uniqueness and monotonicity of s∗. Suppose there exists an interior solution s∗ ∈
(0, 1) (else the solution is an endpoint, hence unique). By construction, we then have Π(s∗; s∗, N) =
c > 0, which can only obtain if the set Y+ ≡ {y ∈ V|[1− F (y|s∗)] · α(y) > 0} has positive measure.
In particular, this implies F (y|s∗) < 1 for each y ∈ Y+. By the discussion above, F ∗1:N−1(y; s∗) will
lie in the open interval (0, 1), will be strictly increasing in s∗, and will strictly decreasing in N at
every y such that F (y|s∗) < 1. Since s∗ ∈ (0, 1) implies the set of such y has positive measure, the
integral Π(s∗; s∗, N) will be strictly increasing in its second argument and strictly decreasing in N .
Hence any interior solution s∗ ∈ (0, 1) will be unique, strictly increasing in c, and strictly increasing
in N . Finally, note that s̄ → 1 implies F ∗1:N−1(y; s̄) → 1 for any y and N , which in turn implies
Π(s̄; 1, N) = Π(s̄; 1, N + 1) for all s̄ and N . Hence if s∗N ∈ (0, 1) solves (27) N , we must have

c = Π(s∗N ; s∗N , N) < Π(s∗N ; 1, N) = Π(s∗N ; 1, N + 1) ≤ Π(1; 1, N).

Combining the above, we conclude that s∗N ∈ (0, 1) implies s∗N+1 ∈ (s∗N , 1).
It only remains to argue that any symmetric pure strategy equilibrium has an equivalent thresh-

old equilibrium. To see this, choose any symmetric pure strategy equilibrium, and let E be the set
of signals inducing entry in this equilibrium. Suppose that E is not a threshold set; that is, that
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there exists s̄ > min E such that a bidder with signal s̄ elects not to enter. Then from above
Π(s̄; E , N) ≥ Π(min(E), E , N) ≥ c. If either inequality is strict, then a bidder with Si = s̄ would
strictly prefer entry, which contradicts equilibrium. Hence Π(s̄; E , N) = Π(min(E), E , N) = c, which
in turn implies F (y|s̄) = F (y|min E) a.e. by monotonicity of F (y|s). It follows that there exists
a payoff-equivalent equilibrium where a bidder with signal Si = s̄ enters and a bidder with signal
Si = min(E) does not. Iterating this argument over sets of positive measure then establishes the
claim.31

Proof of Proposition 2. Claims 1 and 2 established in text. Claim 3 follows since complete varia-
tion implies the condition in Claim 1 is satisfied everywhere.

Proof of Proposition 3. We establish claims for F+(v|s); the argument for F−(v|s) is analogous.
First consider the candidate bound F̌+(v|ŝ), defined for ŝ ∈ S as in Equation 10:

F̌+(v|ŝ) =

{
limt↑t−(ŝ)

{
(1−t)F ∗(v;t)−(1−ŝ)F ∗(v;ŝ)

ŝ−t

}
if t−(ŝ) ∈ S;

1 otherwise.

By construction, if s−(ŝ) /∈ S then t−(ŝ) ≡ 0, and if t−(ŝ) = 0 and 0 /∈ S then F̌+(v|ŝ) ≡ 1 ≥ F (v|ŝ).
Hence we focus on the case t−(ŝ) ∈ S, which yields two possible subcases:

• ŝ = t−(ŝ): By construction of t−(ŝ), this occurs when ŝ ∈ int(S), which implies that there
exists an open neighborhood of identified thresholds t ∈ S around ŝ. Consequently, we can
identify the function (1 − t)F ∗(v; t) at points arbitrarily close to ŝ, and the limit defining
F̌+(v|ŝ) converges to the corresponding derivative:

lim
t↑t−(ŝ)

{
(1− t)F ∗(v; t)− (1− ŝ)F ∗(v; ŝ)

ŝ− t

}
= − ∂

∂s
(1− s)F ∗(v; s)|s=ŝ ≡ F (v|ŝ).

Hence F̌+(v|ŝ) = F (v|ŝ), so F̌+(v|ŝ) is a distribution and F (v|ŝ) is exactly identified.

31The LS model provides a concrete illustration of this argument. As discussed in Levin and Smith
(1994), equilibrium in this model involves random entry by bidders. The AS model interprets such
randomization as entry conditional on the realization of an uninformative Stage 1 signal. In this
case, any entry set E of measure 1 − s∗ will constitute a symmetric pure strategy equilibrium. In
practical terms, however, these equilibria are precisely equivalent to that induced by the threshold
strategy s∗. As every similar example must involve a similar equivalence, our focus on threshold
strategies involves no loss of generality.
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• ŝ > t−(ŝ): By construction, t−(ŝ) is then the nearest lower neighbor of ŝ in S (but separated
by an open interval). In this case,

lim
t↑t−(ŝ)

{
(1− t)F ∗(v; t)− (1− ŝ)F ∗(v; ŝ)

s̄− t

}
=

[1− t−(ŝ)]F ∗(v; t−(ŝ))− (1− ŝ)F ∗(v; ŝ)

ŝ− t−(ŝ)

=
1

ŝ− t−(ŝ)

{ˆ 1

t−(ŝ)
F (v|t)dt−

ˆ 1

ŝ
F (v|t)dt

}

=
1

ŝ− t−(ŝ)

ˆ ŝ

t−(ŝ)
F (v|t)dt

= F (v|Si ∈ [t−(ŝ), ŝ]).

Line 1 implies F̌+(v|ŝ) is identified (since it depends only on identified components), Line 5
implies that F̌+(v|ŝ) is a distribution, and Line 4 implies that F̌+(v|ŝ) bounds F (v|ŝ):

1

ŝ− t−(ŝ)

ˆ ŝ

t−(ŝ)
F (v|t)dt ≥ 1

ŝ− t−(ŝ)

ˆ ŝ

t−(ŝ)
F (v|ŝ)dt

=
ŝ− t−(ŝ)

ŝ− t−(ŝ)
F (v|ŝ) = F (v|ŝ),

where the first inequality follows by hypothesis of stochastic ordering.

Now consider the bounds F+(v|s) defined in Proposition 3:

• Identification of F+(v|s) follows from (i) t−(s) ∈ {0,S} by construction, (ii) identification of
F̌+(v|s) for s ∈ S, and (iii) F̌+(v|s) ≡ 1 for s = 0 if s 6= S. Thus F+(v|s) depends only on
identified quantities, hence is identified.

• The distribution and exact identification properties of F+(v|s) are inherited directly from the
corresponding properties of F̌+(v|s).

• Finally, to establish bounds, we consider cases:

– If s ∈ S, then F+(v|s) ≡ F̌+(v|s) ≥ F (v|s).
– Otherwise, F+(v|s) ≡ F̌+(v|t−(s)) ≥ F (v|t−(s)) ≥ F (v|s), where the last inequality

follows by stochastic ordering.

Taken together, the cases above establish all claims in Proposition 3.

Proof of Proposition 4. Expected marginal profit ΠN (s, s∗;F ) is identified up to F at each N , and
ΠN (s, s;F ) is stochastically ordered in F for all (s, s∗, N). Identification of c+(z) and c−(z) and the
inequalities c+(z) ≥ c(z) ≥ c−(z) thus follow immediately from identification of F−(y|s̄N (z)) and
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F+(y|s̄N (z)) and F+(y|s̄N (z)) ≥ F (y|s̄N (z) ≥ F−(y|s̄N (z)), with exact equality obtaining when
F±(y|s̄N (z)) = F (y|s̄N (z)).

Proof of Proposition 5. We first establish several basic properties of T̂k(·):

• T̂k(·) is linear : T̂k(αF ) ≡ −
´
αF (y)F̂1:k−1(y; ŝk)dy = α(−1)

´
F (y)F̂1:k−1(y; ŝk)dy = αT̂k(F ).

• T̂k(·) is additively separable: T̂k(F +G) ≡ −
´

[F (y) +G(y)]F̂1:k−1(y; ŝk)dy = T̂k(F ) + T̂k(G).

• T̂k(·) is decreasing in F (·): F (y) ≥ G(y) for all y implies T̂k(F ) ≤ T̂k(G).

These properties in turn imply that the pointwise sharp identified set is convex in Γ: that is, for any
(ȳ, ŝk) ∈ V ×S, if (Γ, ȳ, ŝk) ∈ F̂ and (Γ′, ȳ, ŝk) ∈ F̂ , then (tΓ + (1− t)Γ′, ȳ, ŝk) ∈ F̂ for all t ∈ [0, 1].
To see this, note that by definitions 1 and 2 there must exist candidate models {F̃ , c̃} and {F̃ ′, c̃′}
passing through (Γ, ȳ, ŝk) and (Γ′, ȳ, ŝk) respectively. Let F̃ ′′ ≡ tF̃ +(1−t)F̃ ′ and c̃′′ ≡ tc̃+(1−t)c̃′.
Then by Condition 3 of Definition 1 we have

T̂k(F̃
′′) + κ̂k = t[T̂k(F̃ ) + κ̂k] + (1− t)[T̂k(F̃ ′) + κ̂k]

= tc̃+ (1− t)c̃′

= c̃′′ ∈ [c̃, c̃′],

and by Condition 2 of Definition 1 we have
ˆ 1

ŝk

F̃ ′′(y|s)ds = t

ˆ 1

ŝk

F̃ (y|s)ds+ (1− t)
ˆ 1

ŝk

F̃ ′(y|s)ds

= tλ̂k(y) + (1− t)λ̂k(y) = λ̂k(y).

F̃ ′′ inherits the distributional properties of F̃ and F̃ ′′ and F̃ ′′(ȳ|ŝk) ≡ tΓ+(1− t)Γ′ by construction,
so {F̃ ′′, c̃′′} is a candidate model passing through (tΓ + (1− t)Γ′, ȳ, ŝk).

Now turn to Proposition 5 itself. First consider the “only if” direction: F is pointwise sharp
only if for each ȳ ∈ V and ŝk ∈ S, κ̂k + T̂k

[
F̈+
ȳk(·)

]
≥ c− and κ̂k + T̂k

[
F̈−ȳk(·)

]
≤ c+. Suppose there

exists (ȳ, ŝk) such that κ̂k + T̂k

[
F̈+
ȳk(·)

]
< c−. By construction, F̈+

ȳk(·) is the smallest distribution

attaining the upper bound F+(ȳ|ŝk) which is also consistent with F−(·|ŝk). Hence κ̂k+T̂k

[
F̈+
ȳk(·)

]
≥

κ̂k + T̂k[F ] for any distribution F such that F (ȳ) = F+(ȳ|ŝk) and F (y) ≥ F−(y|ŝk) for all y. It
follows that there can exist no F (·) simultaneously satisfying Conditions 1, 2 and 3 of Definition 1,
so F is not pointwise sharp. The argument for κ̂k + T̂k

[
F̈−ȳk(·)

]
≤ c+ is analogous.

Next consider the “if” direction: F is pointwise sharp if for each ȳ ∈ V and ŝk ∈ S, κ̂k +

T̂k

[
F̈+
ȳk(·)

]
≥ c− and κ̂k + T̂k

[
F̈−ȳk(·)

]
≤ c+. The discussion above implies that the pointwise

identified set is convex in Γ. It is thus sufficient to show existence of candidate models attaining the
upper and lower envelopes of F at each point (ȳ, ŝk) ∈ V ×S. As above, we illustrate the argument
for the upper bound F+(ȳ|ŝk); the argument for F−(ȳ|ŝk) is analogous.

55



Suppose κk + Tk

[
F̈ȳk(·)

]
≥ c−, let c̃ ≡ min

{
c+, κk + Tk

[
F̈ȳk(·)

]}
, and note c̃ ∈ [c−, c+] by

hypothesis. Define F̃ȳk(·) as follows:

F̃ȳk(·) ≡ γN̄ F̈ (·|s̄N̄ ) + (1− γN̄ )F+(·|s̄N̄ ),

where γk is a solution to

κk + γkTk

[
F̈ȳk(·)

]
+ (1− γk) · Tk

[
F+(·|s̄k)

]
≡ c̃.

By construction, κk + Tk[F̈ȳk(·)] ≥ c̃ and κk + Tk[F
+(·|s̄k)] ≡ c−k ≤ c− ≤ c̃. Thus γN̄ exists and

lies in the unit interval. Hence F̃ȳk(·) exists and satisfies F−(·|s̄k) ≤ F̈ȳk(·) ≤ F̃ȳk(·) ≤ F+(·|s̄k).
Further, by linearity and additive separability of Tk(·), κk + Tk[F̃k(·)] ≡ c̃.

Next construct candidate distributions F̃j(·) for j 6= k. Toward this end, choose any j 6= k, and
define F̃ȳj(·) as follows:

F̃j(·) ≡ γjF−(·|s̄j) + (1− γj)F+(·|s̄j),

where γj is a solution to

γjTj
[
[F−(·|s̄j)

]
+ (1− γj) · Tj

[
F+(·|s̄j)

]
≡ c̃− κj .

As above, κj + Tj [F
−(·|s̄j)] ≡ c+

j ≥ c− and κj + Tj [F
+(·|s̄j)] ≡ c−j ≤ c+. Hence γj exists and lies

on the unit interval. Further, F̃j(·) exists, satisfies F−(·|s̄j) ≤ F̃j(·) ≤ F+(·|s̄j), and by linearity
κj + Tj [F̃j(·)] = c̃.

Now take c̃ as a candidate entry cost, and define a candidate conditional distribution F̃ (·|s) on
[s̄N, s̄N̄ ] as follows:

F̃ (y|s) =


F̃ȳk(·) if s = ŝk

F̃j(·) if s = ŝj and j 6= k

F− [·|max {s̄ ∈ S|s̄ < s}] otherwise.

Note the following properties of F̃ (·|s):

• For each s ∈ [ŝN, ŝN̄ ], F̃ (·|s) is a weighted average of distributions, hence a distribution.

• F̃ (·|s) is monotonically decreasing in s on [ŝN, ŝN̄ ]. This follows since for all j ∈ {N, N̄ − 1},
F̃ (y|ŝj) ≥ F−(y|ŝj) = F+(y|ŝj+1) ≥ F̃ (y|ŝj+1) at identified thresholds, and s ∈ (ŝj , ŝj+1)
implies F̃ (y|s) ≥ F−(y|s̄j) = F+(y|s̄j+1) between identified thresholds.

• For all j ∈ {N, N̄}, κj + Tj [F̃j(·|ŝj)] ≡ c̃.

Thus F̃ (·|s) is a candidate conditional distribution satisfying Restrictions (18) and (20) in Definition
1.
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It remains to show that F̃ (·|s) satisfies Restriction (19). To see this, note that for j ∈ {N, N̄−1},
ˆ ŝj+1

ŝj

F̃ (y|s)ds =

ˆ ŝj+1

ŝj

F−(y|ŝj)ds

= (ŝj+1 − ŝj)F−(y|ŝj)

= (ŝj+1 − ŝj)
(1− ŝj)F ∗(y; ŝj)− (1− ŝj+1)F ∗(y; ŝj+1)

(s̄j+1 − s̄j)
= (1− ŝj)F ∗(y; ŝj)− (1− ŝj+1)F ∗(y; ŝj+1).

Note further that for j ≤ N̄ − 2,

ˆ ŝj+2

ŝj

F̃ (y|s)ds =

ˆ ŝj+1

ŝj

F̃ (y|s)ds+

ˆ ŝj+2

ŝj+1

F̃ (y|s)ds

= (1− ŝj)F ∗(y; ŝj)− (1− ŝj+1)F ∗(y; ŝj+1)

+(1− ŝj+1)F ∗(y; s̄j+1)− (1− ŝj+2)F ∗(y; ŝj+2)

= (1− ŝj)F ∗(y; ŝj)− (1− ŝj+2)F ∗(y; ŝj+2).

By iteration, it follows that for k ∈ {j, ..., N̄},
ˆ ŝk

ŝj

F̃ (y|s)ds = (1− ŝj)F ∗(y; ŝj)− (1− ŝk)F ∗(y; ŝk).

In particular, ˆ ŝN̄

ŝj

F̃ (y|s)ds = (1− ŝj)F ∗(y; ŝj)− (1− ŝN̄ )F ∗(y; ŝN̄ ).

Now consider extending the candidate model F̃ (·|s) to s > ŝN̄ as follows: F̃ (·|s) = F ∗(·; ŝN̄ ) for
s > ŝN̄ . We know F̃ (·|ŝN̄ ) ≥ F−(·|ŝN̄ ) ≡ F ∗(·; ŝN̄ ), so F̃ (·|s) satisfies Restriction (18). Further, by
construction, ˆ 1

ŝN̄

F̃ (y|s)ds = (1− ŝN̄ )F ∗(y; ŝN̄ );

so
ˆ 1

ŝj

F̃ (y|s)ds = (1− ŝj)F ∗(y; ŝj)

= λj(y)

for all j ∈ N and y ∈ V. We conclude that there exists a candidate model F̃ (·|·) satisfying
Restrictions (20), (19), and (18) such that F̃ (ȳ|s̄k) = F+(ȳ, s̄k). Hence F+ is pointwise sharp at
(ȳ, s̄k).

The argument for F− makes use of the condition κ̂k+T̂k[F̈
−
ȳk(·)] ≤ c

+ and has signs reversed, but
is otherwise equivalent. Hence κ̂k + T̂k[F̈

+
ȳk(·)] ≥ c

− and κ̂k + T̂k[F̈
−
ȳk(·)] ≤ c

+ for all (ȳ, ŝk) ∈ V ×S
implies F is pointwise sharp. This in turn establishes the proposition.
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Proof of Proposition 6. Suppose F0 is an identified set, and consider refinement as in Proposition
6. The proof proceeds in three steps.

First, suppose Fj is a pointwise identified set, and consider points discarded in iteration j.
By construction, these points are identically those where Proposition 5 fails; i.e. those which no
candidate model at Fj can attain. It follows that Fj+1 contains every candidate model contained
in Fj ; i.e. all candidate models by definition of pointwise identified set. Hence if Fj is a pointwise
identified set, then Fj+1 is a pointwise identified set. We know F0 is pointwise identified, so we
conclude Fj is pointwise identified at each j.

Second, the sequence of sets {Fj}∞j=0 converges to a bounded, nonempty limit F̂ . First note
that (by construction) {Fj} is a contracting sequence: Fj+1 ⊂ Fj for all j. Let χ be any point in
the limit superior of the sequence {Fj}: that is, any tuple (Γ, ȳ, ŝk) such that there exist a sequence
of points χjk and a sub-sequence {Fjk} of {Fj} with χjk → χ and χjk ∈ Fjk for all jk. Now define
a sequence χj for j = {0, ...,∞} as follows: χj = χjk′ , where k

′ = min{k|jk ≥ j}. Since {Fj} is a
contracting sequence, χj ∈ Fj for all j, and since χjk → χ, so does χj . Thus χ is also in the limit
inferior of {Fj}, which in turn implies that {Fj} has a well-defined limit. Label this limit F̂ . By
construction, Fj is bounded within V × S × [0, 1] for each j, so F̂ is bounded. Further, since Fj
contains the true model pointwise at each j, F̂ must also contain the true model pointwise. Hence
F̂ is nonempty.

Third, by construction, F̂ is a pointwise identified set such that the conditions of Proposition
5 hold (otherwise the algorithm would contract further, which is a contradiction). Hence F̂ is
pointwise sharp.

Proof of Corollary 1. Let F0 be the pointwise identified set from Proposition 3, and Fj be the jth
iteration in Proposition 6. By construction, the upper bound on Fj is obtained by contracting the
upper bound on Fj−1 at points (ȳ, ŝk) where κ̂k + T̂k[F̈

+
ȳk(·)] < c− at iteration j − 1, where the new

upper bound by definition satisfies κ̂k+T̂k[min{F̈+
ȳk(Y ),1[Y ≥ ȳ]·F+

j (ȳ|ŝk)}] ≡ c−. If no contraction
point exists, then F+

j ≡ F+
j−1 by hypothesis. Alternatively, if at least one contraction point (ȳ, ŝk)

exists, then choose this point. By definition F̈+
ȳk(Y ) = min

{
F−j−1(Y |ŝk),1[Y ≥ ȳ] · F+

j−1(ȳ|ŝk)
}
, so

min
{
F̈+
ȳk(Y ),1[Y ≥ ȳ] · F+

j (ȳ|ŝk)
}

= min
{
F−j−1(Y |ŝk),1[Y ≥ ȳ] · F+

j−1(ȳ|ŝk),1[Y ≥ ȳ] · F+
j (ȳ|ŝk)

}
= min

{
F−j−1(Y |ŝk),1[Y ≥ ȳ] · F+

j (ȳ|ŝk)
}

since F+
j (ȳ|ŝk) ≤ F+

j−1(ȳ|ŝk) by contraction. But F+
j (Y |ŝk) is increasing in Y by definition and

F−j−1(Y |ŝk) ≤ F−j (Y |ŝk) ≤ F+
j (Y |ŝk) by construction, so min

{
F−j−1(Y |ŝk),1[Y ≥ ȳ] · F+

j (ȳ|ŝk)
}
≤

F+
j (Y |ŝk) for all (Y, ȳ, ŝk). It follows that

κ̂k + T̂k[F
+
j (Y |ŝk)] ≤ κ̂k + T̂k[min{F̈+

ȳk(Y ),1[Y ≥ ȳ] · F+
j (ȳ|ŝk)}]

≡ c− by hypothesis.

Thus iteration on Fj can produce no new information on c.
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In particular, at any N such that κ̂N + T̂N [F+
0 (Y |ŝN )] ≡ c−, we must have F+

j (Y |ŝN ) =

F+
0 (Y |ŝN ) for all j. Thus a candidate model with F̃ (Y |ŝN ) = F+

0 (Y |ŝN ) will be feasible at each
iteration j. By definition of c−, there exists at least one such N , which in turn implies existence of
a candidate model with c̃ = c−. Hence the lower bound c− is sharp. The argument for the upper
bound c+ is analogous.

Proof of Lemma 2 (from Gentry and Li (2012)). Let M be any RS auction satisfying Assump-
tions 23.1 and 23.2, and suppose that M involves award rule α(·) and induces low-type payment
p0(v ;w−i). Define ρ(w−i) as follows:

ρ(w−i) = p0(v ;w−i)− 1[n = 1]

{
α(v)v −

ˆ v

0
α(y)dy

}
.

Now define p̂(wi;w−i) for wi ≤ v as in Assumption 23:

p̂(wi;w−i) = 1[n = 1]

{
α(wi)wi −

ˆ wi

0
α(y)dy

}
+ ρ̂(w−i).

By construction, p̂(·) induces the same low-type payments as p0(·) under truthful revelation:

p̂(v ;w−i) = 1[n = 1]

{
α(v)v −

ˆ v

0
α(y)dy

}
+ ρ(w−i)

≡ p0(v ;w−i).

It remains only to show that p̂(·) induces truthful revelation from an entrant with type v . The initial
mechanism induces an equilibrium so wi > v cannot be optimal. For wi ≤ v , the new mechanism
induces profit

π(wi;w−i) = 1[n = 1]α(wi)v − p̂(wi;w−i)

= 1[n = 1]

[
α(wi)[v − wi] +

ˆ wi

0
α(y)dy

]
− ρ(w−i).

The derivative of this function with respect to i’s report wi is

π′(wi;wi) = 1[n = 1]α′(wi)[v − wi] ≥ 0 ∀wi ≤ v .

Hence a low-type bidder can do no better than report wi = v . Symmetry and monotonicity of ρ(·)
follow from anonymity of the mechanism and Condition 2 of Assumption 5.
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Proof of Lemma 3 . For any (s;N) pair, expected seller revenue under mechanism M is given by

RM (s;N) = AV (s;N)−NΠ∗(s;N),

where AV (·) is ex ante expected allocation value of the object being auctioned and Π∗(s;N) is
expected ex ante equilibrium profit for an arbitrary bidder.

To obtain AV (·), let Y1:N be the maximum realized value among N potential bidders. Then net
value created isY1:N if sale, v0 if no sale. Conditional on Y1:N , expected allocation value is thus

α(Y1:N )Y1:N + [1− α(Y1:N )]v0.

Integrating with respect to Y1:N , we obtain ex ante expected allocation value:

AV (s;N) = sNv0 +

ˆ v̄

v
{α(y)y + [1− α(y)]v0} f∗1:N (y; s)dy

=

ˆ v̄

v0

{α(y)y + [1− α(y)]v0} dF ∗1:N (y; s),

where F ∗1:N (y; s) ≡ [s+(1−s)F ∗(y; s)]N is the distribution of Y1:N on [v0, v̄] given entry threshold s,
f∗1:N (y; s) ≡ N(1−s)F ∗1:N−1(y; s)f∗(y; s) is the corresponding density, and α(v0) ≡ 0 by Assumption
5.

To obtain Π∗(s;N), we start from the result in Equation (3):

π(v; s,N) = π0(s,N) +

ˆ v

v
α(t) · F ∗1:N−1(t; s)dt

=

ˆ v

v0

α(t)sN−1dt+

ˆ v

v
α(t) · F ∗1:N−1(t; s)dt− E[ρ|N, s]

=

ˆ v

v0

α(t) · F ∗1:N−1(t; s)dt− E[ρ|N, s]

= λ(v; s,N) · α(v)F ∗1:N−1(t; s)− E[ρ|N, s],

where the second equation follows from Assumption 5 and

λ(v; s,N) ≡

0 if α(v) = 0;´ v
v0

α(t)
α(v) ·

F ∗1:N−1(t;s)

F ∗1:N−1(v;s)dt otherwise.

gives the average incremental profit (above −ρ) a bidder of type v receives per win.
Integrating over the ex post density f∗(y; s) and multiplying by probability of entry (1−s) gives

ex ante expected profit Π∗(s;N):

Π∗(s;N) = (1− s)
ˆ v̄

v
λ(y; s,N) · α(y)F ∗1:N−1(y; s)f∗(y; s)dy − (1− s)E[ρ|N, s]
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and multiplying by N yields

NΠ∗(s;N) =

ˆ v̄

v
λ(y; s,N)α(y) ·N(1− s)F ∗1:N−1(y; s)f∗(y; s)dy −N(1− s)E[ρ|N, s]

=

ˆ v̄

v
λ(y; s,N)α(y) · f∗1:N (y; s)dy −N(1− s)E[ρ|N, s]

=

ˆ v̄

v
λ(y; s,N)α(y) dF ∗1:N (y; s)dy −N(1− s)E[ρ|N, s].

Combining the results above gives a final expression for seller revenue:

RM (s;N) =

ˆ v̄

v0

{α(y)y + [1− α(y)]v0} f∗1:N (y; s)dy

−
ˆ v̄

v
λ(y; s,N)α(y) dF ∗1:N (y; s) +N(1− s)E[ρ|N, s]

=

ˆ v̄

v0

{α(y)[y − λ(y; s,N)] + [1− α(y)]v0} dF ∗1:N (y; s)dy +N(1− s)E[ρ|N, s].

where the second equality follows because
´ v
v0
λ(y; s,N) dF ∗1:N (y; s) = 0: λ(v0; s,N) ≡ 0 and

f∗1:N (y; s) ≡ 0 for y ∈ (v0, v).
Identification of RM (s;N) for s ∈ S follows directly from Equation 24: RM (·) depends only on

mechanism components (α, ρ, v0) (known by hypothesis) and distributions F ∗1:N−1(·; s) and F ∗1:N (·; s)
(identified for s ∈ S). Thus it only remains to show RM (s;N) is decreasing in s. Equation (24)
implies that s affects seller revenue through (at most) three channels: the per-win profit function
λα(v; s,N), the distribution F ∗1:N (·; s), and the residual term N(1− s)E[ρ|N, s]. We show that each
of these partial effects is negative. For purposes of this derivation, let F ∗w(y; s) ≡ s+ (1− s)F ∗(y; s)
denote the ex ante distribution of Bidder i’s value (so F ∗1:k(y; s) ≡ F ∗w(y; s)k.

First, consider effects through the per-win profit function λ(v; s,N). Note that

∂

∂s
λ(v; s,N) =

ˆ v

v0

α(t)

α(v)
· ∂
∂s

{
F ∗w(t; s)N−1

F ∗w(v; s)N−1

}
dt.

By algebra,

∂

∂s

{
F ∗w(t; s)N−1

F ∗w(v; s)N−1

}
=

(N − 1)F ∗w(t; s)N−2 ∂
∂sF

∗
w(t; s)

F ∗w(v; s)N−1
−

(N − 1)F ∗w(t; s)N−1 ∂
∂sF

∗
w(v; s)

F ∗w(v; s)N

= (N − 1)
F ∗w(t; s)N−2

F ∗w(v; s)N−1

{
[1− F (t|s)]− F ∗w(t; s)

F ∗w(v; s)
[1− F (v|s)]

}
≥ 0 ∀t ≤ v,

since t ≤ v means F ∗w(t; s) ≤ F ∗w(v; s) and F (t|s) ≤ F (v|s) ∀s. Thus λ(v; s,N) is increasing in s for
all v, so the effect of s on R through λ(v; s,N) is negative.

Next, consider effects through the distribution F ∗1:N (·; s). It is easy to show that F ∗1:N (v; s) is
increasing in s for any v, hence s′ ≥ smeans F ∗1:N (·; s) first-order stochastically dominates F ∗1:N (·; s′).
Thus if the integrand

{α(y)[y − λ(y; s,N)] + [1− α(y)]v0} (28)

is increasing in y, an increase in s will involve taking the expectation of an increasing function with
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respect to a stochastically dominated distribution, which must imply a decrease in revenue. It is
therefore is sufficient to show that the integrand (28) is increasing in y.

• First, note that [y − λ(y; s,N)] is increasing in y:

∂

∂y
[y − λ(y; s,N)] ≡ 1− ∂

∂y

ˆ y

v0

α(t)

α(y)
· F
∗
w(t; s)N−1

F ∗w(y; s)N−1
dt

= 1− ∂

∂y

1

α(y)F ∗w(y; s)N−1
+ 1

= − ∂

∂y

1

α(y)F ∗w(y; s)N−1
≥ 0

since α(y)F ∗w(y; s)N−1 is increasing in y by construction.

• Second, note that [y − λ(y; s,N)] ≥ v0 for y ≥ v0:

[y − λ(y; s,N)] ≡ [y − λ(y; s,N)]|v0 +

ˆ y

v0

∂

∂t
[t− λ(t; s,N)]dt

= v0 +

ˆ y

v0

∂

∂t
[t− λ(t; s,N)]dt

≥ v0

since we know ∂
∂y [y − λ(y; s,N)] ≥ 0.

• Finally, note that (by construction) α(y) is increasing in y.

Hence increasing y has two effects on the function (28): it increases [y−λ(y; s,N)] and shifts weight
from v0 to [y−λ(y; s,N)] (through α(y)). Since [y−λ(y; s,N)] ≥ v0, both these effects are positive,
so (28) is increasing in y. It follows that increasing s leads to taking an expectation of an increasing
function with respect to a stochastically dominated distribution. Hence the effect of s on R through
the distribution F ∗1:N (y; s) is negative.

Finally, note that ρ(·) ≥ 0 and weakly increasing by Assumptions 5 and 6. Since the distribution
of rival realizations w−i is stochastically decreasing in s, an increase in s therefore implies a decrease
in (1− s)NE[ρ|N, s].

Combining these observations implies that seller revenue RM (s;N) is decreasing in s for any N .

Proof of Lemma 4. We establish claims for s+
M (N, z); the argument for s−M (N, z) is analogous.

Suppose s∗ is an equilibrium under mechanismM at (N, z). Then Proposition 1 implies ΠM (s∗, N ;F ) ≡
c(z). We know the function ΠM (s,N ; F̃ ) is increasing in s and decreasing in F̃ , so it follows that

c+(z) ≥ c(z) ≡ ΠM (s∗, N ;F ) ≥ ΠM (s∗, N ;F+)

Hence if ΠM (s′, N ;F+) > c+(z), then s′ > s∗M (N, z). Taking the smallest such s′ in S (or the
uninformative bound 1 if no such s′ exists) yields the identified bound s+

M (N, z) defined in Lemma
4, which establishes the claim.
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Proof of Proposition 7. Follows immediately by combining identification and monotonicity ofR(s̄, N)
in Lemma 3 with identified bounds on s∗ in 4.

Proof of Lemma on unobserved heterogeneity in Section 4.1. (Follows proofs of Lemma 1 and
Theorem 1 in Hu, McAdams, and Shum (2011).) Fix N ∈ L such that N ≥ 3, and let
Ĝ(W1, ...,WN ) and ĝ(W1, ...,WN ) denote the joint distribution and (mixed) joint density of realized
bids at N (where as above values on the zero axes represent probability masses, and we temporarily
suppress dependence on N). Let D be a discretization satisfying Assumption 9, and Di = D(Wi)
and di = D(wi) denote the random variable and realized index induced by this discretization for
bidder i. Let w̄i ∈ W denote a particular (fixed) value ofWi, and introduce the following probability
arrays in matrix notation:

M̂djw̄i|dk =
[

Pr {Dj = j′,Wi = w̄i|Dk = k′}
]
{j′,k′}∈U×U

M̂dj |dk =
[

Pr {Dj = j′|Dk = k′}
]
{j′,k′}∈U×U

M̂dj ,dk =
[

Pr {Dj = j′, Dk = k′}
]
{j′,k′}∈U×U

Mdj |u =
[

Pr {Dj = j′|U = u′}
]
{j′,u′}∈U×U

Mdj ,u =
[

Pr {Dj = j′, U = u′}
]
{j′,u′}∈U×U

Mu|dj =
[

Pr {U = u′|Dj = j′}
]
{u′,j′}∈U×U

Dw̄i|u = diag {g(w̄i|U = 1), ...g(w̄i|U = K)} .
D̂dj = diag {Pr(Dj = 1), ...,Pr(Dj = K)} .

These definitions in turn imply the following useful identities: for each w̄i ∈ W,

M̂djw̄i|dk = Mdj |uDw̄i|uMu|dk (29)

M̂dj |dk = Mdj |uMu|dk (30)

M̂dj ,dk = Mdj |uM
T
dk,u

(31)

M̂dj ,dk = M̂dj |dkD̂dk . (32)

Next observe that full rank for M̂dj ,dk implies full rank for all other matrices in Equations 29-32.
First, since M̂dj ,dk = Mdj |uM

T
dk,u

by Equation 31, we know rank(M̂dj ,dk) = min{rank(Mdj |u), rank(MT
dk,u

)},
which in turn implies rank(Mdj |u) = rank(Mdk,u) = K since all matrices are K ×K. Similarly, by
Equation (32), rank(Mdj |dk) = rank(Ddj ) = K, and by Equation (30), rank(Mu|dk) = K. Thus if
M̂dj ,dk has full rank, then all other matrices in Equations (30)-(32) also have full rank.
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Now proceed as follows. Rearrange (30) to obtain

Mu|dk = M−1
dj |uM̂dj |dk , (33)

and postmultiply both sides of (29) by M̂−1
dj |dk to get

M̂djw̄i|dkM̂
−1
dj |dk = Mdj |uDw̄i|uMu|dkM̂

−1
dj |dk

= Mdj |uDw̄i|uMu|dkM̂
−1
dj |dk . (34)

Substituting (33) into (34), we thus obtain:

M̂djw̄i|dkM̂
−1
dj |dk = Mdj |uDw̄i|uM

−1
dj |uM̂dj |dkM̂

−1
dj |dk

= Mdj |uDw̄i|uM
−1
dj |u. (35)

The LHS of this equation is identified, and the RHS implies that the LHS has an eigenvalue-
eigenvector decomposition. The eigenvalues of this decomposition will be the diagonal elements
of Dw̄i|u, and the eigenvectors will be the rows of Mdj |u. Iterating this argument across w̄i ∈ W
will trace out the K conditional densities g(wi|·), and stochastic ordering of the corresponding
distributions G(Wi|·) in u implies a unique map from these densities to the elements of U . Equation
(33) then implies identification of Mu|dk , hence identification of Fu|N through P̂r{dk|N}.
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