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Abstract

Every year housing markets in the United Kingdom and the United States experience sys-

tematic above-trend increases in both prices and transactions during the second and third

quarters (the �hot season�) and below-trend falls during the fourth and �rst quarters (the

�cold season�). House price seasonality poses a challenge to existing models of the housing

market. To explain seasonal patterns, this paper develops a matching model that emphasizes

the role of match-speci�c quality between the buyer and the house and the presence of thick-

market e¤ects in housing markets. It shows that a small, deterministic driver of seasonality can

be ampli�ed and revealed as deterministic seasonality in transactions and prices, quantitatively

mimicking the seasonal �uctuations in transactions and prices observed in the United Kingdom

and the United States.
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1 Introduction

A rich empirical and theoretical literature has been motivated by dramatic boom-to-bust episodes in

regional and national housing markets.1 Booms are typically defined as times when prices rise and

there is intense trading activity, whereas busts are periods when prices and trading activity fall below

trend.

While the boom-to-bust episodes motivating the extant work are relatively infrequent and their

timing is hard to predict, this paper shows that in several housing markets, booms and busts are just

as frequent and predictable as the seasons. Specifically, in most regions of the United Kingdom and

the United States, each year a housing boom of considerable magnitude takes place in the second and

third quarters of the calendar year (spring and summer, which we call the “hot season”), followed by

a bust in the fourth and first quarters (fall and winter, the “cold season”).2 The predictable nature

of house price fluctuations (and transactions) is confirmed by real estate agents, who in conversations

with the authors observed that during the winter months there is less activity and prices are lower.

Perhaps more compelling, publishers of house price indexes go to great lengths to produce seasonally

adjusted versions of their indexes, usually the versions that are published in the media. As stated by

some publishers:

“House prices are higher at certain times of the year irrespective of the overall trend.

This tends to be in spring and summer... We seasonally adjust our prices because the time of

year has some influence. Winter months tend to see weaker price rises and spring/summer

see higher increases all other things being equal.” (From Nationwide House Price Index

Methodology.)

“House prices are seasonal with prices varying during the course of the year irrespective

of the underlying trend in price movements. For example, prices tend to be higher in the

spring and summer months.” (From Halifax Price Index Methodology.)

The first contribution of this paper is to systematically document the existence and quantitative

importance of these seasonal booms and busts.3 For the United Kingdom as a whole, we find that the

1For example, see Stein (1995), Muellbauer and Murphy (1997), Genesove and Mayer (2001), Krainer (2001), Brun-
nermeier and Julliard (2008), Burnside, Eichenbaum, and Rebelo (2011), and the contributions cited therein.

2Since we use repeat-sale price indexes, changes in prices are not driven by changes in the characteristics of the
houses transacted.

3Studies on housing markets have typically glossed over the issue of seasonality. There are a few exceptions, albeit
they have been confined to only one aspect of seasonality (e.g., either quantities or prices) or to a relatively small
geographical area. In particular, Goodman (1993) documents pronounced seasonality in moving patterns in the US,
Case and Shiller (1989) find seasonality in Chicago house prices and–to a lesser extent–in Dallas. Hosios and Pesando
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difference in annualized growth rates between hot and cold seasons is 6.5 percent for nominal house

prices (5.5 percent for real prices) and 140 percent for the volume of transactions. For the United

States as a whole, the corresponding differences are above 4.6 percent for nominal (and real) prices

and 146 percent for transactions; US cities display higher seasonality, with differences in growth rates

of 6.7 percent for (real) prices and 152 percent for transactions.4

The predictability and size of seasonal fluctuations in house prices pose a challenge to existing

models of the housing market. As we argue in the web Appendix, in those models, anticipated changes

in prices cannot be large: if prices are expected to be much higher in August than in December, then

optimizing buyers will try to shift their purchases to the end of the year, narrowing down the seasonal

price differential.5 ,6 Our paper tries to answer the question of why presumably informed buyers do not

try to buy in the lower-priced season and to shed light on the systematic seasonal pattern. (A lack of

scope for seasonal arbitrage does not necessarily imply that most transactions should be carried out

in one season nor that movements in prices and transactions should be correlated.) To offer answers

to these questions, we develop a model for the housing market that more realistically captures the

process of buying and selling houses and can generate seasonal patterns quantitatively comparable to

those in the data.

The model builds on two elements of the housing market that we think are important for un-

derstanding seasonality in house prices. The first element is a search friction. Buyers and sellers

potentially face two search frictions: one is locating a house for sale (or a potential buyer), and the

other is determining whether the house (once found) is suitable for the buyer (meaning it is a suf-

ficiently good match). The first friction is, in our view, less relevant in the housing market context

because advertising by newspapers, real estate agencies, property web sites, and so on, can give suffi-

cient information to buyers in order to locate houses that ex ante are in the acceptance set. But houses

have many idiosyncratic features that can be valued differently by different buyers: two individuals

(1991) find seasonality in prices in the City of Toronto; the latter conclude “that individuals who are willing to purchase
against the seasonal will, on average, do considerably better.”

4The data for US cities corresponds to the 10-city Case-Shiller composite. Our focus on these two countries is largely
driven by the reliability and quality of the data.

5The issue is most evident in frictionless models, where prices reflect the present discounted value of a (presumably
long) stream of flow values. Thus, seasonality in rental flows or service costs has to be implausibly large to generate
seasonality in house prices. More recent models of the housing market allow for search and matching frictions that lead
to slightly more complex intertemporal non-arbitrage conditions and a somewhat modified relation between prices and
flows. In the web Appendix, we study the canonical models in the literature and argue that these frictions alone cannot
account for the high seasonality in the data, calling for an additional mechanism to explain the seasonal patterns.

6We note that house price seasonality does not appear to be driven by liquidity related to overall income. Income
typically peaks in the last quarter, a period in which house prices and the volume of transactions fall below trend. There
is also a seasonal peak in output in the second quarter, and seasonal recessions in the first and third quarters. (See
Beaulieu and Miron (1992) and Beaulieu, Miron, and MacKie-Mason (1992)). House price seasonality thus is not in line
with income seasonality: prices and transactions are above trend in the second and third quarters.
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visiting the same house may attach different values to the property. We model this match-specific

quality as a stochastic variable that is fully revealed after the buyer inspects the house. The second

model’s element is the notion that in a market with more houses for sale, a buyer is more likely to find

a better match–what we refer to as “thick-market effect.”7 Specifically, we assume that in a market

with more houses, the distribution of match-specific quality first-order stochastically dominates the

distribution in a market with fewer houses.

Hence, our model starts from the premise that the utility potential buyers may derive from a house

is fully captured by the match-specific quality between the buyer and the house. This match-specific

quality is more likely to be higher in a market with more buyers and houses due to the thick-market

effect. In a thick market (during the hot season), better matches are more likely to be formed and this

increases the probability that a transaction takes place, resulting in a higher volume of transactions.

Because better matches are formed, on average, prices will also be higher, provided that sellers have

some bargaining power. This mechanism leads to a higher number of transactions and prices in the

hot season when there are more buyers and sellers.

In the housing market this pattern is repetitive and systematic. The same half-year is a hot season

and the same half-year is a cold season. The higher match-specific quality in the hot season can account

for why potential buyers are willing to buy in the hot (high-price) season. But if our amplification

mechanism is to explain seasonality, it has to answer two additional questions: one, why are some

sellers willing to sell in the cold (low-price) season? In other words, why is there no complete “time

agglomeration,” whereby markets shut down completely in a cold season? Two, why is the pattern

systematic–that is, why do hot and cold markets predictably alternate with the seasons?

To answer these two questions, we embedded the above mechanism into a seasonal model of the

housing market and study how a deterministic driver of seasonality can be amplified and revealed

as deterministic seasonality in transactions and prices due to the thick-market effects on the match-

specific quality. By focusing on a periodic steady-state, we are studying a deterministic cycle in which

agents are fully aware that they are in a market in which both transactions and prices fluctuate between

high and low levels across the two seasons.

Our answer to the first question is related to the presence of search frictions in the form of match-

specific quality. In the cold season any seller can decide whether to sell immediately or wait until the

hot season, when presumably prospects might be more favorable on average. If a buyer then arrives

7The labor literature distinguishes the thick-market effects due to a faster arrival of offers and those due to the quality
of the match. Our focus is entirely on the quality effect. See, for example, Diamond (1981), Petrongolo and Pissarides
(2006) and Gautier and Teulings (2008).
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and a match can be made, the seller has to decide whether to keep searching for a better offer or to sell

at the potentially lower price. If he waits until the hot season, he can get, on average, a higher price,

provided that he finds a buyer with a good match. There is, however, a probability that he will not

find such buyer to make a transaction; the uncertainty created by this search friction is not present in

a standard asset-pricing model, in which agents can always transact at market prices.

Our answer to the second question–why the hot and cold seasons are systematic–is related to

our assumption about the desire to move house and the seasonal variations embedded within this

decision. We claim that the arrival of the exogenous process by which households want to move (the

“propensity to move”) has a seasonal component. In the spring and summer months this propensity

is higher because, for example, of the school calendar: families with school-age children may prefer

to move in the summer, before their children start in new schools. These seasonal differences alone,

however, cannot explain the full extent of seasonality we document: in the data, seasonality in houses

for sale is much lower than seasonality in the volume of transactions; moreover, as Goodman (1993)

documents, parents of school-age children account for less than a third of total movers.8 Most of the

explanatory power of the model is due to the thick-market effects on match-quality. We show that a

slightly higher ex ante probability of moving in a given season (which increases the number of buyers

and sellers) can trigger thick-market effects that make it appealing to all other existing buyers and

sellers to transact in that season. This amplification mechanism can thus create substantial seasonality

in the volume of transactions; the extent of seasonality in prices, in turn, increases with the bargaining

power of sellers. Intuitively better matches in the hot season imply higher surpluses to be shared

between buyers and sellers; to the extent that sellers have some bargaining power, this leads to higher

house prices in the hot season. The calibrated model can quantitatively account for most of the

seasonal fluctuations in transactions and prices in the United Kingdom and the United States.

The contribution of the paper can be summarized as follows. First, it systematically documents

seasonal booms and busts in housing markets. Second, it develops a search-and-matching model that

can quantitatively account for the seasonal patterns of prices and transactions observed in the United

Kingdom and the United States. Understanding seasonality in house prices can serve as a first step to

understanding how housing markets work and what the main mechanisms governing housing market

fluctuations are. As such, it can help to put restrictions on the class of models needed to characterize

housing markets. In other words, seasonality in house prices, what economists and publishers of house

8While weather conditions may make house search more convenient in the summer, it is unlikely that this convenience
is worth so much money to the typical house buyer. Indeed, Goodman (1993) finds that seasonal moving patterns are
similar across different regions. In addition, as we later report, cities with moderate weather throughout the year, such
as Los Angeles and San Diego, also display strong seasonality in prices and transactions.

5



price indexes typically ignore or correct for, can contain relevant information to guide the development

and selection of appropriate models for housing markets. Our analysis points to the presence of thick-

and-thin market externalities; studying their interactions with other frictions at lower frequency might

be a fruitful avenue for future research.

The paper is organized as follows. Section 2 reviews the related theoretical literature and dis-

cusses how the thick-and-thin market channel differs from and complements alternative explanations

of housing market fluctuations. Section 3 presents the motivating empirical evidence and section 4

introduces the model. Section 5 presents the qualitative results and a quantitative analysis of the

model; it then discusses additional implications of the model. Section 6 presents concluding remarks.

The web Appendix presents supplementary empirical evidence supporting the model. It then studies

the existing canonical models of the housing market and argues that they cannot account for the sea-

sonality observed in the data. Next, it describes the efficiency properties of the model and generalizes

the framework to study its robustness to different modelling assumptions; in particular it allows for

differential moving costs as alternative triggers of seasonality; it studies different assumptions regard-

ing the observability of the match quality, and different pricing mechanisms (including price posting by

sellers). Finally, the web Appendix provides detailed micro-foundations for the thick-and thin-market

effects. All analytical derivations and proofs are also collected in the web Appendix.

2 Related Theoretical Literature

The search-and-matching framework has been applied before to the study of housing markets (for

example, see Wheaton (1990), Williams (1995), Krainer (2001), and Albrecht et al. (2007)). Recent

work on housing market fluctuations, such as Novy-Marx (2009), Diaz and Jerez (2012) and Piazzesi

and Schneider (2009), adopt an aggregate matching function (as in Pissarides (2000)) and focus on the

role of market tightness (the ratio of the number of buyers to the number of sellers) in determining

the probability of transactions taking place. These papers study the amplified response of housing

markets to an unexpected shock. We instead focus on predictable cycles, with both sellers and buyers

being fully aware of being in such periodic cycle. We distinguish the probability of making a contact

and the probability that the house turns out to be a good match. The contact probability is always

one in our model, but the match quality drawn is a random variable. In this sense, our setup is

closest to Jovanovic (1979), which also emphasizes the stochastic nature of the match-specific quality

for the labour market, and Krainer (2001) for the housing market. In contrast to previous models that
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focus on market tightness, transactions and prices in our set-up are governed by the distribution of

match-specific quality.

Our paper complements the seminal work by Krainer (2001) and Novy-Marx (2009), by highlighting

a new mechanism that can account for some of the regularities observed in housing markets. Both

Krainer (2001) and Novy-Marx (2009) also refer to “hot and cold” markets; however, in both studies

the nature as well as the meaning of hot and cold markets is different than in our paper. The key idea

in Novy-Marx (2009) is that, if for any reason the ratio of buyers to sellers (tightness) unexpectedly

increases, houses can sell more quickly, decreasing the stock of sellers in the market. This in turn

increases the relative number of buyers to sellers even more, amplifying the initial shock. As a result,

the outside option of sellers improves, leading to higher prices. Thus, the entire amplification effect

operates through market tightness. In our model, instead, market tightness plays no role; indeed,

it is constant across all seasons. If an agent receives a shock that forces her to move, she becomes

a potential buyer and a potential seller simultaneously and overall tightness does not change. The

amplification mechanism in our model comes instead from the quality of the matches. In the hot

season there are both more buyers and more sellers; the availability of a bigger stock of houses for

sale improves the overall efficiency of the market, as buyers are more likely to find a better match.

Put differently, our explanation relies on market thickness (the numbers of buyers and sellers) and

its effect on the quality of matches, whereas Novy-Marx’s hinges on tightness. This difference leads

to crucially different predictions for the correlation between prices and transactions. In Novy-Marx

(2009), the number of transactions in the housing market is not necessarily higher when prices are

high. His model generates a positive correlation between prices and tightness, but not necessarily a

positive correlation between prices and the volume of transactions, which is one of the salient features

of housing markets (Stein 1995). Specifically, in Novy-Marx (2009), a large increase in the number of

sellers and buyers that does not alter tightness would not alter prices at all, even if it substantially

increases the number of transactions. Similarly, in his model, a decline in the number of sellers

leads to an increase in tightness, lower volume of transactions, and higher prices, thus generating a

negative comovement between prices and transactions. Instead, our model always generates a positive

correlation between prices and transactions. As Wheaton (1990) has pointed out, moving houses most

of the time means both selling a house and buying another one and hence, in this context, a model

in which tightness plays a subdued role is appealing. In our model, a hot market is one with high

prices, more buyers and sellers, and an unambiguously larger number of transactions.9 Of course, in

9As Novy-Marx (2009), our model has predictions for average time on the market (TOM). Specifically, the model
predicts that a house put up for sale in the cold season will take longer to sell. There is a difference, however, between
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practice tightness and thickness of the market can operate simultaneously, and their role might vary

at different frequencies. In this sense, our paper complements Novy-Marx (2009) and the existing

literature focusing on tightness.

In our paper, “hot-and-cold markets” also are different from those in Krainer (2001), who studies

the response of housing markets to an aggregate shock that affects the fundamental value of houses–

his model cannot generate quantitatively meaningful fluctuations in prices unless the aggregate shock

is very persistent. A deterministic cycle in Krainer’s model is equivalent to setting the persistence

parameter to zero, in which case his model predicts virtually no fluctuation in prices. Our set-up is

different from Krainer (2001) in that it brings in thick-market effects which, due to their amplification,

are able to generate quantitatively large fluctuations in transactions and prices.10 In the web Appendix

we expand on this point and argue that in the absence of a thick-market effect, existing models of the

housing market are unable to account for the seasonality in the data.

Finally, we follow the literature (for example, see Wheaton 1990 and Krainer 2001) by assuming

exogenous moving shocks. This essentially abstracts from the decision to dissolve a match, which would

potentially require a role for school enrollments, marriages, job changes, and other socioeconomic

determinants outside our model. The main potential contribution of allowing endogenous moving

decision is to account for the seasonality in vacancies (homes for sale). Since we do not have data

that is more fundamental (e.g. seasonality in shocks that change the match quality) than the observed

seasonality in vacancies, we do not attempt to predict the seasonality in vacancies. Instead, in the

calibration, we choose to match the seasonality in vacancies observed in the data, and study its effects

on prices and transactions; thus the potential amplification mechanism through the endogenous moving

decision is already embedded in the seasonality in vacancy.

3 Hot and Cold Seasons in the Data

In this section we study seasonality in housing markets in the United Kingdom and the United States

at different levels of aggregation. The focus on these two countries is due to the availability of constant-

our mechanism and that in models emphasizing tightness. Our model predicts higher probability of a transaction and
shorter average TOM for both buyers and sellers in the hot season. (We emphasize that the prediction is about the
correlation between average time on the market and prices over time, not across sellers–or buyers–within a time
period. See, for example, Krainer, 2001, and Diaz and Jerez, 2012.) Models that focus on market tightness predict an
inverse relation between buyer’s and seller’s TOM (average TOM is short for buyers but long for sellers when tightness
is high). Instead, our model predicts they move in the same direction. Empirical studies focus on sellers’ TOM, largely
because data on buyers’ TOM is less easily observed. This prediction could potentially be tested empirically, as more
data on the buyer’s side are gathered.
10Unlike Krainer (2001), we also model the endogenous evolution of the number of vacancies and buyers over time.
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quality house price series.11 As already noted, publishers of house price indexes produce both seasonally

adjusted (SA) and non-seasonally adjusted (NSA) series. This is also the case for transactions. In

our analysis, we use exclusively the (raw) NSA series to compute the extent of seasonality.12 In what

follows, we first describe the data sources and assess the degree of seasonality in the data. Next,

we discuss the behavior other variables related to the housing market. Finally, we provide empirical

evidence motivating the mechanism we propose.

3.1 Data

United Kingdom

As a source for house price data, we use the repeat-price index based on Case-Shiller (1987)’s

method, produced by the Land Registry for England and Wales. The repeat-sale index measures

average price changes in repeat sales of the same properties; as such, the index is designed to control

for the characteristics of the homes sold.13 The index is constructed at different levels of geographic

aggregation and starts in 1995:Q1. In the interest of space, we discuss here the results for the main

planning regions and in the web Appendix we report the results at finer levels of disaggregation.14 To

compute real price indexes, we later deflate the house price indexes using the NSA retail price index

(RPI) provided by the U.K. Office for National Statistics.

For transactions, we use the data on sales volumes also published by the Land Registry.

United States

We use two sources for house prices in the United States. The first is the Federal Housing Finance

Agency (FHFA), which took over the Office of Federal Housing Enterprise Oversight; we focus on the

11Constant-quality indexes mitigate concerns with compositional changes in the types of houses transacted across
seasons. Results for other countries show qualitatively similar seasonal patterns, but we are less confident about the
comparability of the data.
12In the web Appendix we show the implied seasonal patterns based on the publishers’ in-house adjustments.
13The approach significantly limits the extent to which changes in the composition of the sample of houses transacted

can influence the price index. Specifically, using information on the values of the same physical units at two points in
time controls for differences in housing attributes across properties in the sample.
14Ther are two other sources providing quality-adjusted NSA house price indexes: one is the Department of Commu-

nities and Local Government and the other is Halifax, one of the country’s largest mortgage lenders. Both sources report
regional price indexes based on hedonic regressions. The results are consistent across all sources (see web Appendix.)
Other house price publishers, such as the Nationwide Building Society (NBS), report quality adjusted data but they are
already SA (the NSA data are not publicly available). The NBS, however, reports in its methodology description that
June is generally the strongest month for house prices and January is the weakest; this justifies the seasonal adjustment
they perform in the published series. In a somewhat puzzling paper, Rosenthal (2006) argues that seasonality in the
NBS data is elusive; we could not, however, gain access to the NSA data to assess which of the two conflicting assess-
ments (the NBS’s or Rosenthal’s) was correct. We should perhaps also mention that Rosenthal (2006) also reaches very
different conclusions from Muellbauer and Murphy (1997) with regards to lower-frequency movements.
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repeat-sale purchase-only index, which starts in 1991:Q1. The second source is Standard and Poor’s

(S&P) Case-Shiller price series for major U.S. cities, which starts in 1987:Q1. To compute real price

indexes, we use the NSA consumer price index (CPI) provided by the U.S. Bureau of Labor Statistics.15

Data on the number of transactions at the regional level come from the National Association of

Realtors (NAR), and correspond to the number of sales of existing single-family homes. Data for U.S.

cities come from S&P and correspond to sales pair counts on which the repeat-price index is based.

3.2 Extent of Seasonality

We focus our study on deterministic seasonality, which is easier to understand (and to predict) for

buyers and sellers (unlikely to be all econometricians), and hence most puzzling from a theoretical

point of view. In the United Kingdom and the United States, prices and transactions in both the

second and third quarters are above trend, while in both first and fourth quarters they are below

trend. For ease of exposition, we group data into two broadly defined seasons–second and third

quarter, or “hot season,” and fourth and first quarter, or “cold season.” (We use interchangeably the

terms “hot season” and “summer” to refer to the second and third quarters and “cold season” and

“winter” to refer to the first and fourth quarters.)

In the next set of figures, we depict in dark (red) bars the average (annualized) price increase from

winter to summer, ln
(
PS
PW

)2
, where PS is the price index at the end of the hot season and PW is

the price at the end of the cold season. Correspondingly, we depict in light (blue) bars the average

(annualized) price increase from summer to winter ln
(
PW ′
PS

)2
, where PW ′ is the price index at the end

of the cold season in the following year. We plot similar figures for transactions.

The extent of seasonality for each geographical unit can then be measured as the difference between

the two bars. This measure nets out lower-frequency fluctuations affecting both seasons. In the model

we later present, we use a similar metric to gauge the extent of seasonality.

3.2.1 Housing Market Seasonality in the United Kingdom

Nominal and Real House Prices

Figure 1 reports the average annualized percent price increases in the summer and winter from 1996

through to 2012 using the regional price indexes provided by the Land Registry. During the period

analyzed, the average nominal price increases in the winter were around 3 percent in all regions except

15There is little seasonality in the U.S. CPI, a finding first documented by Barsky and Miron (1989), and hence the
seasonal patterns in nominal and real housing prices coincide.
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for London. In the summer, the average growth rates were above 8 percent in all regions, except for

the North East and North West. As shown in the graph, the differences in growth rates across the two

broad seasons are generally very large and economically significant, with an average of 6.5 percent for

all regions. Similar seasonal patterns emerge with other sources of constant-quality prices going back

to 1983.16 While the average growth rates differ across different time periods, the seasonal pattern

appears extremely robust.

Figure 1: Average Annualized House Price Changes in Summer and Winter, by Region

The seasonal pattern of real house prices (that is, house prices relative to the NSA aggregate

price index) depends also on the seasonality of aggregate inflation. In the United Kingdom, overall

price inflation during this period displayed a small degree of seasonality. The difference in overall

inflation rates across the two seasons, however, can hardly “undo” the differences in nominal house

price inflation, implying a significant degree of seasonality also in real house prices (see Figure A2 in

the web Appendix). Netting out the effect of overall inflation reduces the differences in growth rates

between winters and summers to a country-wide average of 5.5 percent.17

Number of Transactions

Seasonal fluctuations in house prices are accompanied by qualitatively similar fluctuations in the
16See also Figure A1 in the web Appendix for results based on alternative sources.
17We also looked at more disaggregated data, using the Halifax series, distinguishing between first-time buyers and

former-owner occupiers, as well as purchases of newly built houses versus existing houses. Seasonal patterns are qualita-
tively similar across the various groups, but tend to be quantitatively stronger for former-owner occupiers and existing
houses. The results are reported in Table A1 in the web Appendix.
Our model, by abstracting from construction, will speak more directly to the evidence on existing houses, and, as it

will become clear, former-owner occupiers.
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number of transactions, as illustrated in Figure 2.18 As the figure shows, the number of transactions

increases sharply in the summer term and accordingly declines in the winter term. The average

difference in growth rates during this period, our metric for seasonality) was 139 percent.

Figure 2: Average Annualized Changes in Transactions in Summer and Winter, by Region

3.2.2 Statistical Significance of the Differences between Summer and Winter

We test the statistical significance of the differences in growth rates across seasons,[
ln
(
PS
PW

)2
− ln

(
PW ′
PS

)2]
, using a t-test on the equality of means.19 Table 1 reports the average dif-

ferences in growth rates across seasons and standard errors, together with the statistical significance.

The first two columns show the results for seasonality in nominal house prices; the third and fourth

columns show the corresponding results for real house prices and the last two columns show the results

for the volume of sales.20 The differences in price changes across seasons are quite sizable for most

18A different dataset from the Council of Mortgage Lenders going back to 1983 (and to 1974 for some regions) show
similar seasonal patterns. See Figure A3 in the web Appendix.
19The test on the equality of means is equivalent to the t-test on the slope coefficient from a regression of annualized

growth rates on a dummy variable that takes value 1 if the observation falls on the second and third quarter and 0
otherwise. The dummy coefficient captures the annualized difference across the two seasons, regardless of the frequency
of the data (provided growth rates are annualized). To see this note that the annualized growth rate in, say, the

hot season, ln
(
PS
PW

)2
, is equal to the average of annualized quarterly growth rates in the summer term: ln

(
PS
PW

)2
=

2 ln
(
P3
P1

)
= 1

2

[
4 ln

(
P3
P2

)
+ 4 ln

(
P3
P2

)]
, where the subindices indicate the quarter, and, correspondingly, 2 ln

(
P1′
P3

)
=

1
2

[
4 ln

(
P1′
P4

)
+ 4 ln

(
P4
P3

)]
. Hence a regression with quarterly (or semester) data on a summer dummy will produce an

unbiased estimate of the average difference in growth rates across seasons. We use quarterly data to exploit all the
information and gain on degrees of freedom.
20Tables A2a and A2b in the web Appendix shows the results at geographically more disaggregated levels and Table

A3 shows the corresponding information at the regional level using aternative datasets.
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regions, in the order of 6 to 7 percent on average in nominal terms and 5 to 6 percent on average in

real terms; from a statistical point of view, the results are significant at the 10 percent level (or lower).

For transactions, the differences reach 139 percent for the country as a whole, and are statistically

significant at the 1 percent level. Taken together, the data point to a strong seasonal cycle in all

regions, with a large increase in transactions and prices during the summer relative to the winter.

Table 1: Difference in Annualized Percentage Changes in U.K. House Prices

and Transactions between Summer and Winter, by Region 1996-2012

Nominal house price Real house price Volume of Sales
Region Difference Std. Error Difference Std. Error Difference Std. Error
England & Wales 6.472*** (2.272) 5.547** (2.489) 139.249*** (15.603)
North East 6.439** (2.874) 5.514* (3.092) 134.992*** (17.647)
North West 5.897** (2.528) 4.972* (2.734) 128.950*** (15.864)
Yorks & Humber 6.683** (2.595) 5.757** (2.806) 136.786*** (16.588)
East Midlands 6.473** (2.497) 5.548** (2.708) 139.083*** (16.572)
West Midlands 5.686** (2.290) 4.761* (2.515) 135.452*** (15.745)
Wales 7.346*** (2.579) 6.420** (2.809) 133.254*** (16.580)
East 6.050** (2.412) 5.125* (2.604) 144.768*** (16.116)
London 7.129*** (2.467) 6.204** (2.624) 124.953*** (14.981)
South East 6.336** (2.413) 5.410** (2.592) 152.763*** (15.740)
South West 6.798*** (2.507) 5.873** (2.709) 150.323*** (16.772)

Note: The Table shows the average differences (and standard errors), by region for 1995-2012.
*Significant at 10%; **significant at 5%; ***significant at 1%. Source: Land Registry Repeat Sale Index.

Housing Market Seasonality in the United States

Nominal and Real House Prices

Figure 3 illustrates the annualized nominal house price increases for different regions from FHFA

and Figure 4 shows the plot using the S&P’s Case-Shiller indexes for major cities. As shown, for most

US regions the seasonal pattern is qualitatively similar to that in the United Kingdom, albeit the

extent of seasonality is somewhat smaller averaging 4.6 percent for nominal prices and 4.8 percent for

real prices. For some of the major U.S. cities, however, the degree of seasonality is comparable to and

even higher than that in the United Kingdom, as illustrated in Figure 4.
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Figure 3: Average Annualized U.S. House Price Increases in Summer and Winter, by Region

Figure 4: Average Annualized U.S. House Price Changes in Summer and Winter, by City

Transactions

Figure 5 shows the annualized growth rates in the number of transactions from 1991 through to

2012 for main census regions; the data come from National Association of Realtors (NAR).21 As was

the case for the United Kingdom, the seasonality of US transactions is overwhelming: the volume of

21The series actually starts in 1989, but we use 1991 for comparability with the FHFA-census-level division price
series; adding these two years does not change the results.
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sales rises sharply in the summer and falls in the winter.

Figure 5: U.S. Average Annualized Increases in Transactions in Summer and Winter, by Region

Figure 6: U.S. Average Annualized Changes in Transactions in Summer and Winter, by City

Statistical Significance of the Differences between Summer and Winter

We summarize the differences in growth rates across seasons and report the results from a test on

mean differences in Tables 2 and 3. Table 2 shows the results for prices using FHFA’s Census-division

levels and for transactions using NAR’s Census-level data. Table 3 shows the results using S&P’s

Case-Shiller city-level data on prices and transactions.
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Table 2: Difference in Annualized Percentage Changes in U.S. House Prices

and Transactions between Summer and Winter, by Region, 1991-2012

Nominal house price Real house price Volume of Sales
Region Division Difference Std. Error Difference Std. Error Difference Std. Error

USA USA 4.632*** (1.532) 4.828*** (0.324) 146.460*** (13.704)

Mountain 4.081* (2.278) 4.437*** (0.285)
Pacific 4.747 (3.053) 4.982*** (0.298)
East North Central 6.283*** (1.332) 6.493*** (0.616)
West North Central 5.540*** (1.117) 5.592*** (0.379)
Middle Atlantic 5.281*** (1.579) 5.514*** (0.181)
New England 5.433*** (1.892) 5.818*** (0.315)
East South Central 3.380*** (1.070) 3.721*** (0.475)
South Atlantic 3.307* (1.946) 3.449*** (0.332)
West South Central 3.635*** (0.763) 3.668*** (0.196)

Note: The Table shows the average differences (and standard errors), by region for 1991:Q1-2012:Q1. *Significant at 10%;
**significant at 5%; ***significant at 1%. Sources: For prices, FHFA Purchase Only Repeat Sale Index. For volume, NAR Existing
single family home sales series.

(15.735)

156.499*** (11.181)

152.671*** (13.038)

West

Mid West

North East

South

120.458*** (15.934)

156.637***

Table 3: Difference in Annualized Percentage Changes in U.S. House Prices

and Transactions between Summer and Winter, by City, 1987-2012

Nominal house price Real house price Volume of Sales
City Difference Std. Error Difference Std. Error Difference Std. Error
AZ-Phoenix 4.817 (3.229) 3.575 (3.208) 111.580*** (10.186)
CA-Los Angeles 8.398*** (2.768) 7.177** (2.781) 113.885*** (10.824)
CA-San Diego 8.039*** (2.581) 6.818*** (2.583) 120.378*** (13.264)
CA-San Francisco 11.485*** (2.925) 10.264*** (2.875) 147.059*** (10.884)
CO-Denver 8.435*** (1.296) 7.214*** (1.336) 189.180*** (8.811)
DC-Washington 9.087*** (2.045) 7.866*** (2.037) 187.102*** (7.376)
FL-Miami 2.234 (2.620) 1.013 (2.637) 116.339*** (7.193)
FL-Tampa 4.831** (2.201) 3.61 (2.184) 119.349*** (8.108)
GA-Atlanta 9.233*** (2.057) 7.878*** (1.993) 155.706*** (10.020)
IL-Chicago 10.039*** (1.894) 8.818*** (1.921) 216.916*** (11.983)
MA-Boston 10.799*** (1.519) 9.577*** (1.617) 237.146*** (6.763)
MI-Detroit 8.118*** (2.547) 6.763** (2.579) 164.965*** (24.750)
MN-Minneapolis 9.780*** (2.363) 8.538*** (2.413) 100.873*** (19.367)
NC-Charlotte 6.081*** (0.989) 4.860*** (0.888) 183.521*** (11.357)
NV-Las Vegas 4.875 (3.077) 3.654 (3.057) 109.396*** (15.120)
NY-New York 5.846*** (1.641) 4.625*** (1.751) 163.048*** (10.150)
OH-Cleveland 10.354*** (1.214) 9.133*** (1.211) 235.867*** (10.829)
OR-Portland 7.787*** (1.683) 6.566*** (1.592) 173.961*** (11.023)
TX-Dallas 11.925*** (1.552) 9.671*** (1.478) 173.849*** (19.268)
WA-Seattle 10.201*** (1.902) 8.882*** (1.875) 161.596*** (11.479)
Composite-10 7.955*** (1.918) 6.734*** (1.952) 152.570*** (6.476)
Composite-20 10.261*** (3.263) 8.007** (3.296) 154.212*** (7.801)
Note: The Table shows the average differences (and standard errors), by region for 1987-2012. *Significant
at 10%; **significant at 5%; ***significant at 1%. Sources: S&P Case-Shiller Price Index and Sales pair
counts. Some of the series start after 1987. The composite-20 index starts only in 2000.
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For the United States as a whole, the differences in annualized growth rates in nominal prices

are in the order of 4.6 percent (4.8 percent for real prices) and statistically significant at standard

levels. There is some variation across regions, with some displaying low seasonality (South) and others

(Mid West and North East) displaying significant levels of seasonality. Interestingly, the Case-Shiller

index for U.S. cities displays even higher levels of seasonality, comparable to and even higher than the

levels observed in UK regions, with some variation across cities. The 10-city composite index shows a

statistically significant seasonality of 7.2 percent for nominal prices and 6.7 percent for real prices.

The seasonality in the volume of transactions is comparable to (or higher than) that in the United

Kingdom, with an average difference in growth rates across seasons of 146 percent for the US as a

whole and of 152.6 percent for the 10-city composite.

3.3 Other housing variables and cross-market comparisons

As part of our study of house markets, we also analyzed data on rental prices, but we were unable to

identify a seasonal pattern in either country.22 This is in line with anecdotal evidence suggesting that

rents are sticky. Similarly, interest rates did not exhibit a seasonal pattern in the last four decades of

data.23 In the interest of space, we do not report the results in the paper. In the model we present

later, we will work under the assumption that rents and interest rates are aseasonal.

The data description makes it evident that seasonal cycles are present across most of the United

Kingdom and the United States, although with some heterogeneity with regards to intensity. In

particular, though most U.S. cities display strong seasonality, cities such as Miami and Las Vegas

show little (or statistically insignificant) variation over the season. Given the data limitations (20

observations on price seasonality corresponding to the cities in the Case-Shiller data), it would be

virtually impossible to draw causal links from the potential triggers of seasonality because winters are

22We studied the average registered private rents collected by U.K. Housing and Construction Statistics. We run
regressions using as dependent variables both the rent levels and the log of rents on a dummy variable taking a value
of 1 in the second and third quarters and 0 otherwise, detrending the data in different ways. We found no evidence
of deterministic seasonality. For the United States, the Bureau of Labor Statistics (BLS) provides two series that can
serve as proxies: one is the NSA series of owner’s equivalent rent and the second is the NSA rent of primary residence;
both series are produced for the construction of the CPI and correspond to averages over all U.S. cities. For each series,
we run similar regressions as for the UK. The results yielded no discernible pattern of seasonality. We take this as only
suggestive as, of course, the data are not as clean and detailed as we would wish.
23We investigated seasonality in different interest rate series published by the Bank of England: the repo (base) rate,

an average interest rate charged by the four major U.K. banks before the crisis (Barclays Bank, Lloyds Bank, HSBC,
and National Westminster Bank), and a weighted average standard variable mortgage rate from banks and Building
Societies. None of the interest rate series displays seasonality. For the United States, we studied data on mortgage
rates produced by the Board of Governors of the Federal Reserve System, corresponding to contract interest rates on
commitments for fixed-rate first mortgages; the data are quarterly averages beginning in 1972 and the original data are
collected by Freddie Mac. Consistent with the findings of Barsky and Miron (1989) and the evidence from the United
Kingdom, we did not find any significant deterministic seasonality.
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mild in these cities and there is a larger population of elderly people, factors which are intimately

related. We note, though, that the mildness of a winter per se does not straightforwardly predict

aseasonality, as cities such as Los Angeles, San Diego, or San Francisco display strong seasonality

in prices, despite their benign weather. A perhaps more likely trigger of seasonality is the school

calendar.24 As noted earlier, however, only a small portion of the population of potential home buyers

have school-age children.25 One of the model’s implications is that even slight differences in the

“fundamentals” of the seasons have the potential to trigger thick-market effects with large swings in

the volume of transactions and prices. Hence, in equilibrium, most people end up transacting in the

summer. This is consistent with the data, illustrated in Figure A4 in the web Appendix, which shows

that people in different life-cycle stages (not just parents of school age children) tend to move in the

summer–a regularity originally noted by Goodman (1991).

We also note that U.S. cities tend to display more seasonality than the United States as a whole, a

pattern that, as we shall explain, can be rationalized by our model. In particular, the model predicts

that there should be more price seasonality in markets in which sellers have higher bargaining power.

The cross-city evidence appears consistent with this prediction in that price seasonality is positively

correlated with the price-to-rent ratio (which, in turn increases with the degree of bargaining power

in our model).26

Some may argue that cities by their sheer size, are likely to be “thicker” throughout the year

and hence seasonal differences in thickness are relatively unimportant. Anecdotal evidence, however,

suggests that even within cities, housing markets can be highly segmented, as people tend to search

in relatively narrow neighborhoods and geographic areas (e.g., to be close to school, jobs, families).

Thus, for example, London or Washington DC as a whole are not the relevant sizes of the local housing

market, and it would be improper to use these cities as boundaries to define market thickness (e.g.,

for those familiar with London’s geography and social structure, people searching in South Kensington

will never search in the East End). In other words, seemingly large cities may mask a collection

of relatively smaller and segmented housing markets that can see significant changes in thickness

throughout the year. A limitation of the data is hence that we cannot meaningfully compare thickness

across geographic units.

Finally, we note that seasonality appears to be slightly higher during the recent crisis, although

24There is a positive correlation between seasonality and the ratio of school age children to elderly people in a city.
However, the results seems entirely driven by Miami and Tampa.
25The fraction of movers with children between 6 and 17 years old is 0.22 according to the American Housing Survey

1999.
26The correlation between seasonality and the price-to-rent ratio in the data is about 0.3. Data on Price-to-rent ratios

come from the 2009 New York Times index.
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it is too early to draw general conclusions. As we gather more data (and cycles) over time, we may

be able to discern whether this is indeed a systematic pattern. This would be consistent with our

model: during cyclical busts, the incentives to transact during the summer (the thick market) are even

stronger, as the chances to find a better match are relatively higher.

3.4 Match Quality and Seasons in the Data

The key idea at the core of the model we propose is that, due to the thick-market effect, the average

quality of matches formed in the summer is higher than in the winter. We use individual household

data from the American Housing Survey (AHS) to check the empirical plausibility of this idea. Though

the quality of the match is house-owner specific and not directly observable to the econometrician, we

consider three proxies that should be correlated with it.

The first proxy is the duration of the match. The premise is that, in practice, if the house is a good

fit for the household, the household will tend to stay longer; in other words, the duration of stay should

be indicative of the quality of the match. (In the labour literature the duration of the employment

relationship is often used as a proxy for the quality of the match.) We hence ask whether in the data,

matches formed in the hot season tend to last longer. And we find that this indeed the case. The

results are summarized in Table 4, which shows (poisson) regressions of the number of years of stay

on a dummy variable that takes the value 1 if the household head moved in the summer season. (The

results are similar if we use instead the season in which the house was bought.)27 As the table shows,

on average, the duration of stay increases by 3.3 to 4.3 percent when households move in the summer.

The results are robust to a number of controls, including the age of the house, the family income, the

size of the household, the number of households older than 18, as well as regional fixed effects, the

urban/suburban/rural status of the location and the heating and cooling degree days.

As a second (inverse) proxy for the quality of the match, we consider the number of repairs and

additions made to a house during the first two years after its purchase, which we interpret as inversely

related to the quality of the original match. We then ask whether the number of repairs and alterations

depends on the season in which the match was formed. The results are summarized in Table 5, which

shows (poisson) regressions of the number of repairs and alterations on a dummy variable which takes

the value one if the household head moved in the summer. Consistent with our hypothesis, we find

that the number of repairs and additions is about 10 percent lower when the household moved in the

27The regressions use data on households for which we observe a full duration spell–that is, households who report
the date of the last move and the date of the move previous to that. The data correspond to the AHS 1999.
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summer than when the household moved in the winter (as before, using the season in which the house

was bought does not alter the results). The regression results are robust to the same geographic,

house- and household-specific characteristics described above.

Finally, and related to the previous idea, we use as third proxy the cost of repairs and additions

incurred on a house during the first two years after its purchase, which we also interpret as an inverse

proxy for the quality of the match. The results are described in Table 6. We find that on average,

the cost of repairs and alterations (relative to the value of the house) are 15 percent lower when the

househodl moved in the summer.28

In all, the micro evidence appears consistent with the idea that matches formed in the summer

tend to be of better quality.

Table 4. Duration of the Match and Season in which Match was Formed

(1) (2) (3) (4) (5) (6) (7) (8)
Moved into unit in the Summer 0.035* 0.033* 0.033* 0.034* 0.037* 0.041** 0.043** 0.043**

[0.020] [0.020] [0.020] [0.020] [0.020] [0.020] [0.020] [0.020]
Year unit was built 0.001 0.001 0.000 0.000 0.000 0.000 0.000

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Family income (in US$1,000) 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002***

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Number of Persons in household 0.034*** 0.059*** 0.059*** 0.059***

[0.007] [0.008] [0.008] [0.008]
Number of adults +18 in household -0.090*** -0.090*** -0.090***

[0.017] [0.017] [0.017]
Region fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Central city/suburban status fixed effects No No No Yes Yes Yes Yes Yes
Average heating/cooling degree days controls No No No No No No Yes Yes
CMSA fixed effects No No No No No No No Yes
Observations 6,885 6,885 6,885 6,885 6,885 6,885 6,885 6,885

Dependent variable: length of stay (in years)

Note: Poisson regression. The dependent variable is the duration of stay (in years). Moved into unit in the Summer takes the value 1 if
household head moved in the spring or summer (in the previous move). Sample includes all respondents for whom we observe a full
duration spell. Robust standard errors in brackets. Significance: *** p<0.01, ** p<0.05, * p<0.1. Central city/suburban status categories: 1)
central city of MSA; 2) inside MSA, but not in central city-urban; 3) inside MSA, but not in central city-rural; 4) outside MSA, urban; 5)
outside MSA, rural. Heating/cooling degree days categories: 1) Coldest: 7,001+ heating degree days and < 2,000 cooling degree days; 2)
Cold: 5,500-7,000 heating degree days and < 2,000 cooling degree days; 3) Cool: 4,000-5,499 heating degree days and < 2,000 cooling
degree days; 4) Mild: < 4,000 heating degree days and < 2,000 cooling degree days; 5) Mixed: 2,000-3,999 heating degree days and 2,000+
cooling degree days; 6) Hot: < 2,000 heating degree days and 2,000+ cooling degree days.

28Since the regressions in Table 6 are in logs, the summer effect is obtained as: −15% = [exp(−0.17)− 1] ∗ 100%.
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Table 5. Number of Repairs and Alterations and Season in which Match was Formed

Moved into unit in the Summer -0.102** -0.108** -0.110** -0.110** -0.112** -0.110** -0.114** -0.109**
[0.047] [0.046] [0.045] [0.046] [0.046] [0.045] [0.045] [0.045]

Year unit was built -0.013*** -0.014*** -0.014*** -0.014*** -0.015*** -0.015*** -0.015***
[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

Family income (in US$1,000) 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002***
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Number of Persons in household 0.042** 0.055*** 0.054*** 0.057*** 0.057***
[0.017] [0.018] [0.018] [0.017] [0.017]

Number of adults +18 in household -0.044 -0.04 -0.039 -0.04
[0.035] [0.035] [0.036] [0.035]

Region fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Central city/suburban status fixed effects No No No Yes Yes Yes Yes Yes
Average heating/cooling degree days controls No No No No No No Yes Yes
CMSA fixed effects No No No No No No No Yes
Observations 5,982 5,982 5,982 5,982 5,982 5,982 5,982 5,982

Dependent variable: Number of repairs an alterations within two years after move relative to property value

Note: Poisson regression. The dependent variable is the number of repairs and alterations within the last two years relative to the property
value. Sample includes all respondents who moved in or after 1997. Moved into unit in the Summer takes the value 1 if household head moved
in the spring or summer (in the last move). Robust standard errors in brackets. Significance: *** p<0.01, ** p<0.05, * p<0.1. Central
city/suburban status categories: 1) central city of MSA; 2) inside MSA, but not in central city-urban; 3) inside MSA, but not in central city-rural;
4) outside MSA, urban; 5) outside MSA, rural. Heating/cooling degree days categories: 1) Coldest: 7,001+ heating degree days and < 2,000
cooling degree days; 2) Cold: 5,500-7,000 heating degree days and < 2,000 cooling degree days; 3) Cool: 4,000-5,499 heating degree days and <
2,000 cooling degree days; 4) Mild: < 4,000 heating degree days and < 2,000 cooling degree days; 5) Mixed: 2,000-3,999 heating degree days
and 2,000+ cooling degree days; 6) Hot: < 2,000 heating degree days and 2,000+ cooling degree days.

Table 6. Costs of Repairs and Alterations and Season in which Match was Formed

Moved into unit in the Summer -0.179** -0.188*** -0.185*** -0.181** -0.181** -0.173** -0.168** -0.178**
[0.071] [0.071] [0.071] [0.071] [0.071] [0.070] [0.070] [0.071]

Year unit was built -0.008*** -0.007*** -0.007*** -0.007*** -0.009*** -0.009*** -0.009***
[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.002]

Family income (in US$1,000) -0.001* -0.001 -0.001 0.000 0.000 0.000
[0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

Number of Persons in household -0.052** -0.058* -0.061** -0.058* -0.063**
[0.025] [0.030] [0.030] [0.030] [0.030]

Number of adults +18 in household 0.021 0.024 0.021 0.023
[0.067] [0.068] [0.067] [0.067]

Region fixed effects 3051 3051 3051 3051 3051 3051 3051 3051
Central city/suburban status fixed effects No No No Yes Yes Yes Yes Yes
Average heating/cooling degree days controls No No No No No No Yes Yes
CMSA fixed effects No No No No No No No Yes
Observations 3,051 3,051 3,051 3,051 3,051 3,051 3,051 3,051

Dependent variable: (log) of cost of repairs an alterations within two years after move relative to property value

Note: The dependent variable is the (log of the) costs of repairs and alterations within the last two years relative to the property value. Sample
includes all respondents who moved in or after 1997. Moved into unit in the Summer takes the value 1 if household head moved in the spring or
summer (in the last move). Robust standard errors in brackets. Significance: *** p<0.01, ** p<0.05, * p<0.1. Central city/suburban status
categories: 1) central city of MSA; 2) inside MSA, but not in central city-urban; 3) inside MSA, but not in central city-rural; 4) outside MSA,
urban; 5) outside MSA, rural. Heating/cooling degree days categories: 1) Coldest: 7,001+ heating degree days and < 2,000 cooling degree days;
2) Cold: 5,500-7,000 heating degree days and < 2,000 cooling degree days; 3) Cool: 4,000-5,499 heating degree days and < 2,000 cooling degree
days; 4) Mild: < 4,000 heating degree days and < 2,000 cooling degree days; 5) Mixed: 2,000-3,999 heating degree days and 2,000+ cooling
degree days; 6) Hot: < 2,000 heating degree days and 2,000+ cooling degree days.
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4 A Search-and-Matching Model for the Housing Market

We have mentioned that the predictability and size of the seasonal variation in house prices pose a

challenge to existing models of the housing market. In the web Appendix we study the canonical

models in the literature and argue that they cannot account for the seasonality we see in the data,

calling for a different mechanism to explain seasonal patterns. In this section we develop a search-

and-matching model for the housing market with two key elements, “match-specific quality” and

“thick-market effects.” We then show that the model can generate seasonal fluctuations comparable

to those in the data.

4.1 The Model Economy

The economy is populated by a unit measure of infinitely lived agents, who have linear preferences over

housing services and a non-durable consumption good. Each period agents receive a fixed endowment

of the consumption good which they can either consume or use to buy housing services. An agent can

only enjoy housing services by living in one house at a time, that is, he can only be “matched” to one

house at a time. Agents who are not matched to a house seek to buy one (“buyers”).

There is a unit measure of housing stock. Correspondingly, each period a house can be either

matched or unmatched. A matched house delivers a flow of housing services of quality ε to its owner.

The quality of housing services ε is match-specific, and it reflects the suitability of a match between a

house and its owner. In other words, for any house, the quality of housing services is idiosyncratic to

the match between the house and the potential owner. For example, a particular house may match a

buyer’s taste perfectly well, while at the same time being an unsatisfactory match to another buyer.

Hence, ε is not the type of house (or of the seller who owns a particular house). This is consistent

with our data, which control for houses’ characteristics, but not for the quality of a match.29

We assume that in a market with many houses for sale, a buyer is more likely to find a better

match, what we refer to as the “thick-market effect.” As in Diamond (1981), we model this idea by

assuming that the match-specific quality ε follows a distribution F (ε, v) , with positive support and

finite mean, and

F (., v′) ≤ F (., v)⇔ v′ > v, (1)

where v denotes the stock of houses for sales. In words, when the stock of houses v is larger, a

random match-quality draw from F (ε, v) is likely to be higher. The web Appendix provides detailed

29Repeat-sale indexes do not control for the quality of a match, which is not observed by data collectors.
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micro-foundations for this assumption.30

Unmatched houses are “for sale” and are owned by “sellers;” sellers receive a flow u from any

unmatched house they own, where the flow u is common to all sellers.

4.2 Seasons and Timing

There are two seasons, j = s, w (for summer and winter); each model period is a season, and the two

seasons alternate. At the beginning of a period j, an existing match between a homeowner and his

house breaks with probability 1 − φj, and the house is put up for sale, adding to the stock of houses
for sales, denoted by vj. The homeowner whose existing match has broken becomes simultaneously a

seller and a buyer, adding to the pool of buyers, denoted by bj. In our baseline model, the parameter

φj is the only (ex ante) difference between the seasons.31 We focus on periodic steady states with

constant vs and vw. Since a match is between one house and one agent, and there is a unit measure

of agents and a unit measure of houses, it is always the case that the mass of houses for sale equals

the mass of buyers: vj = bj.

Our objective is to investigate how such deterministic driver of seasonality can be amplified and

revealed as seasonality in transactions and prices in the housing market due to the thick-market effects

on the match-specific quality. By focusing on the periodic steady-state, we are studying a deterministic

cycle and agents are aware that they are in such a cycle with φj, transactions, and prices fluctuating

between high and low levels across the two seasons.

During each period, every buyer meets with a seller and every seller meets with a buyer. Upon

meeting, the match-specific quality between the potential buyer and the house is drawn from a distri-

bution F (ε, v) . If the buyer and seller agree on a transaction, the buyer pays a price (discussed later)

to the seller, and starts enjoying the housing services ε. If not, the buyer looks for a house again next

period, the seller receives the flow u, and puts the house up for sale again next period.32 An agent can

hence be either a matched homeowner or a buyer, and, at the same time, he could also be a seller.

Sellers also may have multiple houses to sell.33

30Heuristically, one way to interpret our assumption is as follows. Suppose the buyer samples n units of vacant
houses when the stock of vacancies is v. As long as the number of units sampled n increases in v, the maximum match
quality ε in the sample will be “stochastically larger.” In other words, for any underlying distribution of match quality,
the distribution of the maximum in a sample of size n will first-order stochastically dominate the distribution of the
maximum in a smaller sample n′ < n. As such, F can be interpreted as the distribution of the sample maximum. In
the web Appendix, we offer rigorous micro-foundations for this assumption.
31This difference could be determined, for example, by the school calendar or summer marriages, among other factors,

exogenous to our model. In the web Appendix we discuss seasonal transaction costs as an alternative driver of seasonality.
32In the web Appendix we relax the assumption that if the transaction does not go through, the buyer and seller need

to wait for next period to transact with other agents.
33In the web Appendix, we show that the probability of owning multiple house is quantitatively small.
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4.3 The Homeowner

The value of living in a house with match quality ε starting in season s is given by:

Hs (ε) = ε+ βφwHw (ε) + β (1− φw) [V w +Bw] ,

where β ∈ (0, 1) is the discount factor. With probability (1 − φw) the homeowner receives a moving
shock and becomes both a buyer and a seller (putting his house up for sale), with continuation value

(V w+Bw), where V j is the value of a house for sale to the seller and Bj is the value of being a buyer in

season j = s, w, as defined later. With probability φw the homeowner keeps receiving housing services

of quality ε and stays in the house. The formula for Hw (ε) is perfectly isomorphic to Hs (ε); in the

interest of space we omit here and throughout the paper the corresponding expressions for season w.

The value of being a matched homeowner can be therefore re-written as:

Hs (ε) =
1 + βφw

1− β2φwφs ε+
β (1− φw) (V w +Bw) + β2φw (1− φs) (V s +Bs)

1− β2φwφs , (2)

which is strictly increasing in ε. The first term that enters the housing value Hs (ε) is the effective

(adjusted for moving probabilities) present discounted value of staying in a house with match quality

ε and the second term contains the values in the event that the match may dissolve in any future

summer or winter.

4.4 Market Equilibrium

We focus on the case in which both seller and buyer observe the quality of the match, ε, which is

drawn from F j (ε) ≡ F (ε, vj); we derive the results for the case in which the seller cannot observe ε
in the web Appendix. If the transaction goes through, the buyer pays the seller a mutually agreed

price, and starts enjoying the housing services flow in the same season j. If the transaction does not

go through, the buyer receives zero housing services and looks for a house again next season. This will

be the case, for example, if buyers searching for a house pay a rent equal to the utility they derive

from the rented property–what is key is that the rental property is not owned by the same potential

seller with whom the buyer meets. On the seller’s side, when the transaction does not go through, he

receives the flow u in season j and puts the house up for sale again next season. The flow u can be

interpreted as a net rental income received by the seller. Again, what is key is that the tenant is not

the same potential buyer who visits the house.
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4.4.1 Reservation Quality

The total surplus of a transaction is:

Ss (ε) = Hs (ε)− [β (Bw + V w) + u] . (3)

Intuitively, a new transaction generates a new match of value Hs (ε); if the transaction does not go

through, the buyer and the seller obtain βBw and (βV w + u), respectively. Since ε is observable and

the surplus is transferrable, a transaction goes through as long as the total surplus Ss (ε) is positive.

Given Hs (ε) is increasing in ε, a transaction goes through if ε � εs, where the reservation εs is defined
by:

εs =: Hs (εs) = β (Bw + V w) + u, (4)

and 1− F s (εs) is thus the probability that a transaction is carried out. Since the reservation quality
εs is related to the total surplus independently of how the surplus is divided between the buyer and

the seller, we defer the discussion of equilibrium prices to Section 5.2. Using the expression of housing

value Hs (ε) in (2), equation (4) becomes:

1 + βφw

1− β2φwφs ε
s = u− β

2φw (1− φs)
1− β2φwφs (Bs + V s) +

1− β2φs
1− β2φwφsβφ

w (Bw + V w) . (5)

The Bellman equation for the sum of values is:

Bs + V s = β (Bw + V w) + u+ [1− F s (εs)]Es [Ss (ε) | ε � εs] , (6)

where Es [.] indicates the expectation is taken with respect to distribution F s (.) . The sum of values

in season s covers the outside option, β (Bw + V w)+u (the flow u plus the option value of buying and

selling next season) and, with probability [1− F s (εs)] , on the expected surplus from a transaction for
sellers and buyers. Solving this explicitly and using the expression for Sj (ε) , j = s, w in (20):

Bs + V s =
u

1− β +
(1 + βφw)hs (εs) + β (1 + βφs)hw (εw)(

1− β2) (1− β2φwφs) , (7)

where hs (εs) ≡ [1− F s (εs)]E [ε− εs | ε � εs] is the expected surplus of quality above threshold εs.
The equilibrium values εs, εw, (Bs + V s) , and (Bw + V w) in (5) and (7) depend on equilibrium

vacancies vs and vw, which we now derive.
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4.4.2 Stock of houses for sale

In any season s, the law of motion for the stock of houses for sale (and for the stock of buyers) is

vs = (1− φs) [vw (1− Fw (εw)) + 1− vw] + vwFw (εw)

where the first term corresponds to houses that received a moving shock and hence were put for sale

this season and the second term corresponds to vacancies from last period that did not find a buyer.

The expression simplifies to

vs = 1− φs + vwFw (εw)φs. (8)

The equilibrium quantities (Bs + V s, Bw + V w, εs, εw, vs, vw) jointly satisfy equations (5), (7), and

(8) together with the isomorphic equations for the other season. They are independent of how the total

surplus is shared across buyers and sellers, that is, independent of the exact price-setting mechanism.

We hence discuss seasonality in vacancies and transactions first, before we specify the particular price-

setting mechanism.

5 Model-Generated Seasonality

In the baseline model seasonality is driven by the higher moving probability in the summer:

1−φs > 1−φw. As shown earlier, the equilibrium quantities (Bs + V s, Bw + V w, εs, εw, vs, vw) jointly
satisfy six equations. Before jumping directly to the quantitative results we discuss the underlying

mechanisms through which a higher probability of relocating in the summer leads to a larger stock of

vacancies and a higher expected return for buyers and sellers, i.e. vs > vw and Bs + V s > Bw + V w;

hence, this section aims at making the model’s mechanics more explicit.

It is important to reiterate that our notion of seasonality is not a cross-steady states comparison,

that is, we are not comparing a steady-state with a high probability of moving houses to another

steady-state with a low probability of moving. Instead, the seasonal values we derive are equilibrium

values along a periodic steady state where agents take into account that the economy is fluctuating

deterministically between the summer and the winter seasons.

Using (8), the stock of houses for sale in season s is given by:

vs =
1− φs + φsFw (εw) (1− φw)
1− F s (εs)Fw (εw)φsφw . (9)
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The ex ante higher probability of moving in the summer (1−φs > 1−φw) clearly has a direct positive
effect on vs, and this effect also dominates quantitatively when we calibrate the model to match the

average duration of stay in a house.34 Thus, this implies vs > vw. The probability of moving is

exogenous in our model and we calibrate it so as to match the seasonality in vacancies. Our main

interest is to predict the seasonality in transactions and prices.

To that aim, we first take a somewhat tedious but useful detour to comment on the seasonality

of the sum of values (Bj + V j) . Intuitively, a higher stock of vacancies in the summer implies higher

expected returns to a buyer and a seller in the summer because of better matches through the thick-

market effect. These higher expected returns in the summer, however, also raise the outside options

of a buyer and a seller in the winter. Higher outside options make both the buyer and the seller more

demanding and tend to increase the reservation quality in the winter. In equilibrium, however, the

overall effect on reservation quality is ambiguous.35 More formally, the higher stock of vacancies in the

summer, vs > vw, implies a higher expected surplus quality hs(.) for any given cutoff through the thick-

market effects as in (1).36 Given φw > φs, it thus follows from equation (7) that Bs + V s > Bw + V w

if the two equilibrium cutoffs εs and εw are close. In other words, the expected return (Bj + V j) is

higher in the summer as long as the thick-market effect dominates a potentially offsetting equilibrium

effect from the reservation quality. Quantitatively, the two cutoffs turn out to be close for reasonable

parametrizations of the model and hence the thick-market effect indeed dominates.

34More specifically, the numerator is a weighted average of 1 and Fw (εw) (1− φw) , with 1 − φs being the weight
assigned to 1 in the equation for vs. Since 1 − φs > 1 − φw, the equation for vs assigns a higher weight on 1. Since
Fw (εw) (1− φw) < 1, higher weight on 1 leads to vs > vw; this is because Fw (εw) (1− φw) is virtually aseasonal as
there are two opposite effects: Fw (εw) > F s (εs) and (1− φw) < (1− φs) that tend to largely cancel each other.
35Note, using (4), that lower outside options (Bw + V w) imply a lower housing value for the marginal transaction in

the summer,
Hs (εs) < Hw (εw) . (10)

This does not necessarily imply a lower reservation quality in the summer, εs < εw because the ranking of Hs (ε) and
Hw (ε) depends on the level of ε. To see this, note from (2), that Hj (ε) is linear in ε for j = s, w. Given φw > φs, Hs (.)
is steeper than Hw (.) . The difference in the intercepts between Hs (.) and Hw (.) is proportional to:

β [(1− φw) (1− βφs) (Bw + V w)− (1− φs) (1− βφw) (Bs + V s) ] ,

which is negative when Bs+ V s > Bw + V w. Therefore, Hs (.) and Hw (.) must cross once at ε̂. Thus if the equilibrium
reservation quality in the summer is sufficiently high, εs > ε̂, then Hs (εs) > Hw (εs) . Therefore, in order for inequality
(10) to hold, we must have εw > εs. In this case, a lower outside option in the summer leads to a lower cutoff. On the
other hand, if the equilibrium reservation quality in the summer is sufficiently low, εs < ε̂, then Hs (εs) < Hw (εs); in
this case, the inequality εw > εs is no longer required for inequality (10) to hold. In sum, the two equilibrium cutoffs
cannot be ranked.
36To see this, rewrite hs (x) =

∫
x
[1− F s (ε)] dε using integration by parts.
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5.1 Seasonality in Transactions

The number of transactions in equilibrium in season s is given by:

Qs = vs [1− F s (εs)] . (11)

(An isomorphic expression holds for Qw). From (11), it is evident that a larger stock of vacancies in the

summer, vs > vw, has a direct positive effect on the number of transactions in the summer relative to

winter. Furthermore, if the probability of a transaction is also higher in the summer, then transactions

will be more seasonal than vacancies. This amplification effect, which follows from the first-order

stochastic dominance of F s (.) over Fw (.) , is indeed present in our quantitative exercise.37 Intuitively,

a higher stock of vacancies leads to better matches through the thick-market effect, resulting in a

higher transaction probability.38

5.2 Seasonality in Prices

As discussed earlier, results on seasonality in vacancies and transactions are independent of the exact

price-setting mechanism, i.e. how the surplus is shared between a buyer and seller. Let Ssv (ε) and

Ssb (ε) be the surpluses of a transaction to the seller and to the buyer, respectively, in season s, when

the match quality is ε and the price is ps (ε):

Ssv (ε) ≡ ps (ε)− (u+ βV w) , (12)

Ssb (ε) ≡ Hs (ε)− ps (ε)− βBw. (13)

The value functions for the buyer and the seller in season s are, respectively:

V s = βV w + u+ [1− F s (εs)]Es [Ssv (ε) | ε � εs] , (14)

Bs = βBw + [1− F s (εs)]Es [Ssb (ε) | ε � εs] . (15)

37As said, there could be an additional effect if the cutoffs are highly seasonal. For example, if εw > εs, there will be
even lower volume of transactions in the winter. This is because the outside option for both buyers and sellers is to wait
and transact in the next season. Therefore, a higher outside option in the winter makes both buyers and sellers more
demanding in the winter and hence less likely to transact, yielding an even smaller number of transactions.
38Our model predicts higher probability of transactions in the hot season, thus faster sale and shorter average time

on the market for both buyers and sellers. Though we do not have high-frequency data on time on the market to assess
seasonality, at lower frequencies, average time to sell tends to be shorter when prices are high (see Krainer, 2001 and
Diaz and Jerez, 2012), a relation that is consistent with our mechanism.
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A seller can count on his outside option, βV w + u (the flow u plus the option value of selling next

season) and, with probability [1− F s (εs)], on the expected surplus from a transaction for sellers. A

buyer counts on her outside option, βBw (the option value of buying next season), and, with the same

probability, on the expected surplus for buyers. The two Bellman equations (14) and (15) describe the

incentives of buyers and sellers in any season s. They will only agree to a transaction if they obtain

a positive surplus from the exchange. In particular, (14) shows why a seller would agree to sell in

the winter season, even though the average price is higher in the summer. A positive surplus in the

winter, pw (ε) − (u+ βV s) > 0, already takes into account the potential higher price in the summer
and therefore the higher value of being a seller in the summer (V s) .

We now consider the case in which prices are determined by Nash bargaining. The price maximizes

the Nash product:

max
ps(ε)

[Ssv (ε)]
θ [Ssb (ε)]

1−θ s.t. Ssv (ε) , S
s
b (ε) � 0;

where θ denotes the bargaining power of the seller. The solution implies

Ssv (ε)

Ssb (ε)
=

θ

1− θ , (16)

which simplifies to (see web Appendix):

ps (ε) = θHs (ε) + (1− θ) u

1− β , (17)

a weighted average of the housing value for the matched homeowner and the present discounted value

of the flow u. In other words, the price guarantees the seller the proceeds from the alternative usage

of the house ( u
1−β ) and a fraction θ of the social surplus generated by the transaction

[
Hs (ε)− u

1−β

]
.

The average price of a transaction is:

P s ≡ Es [ps (ε) | ε � εs] = (1− θ) u

1− β + θE
s [Hs (ε) | ε � εs] , (18)

which is increasing in the conditional expected surplus of housing services for transactions exceeding

the reservation εs. Since u is aseasonal, house prices are seasonal if θ > 0 and the surplus to the seller

is seasonal. Moreover, the extent of seasonality is increasing in θ. Intuitively, the source of seasonality

is coming from higher average match quality in a thicker market. The higher match quality generates

higher utility to the buyer. This will show up as a higher price only if the seller has some bargaining

power to extract a fraction of the surplus generated from the match. To see this in equations, rewrite
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Es [Hs (ε) | ε � εs] as the sum of two terms:

Es [Hs (ε) | ε � εs] = Hs (εs) + Es [Ss (ε) | ε � εs] . (19)

The first term, Hj (εj) , the housing value of the marginal transaction, tends to reduce the average price

in the summer since Hs (εs) < Hw (εw) . The second term, Es [Ss (ε) | ε � εs] , is the expected surplus
of a transaction, which tends to increase the average price in the summer due to higher match-quality.

To see this second term more clearly, observe from (3) and (4) that

Ss (ε) = Hs (ε)−Hs (εs) =
1 + βφw

1− β2φwφs (ε− ε
s) , (20)

thus

Es [Ss (ε) | ε � εs] = 1 + βφw

1− β2φwφsE
s [ε− εs | ε � εs] .

The average housing value will thus be higher in the summer for two reasons. First, the probability of

staying is higher in the winter, φw > φs. Second, and more important, given the assumption of first-

order stochastic dominance, a higher stock of vacancies vs > vw increases the likelihood of drawing

a higher match-quality [1− F s (ε)] � [1− Fw (ε)] ∀ε . This generally leads to a higher conditional
surplus in the hot season: Es [ε− εs | ε � εs] � Ew [ε− εw | ε � εw] .39

Given that θ affects P s only through the equilibrium mass of vacancies (recall the reservation

quality εs is independent of θ), it follows that the extent of seasonality in prices is increasing in θ.

Since (18) holds independently of the steady state equation for vs and vw, this result is independent

of what drives vs > vw. Note finally that the extent of seasonality in prices is decreasing in the size of

the (aseasonal) flow u.

39 To see this, rewrite the conditional surplus using integration by parts:

Es [ε− εs | ε � εs] =
∫
εs
(1− F s (ε)) dε
1− F s (εs) . (21)

Putting aside the issue of the equilibrium cutoffs εs and εw (which are are quantitatively close), it follows from equation
(21) that the conditional surplus is higher in the hot season, Es [ε− εs | ε � εs] � Ew [ε− εw | ε � εw] , unless the
increase in the likelihood of drawing a particular level of match quality ε dominates the sum of the increase in likelihood
of drawing all match qualities higher than ε, i.e. unless 1−F s(ε)

1−Fw(ε) >
∫
ε
(1−F s(ε))dε∫

ε
(1−Fw(ε))dε

. We cannot rule out this possibility in
general, but this case does not arise in our calibration exercise. More formally, we could impose a “uniform” stochastic
ordering (see Keilson and Sumita, 1982) as a sufficient condition to rule out this case. But as said, such assumption is
not necessary for obtaining higher prices in the hot season.
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5.2.1 Comparison to a Standard Asset-Pricing Approach

It is useful to compare the price mechanism in our setup with that in a standard asset pricing ap-

proach. Equation (14) can be compared to the no-arbitrage condition in asset pricing. Substituting

the expression for the surplus into (14), we obtain

V s = [1− F s (εs)]P s + F s (εs) (βV w + u)

The equation expresses the value of a seller as a weighted average of the market price P s and the

continuation value (βV w + u) , with the weights given, correspondingly, by the probabilities that the

transaction goes through or not. Without the search friction, a buyer will always purchase the house

at the market price P s, thus the probability of a transaction is one. In that case, the value for being

a seller is V s = P s. Moreover, the surplus of a transaction is zero in a competitive equilibrium (with

perfect arbitrage), so the Bellman equation (14) is equivalent to

P s = βPw + u = β (βP s + u) + u =⇒ P s =
u

1− β ,

and P s = Pw. In other words, without the model’s friction, seasonality in moving probabilities φs will

not be transmitted into seasonality in prices.40

Our price index P j, j = s, w is the average price of transactions in season j. The seasonality in

price indexes, P s > Pw, is due to the thick market effect, whereby matches are more likely to be better

in the hot season (with a higher stock of houses for sale). In what follows we focus on discussing

the mechanism from the seller’s perspective (a similar argument can be put forward from a buyer’s

perspective). The price index P j is not the price that every seller receives. More specifically, consider

a seller in the winter who is meeting with a buyer that has a match-specific quality equal to ε. He

has to decide whether to sell now at an agreed price or to wait until the summer, where the average

price is P s. Notice that the seller is not comparing Pw to P s in his decision because what is relevant

for him is not the average price Pw but rather pw (ε), which is determined between him and the buyer

40Notice that with the search friction, P s 	= u
1−β . From

V s = βV w + u+ [1− F s (εs)]Es [Ssv (ε) | ε � εs]

substitute the expression for V w and obtain:

V s =
u

1− β +
[1− F s (εs)]Es [Ssv (ε) | ε � εs] + β [1− Fw (εw)]Ew [Swv (ε) | ε � εw]

1− β2

where the expected surpluses are strictly positive.
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with quality match ε. The equilibrium value functions (14) and (15) ensure that a transaction will

take place as long as the surplus is positive. The option of being able to sell at a possibly higher price

in the summer has already been incorporated into the equilibrium surpluses (12) and (13), which in

turn pin down the equilibrium price pw (ε) as in (17). So even though the price of a transaction for

a specific ε might be higher in the hot season, it does not follow that a seller will only transact in

the summer because of the stochastic nature of ε. By not transacting at pw (ε) , a seller may end up

with an even lower ps (ε̃) in the summer if he meets a buyer with a lower match quality ε̃, or with no

transaction at all if the match quality ε̃ is too low. So the corresponding arbitrage condition for the

seller to decide whether to wait until the hot season has to consider both the probability of transacting

in the summer and the distribution of the match quality conditional on transacting. In contrast, in a

standard asset-pricing model with deterministic seasons, a seller can always transact (with certainty)

at market prices. The choice of whether to sell in the current season or in the next depends exclusively

on the flow of benefits (or costs) of owning the house for one season relative to the expected seasonal

appreciation.

5.3 Quantitative Analysis

In this section we calibrate the model to study its quantitative implications.

5.3.1 Parameter values

We assume the distribution of match-quality F (ε, v) follows a uniform distribution on [0, v] . When

vs > vw (which will follow from φw > φs), this implies first-order stochastic ordering, F s (.) � Fw (.) .
We set the discount factor β so that the implied annual real interest rate is 6 percent, as calculated

by Blake (2011) for the United States. (The rate might be slightly higher for the United Kingdom,

though we use the same to ease cross-country comparability.)

We calibrate the average probability of staying in the house, φ = (φs + φw) /2, to match survey

data on the average duration of stay in a given house, which in the model is given by 1
1−φ . The median

duration in the United States from 1993 through 2005, according to the American Housing Survey, was

18 semesters; the median duration in the United Kingdom during this period, according to the Survey

of English Housing was 26 semesters. The implied (average) moving probabilities (1−φ) per semester
are hence 0.056 and 0.038 for the United States and the United Kingdom, respectively. Because there

is no direct data on the ex-ante ratio of moving probabilities between seasons, (1− φs) / (1− φw), we
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use a range of (1− φs) / (1− φw) from 1.1 to 1.5.41 This implies a difference in staying probabilities

between seasons, φw−φs, ranging from 0.004 to 0.015 in the United Kingdom and 0.005 to 0.022 in the
United States. One way to pin down the level of (1− φs) / (1− φw) is to use data on inventories (or
homes for sale), which correspond to the vacancies vj in our model. The data are available at quarterly

frequency for the United States from the NAR (for the United Kingdom, data on vacancies only exist

at yearly frequency). Seasonality in inventories was 28 percent during 1991− 2012.42 As will become
clear from the results displayed below, the ratio that exactly matches seasonality in US vacancies is

(1− φs) / (1− φw) = 1.25. The reader may want to view this as a deep parameter and potentially use
it also for the UK, under the assumption that the extent of seasonality in ex-ante moving probabilities

does not vary across countries.

We calibrate the flow value u to match the implied average rent-to-price ratio received by the seller.

In the UK, the average gross rent-to-price ratio is roughly around 5 percent per year, according to

Global Property Guide.43 For the US, Davis et al. (2008) argue that the ratio was around 5 percent

prior to 1995 when it started falling, reaching 3.5 percent by 2005. In our model, the u/P ratio (where

P stands for the average price, absent seasonality) corresponds to the net rental flow received by the

seller after paying taxes and other relevant costs; it is accordingly lower than the gross rent-to-price

ratio. As a benchmark, we choose u so that the net rent-to-price ratio is equal to 3 percent per year

(or 1.5 percent per semester), equivalent to assuming a 40 percent income tax on rent).44 To obtain

the value of u, which, as we said, is aseasonal in the data, we use the equilibrium equations in the

model without seasonality, that is, the model in which φs = φw = φ. From (18) and (5), the average

41The two surveys mentioned also report the main reasons for moving. Around 30 percent of the respondents report
that living closer to work or to their children’s school and getting married are the main reasons for moving. These
factors are of course not entirely exogenous, but they can carry a considerably exogenous component; in particular, the
school calendar is certainly exogenous to housing market movements (see Goodman 1993 and Tucker, Long, and Marx
1995 on seasonal mobility). In all, the survey evidence supports our working hypothesis that the ex ante probability to
move is higher in the summer (or, equivalently the probability to stay is higher in the winter).
42We use the inventory series provided by NAR. As a measure of seasonality we use, as before, the difference in

annualized growth rates in vacancies between broadly defined summers and winters. As an alternative definition of
vacancies we also looked at vacant houses’ data from the US Census Bureau. Vacancy is computed as the sum of houses
for sale at the beginning of the season relative to the stock of houses. The degree of seasonality in this series, using the
same metric is 31 percent.
43Data for the United Kingdom and other European countries can be found in
http://www.globalpropertyguide.com/Europe/United-Kingdom/price-rent-ratio
44In principle, other costs can trim down the 3-percent u/P ratio, including maintenance costs, and inefficiencies in

the rental market that lead to a higher wedge between what the tenant pays and what the landlord receives; also, it
might not be possible to rent the house immediately, leading to lower average flows u. Note that lower values of u/p
lead to even higher seasonality in prices and transactions for any given level of seasonality in moving shocks.
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price and the reservation quality εd in the absence of seasonality are (see web Appendix):

P =
u

1− β + θ
[
1− βF (εd)]E [ε− εd | ε � εd]

(1− β) (1− βφ) , (22)

and
εd

1− βφ =
u+ βφ

1−βφ
∫
εd
εdF (ε)

1− βφF (εd) . (23)

We hence substitute u = 0.015 · P in the aseasonal model (equivalent to an annual rent-to-price ratio
of 3 percent) for θ = 1/2 (when sellers and buyers have the same bargaining power) and find the

equilibrium value of P given the calibrated values for β and F (.) . We then use the implied value of

u = 0.015 · P as a parameter.45

Finally, in reporting the results for prices we vary the seller’s bargaining power parameter θ from

0 to 1.

5.3.2 The Extent of Seasonality

Given the calibrated values of u, β, and φ discussed above, Table 7 displays the extent of seasonal-

ity in vacancies and transactions generated by the model for different values of the ratio of moving

probabilities (recall that seasonality in vacancies and transactions is independent of the bargaining

power of the seller, θ). As throughout the paper, our metric for seasonality is the annualized difference

in growth rates between the two seasons. Column (1) shows the ratio of moving probabilities, 1−φs
1−φw .

Columns (2) and (5) show the implied difference in moving probabilities between the two seasons for

the United States and the United Kingdom, [(1− φs)− (1− φw)]. (Recall that, because the average
stay in a house differs across the two countries, a given ratio can imply different values for φw − φs,
as the average probability of stay φ differs.) Columns (3) and (4) show the extent of seasonality in

vacancies and transactions for an average stay of 9 years (as in the United States) and Columns (6)

and (7) show the corresponding figures for an average stay of 13 years (as in the United Kingdom)

45We also calibrated the model using different values of u for different θ (instead of setting θ = 1/2), keeping the ratio
u/P constant. Results are not significantly different under this procedure, but the comparability of results for different
values of θ becomes less clear, since u is not kept fixed.
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Table 7. Seasonality in vacancies and transactions for different 1−φs
1−φw .

Implied seasonal
difference  in

moving
probabilities

(2)

Vacancies
(3)

Transactions
(4)

Implied seasonal
difference  in

moving
probabilities

(5)

Vacancies
(6)

Transactions
(7)

1.10 0.005 12% 49% 0.004 11% 48%
1.20 0.010 23% 94% 0.007 21% 93%
1.25 0.012 28% 115% 0.009 25% 113%
1.30 0.014 33% 136% 0.010 30% 133%
1.40 0.019 42% 174% 0.013 38% 171%
1.50 0.022 51% 211% 0.015 45% 207%

Average moving probability:  0.0385
Stay of 13 years (U.K.)

Average moving probability:  0.0556
Stay of 9 years (U.S.)Ratio of

moving
probabilities

between
seasons

(1)

The first point to note is the large amplification mechanism present in the model: For any given

level of seasonality in vacancies, seasonality in transactions is at least four times bigger. Second, the

Table shows that a small absolute difference in the probability to stay between the two seasons can

induce large seasonality in transactions. Third, if we constrain ourselves to 1−φs
1−φw = 1.25 to match the

data on vacancies for the United States, this implies a level of seasonality in transactions of about

115 percent in the United States (the empirical counterpart is 146 percent). For the United Kingdom,

ideally we would like to recalibrate the ratio 1−φs
1−φw to match its seasonality in vacancies; however, as

said, the data are only available at yearly frequency. Using the same ratio 1−φs
1−φw = 1.25 as a parameter

for the United Kingdom would yield a seasonality in vacancies of 25 percent (the difference with the

United States is due to the longer duration of stay in the United Kingdom). This in turn would imply

a degree of seasonality in transactions of 113 percent (the empirical counterpart is 139.) Note that,

for a given ratio 1−φs
1−φw , the model generates more seasonality in transactions in the United States than

in the United Kingdom (as in the data) because a given ratio implies a higher difference in moving

probabilities [(1− φs)− (1− φw)] in the United States than in the United Kingdom, as the average
stay is shorter in the former.

Seasonality in prices, as expressed earlier, depends also on the bargaining power of the seller, θ.

Figure 7 plots the model-generated seasonality in prices for different θ and 1−φs
1−φw , assuming an average

stay of 13 years (as in the United Kingdom), and Figure 8 shows the corresponding plot for an average

stay of 9 years (as in the United States). As illustrated, seasonality increases with both θ and 1−φs
1−φw .

If, as before, we take 1−φs
1−φw = 1.25 as given, the exercise implies that to match real-price seasonality in
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the United Kingdom (of about 5.5 percent), the bargaining power coefficient θ needs to be around 0.8

percent. The corresponding value for the United States as a whole, with real-price seasonality of 4.8

percent, is 0.73 percent.46

Figure 7: Seasonality in Prices for Different θ and 1−φs
1−φw . United Kingdom

Figure 8. Seasonality in Prices for Different θ and 1−φs
1−φw . United States

In all, though stylized, the model can generate seasonal fluctuations quantitatively comparable to

46A somewhat higher bargaining power of sellers in the United Kingdom appears plausible. First, population density
in the United Kingdom is higher than in the United States making land relatively scarcer, and potentially conferring
home owners more power in price negotiations (this should also be true in denser U.S. cities). Second, anecdotal evidence
suggests that land use regulations are particularly stringent in the United Kingdom (see OECD Economic Outlook 2005).
Finally, as discussed earlier, price seasonality in U.S. cities is positively correlated with price-to-rent ratios (which, within
the model, increases with sellers’ power).
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those in the data. Together with the results from our study of alternative models in the web Appendix

and the micro evidence supporting the mechanism, we conclude that thick-market effects on quality

offer a plausible explanation for the seasonal patterns in the data.

6 Concluding Remarks

Using data from the United Kingdom and the United States, this paper documents seasonal booms

and busts in housing markets. It argues that the predictability and high extent of seasonality in house

prices cannot be quantitatively reconciled with existing models in the housing literature.

To explain the empirical patterns, the paper presents a search-and-matching model emphasizing

two elements of the housing market. The first is a match-specific component: buyers have different

idiosyncratic preferences over houses. The second is the notion that in a market with more houses for

sale, a buyer is more likely to find a better match, which we refer to as the thick-market effect. With

these two elements, the model generates an amplification mechanism such that a small (deterministic)

difference in the propensity to relocate across seasons can result in large seasonal swings in house

prices and the volume of transactions. When calibrated using data from the United States and the

United Kingdom, the model can quantitatively account for most of the seasonal fluctuations in prices

and transactions observed in the data. The idea that matches formed in the summer are of better

quality–the idea underlying the model’s mechanism–is consistent with empirical evidence presented

in the paper.

The model sheds light on a new mechanism governing fluctuations in housing markets that is also

likely to operate at lower frequencies. In particular, the thick-market effect at the core of the model’s

propagation mechanism does not depend on the frequency of the shocks. Lower frequency shocks

associated with either business-cycle shocks of with less frequent booms and busts in housing markets

could also be propagated through the same mechanism to amplify fluctuations in transactions and

prices.
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