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Extensive Imitation is Irrational and Harmful∗

Erik Eyster and Matthew Rabin†

September 7, 2013

Abstract

Rationality leads people to imitate those with similar tastes but different infor-

mation. But people who imitate common sources develop correlated beliefs, and ra-

tionality demands that later social learners take this redundancy into account. This

implies severe limits to rational imitation. We show that (i) in most natural obser-

vation structures besides the canonical single-file case, full rationality dictates that

people must “anti-imitate” some of those they observe; and (ii) in every observation

structure full rationality dictates that people who do not anti-imitate can, in essence,

imitate at most one person among predecessors who share common information. We

also show that in a very broad class of settings, virtually any learning rule in which

people regularly do imitate more than one person without anti-imitating others will

lead to a positive (and, in some environments, arbitrarily high) probability of people

converging to confident and wrong long-run beliefs. When testing either the rational-

ity or the efficiency of social learning, researchers should not focus on whether people

follow others’ behavior—but instead whether they follow it too much. (JEL B49)
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1 Introduction

Inference from the behavior of others is one of the ways that people guide themselves in

making wise social, economic and medical choices. Diners (to use the canonical example)

decide where to eat partly by the popularity of restaurants. Investors infer good financial

strategies from others’ portfolios. And each new generation of doctors and individuals infers

effective medical practice from the behavior and beliefs of their elders. Despite interacting

with other means of information acquisition—communication, experimentation, observation

of others’ success and failure—learning by observing other people’s actions and beliefs is an

important facet of social and economic behavior. It has formed the basis for an extensive and

ongoing research program: beginning with Banerjee (1992) and Bikhchandani, Hirshleifer

and Welch (1992), the literature on observational learning identifies how a rational person

who observes the behavior of another person with similar tastes and private information may

follow that person, even contrary to her own private information. Imitation is rational.

In this paper we show some striking ways that the logic of social inference requires

that rational agents greatly limit their imitation. When people comprising the societies,

groups, or markets whose behavior is being watched themselves are learning by observing the

actions of a common set of people before them, the information in their behavior contains

a great deal of redundancy. This intrinsic redundancy implies severe limits to rational

imitation. In most natural environments besides the canonical single-file case, full rationality

dictates that people must “anti-imitate” some of those they observe. And in the remaining

environments, it dictates that each individual must imitate a group of predecessors who

share common information by treating them, in a way we formalize, as if they were only one

person. Abundant imitation is irrational.

We also show that in a very broad class of settings, learning rules in which people regu-

larly do imitate more than one person without anti-imitating others will lead to a positive

probability of people converging to confident but wrong long-run beliefs. Although there are

ways that individuals can behave irrationally that lead to socially optimal long-run informa-

tion aggregation, any irrational form of social learning where a sequence of individuals each
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violate the imitate-as-if-only-one-person principle will lead to long-run inefficiency—in the

form of confident but wrong shared social beliefs. In many environments, this probability is

very high. Abundant imitation is socially harmful.

To illustrate many principles of our more abstract general analysis in a context closer to

the type of settings that inspires our analysis, we present in Section 2 an extended example

of medical (mis)learning. In it, doctors treating an illness experiment with an infinity of

medications, each of which can be good or bad. Good medications lead to recovery more

frequently than bad medications, but patients treated with either stochastically recover and

succumb. Doctors learn about medicine quality from two sources: their record of success

with their own patients, and the medicines prescribed by their predecessors (but not their

predecessors’ success). In this setting, rational doctors are guaranteed to eventually settle

on a good medicine. But their path there exhibits several counter-intuitive properties. First,

they do very limited imitation. A medicine used with success by an early doctor may then

be adopted by an enormous number of subsequent doctors without conveying any additional

information; rational doctors understand this, and abandon the medicine with only moderate

evidence of its badness. Second, doctors frequently “anti-imitate” their predecessors: fixing

a medicine’s popularity last year, the more popular it was two years ago, the less effective

a rational doctor judges it today. These intrinsic implications of rationality not only seem

counterfactual, but are crucial to the efficiency of long-run medical learning. We show that

doctors who instead fail to appreciate the redundancy in their predecessors actions can be

quite likely to permanently adopt an ineffective drug.

In Section 3, we flesh out the logic of observational learning more generally within a

class of situations satisfying a condition that we call “impartial inference”. In contrast to

partial inference, these are structures where common knowledge of rationality implies that

any player who learns anything about a predecessor’s signal learns everything relevant about

that signal. Impartial inference places a joint restriction on the players’ action spaces and

observations. We follow Lee (1993) in working with a continuous action space that fully

reveals players’ posterior beliefs, and describe in the Appendix a condition on observations

2



that guarantees impartial inference. Although it does not drive our qualitative results,

working in settings with impartial inference allows us to crisply articulate of our results.

Indeed, in this framework we identify surprisingly simple necessary and sufficient conditions

for anti-imitation. Roughly speaking, an observational structure generates anti-imitation if

and only if it contains a quartet of players i, j, k, l where (i) j and k both observe i, (ii) neither

j nor k observes the other, and (iii) l observes j, k, and i. Intuitively, Player l must imitate

Players j and k to use their signals, but then must anti-imitate Player i, whom j and k have

both already imitated, in order to avoid “double-counting” i’s private information.1 Many

natural settings include such configurations, for instance those where in every period n > 1

people move simultaneously, each observing all predecessors who moved in prior periods,

as well as those where every player observes all but her most recent m ≥ 1 predecessors,

perhaps due to a time-lag in actions being reported. In fact, the canonical single-file model

is one of the very few structures that does not generate anti-imitation.

Our main result is that rational players who do not anti-imitate perform very limited

imitation. Specifically, absent anti-imitation, no player can imitate any two players who

commonly observe a shared predecessor. Because in most social-learning environments,

any two people beyond the first two movers whom a person observes share some common

observation, rational social learners who do not anti-imitate do not imitate more than one

person. In addition, we show that in any game that includes a quartet of players satisfying

the conditions above, there is a positive probability of a signal sequence which leads at least

one player to form beliefs opposite to both the observed beliefs of everybody she observes

and her own signal. Intuitively, if Player i is observed to believe strongly in a hypothesis and

Players j and k only weakly, then Player l must infer that j and k both received negative

information so that altogether the hypothesis is unlikely.

In Section 4, we explore what happens when social learners anti-imitate too little and

imitate too much because they fail to account for the redundancy in their predecessors’

actions. Someone who neglects redundancy and observes many people 60% confident in the

1The result is rough because the players’ observations (or lack thereof) described in parts (i) and (ii) can

be “indirect” in a sense made precise in Section 3.
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effectiveness of a new hybrid seed will become more than 60% confident herself. We formalize

such “redundancy neglect” by assuming that there is some number of predecessors, N , and

overweighting factor, c > 0, such that whenever a player’s N immediate predecessors all

raise their actions by some amount x, the player raises her own action by at least (1 + c)x.

For example, if N = 10 and c = 1, then every player treats her 10 immediate predecessors

as if they embody two pieces of conditionally independent information. People who act

this way exponentially overweight early actions and signals, which allows early evidence to

inefficiently trump all later evidence. We show that any society of redundancy neglecters

converges with positive probability to complete confidence in the wrong state of the world.

We conclude in Section 5 by putting this paper in broader context, including how and why

the limits to imitation we identify here extends quite generally outside our specific environ-

ment, including in cases where people communicate beliefs directly. When testing either the

rationality of social learning or for whether observed (rational or irrational) social learning

leads to correct versus overconfident-but-wrong social beliefs, researchers should investigate

not whether people follow others’ behavior or listen to others’ advice—but whether they do

so too much.

2 Mercurial Beliefs

From the late 15th century, until the discovery and adoption of penicillin in the mid-20th

century, syphilis wreaked havoc on the world. Tens of millions of people suffered from the

disease, and millions died from it.2 Hyman (1941) estimates that as late as 1941, 4.4%

of Americans were infected, causing 40,000 deaths per year.3 From the 16th to early 20th

century, the leading treatment for syphilis was mercury, despite its high cost and horrible and

2Even today, millions of people are infected every year, with much less harm in wealthy countries, and

harm in developing countries due to economic rather than medical reasons.
3This infection rate resembles estimates for soldiers of the 19th century. Acton (1846) estimates that 4%

of troops quartered in Britain were infected with syphilis at any time, while Parascandola (2008) estimates

that during the American Civil War, 12% of Union Army soldiers were treated for syphilis.
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lethal side effects. Although it was understood at least as far back as the beginning of the

19th century that mercury led to poisoning and renal disease (Wells (1812), cited by George

(2011)), mercury was used for two reasons: to alleviate symptoms, and to rid the patient

of the treponema pallidum bacterium responsible for the disease.4 Although we have not

found convincing evidence that mercury truly did relieve symptoms (much less do so more

than the symptoms it created), when applied topically its anti-inflammatory properties may

have soothed sores, and its toxic properties may have inhibited cell growth, including new

sores (O’Shea (1990)). Most of the debate, however, centered on the curative properties

of mercury, and much of the mercury taken for syphilis was taken orally. Despite evidence

from medical experiments that mercury could kill the treponema pallidum bacterium when

both were injected into the human body simultaneously (Tongue (1801)), no strong evidence

shows that mercury as employed by doctors killed syphilis in patients already infected.5

Many doctors, notably those working in military hospitals who kept the best statistics of

their day, observed that patients who were untreated or unaggressively treated fared better

than those treated by mercury (Ferguson (1813), Devergie (1831)). Some, merely suggestive,

evidence comes from the famously unethical Tuskegee trials. From 1932 to 1972 the U.S.

army studied 600 African American men, withholding treatment from the two-thirds of the

4The 19th century medical literature contains over 400 reports of mercury intoxication (Goldwater (1972)).
5According to O’Shea (1990) p. 392,

“Mercury is a potent diuretic and in toxic doses it induces salivation. It was thought that

by inducing diuresis and salivation that the syphilitic ‘virus’ would be excreted, aborting the

illness. Th[is] premise is a fallacious one and resulted in grievous clinical errors.”

Doctors could have been right that mercury worked but wrong about why. Despite the seeming consensus in

its ineffectiveness, it is surprisingly difficult to judge mercury’s efficacy. The long-term and stochastic nature

of both the effects of syphilis and the good and bad effects of mercury makes the lack of randomized controlled

trials or epidemiological studies that convincingly address selection effects in who received mercury especially

unfortunate. (Perhaps surprisingly, some evidence suggests positive selection in patients treated with mercury

because doctors believed that sicker patients could not tolerate its side effects. See Colles (1881).) The

voluminous scientific literature on syphilis and mercury (3000 articles on syphilis were published in nineteenth

century medical journals, of which 1000 discussed mercury (O’Shea (1990)) has been inconclusive.

5



sample infected with syphilis. The mortality rate was 40% higher for the syphilitics in the

study than for the non-syphilitics—but about 10% lower than matched syphilitics outside the

study, who received standard pre-penicillin treatment, primarily mercury (Lasagna (1975)).

Despite its dubious efficacy, mercury continued to be widely used until the discovery of

penicillin.6 Why? Although it is remarkably hard to prove even to this day whether it was,

on net, a bad idea, it seems very unlikely that the benefits outweighed the costs. If so, how

could doctors get it wrong for over 400 years? And, if not, what can we make of the extreme

faith in its curative powers without being able to discern its efficacy?

Doctors who have access to clinical trials—and exclusively use that information—can (if

good at statistics) evaluate a medicine’s effectiveness by simply analyzing the evidence. But

those who rely on the beliefs and practices of their predecessors must carefully attend to the

logic of redundancy. We illustrate here in intuitive terms how rationality places severe limits

on imitation and often mandates that people “anti-imitate” some predecessors.

Consider a society that experiments with an infinite number of medicines to potentially

treat a disease, where each medicine is good with probability k ∈ (0, 1). A diseased person

treated with a good medicine recovers with probability x; one treated with a bad medicine

recovers with probability y < x. An untreated convalescent recovers with probability u < y.7

To illustrate the possibility that long-term mislearning can be very likely, we focus on the case

where k, x, and y are all relatively low, so that doctors consider lots of potential medicines

and get noisy feedback of effectiveness so that most cases of recovery with a medicine are

“false positives”. Because we assume no statistical irrationality per se, we assume that all

doctors understand false positives. Doctors observe other doctors’ prescriptions but not their

success. This set-up guarantees an infinite number of maximally effective drugs. Long-run

6Mercury was partially superseded by the arsenic derivative salvarsan (compound 606) after its discovery

in 1909. However, the medical profession did not believe salvarsan rendered mercury obsolete: standard

practice was to combine salvarsan with mercury, and later to other heavy metals, such as the less-toxic

bismuth. (See, for instance, the recommended best practice of the League of Nations (Martenstein (1935).)
7Mislearning is more dramatic when u > y, which may better fit the case of mercury and syphilis, but

we concentrate on the case where u < y for analytic simplicity.
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harm from mislearning occurs whenever society settles upon an ineffective medicine.

In each period t = 1, 2, . . ., each of D doctors active for a single period treats some

number of patients, where the size of each doctor’s clientele is an independent draw from a

Poisson process: the doctor sees Z patients, where Pr(Z = z) = (1−q)qz for some parameter

q ∈ (0, 1). Doctors do not know how many patients they will treat until after treating the

last. All doctors in period t + 1 observe the treatment history of all those in periods 1 to

t but not the effectiveness of their treatments, which is the crux of observational learning.

Each doctor attempts to maximize recovery amongst her own patients.8

Consider the behavior of a rational doctor in period 1 when y ≥ u. Faced with a first

patient, she tries some medicine at random. If her patient succumbs, then she switches to

a random new medicine for any second patient and continues switching until observing her

first recovery, at which point she continues with the “successful” medicine. Letting f be the

number of failures observed after her first success, the doctor switches as soon as x(1−x)f
y(1−y)f < 1,

namely whenever the odds ratio that the medicine is good relative to bad falls below 1. This

implies that she switches whenever f ≥ f ∗(x, y) := log(x)−log(y)
log(1−y)−log(1−x) . When x = 0.2 and

y = 0.1, for instance, f ∗(x, y) = 5.8, meaning that the first doctor to successfully use a

medicine abandons it if the next six patients fail to recover.

What will later doctors do, and where will long-run medical beliefs settle? Doctors

continue to experiment with new medicines or those tried by earlier doctors; should they

temporarily settle on a bad medicine, eventually some doctor sees enough patients to reject

it. In essence, each doctor’s unboundedly large potential clientele enables arbitrarily strong

signals, preventing herding on a bad medicine. Consequently, common knowledge of ratio-

nality implies that for each 1 ≥ x > y ≥ u ≥ 0, D ≥ 1, k > 0, and q > 0, society eventually

settles on a good medicine.

To succinctly describe behavior, we define a few categories of experience. Medicine m

is tried by Doctor j if he treats one or more patients with it. It is accepted by Doctor j if

he treats two or more patients with it, without switching to another medicine. It is rejected

8Many lessons developed here hold or are even strengthened when doctors try to maximize total survival,

but the analysis is more complicated.
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by Doctor j if he tries it before switching to another medicine. It receives qualified initial

endorsement if the first period in which it is accepted by some doctor, it is accepted by only

one, and used fewer than 1 + f ∗(x, y) times.

Some features of behavior in Bayesian Nash equilibrium are intuitive. First, doctors

use their private information: a doctor who tries a medicine successfully does not reject it

immediately. Second, doctors imitate one another: a medicine rejected by at least one doctor

in period t, and accepted by no other in that same period, is never tried by any subsequent

doctor.9 And if, entering period t, some medicines have been accepted by at least one doctor

without being rejected, then all doctors in period t will try one of these. These forms of

imitation are, however, relatively weak.

Any doctor who has never seen a medicine receiving qualified initial endorsement used on

more than 1 + f ∗(x, y) patients by any previous doctor rejects it if her first f ∗(x, y) patients

succumb. The reflects her understanding that doctors after the first treat multiple patients

not due to success but rather imitation. When q = 1
2
, x = 1

5
, and y = 1

10
, even though the

first accepted medicine will ultimately be rejected if bad, this usually takes quite a while,

even in the extremely unlikely event that it never again yields a false positive. An average

of 63 doctors try an accepted, bad medicine before its ultimate rejection, 31 of whom accept

it, on average. Rationality requires that a doctor who observes an initial doctor and 31

followers all use a medicine twice or more without abandoning it should herself reject it after

a mere six failures, despite a failure rate for the good medicine of 80%. When instead q = 1
3
,

rational doctors reject the medicine upon the same six failures even after seeing, on average,

2100 doctors try the medicine, 730 of whom accept it, on average.

Full rationality requires doctors to be acutely aware that thousands of their predeces-

sors’ treatments convey no information whatsoever. We regard this intense attention to

the extreme redundancy in treatments as most likely to break down in ways that matter.

But below we also establish results about how rational social learning demands even more

dramatic departures from imitation.

9This echoes Smith and Sørensen’s (2000) “overturning principle”: since the prior doctor observed every-

one whom you do, plus his private information, without private information it is optimal to follow him.
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Compare the following two situations, where again x = 1
5

and y = 1
10

. Situation A

comprises the following history: in period 1, 10 doctors saw patients; one tried the drug

Deppisol and continued to prescribe it through his fourth and final patient; no other medicine

tried in period 1 was accepted; in period 2, all 11 doctors with patients tried Deppisol, with

two having only one patient, seven having two to five patients each without rejecting the

drug, and two switching away from Deppisol after six applications. A rational doctor in

period 3 knows that the patient in period 1 receiving Deppisol recovered—the reason his

doctor accepted it—but infers no other positive evidence. The 11 doctors who tried it in

period 2 were merely imitating, and the nine who used it more than once gave no indication

of success—since it is rational to continue with Deppisol even after five patients succumb—

but instead only failure, for the two doctors rejecting Deppisol after six patients reveal that

all succumbed. Hence, the period 3 doctor would rationally switch drugs.

Situation B comprises the following history: in period 1, no doctor tried Deppisol, and no

other medicine was accepted; in period 2, four doctors, each with two patients, tried Deppisol;

three of them switched after the first patient, while one accepted Deppisol; no other medicine

was accepted. In Situation B, a rational doctor in period 3 would use Deppisol. Although

the three doctors rejecting it provide three bad signals, the one good signal from the one

doctor who accepts Deppisol more than makes up for them, given the low recovery rate of a

good medicine. In contrast to Situation A, where rationality demands very limited imitation,

in Situation B it demands some degree of enthusiasm despite the high rejection rate. By

comparing across situations, we find that rational behavior is anti-imitative. In each period,

more doctors accepted and fewer doctors rejected Deppisol in Situation A than in Situation

B. Nevertheless, a rational observer concludes that Deppisol is more likely to be effective in

Situation B than Situation A. Early popularity of a medicine renders later popularity much

less meaningful. Section 3 illustrates more striking forms of anti-imitation in other settings.

What happens when the logic of the redundancy in medical beliefs largely eludes doctors?

Doctors who imitate too much because they neglect the redundancy in their predecessors’

actions may fail to reject bad medicines after the very few failures amongst their own patients
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that trigger rational rejection. The extreme form of naive inference modeled in Eyster and

Rabin (2010), which corresponds to doctors’ neglecting that their predecessors’ actions de-

pend upon more than their private information, virtually guarantees herds on false medicines

for many parameter values. A doctor seeing (say) 700 doctors accept a medicine would judge

it as nearly certainly good, even if hundreds of his own patients succumbed on it. As q → 0,

a society of such inferentially naive doctors almost certainly herds on the first accepted

medicine. But as k → 0, the first accepted medicine is nearly certainly bad, in which case

this form of naivety nearly guarantees that society adopts a bad medicine.

Just as we do for more abstract environments in Section 4, we can show here that much

weaker forms of redundancy neglect also lead to positive probability of long-run error; more-

over, in this setting, social mislearning happens with very high probability. Suppose that

all doctors use learning rules that satisfy three properties. First, a doctor who has observed

no medicine either accepted or rejected continues to use a medicine that has not failed her.

Second, no doctor uses a medicine that has been rejected but never accepted. Third, each

doctor is “humble” in the sense of according comparable weight to her predecessors’ treat-

ments and her own experience: a doctor who sees N doctors accept a given medicine, and

none accept any other, prescribes that medicine so long as the number of her own patients

who succumb on it, d, satisfies
(
x
y

)N (
1−x
1−y

)d
> H. Inferential naivety as modeled by Eyster

and Rabin (2010) implies H = 1. Larger values of H allow for doctors to heavily downplay

observed beliefs relative to their own experience. If each predecessor’s acceptance really did

signal at least one additional recovery, then “humble” doctors would discount their predeces-

sors’ treatments by neglecting multiple recoveries by any single doctor. However, in settings

where q is low (doctors see few patients), this error pales in comparison to that of reading

independent evidence into each predecessor’s acceptance of the medicine. Indeed, for each

1 > x > y > 0, D ≥ 1, k > 0, and H > 0, as q → 0, the first medicine to accompany a

recovery gets used forever. This happens even when most medicines are bad and, hence,

doctors regard recovery as most likely a false positive. Since the probability that the first

success comes from a bad medicine equals 1−k
1+k

, as q → 0 and k → 0, the probability that
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doctors forever prescribe a bad medicine approaches 1. Section 4 shows how far weaker forms

of redundancy neglect than the one here generate social mislearning.

Although the example above more closely parallels the structure of the next two sections,

variations on it yield even more dramatic implications of rationality. Suppose that doctors

move single-file but cannot observe the order of their predecessors’ moves. In this case, the

success-failure asymmetry of the signal structure yields a particularly simple and counter-

intuitive result: a doctor should try a previously tried medicine if and only if it no doctor has

rejected it. Intuitively, no matter how many doctors have accepted the medicine, the doctor

who initially tried before rationally rejecting the medicine signals stronger information. Even

in this case, no bad drug will ever be used in the long run. A “classical herd” can form against

a drug—society ceases learning with weak beliefs in its ineffectiveness—but never in favor.

A second variant comes when doctors observe only a random subset of those acting in

the previous period. Suppose that 100 doctors act per period, where each one observes each

doctor in the previous period with independent chance 0.9, but no doctors in earlier periods.

Consider a doctor in period 13, say, whose period 12 observations comprise nine doctors

prescribing Deppisol and 76 doctors prescribing different, and mutually distinct, medicines.

When doctors who randomize over medicines do so independently, Deppisol is extremely

unlikely to have been randomly chosen by nine. This makes the most likely history one where

Deppisol was the medicine of choice going into period 11, when it was rejected by a single

doctor, unbeknownst to the nine doctors using Deppisol in period 12. Now suppose that some

of these nine accept Deppisol, while none reject it, and no doctor accepts any other medicine.

Then our doctor in period 13 should not try Deppisol despite not seeing it rejected and

instead seeing it (uniquely) accepted! In other scenarios of this world of “stochastic recent

observation”, a bad medicine is most likely to be rejected because it is reasonably popular.

This not only resembles some of the counterintuitive (and counterfactual) predictions of

Section 3, but also points to the likelihood of the forms of inefficiency illustrated in Section

4: if doctors imitate rather than reject the most popular medicine after seeing it accepted by

some and rejected by none, then society may very likely ultimately adopt a bad medicine.
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3 Impartial Inference and the Limits of Imitation

In this section, we consider a (seemingly) very different environment, observation structures

more general than those used in the classical models by Banerjee (1992) and Bikhchandani

et al. (1992), where players move single-file after observing all of their predecessors’ actions.

For analytic tractability, like Lee (1993) we focus on environments where rational players

completely extract all of the payoff-relevant information to which they have access.10 Propo-

sition 6 in the Appendix provides sufficient conditions for common knowledge of rationality

to imply such full extraction. In these settings, we provide necessary and sufficient condi-

tions for rational social learning to include anti-imitation, meaning that some player’s action

decreases in some predecessor’s observed action, holding everyone else’s action fixed. We

also show that absent anti-imitation, people cannot rationally imitate very much: no one

can imitate two predecessors who share a common observation, unless she also anti-imitates.

There are two possible states of the world, ω ∈ {0, 1}, each one ex ante equally likely.

Players in the set {1, 2, . . .} receive private information correlated with the state. Following

Smith and Sørensen (2000), we work directly with players’ updated private beliefs based

upon their private information alone: let σk be Player k’s belief that ω = 1 conditional upon

her private information. In state ω, Player k’s private beliefs are drawn from the distribution

F
(ω)
k ; players’ beliefs are independent conditional upon the state. We assume that F

(0)
k and

F
(1)
k are mutually absolutely continuous to rule out cases where some positive-probability

private information reveals the state with certainty; let [σk, σk] ⊆ [0, 1] denote the non-

degenerate convex hull of their common support. Player k’s private beliefs are unbounded

when σk = 0 and σk = 1 and bounded otherwise. To simplify exposition, we work with the

log-odds ratio of private beliefs, sk := ln
(

σk
1−σk

)
, which we refer to as Player k’s (private)

signal ; let [sk, sk] be the convex hull of its range.11 Player k’s private signal indicates that

ω = 1 is at least as likely than ω = 0 iff sk ≥ 0. Let sk := (s1, s2, . . . , sk).

10A special case of Avery and Zemsky (1998) with binary signals and absent noise traders shares this

feature.
11When Player k’s private beliefs are unbounded, we abuse notation by writing [sk, sk] = [−∞,∞].
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We denote by D(k) ⊂ {1, . . . , k−1} the subset of Player k’s predecessors whose actions k

observes. When k−1 /∈ D(k), we can interpret Players k−1 and k as moving simultaneously;

one player’s having a lower index than another means simply that the former moves no later

later than the latter. Let ID(k) ⊂ {1, . . . , k − 1} be the subset of Player k’s predecessors

whom k observes indirectly : l ∈ ID(k) if and only if there exist some path of players

(k, k1, k2, . . . , kL, l) such that each observes the next. A player can indirectly observe another

through many such paths, a possibility that plays a crucial role in our analysis below. We

refer to N = {{1, 2, . . .} , {D(1), D(2), . . .}} as an observation structure, consisting of the

players {1, 2 . . .} and their respective sets of observed predecessors, which define their sets

of indirectly-observed predecessors.12

After observing any predecessors visible to her as well as learning her own private signal,

Player k chooses the action αk ∈ [0, 1] to maximize the expectation of − (αk − ω)2 given

all her information, Ik. Player k does this by choosing αk = E[ω|Ik] = Pr[ω = 1|Ik],

namely by choosing the action equal to her posteriors that ω = 1. Any player who observes

Player k can infer Player k’s updated beliefs but not necessarily k’s private signal. For

simplicity, as with signals, we identify actions by their log-odds ratios, ak := ln
(

αk

1−αk

)
.

Player k optimally chooses ak ≥ 0 iff she believes ω = 1 at least as likely as ω = 0 and

would choose ak = sk whenever observing no predecessor. Let ak = (a1, . . . , ak) and ak−j =

(a1, . . . , aj−1, aj+1, . . . , ak). Throughout this section, we assume that it is common knowledge

that players are rational.

Although a player may observe a large number of predecessors, many of these observations

turn out to be redundant. For instance, in the customary single-file structure, when the

range of actions spans the range of posteriors (e.g., Lee (1993)), no player who observes

12N can be viewed as a directed network, with players as nodes and observations as edges or links,

that must be acyclic to respect the order of actions. (See, e.g., Jackson (2008).) Because network-theoretic

language neither clarifies nor simplifies our results, we prefer the game-theoretic term “observation”. A small

literature in network economics (notably Bala and Goyal (1998) and Golub and Jackson (2010)) differs from

our work in three important ways: networks are undirected; players take actions infinitely often, learning

from one another’s past actions; and players are myopic.
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her immediate predecessor gains any useful information from observing any more distant

predecessor, whose signal has already been used by the immediate predecessor.

In other settings, however, players’ immediate predecessors do not provide “sufficient

statistics” for earlier movers indirectly observed. In Section 2, a rational doctor in period

3 attends to more than second-period actions because she wishes to strip out the common

correlation from second-period actions.

It turns out that observation structures with common correlation that lack sufficient

statistics must include configurations that we call “diamonds”: two players j and k both

indirectly observe a common predecessor i but not each other, while some fourth player l

directly observes both j and k.

Definition 1 The quadruple of distinct players (i, j, k, l) in the observation structure N

forms a diamond if i ∈ ID(j) ∩ ID(k), j /∈ ID(k), k /∈ ID(j), and {j, k} ⊂ D(l).

Figure 1 illustrates a diamond, to which we refer by the ordered quadruple (i, j, k, l)—where

i < j < k < l—and say that the observation structure contains a diamond if it includes four

players who form a diamond. The observation structures of the canonical models of Banerjee

(1992) and Bikhchandani et al. (1992), where players move single-file after observing all

predecessors, do not include diamonds because for any pair of distinct players i, j, either

i ∈ D(j) = ID(j) or j ∈ D(i) = ID(i).

Player i 

Player k 

Player l 

Player j 

Figure 1:  A Diamond
Solid Arrows Denote Observation

Dashed Arrow Denote Indirect Observation

14



In this paper, we wish to abstract from difficulties that arise when players can partially

but not fully infer their predecessors’ signals. In the diamond of Figure 1, for instance, the

final observer l cannot discern the correlation in j and k’s beliefs attributable to common ob-

servation of i. Rational inference therefore requires l to use her priors on the distribution of

the different signals that i, j and k might receive. To avoid becoming mired in these compli-

cations, we concentrate on situations of “impartial inference” in which the full informational

content of all signals that influence a player’s beliefs can be extracted. Figure 2 contains a

special kind of diamond that we call a “shield” and differs from Figure 1 by allowing Player

l to back out all of her predecessors’ signals because she also observes Player i.

Player i 

Player k 

Player l 

Player j 

Figure 2:  A Shield
Solid Arrows Denote Observation

Dashed Arrow Denote Indirect Observation

Definition 2 The quadruple of distinct players (i, j, k, l) in the observation structure N

forms a shield iff it is a diamond and i ∈ D(l).

In shields like that of Figure 2, players do not suffer the problem of being able to partially

but not fully infer certain predecessors’ signals from observed actions.

Definition 3 Player k achieves impartial inference if for each sk−1 ∈ ×j<k[sj, sj] and each

sk ∈ [sk, sk],

αk = arg max
α

E
[
−(α− ω)2

∣∣∪j∈ID(k){sj} ∪ {sk}
]
.

Otherwise, Player k achieves partial inference.
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A player who achieves impartial inference cannot improve her expected payoff by learning the

signal of anyone whom she indirectly observes. In the classical binary-action-binary-signal

herding model, making the natural and usual assumption that a player indifferent between

the two actions follows her signal, prior to formation of a herd, each player can infer all of

her predecessors’ signals exactly; once the herd begins, however, players can infer nothing

about herders’ signals, so inference is partial. Like the example in Section 2, a typical setting

where actions do not reveal posteriors is unlikely to involve impartial inference, for even the

second mover cannot fully recover the first mover’s signal from her action. Because we work

in a rich-action space where each person’s beliefs are fully revealed to all observers, partial

inference in our setting stems entirely from inability to disentangle the signals that generate

the constellation of observed beliefs. Nevertheless, we have already seen in Section 2 an

example of unordered moves demonstrating that impartial inference is not necessary for the

form of anti-imitative behavior studied in this paper.13

Impartial inference does not imply that a player can identify the signals of all those

players whom she indirectly observes—but merely that she has gleaned sufficient information

from those signals that any deficit does not lower her payoff. For instance, when each

player observes only her immediate predecessor, she achieves impartial inference despite an

inability to separate her immediate predecessor’s signal from his own predecessors’ signals.

Proposition 6 in the Appendix demonstrates that if every diamond is a shield, then common

knowledge of rationality implies that every player achieves impartial inference.

We now turn our attention to the behavioral rules that players use to achieve impartial

inference. Player k’s strategy ak(a
k−1; sk), maps her observations and private signal into

actions. We begin with precise definitions of imitation and anti-imitation:

Definition 4 Player k imitates Player j if ak(aj, a
k
−j; sk) is weakly increasing (but not con-

stant) in aj. Player k anti-imitates Player j if ak(aj, a
k
−j; sk) is weakly decreasing (but not

constant) in aj.

13The variant of the classic single-file model where players’ actions span the continuum (Lee (1993))

satisfies impartial inference.
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Player k anti-imitates Player j if k’s action never moves in the same direction as j’s—

holding everyone else’s action fixed—and sometimes moves strictly in the opposite direction.

(Imitation is just the opposite.) A player who anti-imitates a predecessor always forms beliefs

that tilt against that predecessor’s.

The first limit to imitation that we explore is the occurrence of anti-imitation. In rich-

observation structures where every player achieves impartial inference, rational social learn-

ing includes anti-imitation if and only if the observation structure contains a shield. Roughly

speaking, in settings where players observe some predecessors without observing all of their

most recent ones, certain players become less confident in a state the more confident they

observe certain of their predecessors becoming.

Proposition 1 Assume that every player in the observation structure N achieves impartial

inference. Then N contains a shield if and only if some player anti-imitates another.

In Figure 2, Player l must anti-imitate (or subtract off in log-odds form) the action of Player

i, which Player j and Player k have both incorporated into their actions, in order not to

double-count the signal of Player i. Proposition 1 shows that any impartial-inference setting

that contains a shield, regardless of the rest of the configuration, includes at least one player

who anti-imitates another.

The logic of redundancy plays out as dramatically—or more dramatically—when people

learn from both other people’s actions and public information. In Figure 2, because the first

player chooses ai = si, and all succeeding players observe ai, we can interpret si simply as

public information that is exogenously revealed. Under this interpretation, Proposition 1

implies that Player l anti-imitates the public information.

Anti-imitation gives rise to counter-intuitive comparative statics across observation struc-

tures. Consider a rational tourist who one night after dinner notices many locals queueing

outside of Café M. From this, she forms some initial beliefs about its quality. Back in her

hotel, she scours the Internet for good restaurants and learns that the local newspaper re-

cently awarded Café M its maximum three stars. Assuming the tourist believes that locals

17



read the local newspaper, and everyone has common preferences, does the tourist fancy Café

M more before or after reading the positive review?

We address this question in a simple observation structure with only four players: Player i

is the local paper, Players j and k locals, and Player l the tourist. The observation structures

before and after the tourist reads the review are described by Figures 1 and 2, respectively.

By reading the review, the tourist goes from being the last player in a diamond that is not

a shield (Player l in Figure 1), to the last player in a shield (Player l in Figure 2).

Proposition 2 Let N be the observation structure depicted in Figure 1 and N̂ that of Figure

2. Then âl(ai, aj, ak; sl) ≤ al(aj, ak; sl) iff ai ≥ E[si|si + sj = aj, si + sk = ak, sl].

Following a better review than expected given her observations and private information

(ai ≥ E[si|si + sj = aj, si + sk = ak, sl]), the tourist updates her beliefs to form a more

negative assessment of the café (âl ≤ al). The intuition behind the result closely matches

that of Proposition 1: the more positive the newspaper’s review, the more negative the

information conveyed by Players j and k’s actions.

Even in settings where rational people do not anti-imitate, they still do not do very much

imitation. For instance, in single-file settings where everyone observes all predecessors, each

person imitates only her immediate predecessor. More generally, in an observation structure

where all players achieve impartial inference and do not anti-imitate, no player imitates two

predecessors who both observe an earlier, common predecessor.

Proposition 3 Assume that every player in the observation structure N achieves impartial

inference. If no player anti-imitates any other player, then Player k imitates the distinct

Players i and j only if they share no common indirect observation (i.e., ID(i)∩ ID(j) = ∅).

Absent anti-imitation, a player imitates more than one predecessor only if those predecessors

share no common information. But “sharing no common observation” excludes virtually all

social learners over time in almost all settings—except at the beginning of learning, it is

unlikely in any setting of interest to economists that two people observed by later movers
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(are known to) share no information. Rational social learning does not predict very much

imitation without anti-imitation in any setting.

Rational social learning also may lead some players to form beliefs on the opposite side

of their priors than all their information. That is, a player may form beliefs contrary to

both his private signal and all the actions he observes. A definition helps us to establish a

surprising result to this effect.

Definition 5 Player k’s action ak is contrarian given signal sk and history ak−1 iff ak 6= 0

and sgn(ak) = − sgn(sk) = − sgn(aj) for every j ∈ D(k).

Player k’s action is contrarian whenever it indicates state ω most likely, whereas his private

signal and the expressed beliefs of everyone he observes suggest state 1− ω more likely.

Proposition 4 Assume that every player in the observation structure N achieves impartial

inference.

1. If some player’s action is contrarian, then N contains a shield.

2. If N contains a shield and players’ private signals are drawn from the density f (ω) that

is everywhere positive on [s, s], then with positive probability some player’s action is

contrarian.

Because contrarian play relies upon some player anti-imitating another, the first statement

follows as a corollary to Proposition 1. An intuition for the second statement comes from

the fact that Bayes’ Rule and impartial inference imply that each player’s action is a linear

combination of the actions she observes as well as her private signal. Because the weights in

this linear combination do not depend upon the realization of any signal or action, if Player k

attaches a negative weight to Player j’s action, then as the magnitude of aj becomes large—

fixing all other actions—Player k’s beliefs, given a weak private signal, must eventually take

on the sign opposite to that of aj.
14

14The previous draft of this paper described an environment where contrarian play occurs with probability

arbitrarily close to one.
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3.1 Examples

To illustrate our model, we now consider two simple yet natural variants. In the first, n

players move “multi-file” in each round, each player observing all players moving in prior

rounds but none of those in the current or future rounds. When n ≥ 2, this observation

structure includes shields and admits contrarian play. Figure 3 illustrates the first five movers

in a double-file setting.

Player 4 Player 3 

Player 1 Player 2 

Figure 3:  The First Five “Double-File” Movers
Arrows Denote Observation

Player 5 

In Figure 3, the quartets (1, 3, 4, 5) and (2, 3, 4, 5) both constitute shields.

We denote by s1t , . . . , s
n
t and a1t , . . . , a

n
t the signals and actions, respectively, of the n

players who move simultaneously in round t. To succinctly describe behavior in this model,

let At =
∑n

k=1 a
k
t , the sum of round-t actions or aggregate round-t action, and St =

∑n
k=1 s

k
t ,

the sum of round-t signals or aggregate round-t signal.

Because for each Player k moving in round 1, ak1 = ak1, we have A1 = S1, so for a player

in round 2 with signal s2, a2 = s2 + A1, in which case A2 = S2 + nA1. A player in round

3 wishes to set a3 = s3 + S2 + S1. Because she observes only A2 and A1 and knows that

A2 = S2 + nA1 as well as that A1 = S1, she chooses a3 = s3 + A2 − nA1 + A1, so that

A3 = S3 + nA2 − n(n− 1)A1. Players in round 3 anti-imitate those in round 1 because they

know that each of the n players from round 2 whom they imitate uses all round-1 actions;

in order to avoid counting round-1 actions n-fold, players in round 3 must subtract off n− 1
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times the round-1 aggregate action. In general,

At = St + n
t−1∑
i=1

(−1)i−1(n− 1)i−1At−i.
15

Whenever n ≥ 2, this formula attaches negative coefficients to approximately half of past

actions. In contrast to the canonical single-file model, in the multi-file model there is a sense

in which approximately half of social learning is anti-imtative.

When n = 1, At = St + At−1 =
∑

τ≤t Sτ : players only imitate their immediate prede-

cessors and do not anti-imitate. When n = 2, players imitate and anti-imitate alternating

rounds with coefficients of constant magnitude:

At = St + 2
t−1∑
i=1

(−1)i−1At−i.

When n = 3, the coefficients on past actions grow exponentially:

At = St + 3
t−1∑
i=1

(−1)i−12i−1At−i,

leading to A1 = S1, A2 = S2 + 3A1, and A3 = S3 + 3A2 − 6A1. Players in round 3 strongly

anti-imitates those in round 1, while those in round 4 even more strongly imitates those in

round 1. People’s beliefs also move in counterintuitive ways. Consider the case where the

three players in round 1 all choose α = 0.6, each expressing 60% confidence that ω = 1.16 If

all round 2 players also choose α = 0.6, then since A2 = S2 + 3A1 = A1, S2 = −2A1 = −2S1,

meaning that the evidence for ω = 0 is twice as strong as that for ω = 1, in log-odds

terms. Hence, someone who observes her six predecessors all indicate 60% confidence that

ω = 1 rationally concludes that there is only a 25% chance that ω = 1! In general, in odd

periods, complete agreement by predecessors always leads players to contradictory beliefs.17

15Observational beliefs following round t− 1 are
∑t−1
i=1(−1)i−1(n− 1)i−1At−i.

16Alternatively, they choose a = ln
(
0.6
0.4

)
. We partially switch our exposition away from log-odds ratios

here to express beliefs in the most natural way.
17This cannot happen with two players per round, where a player who chooses α after seeing the two

previous rounds choose α has signal 1− α. With three players, the same pattern can emerge even if actions

increase over rounds: by continuity, nothing qualitative would change when actions (0.6, 0.6, 0.6) are followed

by actions (0.61, 0.61, 0.61). Hence, it is not the presence or absence of trends that matters but instead how

trends compare to what they would be if later signals supported earlier signals.
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This example also demonstrates that observation of the order of moves does not drive anti-

imitation or contrarian play; as long as it is known that players move three at a time, a

unique path of play gives rise to all six actions coinciding, which leads an observer of ordered

moves to the same inference as one of unordered moves.

Whatever n, actions converge almost surely to the state, despite wild swings in how

rational players interpret past behavior. Note, importantly, that the wild swings in interpre-

tation typically do not make their way into actions: recent actions always receive positive

weight and typically are more extreme than earlier actions. It is precisely when play does

not converge fast enough that we observe contrarian play.

Our second example depicts environments where people cannot observe their most im-

mediate predecessors. In financial markets, for example, a trader may not see a trade placed

momentarily before her own. Now we examine the case where players move single-file, and

each player observes all of her predecessors except for the most recent one. Figure 4 shows

the first six such players.

3 4 

5 6

Figure 4:  Single-Period Lags
Arrows Denote Observation

1 2

The first shield in this observation structure consists of Players 1, 3, 4 and 6. From the

figure, it can be deduced that a3 = a1 + s3 and a4 = a2 + a1 + s4; consequently, Player 6

achieves impartial inference by choosing a6 = a4 + a3 − a1 + s6. In general, Player k puts
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weights (0, 1, 1, 0,−1,−1, 0, 1, 1, . . .) on actions (ak−1, ak−2, . . .), or

ak =
∑
i=0

(ak−2−6i + ak−3−6i − ak−5−6i − ak−6−6i) + sk.

Roughly speaking, players ignore one-third of their predecessors, imitate one-third, and anti-

imitate one-third.

Unlike in the multi-file example, unanimity does not produce contrarian play. In order

for Player 6 to be contrarian, Player 1 must have stronger beliefs in favor of a state, say

ω = 1, than either Players 3 or 4. For example, if Player 1 assigns ω = 1 probability 5
6
,

while Players 3 and 4 assign it only probability 2
3
, then a Player 6 with a neutral or no signal

assigns 5
9

probability to ω = 0, yielding contrarian play.18 Intuitively, seeing Players 3 and

4 independently revise their confidence in ω = 1 down from the level Player 1’s confidence

provides strong evidence for Player 6 that ω = 0.19

4 Redundancy Neglect

Section 3 has established that rational players anti-imitate in most settings and do very

little imitation. What happens if people do not anti-imitate and imitate more more broadly

than predicted by full rationality? In this section, we consider the implications of not anti-

imitating and “redundacy neglect”.

Throughout this section, we assume that players have unbounded private beliefs described

by densities that are uniformly bounded. We first make two assumptions about how the

behavioral rules that describe people’s actions (again, in log-odds form) depend upon their

private beliefs (again, in log-odds form).

Definition 6 Players use social-learning rules that are strictly and boundedly increasing in

private signals if

18The formula for a6 gives log odds ratio ln
(

Pr[ω=1]
Pr[ω=0]

)
= ln

(
2
1 ·

2
1 ·
(
5
1

)−1)
= ln

(
4
5

)
19Notice that it does not matter to Player 6 that Player 4’s action embodies Player 2’s signal because that

does not produce a diamond; if we modified the observation structure to eliminate Player 2 and gave Player

4 the signal s2 + s4, only Player 5’s action would change.
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1. (strictly increasing) for each Player t, and each at−1 ∈ Rt−1,

ŝt > st ⇒ at(a
t−1, ŝt) > at(a

t−1, st)

2. (boundedly increasing) there exists K ∈ R++ such that for each Player t, each at−1 ∈

Rt−1, and each st, ŝt ∈ R,

∣∣at(at−1, ŝt)− at(at−1, st)∣∣ ≤ K |ŝt − st|

Strictly increasing social-learning rules exclude cases where people ignore their private sig-

nals. Boundedly increasing social-learning rules exclude cases where people put arbitrarily

high weight on their private signals. Bayesian belief updating implies that at(a
t−1, st) =

gt(a
t−1) + st, for some function gt, which satisfies boundedly increasing for K = 1. Bound-

edness is weak enough to encompass many forms of non-Bayesian belief updating, including

cases where people overconfidently overweight their own signal.

Our main behavioral assumption is that people neglect the redundancy in their prede-

cessors’ actions: someone who observes many people 60% convinced in the effectiveness of a

new hybrid seed will become more than 60% convinced herself.

Definition 7 Players use social-learning rules that neglect redundancy if there exist an

integer N and a constant c > 0 with the property that for each Player t ≥ N + 1, each

at−N−1 ∈ Rt−N−1, each st ∈ R, and each z′ > z ≥ 0,

at(a
t−N−1, z′, z′, . . . , z′︸ ︷︷ ︸

N times

, st)− at(at−N−1, z, z, . . . , z︸ ︷︷ ︸
N times

, st) ≥ (1 + c)(z′ − z).

Suppose that Player t’s two immediate predecessors choose actions based solely on their

private signals (at−1 = st−1, at−2 = st−2); if both raised their action from some z to z′, then

Player t, if observing both, would increase her action by 2(z′−z). Hence, social learners who

satisfy redundancy neglect for c = 1 and N = 2 treat their two immediate predecessors as if

their actions conveyed only private information. Since generally this will not be the case—

and cannot be the case when these predecessors themselves satisfy redundancy neglect for c =
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1 and N = 2—redundancy neglect embodies the error of reading more than one conditionally

independent piece of information into recent predecessors’ actions.20 Redundancy neglect is

a joint assumption about observation structure and imitation and encompasses all sorts

of combinations of assumptions about whom people observe and whom they imitate.21 By

virtue of assuming that players essentially imitate more than one person, redundancy neglect

is the antithesis of the limited imitation we explore in Section 3.

When players’ actions coincide with their beliefs, society converges to certain beliefs that

ω = 1 whenever limt→∞ at = +∞ and to certain beliefs that ω = 0 whenever limt→∞ at = −∞.

Proposition 5 Suppose that players use social-learning rules that are strictly and boundedly

increasing in private signals as well as neglect redundancy, and that no player anti-imitates

any other. Then, with positive probability, society converges to the action that corresponds

to certain beliefs in the wrong state.

Redundancy neglect and the absence of anti-imitation do not merely prevent society from

learning but instead cause it to mislearn, as in Section 2 where redundancy-neglecting doctors

can converge to using a bad medicine with near certainty. Consider again redundancy neglect

with c = 1 and N = 2. Loosely speaking, Players 3 and 4 double-count Players 1 and 2;

Players 5 and 6 double-count Players 3 and 4 and therefore quadruple-count Players 1 and

2, given the assumption that they do not anti-imitate anyone; etc.

When players move single-file and observe all predecessors, BRTNI players (Eyster and

Rabin (2010)), who interpret each predecessor’s action as her private signal, satisfy redun-

20Redundancy neglect is an error in an environment where everybody does it. But someone whose pre-

decessors do not themselves overuse actions in this way—if, for instance, predecessors are uninfluenced by

anybody before them (either due to irrationality or lack of observations)—may rationally neglect redundancy.

Our formal result about inefficient learning applies only to settings where everyone neglects redundancy, but

we conjecture that mislearning occurs when people neglect redundancy in an average sense.
21It also allows people to under-infer from their predecessors, as in partially-cursed equilibrium (Eyster

and Rabin (2005)), so long as they neglect redundancy: someone can treat all predecessors’ actions as half

as informative as they are at the same time as she mistakenly imitates many predecessors instead of just

one. The condition is, intuitively, that the sum total of influence from underweighting individuals and

overcounting predecessors is greater than the influence of one person, correctly interpreted.
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dancy neglect with c = N − 1 for each N and mislearn with positive probability. BRTNI

players give the past 100 players 100 times the weight that they should get. Proposition

5 establishes that far milder over-imitation leads society astray.22 For instance, if everyone

treats their predecessors’ actions as embodying just two conditionally independent signals,

instead of one, then society sometimes converges to complete confidence in the wrong state.

One example of this is where two people move in every round, as in the first example of Sec-

tion 3, and everyone imitates only the two people moving in the previous round. Proposition

5 demonstrates the fragility of efficient learning: even mild failure by people to understand

redundancy of others’ beliefs leads society astray. Moreover, it implies that many other

forms of error do not eliminate the possibility of wrong herding. For instance, even people

who massively overweight their private signals mislearn with positive probability. The effect

of redundancy neglect trumps that of all other errors in the context of social learning.

5 Conclusion

Outside of the impartial-inference setting we formally analyze, the limits to imitation and

anti-imitation take on more complicated patterns. We limit our analysis to rich-information

settings in order to crisply articulate the observational conditions under which our form

of anti-imitation and simple limit on imitation occur. But their existence does not depend

upon details of our environment. (Indeed, the example in Section 2 demonstrates that limited

imitation and anti-imitation play out in settings without impartial inference.) Many simple,

natural observational structures lead rational players to anti-imitate by requiring them to

subtract off sources of correlation in order to fully extract information from all observed

actions. When observed recent actors provide independent information, they should all be

imitated. But when those recent players themselves imitate earlier actions, those earlier

22Nevertheless, when players move single-file and observe only their immediate predecessors, BRTNI play-

ers do not neglect redundancy and have correct long-run beliefs. This discrepancy illustrates how redundancy

neglect is a joint assumption on behavior and observation structure or, alternatively, a reduced form for var-

ious inferential errors in various contexts.
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actions should be subtracted. The only circumstances when a rational person should imitate

two or more predecessors are when she knows that these predecessors share no common

observation, or when she anti-imitates.

The principles we establish here are distinct from the issues researchers have tradition-

ally emphasized in the observational-learning literature. Different papers reach very different

conclusions about the prevalence of herding and asymptotic efficiency depending on assump-

tions about the environment—richness and range of signals, richness and range of actions,

heterogeneity in tastes, congestion costs, small errors, observability of some versus all of the

population, observability of order of the moves, etc. Acemoglu, Dahleh, Lobel and Ozdaglar

(2011) characterize necessary and sufficient conditions in general observation structures, in-

cluding those we consider here, that give rise to asymptotically complete social learning.

Yet neither that paper, nor related ones by Banerjee and Fudenberg (2004) and Smith and

Sørensen (2008) that share the feature of Acemoglu et al. (2011) that players only observe

subsets of their predecessors, focus on how players’ learning manifests itself in behavior. Not

focusing on behavior short of the limit, these authors do not identify conditions determining

whether rationality leads to anti-imitation.

A concern sometimes expressed about the relevance of observational learning is that

in many settings information can be conveyed by other means—such as communication or

even direct access to predecessors’ signals—to such a degree that people learn little from

observing others’ actions. If people simply communicate with each other rather than take

observable actions, is the entire literature rendered irrelevant? In fact, one reason to study

the “rich-action” model is that it encompasses the case of communication. If everybody

reports truthfully their beliefs about the state of the world, then the rich-action case is

perhaps the most relevant, and, of course, our results hold even here.

Callender and Hörner (2009) illustrate a form of anti-imitation different from ours, re-

lated to the famous overturning principle of Smith and Sørensen (2000). The overturning

principle states that in a single-file model where each player observes all of her predecessors,

any player un-endowed with private information optimally imitates her immediate predeces-
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sor.Callender and Hörner (2009) analyze behavior in a binary-action model where no player

observes the order of her predecessors’ moves—yet observes all such moves—and each player

is either perfectly uninformed or perfectly informed about the state. The overturning princi-

ple implies that any uninformed player who knew the identity of her immediate predecessor

would imitate that player. Callender and Hörner (2009) show, when the order of previ-

ous moves is not observed, that the over-turning principle can lead to a dramatic form of

anti-imitation. After certain histories, uninformed players optimally follow the minority of

previous actions. When some people are much better informed than others, the most likely

interpretation of seeing (say) four people sitting in Restaurant A and only one in Restaurant

B is that the loner is a well-informed local bucking the trend rather than an ignorant tourist.

That is, when the order of play is unobserved, it can be inferred that the minority choice is

the most recent.

The forms of anti-imitative and contrarian behavior studied in this paper follow exclu-

sively from players’ need to subtract off correlations when imitating more than one predeces-

sor. Some of our these predictions, most notably contrarian play, cannot arise in single-file

models like Callender and Hörner (2009). More generally, single-file models (whether play-

ers’ observations are ordered or un-ordered) satisfy a monotonicity property violated in the

presence of shields. In any single-file, un-ordered model like that of Callender and Hörner

(2009), if the lowest action in a first history is strictly higher than the highest action in a

second history, then observed beliefs after the first history must exceed those after the sec-

ond. This follows almost as a corollary of Smith and Sørensen’s (2000) overturning principle:

a player un-endowed with private information wishes to mimic her immediate predecessor.

This intrinsically means that the inferred information in a single-file environment must lie

within the range of beliefs consistent with at least one of the observed actions. Plainly,

contrarian play in our model violates such monotonicity.

Just as there might be other reasons for anti-imitation, so too there may be other reasons

for imitation. People may imitate to conform (e.g., Bernheim (1994)), to build reputations

(e.g., Scharfstein and Stein (1990)), or to benefit from safety in numbers (penguins). We
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think one of the uses of the findings in this paper is to help discern with greater power than

has been done so far whether observed imitation derives from rational inference, irrational

inference, or some other cause. For instance, Cai, Chen and Fang (2009) conduct a field

experiment to distinguish imitative social learning from salience. In it, they inform diners

at a chain of Beijing restaurants of the most popular dishes from the previous week or of

“featured dishes”. By comparing the same dish as popular or featured, Cai, Chen and Fang

(2009) show that diners react more strongly to popularity than to salience. Although this

convincingly establishes that diners imitate, it does not uncover whether such imitation is

rational or irrational. We have seen that full rationality and redundancy neglect lead to

very different conclusions about the long-run efficiency of social learning. Rather than test

whether people imitate their predecessors, empirical researchers could design more powerful

tests to separate rational from irrational observational learning by evaluating whether people

imitate their predecessors too much.
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6 Appendix: Proofs

We begin by introducing some concepts and notation useful for the proofs. Define D(k) :=

{j ∈ D(k) : ∀i ∈ D(k), j /∈ ID(i)}, the set of players whom Player k indirectly observes only

by directly observing. In the classical single-file model, for example, D(1) = D(1) = ∅ and

for each k ≥ 2, D(k) = {1, . . . , k − 1} and D(k) = {k − 1}. When two players move every

round, observing (only) all players who moved in all previous rounds, D(1) = D(2) = ∅, and

for l ≥ 1, D(2l + 1) = D(2l + 2) = {1, . . . , 2l}, while D(2l + 1) = D(2l + 2) = {2l − 1, 2l}.

Lemma 1 states that any predecessor whom Player k indirectly observes she indirectly

observes through someone in her only-observe-directly set.

Lemma 1 For each Player k, ID(k) = D(k) ∪
(
∪j∈D(k)ID(j)

)
.

Proof.

ID(k) = D(k) ∪
(
∪j∈D(k)ID(j)

)
= D(k) ∪

(
∪j∈D(k)ID(j)

)
= D(k) ∪

(
∪j∈D(k)ID(j)

)
,

where the first equality follows from the definition of ID, the second by the definition of

D(k), and the third once more by the definition of D(k) together with transitivity of the ID

relation.
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Lemma 2 If every player in the observation structure N achieves impartial inference, then

for each player l, there exist unique coefficients γli such that al =
∑

i∈D(l) γ
l
iai + sl.

Proof. Let {γli} and {γ̂li} be two such sets of coefficients. Towards a contradiction, suppose

that these differ, and define î = max{i : γli 6= γ̂li}. Then

dal
dsî

=
∂al
∂aî

daî
dsî

+
∑

i∈D(l),i>î

∂al
∂ai

dai
dsî

= γl
î
· 1 +

∑
i∈D(l),i>î

γli · 1 = γ̂l
î
· 1 +

∑
i∈D(l),i>î

γ̂li · 1.

Because γli and γ̂li coincide for any i > î, by definition, γl
î

= γ̂l
î
, a contradiction.

Lemma 3 implies that in any observation structure without diamonds where all players

achieve impartial inference, all behavior is imitative.23

Lemma 3 Suppose every player in the observation structure N achieves impartial inference.

If for some player l, ∀j, k ∈ D(l), ID(j) ∩ ID(k) = ∅, then al =
∑

k∈D(l) ak + sl.

Proof of Lemma. Write al =
∑

k∈D(l) ak + sl =:
∑

i∈ID(l) βisi + sl. Lemma 1 implies that

βi ≥ 1 for each i ∈ ID(l). The assumption that ∀j, k ∈ D(l), ID(j) ∩ ID(k) = ∅ implies

that βi ≤ 1. Hence, the formula for al gives impartial inference. By Lemma 2, it is unique.

Lemma 4 If j ∈ D(l) and all players achieve impartial inference, then ∂al
∂aj

= 1.

Proof of Lemma. If ∂al
∂aj
6= 1, then since j ∈ D(l), dal

dsj
= ∂al

∂aj

∂aj
∂sj

= ∂al
∂aj
6= 1, in contradiction

to Player l achieving impartial inference.

Proof of Proposition 1. We begin by proving the “if” direction. Let l be the first player

to anti-imitate in an observation structure with impartial inference. Let i be a player whom l

anti-imitates; plainly, i ∈ D(l). Define B := {i′ : (i′, j, k, l) is a diamond, j, k ∈ D(l)}, which

is non-empty by Lemma 3. If i ∈ B, then we have a shield, so suppose otherwise. Lemma 1

implies that there exists h ∈ D(l) for whom i ∈ ID(h); if h′ ∈ D(l) such that i ∈ ID(h′),

then if h′ 6= h, (i, h, h′, l) is a shield, so we assume that h is unique. Since l anti-imitates

23In fact, Proposition 6 below implies that in any observation structure without diamonds, all players do

achieve impartial inference.
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i, there must exist some k ∈ D(l), k 6= h such that i ∈ ID(k) and l imitates k; otherwise,

using Lemma 4 and the assumption that h achieves impartial inference,

dal
dsi

=
∂al
∂ai

dai
dsi

+
∂al
∂ah

dah
dsi

<
∂al
∂ah

dah
dsi

= 1,

in contradiction to l achieving impartial inference. Notice that for k 6= h, l, if i ∈ ID(k),

k ∈ D(l), then if k /∈ ID(h), (i, k, h, l) is a shield, so we suppose that k ∈ ID(h). Note that

dal
dsk
≥ ∂al
∂ak

dak
dsk

+
∂al
∂ah

dah
dsk

=
∂al
∂ak
· 1 + 1 · 1 > 1

because l is the first player to anti-imitate, and using Lemma 4 and impartial inference for

h. But dal
dsk

> 1 contradicts l achieving impartial inference. Hence, N must contain a shield.

To prove the “only if” direction, let l̂ = min{l : (i, j, k, l) is a diamond}, which exists

because every shield is a diamond. We claim that we can take j, k ∈ D(l̂). To see why,

define ĵ = max{j} ∪ {h ∈ D(l̂) : j ∈ D(h)} and k̂ = max{k} ∪ {h ∈ D(l̂) : k ∈ D(h)} and

note that (i, ĵ, k̂, l̂) is a diamond since otherwise, if ĵ = k̂, then (i, j, k, ĵ) is a diamond, in

contradiction to the definition of l̂. Since i ∈ ID(l̂), impartial inference implies that

dal̂
dsi

=
∑

l∈D(l̂),l 6=i

∂al̂
∂al

dal
dsi

+
∂al̂
∂ai

dai
dsi

= 1

Assume
∂al̂
∂al
≥ 0 ∀l ∈ D(l̂), l 6= i, otherwise we’re done. Since j, k ∈ D(l̂),

∂al̂
∂aj

=
∂al̂
∂ak

= 1

by Lemma 4. Because i ∈ ID(j) ∩ ID(k), impartial inference implies that
daj
dsi

= dak
dsi

= 1.

Using dal
dsi
∈ {0, 1} from impartial inference as well as dai

dsi
= 1 gives

dal̂
dsi
≥ 2 +

∂al̂
∂ai

= 1,

from whence
∂al̂
∂ai
≤ −1, as desired.

Proof of Proposition 2. We have

al(aj, ak; sl) = aj + ak − E[ai|aj, ak, sl] + sl ≥ âl(ai, aj, ak; sl) = aj + ak − ai + sl

⇐⇒ (si + sj) + (si + sk)− E[si|aj = si + sj, ak = si + sk, sl] + sl ≥ s1 + sj + sk + sl

⇐⇒ ai = si ≥ E[si|si + sj, si + sk, sl].
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Proof of Proposition 3. We first claim that ∀j, k ∈ N , ∂ak
∂aj
∈ Z. Towards a con-

tradiction, suppose that for some j, k, ∂ak
∂aj

/∈ Z; wlog take k to be the first such k and

j(k) = max
{
j : ∂ak

∂aj
/∈ Z
}

and notice that

dak
dsj(k)

=
∂ak
∂aj(k)

daj(k)
dsj(k)

+
∑

j∈D(k),j>j(k)

∂ak
∂aj

daj
dsj(k)

=
∂ak
∂aj(k)

+
∑

j∈D(k),j>j(k)

∂ak
∂aj

daj
dsj(k)

/∈ Z,

which contradicts Player k achieving impartial inference. Now suppose Player l imitates

some Players i and j 6= i s.t. h ∈ ID(i) ∩ ID(j) ⊂ ID(l). Then

dal
dsh

=
∂al
∂ai

dai
dsh

+
∂al
∂aj

daj
dsh

+
∑

k∈D(l),k 6=i,j

∂al
∂ak

dak
dsh

≥ 2 +
∑

k∈D(l),k 6=i,j

∂al
∂ak

dak
dsh

,

using the previous result as well as the assumption that Players i, j achieve impartial infer-

ence. Because all players achieve impartial inference, we must have that for some k ∈ D(l),

∂al
∂ak

< 0, which contradicts our assumption of no anti-imitation.

Proof of Proposition 4. Part 1: From Lemma 2, Player l’s action can be written

uniquely as al =
∑

i∈D(l) γ
l
iai + sl. If for each i ∈ D(l), αli ≥ 0, and sgn(ai) = sgn(sl), then

sgn(al) = sgn(sl), and therefore the path of play (a1, . . . , al) cannot be contrarian. Hence,

contrarian play requires that αli < 0 for some i, l. Proposition 1 then implies that N contains

a shield.

Part 2: Wlog let s ≤ −s and take ε > 0 small. The existence of a shield implies the existence

of a diamond; let l̂ = min{l : (i, j, k, l) is a diamond}, and let i be the last Player whom l̂

anti-imitates.

For each j < l̂, j 6= i, let aj ∈
(

0, ε

2(l̂−1)

)
and ai ∈

(
s− ε, s− ε

2

)
. Non-triviality of private

beliefs permits this ∀j such that D(j) = ∅; for other j, from Lemma 3,

aj =
∑
k∈D(j)

ak + sj ≤ s− ε

2
+ (l̂ − 2)

ε

2(l̂ − 1)
+ sj < s+ sj

Because s ≤ −s, there exists a positive-measure set of signals sj for which aj ∈
(

0, ε

2(l̂−1)

)
.

35



Now note that al̂ ≤ (l̂ − 2) ε

2(l̂−1) −
(
s− ε

2

)
+ sl̂ < ε + sl̂ − s < 0 for sl̂ < s and ε small

enough, which implies positive-probability contrarian play.

Proof of Proposition 5. Wlog assume ω = 0. Choose c and N such that actions satisfy

redundancy neglect and K to satisfy boundedness. Choose ε > 0 such that ε ∈ (0, sk) for

each k = 1, . . . , 2N . With positive probability sk ≥ ε for each k = 1, . . . , N . Choose ε > 0

such that ε < ak(0, ε) for each k = 1, . . . , N , which exists by strict monotonicity in private

signals. For each k = 1, . . . , N ,

ak = ak(a
k−1, sk) ≥ ak(0, sk) ≥ ε,

where the first inequality follows from the assumption of no anti-imitation. With positive

probability, sk ≥ ε for each k = N+1, . . . , 2N , which implies that for each k = N+1, . . . , 2N ,

ak = ak(a
k−1, sk) ≥ ak(ε, ε, . . . , ε︸ ︷︷ ︸

N times

, sk) ≥ ak(ε, ε, . . . , ε︸ ︷︷ ︸
N times

, ε) ≥ (1 + c)ε,

where the first inequality follows from the assumption of no anti-imitation, the second from

strict increasingness in private signals, and the third from redundancy neglect.

We claim that if siN+j > − (i−1)c2
K

ε for i = 2, 3, . . . and j = 1, . . . , N − 1 that aiN+j ≥

(1 + ic)ε. For i = 2, note

a2N+j ≥ (1 + c)2ε−K (2− 1)c2

K
ε = (1 + 2c)ε,

where the first term after the inequality follows from redundancy neglect and no anti-

imitation (given each of the last j−1 players chose a > (1+2c)ε > (1+ c)ε), and each of the

preceding N − (j − 1) players chose a > (1 + c)ε) and the second term after the inequality

follows from the assumption about signals and the assumption that social-learning rules are

boundedly increasing. If the claim holds for i = 2, . . . , k, then

a(k+1)N+j ≥ (1 + c)(1 + kc)ε−K (k + 1− 1)c2

K
ε = (1 + (k + 1)c)ε,

as desired (where, again, the first term after the inequality follows from redundancy neglect

combined with the result for i = k, and the second by the assumption about signals and

boundedly increasing social-learning rules).
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Thus, limt→∞ at = +∞, namely actions converge to the one corresponding to full confi-

dence in the wrong state. We can adapt the argument in the proof of Proposition 3 of Eyster

and Rabin (2010) to prove that such signal paths have positive probability.24

In the main text, we assume that players achieve impartial inference. A sufficient condi-

tion for common knowledge of rationality to imply impartial inference in our model is that

every diamond be a shield.

Proposition 6 If every diamond in the observation structure N is also a shield, then com-

mon knowledge of rationality implies that every player achieves impartial inference.

Proof of Proposition 6. Clearly, Player 1 achieves impartial inference by choosing

a1 = s1. We claim that if all Players i ∈ {1, . . . , k − 1} achieve impartial inference, then so

too does Player k. Define

a1k :=
∑
j∈D(k)

aj + sk =:
∑

j∈ID(k)

β1
j sj + sk.

Define U1(k) := {j ∈ ID(k) : β1
j = 1} and M1(k) := {j ∈ ID(k) : β1

j > 1}. Players

i ∈ {1, . . . , k−1} achieving impartial inference and Lemma 1 imply that for each j ∈ ID(k),

β1
j ≥ 1: j ∈ M1(k) ∪ U1(k). First, notice that ∀i ∈ U1(k),∀j ∈ M1(k), i /∈ ID(j);

otherwise, because ∀j ∈ M1(k), ∃k1, k2 ∈ D(k) s.t. j ∈ ID(k1) ∩ ID(k2), i ∈ ID(j) implies

i ∈ ID(k1) ∩ ID(k2) and therefore i ∈M1(k), a contradiction.

Common knowledge of rationality implies that Player k knows the β1
j ’s. If M1(k) = ∅,

alternatively U1(k) = ID(k), then Player k achieves impartial inference through a1k. Suppose

that ∅ 6= M1(k) =: {m1,m2, . . . ,mN}, where m1 < m2 < . . . < mN . Because each mi, i ∈
24That paper showed that the event st > −kt ∀t occurs with positive probability for any constant k > 0,

which is our task here for the special case where N = 1. For N > 1, the result follows as a corollary: we

know that for a fixed j = 1, . . . , N , the event that stN+j > −kt ∀t has positive probability, call it Pj ; since

signals are conditionally i.i.d., this implies that stN+j > −kt ∀j, t has probability ΠN
j=1Pj > 0.

Although it in no way affects the argument of that proof nor its corollary here, we note for completeness

that the last displayed line of the proof of Proposition 3 in Eyster and Rabin (2010) contains a typo through

omission of a squared sign on the π term, as
∑
t≥1

1
t2 = π2

6 rather than the π
6 implied by that proof.
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{1, . . . , N}, belongs to a diamond (mi, g, h, k) for g, h ∈ D(k), and that diamond is also a

shield by assumption, mi ∈ D(k). Define

a2k := a1k −
(
β1
mN
− 1
)
amN

=:
∑

j∈ID(k)

β2
j sj + sk,

U2(k) := {j ∈ ID(k) : β2
j = 1} and M2(k) := {j ∈ ID(k) : β2

j 6= 1}. By construction, for

each l ∈ ID(k), l ≥ mN , β2
l = 1. From above, ∀i ∈ U1(k), i /∈ ID(mN),

da1k
dsi

=
da2k
dsi

= 1 so

U1(k) ⊆ U2(k). Since mN ∈ (U1(k))c ∩ U2(k) by construction, U1(k) ( U2(k) and, hence,

M2(k) (M1(k).

Define

a3k := a2k −
(
β2
mN−1

− 1
)
amN−1

=:
∑

j∈ID(k)

β3
j sj + sk,

U3(k) := {j ∈ ID(k) : β3
j = 1} and M3(k) := {j ∈ ID(k) : β3

j 6= 1}. By the same argument

as before, U2(k) ( U3(k) and, hence, M3(k) (M2(k). Iterating produces two strictly nested

sequences of sets, the (M j(k))j decreasing and (U j(k))j increasing. In at most k − 1 steps,

this terminates with (U ĵ(k)) = ID(k), allowing Player k to achieve impartial inference by

playing aĵk.
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