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We show FC-MNL is flexible in the sense of Diewert (1974), thus its 
parameters can be chosen to match a well-defined class of possible own- 
and cross-price elasticities of demand. In contrast to models such as 
Probit and Random Coefficient-MNL models, FC-MNL does not require 
estimation via simulation; it is fully analytic. Under well-defined and 
testable parameter restrictions, FC-MNL is shown to be an unexplored 
member of McFadden’s class of Multivariate Extreme Value discrete-
choice models. Therefore, FC-MNL is fully consistent with an underlying 
structural model of heterogeneous, utility-maximizing consumers. We 
provide a Monte-Carlo study to establish its properties and we illustrate 
the use by estimating the demand for new automobiles in Italy. 
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1 Introduction 
 

In this paper, we describe a fully parametric, flexible, discrete choice model of demand, 

together with the methods required to estimate it using aggregate data. The contribution of 

the paper is to provide a discrete choice demand model with an analytic market share 

function that, in contrast to existent analytic models, is flexible - in the sense that it can match 

own- and cross-price elasticities of demand for a well-defined set of data generating 

processes (DGP). Under well-defined, testable, parameter restrictions, the model is a 

previously unexplored member of the class of structural discrete choice demand models 

developed in the series of seminal papers by McFadden (1978, 1981). 

 

The ‘Flexible Coefficient-MNL’ (FC-MNL) model developed here has some potentially 

significant advantages relative to existent parametric discrete choice models currently used in 

practice. For example, popular models such as the Multinomial Logit (MNL) and the Nested 

Multinomial Logit models (NMNL) models are well known to impose severe restrictions on the 

substitution patterns (estimated own- and cross-price elasticities) between goods that can 

possibly be estimated. Ideally, in any demand study, we would like the data to drive flexible 

models to capture the truth about the nature of substitutability between any pair of goods. In 

practice, popular demand models implicitly impose a great deal of implausible structure on the 

nature of estimated substitution patterns. See for example, Berry & Pakes (2007) for a critique 

of the NMNL model.
2
 

 

A number of recent authors have attempted to address these concerns using three 

approaches. Firstly, authors have proposed using more flexible parametric models. Secondly, 

authors have introduced unobserved consumer heterogeneity in an attempt to ‘free-up’ the 

models elasticities. And thirdly, authors have proposed using semi-parametric methods. This 

paper follows authors using the first of these three approaches, which we now discuss in turn. 

                                                 
2 Despite their rather severe disadvantages, MNL and NMNL are popular in a wide variety of contexts where the 
estimated substitution patterns are crucial for guiding policy and where billions of pounds are at stake. For example, 
MNL and NMNL have been used to evaluate market definition questions and also to simulate the impact on prices of 
horizontal mergers between firms in concentrated industries. See for example, Werden and Froeb (1994), Epstein 
and Rubinfeld (2001), Ivaldi and Verboven (2005) and the related literature described in Davis and Garces (2010). 
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Recent papers proposing ‘more’ flexible parametric forms for discrete choice models include 

Ben-Akiva and Bielaire (1999), Bresnahan, Stern & Trajtenberg (1997), Chu (1989), Verboven 

& Brenkers (2002), Wen & Koppelman (2001), and Koppelman and Sethi (2010) among 

others. The papers in this tradition are closest to our paper. In particular, each of these 

authors considers a less restrictive member of the class of MEV models than MNL and 

moreover, this branch of the literature has specifically developed with the aim of building 

parametric models with more flexible substitution patterns than MNL. However, perhaps 

surprisingly, since such claims would form the bedrock for justifying particular parametric 

models in the continuous choice demand literature (see for example Christensen Jorgenson & 

Lau 1975, Deaton & Muelbauer 1980, Banks Blundell & Lewbel 1996, and/or Pollak & Wales 

1995), to our knowledge none of the authors writing in what we might call the parametric 

discrete choice literature have made Diewert’s (1974) flexibility claims for their proposed MEV 

specifications. In contrast, we demonstrate that the FC-MNL model provides a flexible 

functional form in the sense of Diewert (1974), ensuring that it can match a well-defined class 

of possible own- and cross-price elasticities of demand. 

 

An additional advantage of the FC-MNL model is that it nests the familiar Multinomial Logit 

(MNL) model, and hence Wald or Lagrange Multiplier tests for the validity of MNL can be 

constructed. Imposing fewer restrictions on a subset of the model’s parameters yields 

previously unexplored members of the class of Multivariate Extreme Value
3
 (MEV) discrete 

choice demand models developed in the series of seminal papers by McFadden (1978, 

1981). As such, the FC-MNL is a fully structural discrete choice model under well-defined 

parameter restrictions. Naturally, the parameter constraints required to make FC-MNL 

consistent with an underlying MEV model may or may not be imposed in estimation. This 

allows the researcher to test whether the data is consistent with the parametric restrictions 

which embody restrictions on underlying consumer behaviour like Slutsky symmetry and 

possibly use the unrestricted model. Such an approach is motivated solely by pragmatism 

                                                 
3
 The recent industrial organization literature has followed McFadden (1978) in describing the class of models we 

consider here as the class of Generalized Extreme Value (GEV) models. We shall use the term MEV models 
because that is used in the more recent statistics literature (see for example Joe (1996) and in particular Kotz, 
Balakrishnan & Johnson (2000), chapter 47, and citations therein.) The term GEV is used in the statistics literature to 
mean a unifying framework for the three types of univariate extreme value distributions. 
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and it would certainly be preferable to have an underlying utility model from which the 

resulting demand model is derived and welfare implications could be analyzed. 

 

The second approach constitutes a very significant attempt to provide models with potentially 

flexible substitution patterns by introducing observed and unobserved consumer 

heterogeneity across individuals to model the correlation of utilities across options and 

individuals. Well known examples include the Probit model proposed by Hausman & Wise 

(1978) and the Mixed-MNL model which evolved from McFadden (1978, 1981) and which is 

also known as the Random-Coefficient Multinomial Logit (RC-MNL) model or the Error-

Component Logit (ECL) model (Ben-Akiva and Bolduc 1996, Train 2003, Green at al. 2006). 

The advantage of mixed-MNL models is that their empirical implementation can use random 

coefficients sparingly by incorporating a base level of consumer heterogeneity in the closed 

form MNL (or other base) model. Doing so reduces computational complexity. See in 

particular Boyd & Mellman (1980) and Cardell & Dunbar (1980) for the first applications of the 

aggregate demand RC-MNL model and the more recent seminal contribution in Berry, 

Levinsohn & Pakes (1995) (henceforth BLP). 

 

The FC-MNL model has both advantages and disadvantages relative to such models. A 

potential disadvantage is that, at least in principle, a general enough version of the RC-MNL 

class of models may be more flexible. Specifically, while we will show that the FC-MNL model 

is Diewert (1974) flexible, McFadden & Train (2000) show that in principle, RC-MNL models 

are flexible in a far more general sense.
4
 That said, we show that a large sub-class of the RC-

MNL models - including the specifications typically estimated -for example that are used in 

BLP - do not always make the resulting demand model particularly flexible.
5
 More favourably, 

an advantage of the model discussed here is that it entirely avoids using simulation 

techniques, which (i) introduce an additional layer of computational intensity, meaning they 

typically take far longer to estimate than models which do not require simulation and (ii) 

                                                 
4 

Diewert (1974) flexibility involves the ability to match market shares and price elasticities at a point in price and 

income space while McFadden and Train (2000) show that the RC-MNL demand model may match arbitrary 
continuous functions of prices and indeed other product characteristics. 
5
 The reason is that in most actually estimated models, the conditional indirect utilities are assumed linear and 

separable in product characteristics. This parametric structure places strong restrictions on the potential substitution 
patterns even in the presence of a considerable number of random coefficients. 
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generate instability and numerical errors which have been widely discussed in the literature in 

the context of RC-MNL estimation (see for example Freyberger, 2012; Knittel & Metaxoglou, 

2011 & 2012; Judd & Skrainka, 2011). The fact that the FC-MNL model avoids simulation 

entirely also makes it potentially particularly useful in a variety of practical policy settings, e.g. 

those where computational constraints currently mean simulation based models are too costly 

to apply.
6
 One such important arena involves the estimation of dynamic choice models. 

Recent papers in this area (see Gowrisankaran & Rysmann, 2009 and Schiraldi, 2011, 

among others) have combined RC-MNL within an optimal stopping framework in the spirit of 

Rust (1987) to estimate demand systems in a durable goods context. Nesting the BLP-style 

algorithm within a Rust-NFXP algorithm turns out to be challenging from a computational 

point of view. Clearly, allowing for a flexible discrete choice model which does not require 

simulation will greatly simplify the implementation of such models. 

 

The third significant branch of the discrete choice literature has attempted to estimate semi-

parametric and non-parametric discrete choice models, most notably in the seminal 

contributions from Matzkin (1992, 1993), discussed for example by Horowitz & Savin (2001). 

The approach we take in this paper in some ways contrasts with the authors in this tradition 

and in other ways may complement their work. The case for a non-parametric analysis is 

easy to make in principle. However, as is well understood, the kinds of datasets we typically 

have in industrial organization or competition policy would not usually be sufficient to estimate 

fully non-parametric models. Briesch, Chintagunta & Matzkin (2002) provide an application of 

such techniques allowing some components of the model to be either semi- or non-

parametric, and compare the results with MNL. Unfortunately, the estimation precision of non-

                                                 
6
 We note that some authors (following Bhat, 1997) have suggested a ‘middle ground’ wherein base model 

parameters that control substitution patterns are allowed to be described as parametric functions of observed 
consumer heterogeneity. More specifically, the idea in Bhat (1997) is a simple one – to allow the Nested Logit’s 

nesting parameter   to vary with a consumer’s characteristics 
iz , so that we model )( ii zF    where now 

),(   are parameters to be estimated and F() is a transformation function which must be chosen to ensure 

10  i  as required for the Nested Logit model. Subsequent papers in this tradition include the Heterogenous 

Generalized Nested Logit model (Koppelman and Sethi, 2005) who build upon Swait and Adamowicz (2001). Such 
models, designed for use with individual level datasets, have the advantage of using a base-line GEV model allowing 
for closed form probabilities of purchasing a given option, while allowing for observed heterogeneity across 
individuals to affect purchase probabilities and in particular, the covariance between utilities of different options. Hess 
at al. (2010) examine a general and flexible form of covariance in the MCGEV by accommodating random covariance 
heterogeneity in addition to deterministic covariance heterogeneity, although introducing random coefficients means 
losing the closed form for the choice probabilities. We note that the FC-MNL model proposed here could similarly be 
adopted as a base model in the tradition of this literature. 
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parametric models decreases rapidly as the number of explanatory variables increases, the 

so-called ‘curse of dimensionality’. The FC-MNL model is fully parametric, but it could also be 

used in the spirit of this branch of the literature since it could (in principle) provide the basis 

for a semi-parametric model wherein only the distribution of consumer tastes in the population 

is assumed parametric and provided below. This paper’s aim of improving model flexibility is 

very much in the spirit of this branch of the discrete choice literature – in the sense that we 

are aiming to reduce the constraints being imposed on the data by the assumptions 

embedded in the model. 

 

The paper proceeds as follows. First, we introduce notation and review McFadden’s results 

on the MEV class of models, emphasizing that this class of models provide analytic 

expressions for market shares and thereby avoids simulation. In Section 3, we formally 

describe the FC-MNL model and demonstrate (i) that it is a member of the MEV class of 

models under specific parameter restrictions and (ii) that it provides a flexible functional form 

for a well-defined class of DGP’s. Section 4 discusses identification and estimation. Section 5 

provides a Monte-Carlo study. Section 6 illustrates the use of the model in estimating the 

demand for automobiles in Italy. Finally, we conclude. Proofs are relegated to appendices. 

 

2 The MEV Class of Models 

 

Consider a discrete choice demand model where consumers, indexed by i, each choose 

between an outside option (option 0) and J inside options indexed from  },..,1,0{ Jj . 

Each consumer is assumed to choose the option which provides the greatest conditional 

indirect utility, );,(max 1jjij
j

pywv 


 where ),( jjj xw   denotes the observed and 

unobserved characteristics of product j (respectively denoted jx   and j  following BLP), jp  

denotes good j’s price and 0p  is the price of the outside good, which we normalize to 1, so 

that the outside good is assumed to be in monetary units and 1  parameterizes the 
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conditional indirect utility functions.
7
 We further suppose that 

ijjjjjjij pywpywv   );,();,( 11  with ij  can be an option- and an individual-

specific idiosyncratic component of conditional indirect utility. 

 

In the familiar MNL model, ij  is assumed as i.i.d. across individuals and products with a type 

I extreme value distribution so that its cumulative distribution function has the 

form   .expexp)( ijijF    In that case, the aggregate market shares of each of the J 

choices are well known to have an analytic form: 









J

k

pyw

pyw

j

kkk

jjj

e

e
s

0

);,(

);,(

1

1





. It will sometimes be 

useful to define the functions 
);,( 1 jjj pyw

j er


  so that we can write 



J

k

kjj rrs
0

/ . Next we 

state the result due to McFadden (1981), which generalizes this result substantively to 

establish the MEV class of models. We opted for the version of the theorem with the 

generalization to homogeneous degree  functions due to Ben-Akiva and François (1983) for 

reasons that will become clear below. 

 

Theorem 1 (McFadden (1978); Ben-Akiva and François (1983)) Suppose 

),;,...,,( 210 JrrrH  is a non-negative, homogeneous of degree 0 , function of 

0),...,,( 10 Jrrr , where 2  is a vector of parameters and },...2,1,0{ J . Suppose (i) 




),;,...,,( 210lim J
r

rrrH
j

 for j  (ii) that for any distinct ),...,( 1 kii  from  , 

kii

J

k

rr

rrH





...

),;,...,(

1

20 
 is non-negative if k is odd and non-positive if k is even. Then if the joint 

distribution of consumer heterogeneity has the form 

 ),;,...,(exp),;,...,( 220
0 

   JeeHF J , and consumers solve 

ijjjj
Jj

pyw  


);,(max 1
,..,1,0

 then market shares have the analytic form: 

jJ

j

J
j

j
r

rH

rrrH

r

rrrH
r

s
ln

),;(ln1

),;,..,,(

),;,..,,(

2

210

210



















, evaluated at 
);,,( 1 jjj pyw

j er   for all 

j , and where  Jrrrr ,,, 10  . 

                                                 
7
 More formally, we could follow McFadden (1981) and argue that the conditional indirect utility specification here can 

in turn be motivated by an underlying utility function maximized subject to a budget constraint. See for example, the 
derivation provided in Davis and Garces (2010), pages 462-467.  



 8 

 

This important theorem describes a simple way of generating structural discrete choice 

models with analytic market share functions. The structural model consists of two 

components. First, each consumer is assumed to solve a conditional indirect utility problem 

ijjjj
Jj

pyw  


);,(max 1
,..,1,0

 - which can in turn be motivated by an underlying utility 

function subject to a budget constraint - and second consumer heterogeneity is assumed to 

follow a particular distribution across the population of consumers, 

 ),;,...,(exp),;,...,( 220
0 

   JeeHF J . 

 

The MEV-class of models relaxes the independence from irrelevant alternatives (IIA) property 

of the MNL model by relaxing the independence assumption between the error terms of 

alternatives while maintaining a closed-form expression for the market shares. Several 

specific MEV structures have been formulated in an attempt to increase flexibility of the 

models and applied within the MEV class. The first class of models include the classic 

Multinomial Nested Logit (MNNL) model (Williams, 1977; McFadden, 1978; Daly and 

Zachary, 1978) and subsequent modifications (see for example, the nest-specific parameters 

used by Verboven and Brenkers, 2002). Subsequent authors noted that the MNNL’s 

partitioning of the lists of products into separate non-overlapping nests of products seriously 

restricts substitution patterns. As a result, authors have developed models where the product 

nests can overlap; see the Cross-Nested Logit (CNL) model (Vovsha, 1997; Ben-Akiva and 

Bierlaire, 1999; Papola, 2004; Bielaire, 2006) and the Generalized Nested Logit (GNL) model 

(Wen and Koppelman, 2001) which Bielaire (2006) shows are equivalent.
8
 The empirical 

industrial organization literature has also contributed to this branch of literature in the form of 

the Product Differentiation Logit (PDL) model (Breshanan et al., 1997). With the notable 

exception of the PDL, authors writing in this literature are primarily writing in the transportation 

demand literature and therefore have also adopted terminology around ‘Networks’ to motivate 

and describe classes of MEV type models. In particular, the Paired Combinatorial Logit (PCL) 

model (Chu, 1989; Koppelman and Wen, 2000) and the Network GEV (NetGEV) model 

                                                 
8
  Bielaire (2006) also shows that the Ordered GEV model (Small, 1987) is a special case of the CNL. See also the 

Multinomial Logit-Ordered GEV model (Bhat, 1998), the ordered GEV-nested logit model (Whelan et al., 2002) and 
also more recently the application to the car market of the Ordered Nested GEV model (Grigolon, 2012). 
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(Bierlaire, 2002; Daly and Bierlaire, 2006). In case it is helpful for the reader, Table 1 shows 

the MEV generating functions for a variety of models including those proposed in both 

transportation and industrial organization literatures. 

 

Table 1: Examples of members of the MEV class of models 

 Author(s) Description of H function Parameters in 
the distribution 
of tastes  

Multinomial 
Logit (MNL) 

McFadden 
(1978) 




J

j

jJ rrrrH );,..,,( 10
 

None 

One Level 
Multinomial 
Nested Logit 
(MNNL) 

McFadden 
(1978) 

g

g

g

G

g

J

j

jJ rrrrH








 



  














1

1

1

1

210 ),;,..,,(  
g

  for g=1,..,G (G 

parameters) 

Two Level 
Multinomial 
Nested Logit 
with nest 
specific 
parameters 

Verboven and 
Brenkers (2002) 

g

ghg

gh

hg

G

g

H

h

J

j

jJ rrrrH










 







  

















































1

1 1

1

1
1

1

1

210 ),;,..,,(
 

ghg  , for Gg ,..,1  

and Hh ,..,1 . 

(G+G*H) parameters.  

gh
 partition .    

 
Cross Nested 
Logit Model 

Vovsha (1997) 

 
 
















G

g

J

j

jjgJ

g

rarrrH
1

210 ),;,..,,(



  

10  jga
 for all j,g 

10 
g

jga

and 

1
g

jga

.
g

  do not 

partition .  

Product-
Differentiation 
model (PD)  

Bresnaha, Stern 
and Trajtenberg 
(1997) 

  
 






































G

g

H

h

J

j

jgJ

g

gh

grarrrH
1 1

1

1

1

210 ),;,..,,(




  

where 



G

g

ga
1

1 

gga ,  for Gg ,..,1  

(2G parameters) .  
gh

  

do not partition .    

    
Paired 
Combinatorial 
Logit model 
(PCL) 

Chu (1989) 




 














1

0 1

1

1
1

1
1

210 ),;,..,,(
J

i

J

ij

jiJ

ij

ijij rrrrrH




  

10 
ij

  for all i,j pairs 

 
Generalized 

Nested Logit  
(GNL) or 
Cross Nested 
Logit model 
(CNL) 

 
Wen & 
Koppelman 
(2001) or Ben-
Akiva and 
Bierlaire (1999); 
see Bierlaire 
(2006) 

g

g

g

G

g j

jjgJ rarrrH





  

 















1

210 ),;,..,,(  

 

0jga ,,




G

g

jga
1

0
,, 





G

g

jg ea g

1





where

5772.0  is Euler’s 

constant and 

0 g
 

g


 do not partition .  

Notes: In the one-level nested logit model, Jg denotes the set of products in the g
th
 nest. Similarly, in the two level nested 

logit model, 
hg

 denotes the set of products that are in top level nest g and in second level nest h. 

 

This paper follows the tradition of these papers and indeed the model we propose is 

somewhat of a “hybrid” variety, with elements of both the PCL and the Cross-Nested Logit 
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classes of models but has been developed to have some nice properties. Of course, 

understanding the right base-models to take to data is important for applied researchers and 

which one to use depends on the properties a researcher wishes her model to have. We 

motivate the FC-MNL specification with very deliberate aims in mind, in particular, we would 

like (i) to generate a model which is known to be Diewert (1974) flexible while introducing a 

minimal number of parameters to estimate and (ii) to have a model specification which is easy 

to work with computationally. In the latter regard we will, for example, show later in the paper 

that our model specification can be easily programmed using matrix algebra. 

 

It is perhaps surprising that only a relatively small number of possible members of the class of 

MEV models have previously been actively taken to data. In this paper, we develop some 

properties of this general class of models and also propose using a ‘new’ )(rH function, one 

that provides researchers with demand systems with some desirable properties. Along the 

way, we discus some inherent limitations of the MEV class of models, and present a model 

which will be a member of the MEV class of discrete choice demand models under well-

defined parametric restrictions which may or may not be imposed in estimation. 

 

In many policy applications, including merger simulation, the key object of interest is the 

matrix of own- and cross-price elasticities. Given the analytic market share function for the 

wide class of MEV models, it is possible to compute analytic expressions for the own- and 

cross-price elasticities of demand. Doing so provides an insight into at least one useful 

property of the function H. We begin by providing an expression for the matrix of own- and 

cross-price elasticities that are generated by the MEV class of models. Define 

j
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
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2

2


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Corollary 1  (i) Own- and cross-price elasticities of demand in the class of MEV models 
have the following analytic form: 
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},...2,1,0{ Jj  , },...2,1{0/ Jk   (i.e., A/B denotes the set ‘A not B’) and with each 

element evaluated at 
jjjj pyw

j er
 


);,( 1

 for j . 
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(ii) Income elasticities of demand in the class of MEV models have the form:  
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 for j . 

 

Using the expressions provided in Corollary 1, it is possible to see why the MNL model, 

wherein 



j

jJ rrrH );,..,( 1  suffers from severely restricted predicted cross-price 

elasticities. In particular, note that the H function for the MNL model has all of its second 

cross-derivatives as zero. As a result, the MNL model provides a matrix of own- and cross-

price elasticities that for k>0, collapses to the well-known and often criticised expression 

    k
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)()(
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ln

ln
. This, for example, 

is entirely independent of j for any kj  , so that the MNL model predicts that an increase in 

the price of good k will result in an identical increase in demand for every other product. 

Clearly, the model’s predicted cross-price elasticities generically will not reflect the true level 

of substitutability between the products in the market. Rather, the model imposes a great deal 

of structure on the estimated demand system. 

 

An implication of Corollary 1 is that, of the MEV models considered in the literature, very few 

(eg. Bresnahan, Stern & Trajtenberg, 1997; Verboven & Brenkers, 2002; Wen & Koppelman, 

2001; Ben-Akiva and Bielaire, 1999) can potentially avoid the restrictiveness of the MNL 

model in the substitution patterns between goods. The reason is that these models allow the 

second cross-derivatives between any pair of goods is potentially non-zero for j, k.
9
 

On the other hand, provided we make the last term parametric 
k

k

k

p








, the MNL can in 

principle match arbitrary own-price elasticities of demand. To state this first –very limited - 

result, we use the notation that 
*

ks  is the true (observed) vector of market shares and  

                                                 
9
 Specifically, Wen & Koppelman’s Table 1 suggests that allowing for a sufficient number of log-sum parameters the 

GNL could potentially match any symmetric price elasticities matrix. However, no proofs or particular discussions in 
this direction are provided. 
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*
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k

j
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s
 is the true matrix of own- and cross-price elasticities. We also use the 

assumption, which will be proved below in Lemma 3, that there exists a vector r such that the 

model can exactly match the vector of true market shares, 
*)( kk srs   for all k=0,1,..,J. 

 

Lemma 1 The MNL model with option specific price parameters can match any vector of own-

price elasticities provided 10 *  ks  and provided there exists an r (or following BLP an 

underlying vector of unobserved product characteristics ),...,( 1 J  ) such that 
*)( kk srs   

with 
);,,( 1 jjjj pyx

j er


 . 

 

Lemma 1 provides a simple demonstration that a suitably parameterized version of the MNL 

can match arbitrary own-price elasticities. Unfortunately, such a parameterization does not 

help to simultaneously match the cross-price elasticities unless the Data Generating Process 

(DGP) satisfies very stringent conditions. To see that, notice that such an MNL model 

imposes the requirement that  kjk

k

j
ss
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**
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 for all kj  , while fitting the own-price 

elasticites involves setting 
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 . These relationships mean we can only fit 

both if the DGP satisfies the restriction that 
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 for all kj  , a set of 

restrictions for which there is no obvious theoretical motivation. For datasets which involve 

small market shares 
*

js  and
*

ks , these restrictions, implicitly imposed by the model, ensure 

that the estimated cross-price elasticities will be small relative to own-price elasticities, a 

highly undesirable state of affairs for most applications. On the other hand, such a model 

would be very useful to a firm who wanted to have its proposed merger approved; the 

restriction would ensure that the firms appeared to have low cross price elasticities and hence 

were producing products in distinct markets. The standard MNL model will impose this 

restriction and more. Once we attempt to match cross-price elasticities as well, we find an 
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alternative approach (to using option specific coefficients) that has some advantages. It is to 

that case which we now turn. 

 

3 A Flexible Discrete Choice Demand Model 

 

In this section, we provide a sequence of results concerning a member of the MEV class of 

models, one that has some considerable ability to match own- and cross-price elasticities of 

demand. Specifically, we propose developing a discrete choice demand model based around 

the member of the class of MEV models with H function: 

  




 












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j jk

jk rb
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brH
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11

2
2

),;( 





  

Intuitively, following the discussion above, the central element motivating this choice of H 

function is that the matrix of cross derivatives of )(rH jk  can be varied greatly by varying the 

parameters jkb . In this member of the MEV class of models, the parameters   ,,2 B  

are taste parameters controlling the distribution of tastes in the population, where B is the 

(J+1)x(J+1) matrix with jk
th
 element jkb . The parameter 



jjb  is indexed by the choice set   

for reasons that will become apparent. 

 

As discussed below, a nice feature of the FC-MNL model is that the parameter controlling the 

substitution pattern between goods j and k will be jkb  while jjb  will control the own-price 

elasticity for product j. This model nests the standard MNL model. To see that, simply set 

0jkb  for all kj  , 1jjb  and 1 . The FC-MNL can also be motivated as a specific 

instance of a very general version of the GNL/CNL model written down by Wen & Koppelman 

(2001) and Ben-Akiva and Bierlaire (1999). To see the mapping, recall that the CNL has a 

general MEV generating function 
g

g

g

G

g j

jjgJ rarrrH
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1

210 ),;,..,,(  which, if we (i) 
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put every pair of products into a nest so that nest g is made up of products },{ kj
g
  for all 

combinations of products 
kj 

and in addition, (ii) put every product in its own nest so that 

we also have }{
'

j
g
  for all products Jj ,..,0 ; and (iii) set   , 




1


g
 for all g. 

Doing so allows us to write the expression   g
gg

jkgjjg rara 




  for each kj   nest since 

   
ggg

g

g
gg jj

jkjkjjjk
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arara







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















 


2
2 . That is, we can set  

g

jkjk ab




2  for kj   

and  
g

jjjj ab





 for the parameters on the nests consisting on each individual product. To 

our knowledge, no one has ever previously estimated such a general version of the CNL 

model. 

 

We now state a lemma which establishes the parameter restrictions under which the FC-MNL 

model can generate members of the class of MEV models.  

 

Lemma 2 The function ),;( 2 rH  as defined above can be used to generate members of 

the class of MEV models if (i) 0jkb ,  for all j, k=0,…J, (ii) for each j there is a good indexed 

jm  such that 0
jjmb ,  (iii) 0 , 0  and 1 . Any member of this class of 

models with an asymmetric B matrix is observationally equivalent to a member of the MEV 

class of models with a symmetric B* matrix where 2/)(**

kjjkkjjk bbbb  . 

 

The first part of the lemma is proven in the annex but also follows implicitly from Bierlaire 

(2006) who proves the result for a general CNL model. The second part of the lemma is both 

important and easy to see since 1
1

1

1
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only depends on the averages of the off-diagonal parameters, 2/)( kjjk bb  . As a result, it 

will sometimes be interesting to estimate a model which is more general than the MEV based 

model described thus far since doing so will, for example, allow us to test the restrictions 

required to support the structural MEV interpretation of our parameter estimates. Note that 
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when symmetry is not imposed, kjjk bb  , the model with market share function, 
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 is more general than 

could be derived from an MEV model because it does not require that each of the functions 

)(rN j  are derived from a single common function according to the relationship 
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)( 2 . To see that, notice that since );( 2rH  is homogeneous of degree  , 
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  and so the share function becomes one generated by an MEV 

model wherein 
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rH

rHr
rs jj

j 
 . This market share model will therefore be a member of 

the MEV class of models only when the parametric symmetry restrictions kjjk bb   all kj   

are imposed. We will discuss the implications of these symmetry restrictions more extensively 

below. For now, we note in particular that Lemma 2 does not imply that the more general 

model we outline below is observationally equivalent to a symmetric member of the MEV 

class of models. 

 

In the next sub-section we establish sufficient conditions on the parameters such that there is 

a value of r which will equate predicted market and actual market shares for all products, 

**)( jj srs   for Jj ,..,0 . We then progress to demonstrate that the model can, in addition 

to market shares, also match any matrix of own- and cross-price elasticities of demand for a 

well-defined class of DGP.) In particular, we show that the MEV restriction that kjjk bb   

restricts the flexibility result only to apply to DGP’s which satisfy the familiar ‘symmetry’ 

restriction, 
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 for all j,k. We also show that the current generation of models 

such as the member of the class of RC-MNL models popularized in the seminal contributions 

from Berry (1994) and BLP (1995) implicitly also frequently impose symmetry restrictions. In 
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contrast, we will see that the symmetry restrictions need not necessarily be imposed on the 

general market share function considered here. 

 

Flexibility. We consider the flexibility of the proposed demand system in two steps. First, we 

show that using this class of models we can always solve for the levels of mean utilities
10

 

associated with each option that make predicted and actual market shares equal for all the 

goods. More precisely, we show that we can always solve for the monotonic transformation of 

the mean utilities 
);,,,( 11  ppyw

j
jjjer   j . This result also provides the first step in 

establishing flexibility results about the demand system since it ensures the model can always 

match the vector of observed market shares, one requirement for a model to be a Diewert 

(1974) flexible functional form. We then proceed to provide a result establishing the models’ 

ability to also arbitrarily match any own- and cross-price elasticities. 

 

Notice that given any value for 
*

jr , and any fixed values of );,,(
1


jj
pyx , the equation  

);,,,(* 1
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. Thus we may entirely equivalently think of picking the 

*

jr  or 
*

j  to 

match market shares. Under either of these interpretations, finding 
*

jr  or 
*

j  amounts 

essentially to finding the level of utility that must be associated with product j in order to 

explain its observed market share, where  **
1

*
0

*
,,, J  . An implication of Lemma 3 

below therefore will be that we can use an estimation strategy based on the suggestion from 
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 Notice that the term “mean utility” (of product j) to denote j

 is misleading in our context because it is not difficult 

to show that the above discussed MEV distribution implies  
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constant (see Abbe at al., 2005, for the derivation of the result for the CNL model). Therefore, the mean utility of 

product j is actually equal to the sum of the previous two elements.  However, we will keep referring to j
 as mean 

utility for clarity of exposition and to simplify the comparison with the other papers in this literature. Finally observe 
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Nakanishi and Cooper (1974), Berry (1994) and BLP (1995); see section 4. We first state a 

general result and then apply it to the particular demand system under consideration wherein  
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Lemma 3 Let },...,1,0{ J  be the set of products and   jsj obs

j ,0|  be the set 

of products with strictly positive observed market shares. Let );( rf  be continuous, 

differentiable and homogenous of degree 0  in 



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r  and for any 
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rfrf . Further suppose );( rf  has the 

following properties: (i) if 0jr  then 0);( rf j , (ii) 1);(lim 
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rf j
rj

 for all j , (iii) for 
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Then there exists a finite vector of r ’s that solve the J+1 vector of equations );(  rfs j

obs

j  

for j . If 0obs

js  then a solution sets 0* jr  for j . Moreover, the solution to the 

subset of equations );( 


 rfs j

obs

j  with 
j  is unique. 

 

We now provide a result which allows this lemma to be applied to the particular model under 

consideration in this paper. 

Corollary 2 Let 









J

l

ll

jj

j

rNr

rNr
rs

0

2

2

2

),;(

),;(
),;(




  and let 1obs

js  for all j. If (i) 0jkb , for all 

j,k=0,…J, (ii) 0jjb  for each 
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Moreover, the solution 
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  rss j
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j  (i.e., with 

0obs

js ) is unique.  

 

Notice that starting from a general framework where consumer preferences are represented 

by a random utility model, Berry & Haile (2012) and Berry Gandhi & Haile (2011) prove the 

invertibility of a demand system under mild conditions: (i) the index restriction and (ii) the 
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connected substitute assumptions.
11

 Lemma 3 and Corollary 2 prove the uniqueness results 

in the present context also when the demand system is not necessarily generated by random 

utility models, i.e. kjjk bb  .
12

 

 
An important aspect of the result provided in Lemma 3 and Corollary 2 is that we need not 

impose the symmetry conditions, 
kjjk bb  , in order to compute the model and, as a result, we 

need not impose the symmetry restriction when estimating the market share equation. That 

means that we need not impose such assumptions a priori on the data but rather can test 

whether the data are consistent with it by testing the restriction that the B parameters satisfy 

the symmetry restriction using conventional tests such as LM or Wald tests.
13

 A referee raised 

the interesting question of whether, if a researcher finds that their data rejects the symmetry 

restriction, she would effectively be in the same position as if she had just estimated a 

computationally simpler model, say a simple linear regression of quantities on prices. Clearly, 

as in the continuous choice demand literature, the asymmetric model has no underlying 

welfare foundation and so we agree in that respect with the point being made. However, we 

are of the view that the main approach taken by the literature involves estimating discrete 

choice models which imposes symmetry a priori, rather than estimating computationally 

simple models without an underlying utility motivation. In that respect, it is a distinct 

advantage to be able to test whether the symmetry restrictions implicit in many models are, in 

truth, rejected by the data. Authors will not know at the start whether symmetry is rejected, but 

the fact that the model we propose remains estimable means that the effort undertaken to get 

to that point will not immediately be wasted since not all applications (e.g. merger simulation) 

require a utility theory. Moreover, the process of testing may provide indications of the pattern 

                                                 
11

 The index restriction requires that )1(

jtx (where )1(

jtx is at least an observed exogenous characteristic of product j) and 

jt  affect the distribution of utilities only through an (potentially non-linear) index, for example 
jtjtx   )1(

~

 with 

the essential requirement that the index that is strictly monotonic in 
jt which in turn implies 0/  jj  . The 

connected substitutes structure requires two conditions. First, goods must be weak substitutes in the characteristics 

and in the index 
~

 . Second, there must be sufficient strict substitution among the goods to require treating them all 

in one demand system. Under the symmetry restriction of the B matrix, i.e. 
kjjk bb  , theorem 1 in Berry and Haile 

(2012) proves the uniqueness of the vector   that rationalized the market shares in present context. 
12

 Proposition 2 in appendix B provides an alternative approach to establish the invertibility of the demand system 
under symmetry condition. 
13

 Typically, if symmetry is rejected when estimating say a NIDS or Translog model we do not impose the symmetry 
restriction required for the underlying theory but rather prefer to use the estimated demand system – for say merger 
analysis – even in the absence of an underlying model of utility and consumer heterogeneity. 
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in the data that is leading to a rejection of symmetry and therefore possibly suggest ways to 

accommodate such asymmetries, perhaps by introducing some elements of consumer 

heterogeneity.
14

 

 

Next we state the proposition which establishes that the model we propose in this paper is a 

flexible functional form within a well-defined class of DGP’s and therefore in the sense of 

Diewert (1974). 

 
Proposition 1 (Flexibility of the discrete choice model) Consider the MEV model  
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This proposition establishes that for any fixed 1  and 10   with 1  there are 

values of ),,(  B , so that the model can match an arbitrary vector of positive market shares 

and an arbitrary matrix of symmetric own- and cross-price elasticities.
15

 However, this result 

holds with a caveat. While the theoretical result in proposition 1 is valid in case we study a 

single market or time period, the model will not be able to match different arbitrary matrices of 

own- and cross-price elasticities if multiple markets or time periods are considered. Naturally, 

                                                 
14

 Consumer heterogeneity will be helpful because aggregate demand curves need not satisfy symmetry. We do not 
pursue the option in detail here, but we hypothesize that an aggregate demand model based on two distinct types of 
FC-MNL consumers, each with distinct but symmetric matrices of parameters B and B* may provide a flexible but 
relatively easy to estimate option for generating asymmetric models. 
15

 This result and the proof could be extended to asymmetric cross-price elasticities in the demand system by not 

imposing the restriction 
kjjk bb  , however several technical complications would arise. 
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the same caveat applies to the analogous flexibility results provided by the continuous choice 

demand literature. We further study this limitation with a Monte-Carlo study in section 5.2. 

 

Finally, we show that all members of this MEV class of models will impose symmetry-like 

restrictions which should not be expected to hold in general (Diewert 1977, 1980). Davis 

(2006b) similarly shows that a wide variety of RC-MNL models, including all of the famous 

examples in the recent industrial organization literature, also impose symmetry. Specifically, 

the specifications estimated in BLP (1995), Nevo (2001) and Petrin (2002) each therefore 

implicitly impose symmetry while Goolsbee & Petrin (2004) explicitly impose it. Unfortunately, 

symmetry restrictions should not in general be expected to hold in aggregate demand models 

and should not be imposed a priori on aggregate demand systems, but rather the validity of 

such restrictions should be tested in any given context. In contrast, the condition 0
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while strict, does allow cross price effects to be arbitrarily small and so is not a substantive 

constraint on the DGP. 

 

Lemma 4 
 
(i) All members of the RC-MNL model with 

ijiiijjjijiiijj ypwvypwv   ),,,,(),,,,,( have cross-price derivatives equal 

to the average across individual of an identical multiplicative constant (the product of 
market shares) times the derivative of product k's utility with respect to its price. If 
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additive separability condition in ),( jj pw and linearity in jp then a symmetry restriction, 

j

k

k

j

p

s

p

s









, is imposed and the cross-price derivatives are only a function of the 

average product of market shares. 
(ii) All members of the MEV class of models will impose a ‘proportional’ symmetry 

restriction, namely that 

j

k

j

j

k

j

k

k

p

s

pp

s

p 






































 11


. If 








j

j

p
 for all j>0, then the 

MEV class of models will impose the symmetry restriction, 

j

k

k

j

p

s

p

s









. 

 

Lemma 4(i) suggests that cross-derivatives in the RC-MNL models are not a function of how 

close a product’s characteristics are to other products’ characteristics (to the extent such 
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similarities are not captured in shares). Moreover, most of the RC-MNL applications impose 

the further symmetry restriction on the cross-price derivatives. An implication of Lemma 4(ii) is 

the invariant proportion of substitution (IPS) discussed in Steenburgh (2008). The IPS 

property represents one of the researcher's implicit assumptions about how an individual 

consumer will substitute away from competing alternatives, if improvements are made to one 

of the available goods. It holds if the proportion of demand generated by substituting away 

from a given competing alternative is the same no matter which own good attribute is 

improved. Formally, IPS implies 
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jj yx   which is implied by the proportional symmetry restriction. 

 

To summarize, in this section we have shown that flexible (in the sense of Diewert, 1974) 

substitution patterns can be obtained by using members of the MEV class of functions that do 

not restrict the matrix of second derivatives of the H function. In particular, if we use the 

homogeneous degree   function where 
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  which, 

with fixed ),(   has at least (J+1)(J+2)/2 parameters in B  in the distribution of consumer 

tastes as well as the parameters 
1  in the transformed function 

);,;,( 1 ypx

j
jjjjer   then we 

will have a discrete choice demand system that can match a general matrix of own- and 

cross-price elasticities provided the DGP satisfies symmetry. 

 

Under symmetry, the expected maximum utility function equals to 


),;(ln
1

rH  and 

the model can be used to compute the distribution of welfare changes in response to a 

change in the environment (e.g. a change in price or in the number of products). Furthermore 

in the spirit of the recent literature of demand estimation in differentiated product since 

Lancaster (1966)’s seminal work, we can map the substitution matrix B down to be parametric 
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functions of “distance” of goods j and k on a characteristics space
16

 by following the approach 

recently suggested by Pinkse et al. (2002).
17

 Specifically in the Monte-Carlo and in the 

estimation in Section 6, we find a convenient specification for each element of the B matrix is 

as follows: 
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lkljlkjjk xxxxd   measure the “distance” between products j and k in 

characteristics space and ),( 21 ll   are the parameters to estimate
18

. Such procedure will 

reduce the set of parameters to estimate and it will preserve the ability of the present 

framework to predict the change in demand and welfare following changes in characteristics, 

the entry of new products, the exit of old ones etc..
19,

 
20

 

 

4 Identification and Estimation  

Following the approach proposed in Berry (1994) and BLP (1995), estimation is based on a 

two-step procedure nested within a minimization over the non-linear parameters,
21

 those in 

the distribution of tastes, ),,(2  B . Specifically, for any given value of 2 , the vector of 

                                                 
16

 See section 5 for an explicit application. 
17

 Such an approach is also the standard method of estimating the Probit discrete choice model where the vector of 

utilities u  associated with the set of products in the market is assumed to follow the distribution 

),()',...,,( 10  Nuuuu J
 and where the distributional parameters ),(   are subsequently typically 

mapped to be assumed functions of product characteristics. By their nature, as a variance-covariance matrix, the 

distributional parameters in   will always be symmetric. 
18

 Notice that the parameters 
1 are identified up to their sign. 

19
 Since the B parameters describe only the distribution of tastes across the population, there are no restrictions from 

random utility theory on the way in which these parameters may vary with product characteristics with one exception: 
the B parameters must satisfy the restrictions required to ensure that the distribution of consumer tastes is a proper 
cumulative distribution function (cdf). In the MEV class of models, recall that Theorem 1 described that the cdf is 

 ),;,...,(exp),;,...,( 220
0 

   JeeHF J . Thus, in the case of our H function, the B parameters must satisfy the 
symmetry and sign restrictions required for the model to be in the class of MEV models – conditional on the observed 
product characteristics. 
20

 Notice that in the RC model a change in characteristic j will change the joint distribution of utilities for all products 
but it will not change the distribution of the sub-vector of utilities for products other than j.  Instead in the FC-MNL, 

when B is assumed to be a parametric function of product characteristics with , a change in 

characteristics of product j will change the joint distribution of utilities as well as the distribution of any sub-vector of 
utilities (see also the earlier discussion in footnote 10).  As a result a referee raised the interesting question of 
whether the version of the model which maps the B parameters to product characteristics – was truly “structural” with 
respect to changes in product characteristics.   We believe that the model is well clearly well motivated by an 
underlying utility theory, but we agree that the question of whether the last step - mapping the B parameters to 
product characteristics - can be motivated theoretically more explicitly provides an interesting avenue for further 
research. 
21

 Alternatively, a one-step estimator following Dube, Fox and Che-Lin Su (2011) could be used. 
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tr ’s are chosen so that predicted market shares are equal to actual market shares in each 

period (or market) t. Since
);,,(  ypw

jt
jjjter  , defining jtjt rln  we can compute jt  for 

each product, run a Berry (1994) style regression based on the linear relationship 

jtjtjtjt px    and then employ a generalized method of moments (GMM) 

estimator via a forming of conditional moment restrictions, 0]|)([ * jtjt zE  , where 

 21,  , jtjjtjtjt px   ')()( , and jtz  denotes the )x1( q vector of available 

instruments. Specifically, we define 
 


T

t

J

j

jtjtn z
n

G
1 1

'~)(
~1

)(   to formulate the GMM 

criterion function to minimize where jtjtjt  
~

, ),...,(~
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T
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1 1

  

and 1jt  if product j is sold in period (or market) t and zero otherwise so that jt  provides 

a missing value indicator.
 22

 

 

In our parameterization of the model, the market share function is clearly invariant to scalar 

multiples of the entire matrix of parameters B. Thus, for identification it is necessary to fix one 

parameter of this matrix. Relatedly, the parameter 00b  controls the nature of the own-price 

elasticity of demand for the outside good. Clearly, such a parameter will not be identified in 

datasets we typically have where the price of the outside good is normalized to 1 in every 

period or market. As a result of these two factors, a natural normalization for estimation is to 

choose 100 b  in estimation and, in so doing, fix the scale of the matrix of parameters B. 

 

The fact that we will typically observe no variation in the price of the outside good also 

suggests that it will be very difficult to identify in practice parameters 0jb  for all j. These 

parameters control the way in which substitution occurs from product j to product 1 when the 

price of the outside good increases. Since the price of the outside good is typically assumed 

fixed in our datasets, we do not observe such variation. A natural restriction appears to be to 

                                                 
22

 To simplify the exposition, we assume that the number of products is constant across markets (or periods) and 
equal to J, so that n=J*T. 
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require that substitution is to be symmetric in these parameters since, in contrast, we can 

observe the way in which the demand for the outside good varies with the price of the inside 

goods – i.e. we can expect to be able to learn about the parameters jb0  for all j inside goods. 

In estimating the model, we therefore impose the symmetry conditions that 00 jj bb   for all j. 

 

Furthermore, notice that since the model provides a flexible functional form for any fixed 

1 , 10   and 1 , in practice the values of the taste  ,  parameters can be 

fixed ex-ante. In the flexibility proofs, these taste parameters only serve to ensure that the 

constraint that the matrix of parameters in B can be all positive does not inappropriately 

constrain the flexibility properties of the model. Hence, we fix them ex-ante to limit the number 

of non-linear parameters to estimate which clearly reduces the computational time and 

reduces the need of additional exclusion restrictions without affecting the flexibility of the 

model. The flexibility proof suggests that it may be advantageous to set  above but close to 

1, so we set 1.1  while 5.0  appears to be a natural choice.
23

 

 

The parameters are then identified providing the presence of sufficient instruments, i.e. 

)dim(q , but this is only necessarily whereas sufficient condition for local identification 

(and a necessary condition for global identification) is that the matrix 
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 ZE
has 

rank equal to its number of columns (see Rothenberg, 1971).
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 In our context, we have 
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23

 While it may feel slightly unnatural to some readers to ‘fix’ parameter values exogenously, it is important to note 
that we could initially have written down our H() function with 5.0  and 1.1  already substituted in and then have 

proven the flexibility of the resulting model. Doing so would clearly be equivalent. The model with sigma and tau 
estimated is clearly more flexible and so, for those who prefer, it may sometimes be possible to estimate these 
parameters. In this paper we have chosen not to do so since the model is already Diewert flexible with them fixed.  
24

 See also the survey paper by Newey and McFadden (1994). Non-parametric identification of demand in a general 
set-up is shown in Berry & Haile (2012). 
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 is established by using the Implicit Function 

Theorem. This expression is immediately useful because it provides intuition regarding the 

data variation required for identification. Specifically, equation (3) indicates that the key 

requirement for identification, beyond the presence of sufficient instruments, is that predicted 

market shares will change if we change the parameters in 2 . That is, predicted market 

shares will vary as we move each of the up to 1)1( 2  JJ  free parameters in the 

asymmetric matrix B, away from their true values. Recalling that the B matrix control 

substitution patterns in the model, a change in the parameter jkb will imply a different degree 

of substitution between products j and k following a price movement and this will affect the 

levels of market shares predicted by the model. In the case of a large number of products, it 

will typically be necessary to map the parameters in the matrix B down to be functions of a 

smaller set of parameters, i.e.  21,  , which requires less data availability for 

identification. Notice also that if the characteristics for the outside option are set to zero, then 

this formulation also ensures that 100 tb . Please see appendix A for further derivation and 

discussion. 

 

Berry & Haile (2012)’s paper clarifies the types of exclusion restrictions needed for 

identification. Specifically, identification requires not only an excluded instrument for each jtp , 
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but also a sufficient number of instruments (BLP or more generally Chamberlin instruments) 

to identify all the remaining parameters, those in the distribution of tastes, B. The need for 

additional instruments arises from the presence of the unknown taste parameters interacting 

with the endogenous variables: prices and quantities (or market shares), i.e. ( tt ps , ), in the 

inverse demand map from market shares to mean utilities. 

 

In contrast to a model based on simulation such as BLP, the estimator for this model will not 

need to be corrected for simulation error and hence the standard formulae for a GMM 

estimator apply. Following Hansen (1982), if we choose   to minimize )()'(  nn AGG  

possibly subject to the linear restrictions rR   then, under standard regularity conditions: 

)',0(~)ˆ( 0 DAVDNn G  

where 
1111111 )''(  ,)'('   ACCRRCRCCD , A  is a non-negative definite 

weighting matrix with rank at least equal to the dimension of  , 
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
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GG
 and )]([ nG GVarV   is the variance of the moment 

conditions. It is particularly useful to estimate allowing for linear restrictions since we will often 

want to estimate models with kjjk bb  . We may follow the traditional literature on the 

‘continuous’ demand for differentiated products, wherein asymptotic arguments are assumed 

to work in the number of independent time periods or markets or alternatively follow the BLP 

assumption that asymptotic arguments work in the number of products.
25

 

 

Finally, to solve the J-dimensional vector of share equations to compute j , we use a slightly 

amended BLP contraction mapping:     k

j

obs

j

k

j

k

j rss  lnln1 
 for j=0,1,..,J with 

10   , see appendix B for discussion and derivation. A more efficient contraction 

mapping based on convex programming methods procedure is proved to converge faster. 

Appendix B discusses these methods in details and shows how these algorithms are more 

efficient than the one based on BLP’s contraction mapping. 

                                                 
25 See the web-appendix for a detailed discussion of the two cases. 
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5 Monte-Carlo Study 
 
To illustrate the use of the model, we provide two sets of Monte-Carlo studies. In the first 

Monte-Carlo, we study the performance of the estimation algorithm highlighted in section 4 in 

retrieving the true underling parameters; in the second Monte-Carlo, we assess the flexibility 

of the model by matching the elasticity matrix when the model is miss-specified. 

 

Estimation Algorithm. In this section, we provide a Monte-Carlo study which considers two 

variants of the model – one designed for datasets involving a small number of products from a 

larger number of markets and a second specification of the model appropriate for datasets 

where there are a large number of products. In each case, we set 1.1DGP , 5.0DGP , 

we consider the (L-1) non-price observed product characteristics 
DGP

jltx and a price vector 

DGP

jtp . The mean taste parameters are potentially option specific, but for the Monte-Carlo 

study we follow the majority of the literature and equalize them across inside options so that 

)'1,1..,1,1(... 11  

DGP

L

DGP
  and 1

DGP

price . Identification of the parameters 

requires a set of available instruments, we then use BLP-instruments and, following the 

reasoning in the web-appendix, weighted sums of distances between product j and its rivals 



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
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)(

)(1
, and their interactions. We also use cost shifters to control for price 

endogeneity in specification B. The tolerance for the inner loop is set at 1-e10. Please see the 

web-appendix for further computational details. 

 

Specification A: In this specification, we consider a small number of products and a large 

number of markets. Moreover, we assume price is exogenous and we treat it as any other 

product characteristics. This exercise emphasizes the importance of the instruments to 

identify the demand system independently from the availability of any cost shifters as 

discussed in section 4. The unobserved product characteristic jt  is drawn from ),0( N  
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where we set 5.0 whereas 
DGP

jltx
 
are assumed )1,1(N  for l=1,..,L-1 and 

DGP

jtp  is 

assumed positive, |)1,1(| N . In this specification, we consider two products and the outside 

option for which all characteristics are set to zero. Hence, we set J=2 and L=3. Finally, since 

typical samples do not show all products selling in all markets and time periods, we assumed 

that a given product was missing in a given time period with probability 0.2.
26

 Products were 

assumed to be missing at random, following the certainly heroic assumption familiar from both 

the differentiated product and unbalanced panel data literatures.
27

 This specification sets the 

true data generating taste parameters 
DGP

jkb  to be 1. For the purposes of this Monte-Carlo 

experiment, we do not force the matrix B to be fully symmetric so the only restriction imposed 

on the matrix B are to set 100 b .28
  

 

 J=3, T=100 J=3, T=500 J=3, T=1,000 
Parameter Bias        MSE Bias        MSE Bias        MSE 

1  -0.06454  0.01019 -0.00683  0.0005 -0.00409  0.00022 

2  -0.07707  0.01198 -0.00252  0.0007 -0.00157  0.00028 

price  0.08093  0.01768 0.00528  0.0013 -0.00111  0.00073 

100 b  n/a  n/a n/a  n/a n/a  n/a 

10b  0.596  0.835 0.038  0.070 0.034  0.031 

21b  0.439  0.831 0.067  0.060 0.007  0.024 

01b  -0.083  0.454 0.009  0.011 -0.006  0.002 

11b  -0.399  0.372 -0.049  0.023 -0.004  0.012 

21b  0.101  0.861 0.023  0.028 -0.004  0.023 

02b  0.066  0.314 -0.021  0.010 0.001  0.002 

12b  -0.215  0.388 -0.001  0.026 0.001  0.012 

22b  -0.231  0.466 -0.019  0.040 0.005  0.011 

Table 2:  Monte-Carlo simulation results for Specification A with J=2 and asymptotic 
assumed to be working in the number of time periods or markets, T.    Each figure in the 
table is calculated using 50 Monte-Carlo simulations. 

 

Evidently, the results suggest first that the estimators are consistent; all the biases are 

reassuringly small at large sample sizes and, in fact, appear to be relatively modest even at 

relatively small sample sizes. Two features of the results stand out. First, that there can be 

                                                 
26

 Specifically, a product was assumed missing in period t if the realization of a uniform random variable on [0,1] was 
less than 0.2, subject to the constraint that every market was assumed to have at least one inside good. 
27

 See Coublucq (2010) for a first attempt to address this issue.  
28

 We also included the constraints that each 
jkb be in the range [0,60] for the estimation routine to ensure the 

parameter space is compact. Such constraints did not bind in practice but did provide reassurance that the 
optimisation algorithm would do its job appropriately. 
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significant small sample biases in the estimates of 21b  - but these reduce dramatically as 

sample sizes grow. Second, the ‘linear’ parameters in   appear much easier to identify – 

with bias, variance and MSE smaller at any given sample size.
29

 

 

Specification B: Next we turn to a discussion of the ‘large-J’ case when the number of 

products is too large to estimate the elements of the matrix B, but instead those parameters 

are mapped down to be functions of parameters as discussed at the end of section 3. In this 

specification, we allow for price endogeneity. Therefore, along with 3 exogenous 

characteristics (L=4) drawn form )1,1(N , we allow for two additional characteristics that only 

shift costs, 
l

DGP

jlt

DGP

jt xw ||1.1 , where each element of 
DGP

jtw is independently drawn 

from a uniform distribution U(0, 2). The unobserved demand and cost characteristics are 

drawn from a bivariate normal distribution 
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To generate the endogenous price variable, we use the competitive price specification 

jt

l

jltjtjt xwp  







  ||1.1

 

with )1,1( . Hence, we instrument price with the 

predicted price, jtp̂ , from a first-stage OLS regression on the linear competitive supply 

equation. The taste parameters, jktb , are a function of the exogenous characteristics as 

described in the main text. 
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 The small sample (T=100) biases in 
10b  and 

20b  are unsurprising given we have not restricted the substitution 

towards the outside good parameters to be symmetric, i.e. we have not imposed 
0110 bb   or

0220 bb   in the table. 

More surprising is the result that these parameters do appear identified in larger samples even without these 
restrictions. Since there is no observed variation in the price of the outside good (it is normalized to 1 throughout) the 
surprise is that these parameters do appear to be identified in large samples whereas in principle this author had 

expected to need to impose symmetry restrictions in order to allow actual ‘observed’ variation in
jps  /1
 to identify 

the (unobserved) variation in 
1/ ps j  . Unreported results show that when the restrictions 

0110 bb   and 
0220 bb   

are imposed, the small sample (T=100) bias in 
10b  and 

20b  is much reduced (from 0.596 and 0.439 as reported in 

the table to 0.073 and 0.119 respectively) and in addition, the small sample bias reported in 
11b  reduces from the -

0.399 reported in the table to just -0.031 while the bias in 
12b  and 

22b  fall to 0.113 and 0.006 respectively. The 

variance and MSE’s of the estimated B parameters also fall. The small sample bias in  also falls considerably (to -

0.00732, -0.02196 and 0.02808 if T=100.) 



 30 

 

 J=35, T=3 J=70, T=3 J=120, T=3 J=35, T=10 J=35, T=20 

Parameters Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE 

1  0.0463 0.0360 0.0056 0.0097 0.0076 0.0029 -0.0196 0.0122 -0.0034 0.0052 

2  0.0344 0.0323 -0.0047 0.0101 -0.0014 0.0031 0.0145 0.0082 -0.0012 0.0069 

3  -0.0869 0.0267 0.0102 0.0068 -0.0037 0.0034 0.0134 0.0121 -0.0073 0.0057 

price  -0.0782 0.0070 0.0028 0.0003 0.0012 0.0001 -0.0009 0.0002 0.0019 0.0001 

11  0.0463 0.0786 0.0065 0.0256 0.0029 0.0114 0.0373 0.0247 0.0119 0.0123 

12  0.0344 0.0682 0.0192 0.0298 0.0237 0.0143 -0.0175 0.0188 0.0025 0.0133 

13  0.0229 0.0690 -0.0045 0.0225 0.0146 0.0172 -0.0139 0.0247 0.0111 0.0121 

21  -0.0869 0.1176 -0.0537 0.0518 -0.0076 0.0404 0.0768 0.0556 -0.0318 0.0238 

22  -0.0782 0.1284 -0.0426 0.0512 -0.0224 0.0366 -0.0391 0.0386 -0.0172 0.0237 

23  -0.0307 0.118 0.0151 0.0587 -0.0431 0.0413 -0.0123 0.04 -0.0023 0.0316 

Table 3:  Monte-Carlo simulation results using 50 replications for each experiment. 

 
Table 3 reports the results of the Monte-Carlo in two scenarios: as J increases for a given 

number of markets T, and as T increases for a given large number of products J. Table 3 

makes clear that the estimates for the “large J” example, do converge properly as the sample 

size gets large. Specifically, we can see that bias, and mean square error falls for each of the 

parameters as the number of products or markets rises. It is however also clear that to 

achieve a given MSE, estimating the parameters which control own and cross-price effects 

1  and 2 requires systematically larger samples than is required to estimate the ‘linear’ 

parameters, ),,,( 321 price .
30

 

 

Model Flexibility. We consider whether the model is successfully exhibiting flexibility by 

fitting the model to data generated by a RC-MNL. We focus our attention to the large-J case 

which is more common in reality. The three exogenous characteristics, the unobserved 

demand and cost characteristics and the endogenous prices are generated as in Specification 

B. In the simulated data we assume as before, that there are three dimensions of consumer 

preferences, ),,( 321  , each distributed independently normal with means and variances 

][ iE   = {1,1,-1} and ][ iVar  ={0.5,0.5,0.5}. Finally, we assume that the price parameter 

                                                 
30 Examination of the underlying Monte-Carlo runs makes clear that the immediate cause of the reported small 

sample bias in
1  and 

2  is a tendency on occasion for the optimization routine to push an individual parameter 

estimate in
1  or 

2 to zero. This does not occur in any Monte-Carlo experiments once the sample size is sufficiently 

large. Small sample bias in the estimates of 
1  and 

2  does not appear to contaminate the estimates of . 
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it

price

itprice
y


 ,

where 1price  and ity is drawn from a log-N( tt  , ) where ( tt  , ) are 

market specific and drawn from U(0,1). We simulate the integral in the market share equation 

with ns = 1000 independent standard normal draws in each market. We then use the 

simulated data (market shares, exogenous characteristics and prices) to estimate a FC-MNL 

where 1.1DGP , 5.0DGP  and the taste parameters, jktb , are function of the 

exogenous characteristics and a set of parameters l1  as before.
31

  

 

 Own – price elasticity Cross – price elasticity 

 Bias MSE Truth Bias MSE Truth 

T= 3, J=35 -0.0613 0.3453 -3.8869 -0.0091 0.0012 0.0692 

T=10, J=35 -0.0630 0.2838 -3.8951 -0.0087 0.0010 0.0693 

T=10, J=25 -0.1570 0.3998 -3.8807 -0.0099 0.0020 0.0918 

Table 4: Monte-Carlo simulation results using 50 replications for each experiment. 

 

 
Table 4 confirms the ability of the model in matching quite well, the matrix of own- and cross- 

price elasticities arising from the RC-MNL models. Thus for example, in the Monte-Carlo with 

T=10 and J=25, the average value of the true own-price elasticity was -3.8807 while the 

model estimated this elasticity with a bias of just -0.157 which is very encouraging. The 

results for the cross-price elasticities are similarly encouraging – we get a relatively small 

downward bias of -0.0099 on the average true value of 0.0918. 

 

6 Italian Automobile market 1991-1999 

 
We use the model studied in section 3 to estimate the demand for new automobiles in Italy 

between 1991 and 1999.
 32

 The variables in the data set include quantity, price, dummies for 

where the firm that produced the car is headquartered, the engine size (cc), the consumption 

in terms of number of litres necessary to drive 100 km, size (measured as length times width) 

                                                 
31

 The estimation is performed as in specification B including the same IVs plus the mean income which divided the 
predicted prices in each market. Please refer to the web-appendix for the further computational details. 
32 The data set has been used in Goldberg and Verboven (2001) and it is available upon request. 
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and weight. The data set includes this information on the majority of models marketed during 

the 9-year period (models with extremely small market shares, such as the Ferrari and the 

Rolls Royce, are not included in the data). Since models both appear and exit over this 

period, this gives us an unbalanced panel. Treating a model/year as an observation, the total 

sample size is 735. Table 5 provides summary descriptive statistics of the variables in the 

dataset. The reported mean are weighted by sales. 

 

years 
no. of 

models 
quantity 

'000 
price in 

€ size 
l x 100 

km 
engine 
size(cc) weight 

Nominal 
GDP per 
capita  € inflation 

1991 77 2,233 7,810 632.56 7.83 1184.17 866.46 12,992 1.0000 
1992 76 2,273 8,740 634.76 8.03 1271.61 887.05 13,647 1.0466 
1993 78 1,775 9,426 634.93 8.07 1261.55 898.30 14,034 1.0925 
1994 77 1,613 9,981 640.90 8.17 1259.05 923.83 14,795 1.1302 
1995 80 1,556 11,097 645.01 8.28 1272.85 940.14 15,974 1.1875 
1996 84 1,518 12,249 659.29 8.39 1296.22 960.56 16,855 1.2465 
1997 85 2,166 11,500 644.91 8.24 1253.70 934.46 17,515 1.2789 
1998 87 2,065 12,137 655.54 9.09 1269.25 958.02 18,268 1.2946 
1999 91 1,874 12,408 655.81 9.14 1253.60 989.47 19,110 1.3164 

 
Table 5: Descriptive Statistics. 

 

Given the large number of products in each year, we map the matrix B down to be functions 

of car attributes as discussed in the specification B above. BLP-style instruments, weighted 

sums of distances between each product j and its rivals and their interaction are used in the 

estimation along with some additional cost shifters. Specifically, we use the price of 

aluminium and the one-year lag, and, each of these prices interacted with car characteristics 

like size and weight. In the estimation, we use the BLP-style moment conditions, 

)('
1

)(  Z
n

G   so that the GMM estimator is )()'(minargˆ 1   GWG  , where W is 

the optimal waiting matrix. Finally in the estimation, prices are divided by the nominal GDP 

per capita. The results are reported in table 6. 

 

The estimates are all significant and have the expected sign. In particular, the price coefficient 

is precisely estimated and has the value -2.52. The parameters entering the matrix B are also 

well identified except for one.  
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 Parameters Variables 
parameter 
estimate 

standard 
Error 

linear     
parameters in  Constant -13.64 3.28 

  
Fuel 

Consumption 
(L/100 Km) 

-2.88 0.50 

 Log(size) 3.95 2.15 
 Log(cc) 4.95 1.22 
 Price -2.52 0.35 

 
Manufacturer 

Location 
dummies 

Yes - 

parameters in B   

diagonal α2    
 Fuel 3.55 0.55 
 Log(size) -6.10 2.62 
 Log(cc) -4.63 1.20 

off-diagonal α1    
 Fuel 4.27 7.73 
 Log(size) 4.82 0.06 
 Log(cc) 2.23 0.30 

    
Table 6: Estimated parameters of the demand. The tolerance for the inner loop is set at 1-e10. 

 

Table 7 reports average own- and cross- price elasticities across different segments. The 

own-price elasticities are higher for larger and more expensive models. Moreover, table 7 

shows that domestic cars have lower elasticities compared to foreign ones across all 

segments which suggest a higher degree of market power for the local manufacturer Fiat (Fiat 

Group’s share was about 50% in 1991). 

 

Own Price Elasticity 
Within-Market Segment 

Cross-Price Elasticity 

Subcompact     -1.59   0.0066   
 Domestic -1.67      
 Foreign -1.48      
Compact   -2.54  0.0050  
 Domestic -2.62      
 Foreign -2.36      
Mid-Size   -3.32  0.0143  
 Domestic -3.66      
 Foreign -2.87      
Sedan   -4.39  0.0015  
 Domestic -4.58      
  Foreign -3.99         

Table 7: Average (weighted by sales) own- and cross-price elasticity across segments. 

 

 Finally, table 8 reports the own- and cross-price elasticity for a selected sample of cars in 

1991. It reads as follows: a one percentage increase in the price of the BMW 3 series raises 

the demand of the Citroen XM by 0.00032% and of the Fiat Uno by 0.008156% which was the 

most popular model in Italy. 
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BMW 3 

Citroen 
XM 

Fiat Uno 
Honda 
Civic 

Mitsubishi 
Lancer 

Opel 
Vectra 

Rover 
Montego 

Suzuki 
Swift 

BMW 3  

 
-3.179536 0.000320 0.008156 0.000069 0.000016 0.000815 0.000020 0.000052 

Citroen XM 0.001182 -4.843053 0.007156 0.000069 0.000117 0.000815 0.000020 0.000052 
Fiat Uno  0.000020 0.000030 -1.199981 0.000069 0.000016 0.000815 0.000020 0.000058 
Honda Civic 0.001082 0.000320 0.007174 -2.442549 0.000017 0.000817 0.000020 0.001378 
Mitsubishi lancer 0.001182 0.003320 0.007156 0.000070 -2.931113 0.000822 0.000086 0.000052 
Opel Vectra 0.002182 0.000320 0.007156 0.000069 0.000017 -2.060492 0.000047 0.000052 

Rover Montego 0.001183 0.000320 0.007156 0.000069 0.000017 0.001930 -2.537783 0.000052 
Suzuki Swift 0.001182 0.000321 0.007917 0.001814 0.000016 0.000815 0.000020 -2.099886 

Table 8: Sample of own- and cross-price elasticities. 

 

 

7 Conclusions  
 
In this paper, we develop the FC-MNL model of demand for differentiated products using 

aggregate data. FC-MNL relaxes the constraints imposed on own- and cross-price elasticities 

by popular analytic discrete choice models and yet does not require estimation via simulation; 

it is fully analytic. We develop a number of properties of the FC-MNL model. In particular, FC-

MNL is shown to be a previously unexplored member of McFadden’s 1978 class of MEV 

discrete choice models. Hence, under testable parameter restrictions, FC-MNL is fully 

consistent with an underlying structural model of heterogeneous, utility maximizing, 

consumers. We provide a Monte-Carlo study to illustrate use of the model and to verify that 

the proposed estimators perform as anticipated in both the large T and large J cases. We 

notice that estimating the parameters which control own and cross-price effects requires 

systematically larger samples than those required to estimate the ‘linear’ parameters. Finally, 

we illustrate how the model performs using real-world dataset. By way of a closing remark, we 

note that the model could equally be estimated using individual choice data. 
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Appendix A: Proofs. 

Proof to Corollary 1.  
 
Part (i) follows since:  
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Part (ii) follows similarly since 
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Proof to Lemma 2: 
 

First, note that for all 0  the function 
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All third- and higher-order cross-derivative terms are zero by construction and hence H 
satisfies the constraints that the cross derivatives alternate between non-negative and non-
positive.    Although no sign restriction on the second own-derivative is required, for 
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Finally, we consider the limit condition 
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Proof to Lemma 3.  
  

We begin with the J+1 equations );(  rfs j
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j , for j  where );( rf j  is homogenous 

of degree 0  in r.      
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setting 0jr  will solve the j
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are effectively imposing the normalization 1);(
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normalization 10 r .
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 To derive a solution with the usual normalization, just rescale the r’s 
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converges to zero as 0jr  provided 0 . In turn 0);( rNr jj  at 0jr  ensures (i) 

that the predicted market share for that product is zero, and (ii) that when some substitute 

goods are missing, the parameter which controls the own-price elasticity of demand, 


jjb , is 

affected by a term which depends on the extent of the substitution between products j and 
those products which are no longer available in the choice set. 
 
Note that everything below must only hold on the set of products with positive market shares.  
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  Imposing this alternative normalization also makes the analysis of some models particularly simple.  For example, 
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Step 2. Next, we establish condition (ii) of Lemma 3 holds, namely that 1);(lim 
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provided 01 , 0  and 0 .    
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Proof to Proposition 1. 
 

We want to show that if we observe a vector of market shares 
*
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match that vector of market shares and also a true matrix of own- and cross-price elasticities 
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Step 1:  
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which allows us to solve the (J+1)
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-(J+1) equations associated with all of the cross-price 
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Step 2 
 
Fixed Point Argument.  
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this vector function is made up of bounded functions in the positive orthant 

),,,;( *  srr  .  

 
Each of these functions is continuous and map from a non-empty, convex and compact set 

into a non-empty, convex and compact set.  Thus we can define RR  : by: 

 )(),(),( rwrr    
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which is by construction continuous and maps form a non-empty, convex and compact set 
into itself. We can therefore apply Brouwer’s theorem to establish the existence of a fixed 

point    **** ,,  rr  .    

 
Finally, for completeness, we note that at this fixed point, by construction we will have 

1)*;()*;( 2

0

2
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

 rHrHr
J

j

jj and so the solution to our simplified equations is also a 

solution to our original equations equating market shares and own and cross-price elasticities.  

 
 
 
Proof to Lemma 4 
 
Part (i) Given some general distribution for heterogeneity in taste P(vi) for the additively 

separable RC-MNL model we can write, for any kj  , 
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additively separable and linear assumption implies that 
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independent of option k. 
 

Part (ii) For any member of the MEV class of models ,
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More on Identification and Estimation 
 

For identification, we further need that rank      JJZE 
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
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has full rank

34
 which is equal to n while Z is (nxq) matrix with 

rank )dim()dim( 2 q , then identification essentially requires that 

                                                 
34

 Since it is block diagonal with each block invertible so is itself full rank and invertible. 
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
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 Please see the web-appendix for further details  
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Thus the matrix 
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It is immediate from its inspection to see that variation in market shares (and consequently in 

r) across products and periods guarantees that both the column and the row vectors in (4) are 

linearly independent. Therefore this along with variation among x  and p , and a sufficient 

number of instruments will provide the local identification for the parameters. 

If parameters are mapped down to be functions of underlying characteristics, i.e. 
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 which reduces the column 

dimension of the matrix (4). Therefore, identification will require less data availability. Using 

such specification the parameters 1  are identified up to their sign.  
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Appendix B:  

 

BLP style contraction mapping. In this section, we establish that a BLP style 

algorithm is guaranteed to converge for this class of models. Specifically, we have argued 
previously it is often convenient to normalize the denominator of the market share function to 

1. That is, with 









J

l

ll

jj
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rNr

rNr
rs

0

);(

);(
)( , we may consider the J+1 dimensional equations 
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jjj srfF lnln)(   , j=0,1,..,J where    );(  rNrrf jjj   denotes the 

numerators of the market share function. Write the vector of equations, 

)ln()))((ln()( obssrfF   .   We will solve the J+1 equations, 0)( F .   

 

Notice that at a solution point,   rfs j
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00

1  , that is the 

denominator of each of the market share functions is exactly one. One advantage of using 
this normalization is that it saves a substantive amount of summation and division.  
 
 
 
Lemma  (Amended BLP style contraction mapping algorithm.).  A very slightly amended 

version of BLP’s contraction algorithm, with      rfsF j

obs

jjj lnln)(
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Proof: We will apply the contraction mapping theorem in BLP to the function, 
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jjj lnln)(   J=0,1,…,J, noting that it is almost, but not quite, the 

function used by BLP (in particular it is defined over the J+1 dimensions of delta.)  
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Invertibility of the demand under the symmetry restrictions and the 
Variational Inequality algorithm. In this section,, we provide an alternative algorithm 

which solves the J dimensional vector of equations srs );( 2  in every time period or 

market.  We first establish that under symmetry these equations can be solved using convex 
programming methods.  Under asymmetry, the equations must either be solved using BLP’s 
contraction algorithm or else we found that a Variational Inequality (VI) algorithm based on 
Nagurney’s (1999) ‘General Iterative Scheme’ worked extremely well.   After establishing the 
results for the symmetric model, we describe how to apply Nagurney’s algorithm to this 
context.  We have not as yet proved a general convergence result for this algorithm for our 
problem, but it is a more natural generalization of the methods we discus next for the 
symmetric case than the BLP contraction algorithm for reasons we also discus below.   
 

Proposition 2: Let ),;(ln
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);;( 22  
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Moreover, the r solving this minimization problem can be found numerically using a Quasi-
Newton method such as Davidson-Fletcher-Powell (DFP) with exact line search.  Such an 
iterative algorithm provides a super-linear rate of convergence.  When augmented with zeros 

for any products with zero market shares and 10 r , the resulting 
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It remains to show that the program is convex and sub-modular. Convexity follows since H(r) 
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) so that the function V has weakly decreasing differences in rln  

and hence so does the objective function. As is well known, decreasing differences is a 
sufficient condition to ensure that a function is sub-modular. (For the proof of the remaining 
elements of this proposition, see the proof in the main body of the text.)  
Once it is established that the objective function is strictly convex, any local minimum will also 
be a global minimum of the problem and hence the solution will also be unique.  In addition, it 
is well known that suitably chosen Quasi-Newton methods will be globally convergent for 
convex problems.  For example, Powell (1971, 1972) establishes that if an objective function 
is convex, then the DFP method with exact line search converges globally, with super-linear 

convergence.  
 
Corollary 3 
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satisfies the conditions of Proposition 2 and thus there exists a unique vector of r’s which 
equate observed and predicted market shares.  Moreover that vector may be computed using 
a Quasi-Newton algorithm such as the DFP method with exact line search.  
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To build some intuition for this algorithm, note that within a neighbourhood of the solution, we 
will be able to use Newton’s algorithm, which has a quadratic rate of convergence. (See for 
example, Theorem 4.1.1. in Judd (1998) or Fletcher (1980).)  Using Newton directly on this 
optimisation problem would involve using the recursion: 
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r )(ln  is exactly the difference between 

the predicted and actual market shares.  Essentially therefore this algorithm says decrease 
the rj associated with option j if you are currently over-predicting its market share.   The 
Hessian matrix provides a weighting matrix for the updates as usual,  
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incorporates information about the curvature of the objective function.    Quasi-Newton 
methods augment this procedure in a manner which ensures global convergence. 
 
It is instructive to compare this algorithm with BLP’s contraction mapping which is based on 

the iteration that  srVDrr n

r

nn /)(lnlnln ln

1 
,  where the division is element by 

element.   Evidently, Newton and Quasi-Newton algorithms bring in more information about 
the shape of the function than BLP’s contraction method and hence such methods should be 
expected to work substantially more efficiently (at least locally).  In practice, one should use 
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start with the BLP’s contraction mapping until  ||lnln|| 1 nn rr  and then use the more 

efficient contraction discussed above. We have observed that the best performance is 

obtained when 21  e for the BLP contraction. 
 

In general settings, we can say that the (Jx1) vector equation srsrK  );()( 2  will have a 

unique solution 0*)( rK  provided  );( 2rsDr  is positive definite. (See in particular pages 

14-19 of Nagurney (1999) where her Theorems 1.4, 1.6 and 1.7 establish existence provided 

K(r) is continuous over a compact set and uniqueness provided );( 2rsDr  is positive 

definite.)  Thus, it is therefore highly likely that for the asymmetric case, an algorithm based 
on Variational Inequalities will have substantial efficiency properties relative to the BLP 
algorithm.  We develop and use such an algorithm but leave a discussion of its convergence 
properties for future research.    The Variational Inequality algorithm we use, which was found 
to have extremely good convergence properties in practise, is discussed below. 
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Where, as before, B is the J+1xJ+1 matrix with jk
th
 element jkb  and we use diag(B) to 

indicate a matrix of the same size as B, with the same diagonal and with all off diagonal 

elements set to zero. 1Jl  is a (J+1x1) vector of ones and   is the Hadamard or element-by-

element ‘dot’ product.  
 
Proof.  Immediate from the definitions. Note that under symmetry, 

  1

'

1 )()(   JrJ lrHDrlrH  whereas without symmetry, we must use the market share 



 53 

model    1

1

'

1 )()()(


  JrJr lrHDrlrHDrrs .  If we use a non-symmetric B matrix in 

);( 2

2 rHDr , it will still be positive definite.  

 
The importance of Lemma 5 is that the matrix expressions in it are all that must be 

programmed in order to compute predicted market shares for any given ),,,( Br , and also 

the 
*r  which equates predicted and actual market shares using the Quasi-Newton algorithm 

above.  Notice that in applying a Quasi-Newton algorithm, we fix  10 r  and use the 

expressions for )(2

ln rVD r  and )(ln rVD r  to compute the sub-matrix corresponding to the r’s 

for the Jx1 vector of inside goods.   Thus, the core computation of the model for any given 

vector of taste parameters ),,(2  B  requires little more than six lines of computer code 

- the five lines in the Lemma plus one for the Newton algorithm.  Note that by programming 

the first derivative functions only in terms of B  rather than 2/)'( BB  we can use the code 

to estimate the model even without the symmetry restrictions required to justify an underlying 
MEV model imposed. 
 
 
Variational Inequality Algorithms. A finite dimensional Variational Inequality 

problem, VI(F,K) is to determine a vector 
1*  JRK  such that 0,)'( ** F  for 

all K  where <a,b> denotes an inner product, F is a given continuous function from K to 
1JR  and K is a given closed convex set. Both optimisation problems and non-linear 

equations can be solved using variational inequalities.  Indeed, Proposition 1.1 of Nagurney 

(1999) establishes that if 
1 JRK  and 

11:  JJ RRF  then a vector 
1*  JR  solves 

),( 1JRFVI  iff .0)( * F  

 
 
Nagurney (1999) discusses a general iterative scheme which follows the following three 
steps: 
 

(a) Initialization.   Start with an K0 , set k=1. 

(b) Construction and Computation.  Compute Kk   by solving the variational sub-

problem    

0,)',( 1  kkkg   for all K  

(c) Convergence verification.  If   1kk
 for some 0 , a prespecified 

tolerance, the stop.  Otherwise set k=k+1 and go to step (b). 
 
 

The algorithm we worked with used Nagurney’s projection method, which chose the 
function  

)(*
1

)(),( 111   kkkkk GFg 


  

for some fixed 0  and G a symmetric and positive definite matrix (eg., the identity 

matrix.) As Nagurney describes, the special structure of the function ),( 1kkg   

means that we write the VI sub-problem examined at step (b) as equivalent to a 
quadratic program. Note that follows because G is symmetric so that G is the VI 
solved at stage (b) and it is equivalent to solving the set of first order conditions for 
the optimization problem:  
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
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minarg 11' 


 kk

K
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By differentiating, in the case where none of the constraints bind, it becomes clear 

that at the solution, 
k , to this problem we will get 0)(*)( 11   kkk GF  . 

(This equation can also be written, )( 111   kkk FG  , from which it can be 

seen that we’re updating   by some multiple of the prediction error in log market 

shares. ) Thus stated in terms of  , the addition to the BLP algorithm is the presence 

of the positive definite matrix G and the ‘step-size’ 0 . The algorithm may be 

stated in terms of r’s rather than delta’s which eases computation. 
 
Quadratic program solvers are available in Gauss and Matlab and are exceedingly 
fast. Solving the problem in step (b) of this iterative procedure is very straight forward.     

 
Formally to establish the conditions required for convergence we could use for 
example Nagurney’s Theorem 2.3. 
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