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Abstract

We have established the asymptotic theory for the estimation of adaptive varying-coefficient

linear models. More specifically we have shown that the estimator for the global index pa-

rameter is root-n consistent without imposing, as a prerequisite, that the estimator is within

n−δ-distance from the true value. To this end, we have established two fundamental lemmas

for the asymptotic properties of the estimators for parametric components in general semi-

parametric settings. Furthermore, the estimation for the coefficient functions is asymptotically

adaptive to the unknown index parameter in the sense that the first order of the asymptotic

distribution is the same as if the index parameter were known. The asymptotic properties

were derived for the observations from a strictly stationary β-mixing process, which includes

both independent observations and time series as special cases.
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1 Introduction

We consider a class of adaptive varying-coefficient linear stochastic regression models of the form

Yt = a0

{
αT

0 Xt

}
+ XT

t b0

{
αT

0 Xt

}
+ εt, (1.1)

where t is time, Xt is a d×1 predictor vector which may consist of some lagged values of Yt or/and

other exogenous variables, and E(εt|Xt) = 0. In model (1.1), the index parameter α0 is unknown,

and both functions a0(·) and b0(·), which are R
1 and R

d valued respectively, are also unknown.

This model is coined as adaptive by Fan, Yao and Cai (2003) to indicate that the coefficients are

functions of unknown index variable αT
0 Xt, in contrast to, for example, the functional-coefficient

models of Chan and Tsay (1993), and Cai, Fan and Yao (2000). This is a quite general form

of nonlinear dynamical model. For example, for Xt = {Yt−1, Yt−2, · · · , Yt−d}T, (1.1) reduces

to the adaptive varying-coefficient linear autoregressive model (Tong 1990, Xia and Li 1999,

Fan, Yao and Cai 2003). On the other hand, some financial econometrics models specify Xt =

{Yt−1, Yt−2, · · · , Yt−p, Ut, Ut−1, · · · , Ut−q}T for some exogenous process Ut; see Hannan (1970),

Gourieroux and Jasiak (2001) and Hong and Lee (2003). Formally model (1.1) also includes

the popular single-index model and the generalized partially linear single-index models as special

cases; see Chapter 8 of Fan and Yao (2003) and the references within. The major advantage

of model (1.1) is that it does not suffer from the curse of dimensionality encountered often in

multivariate nonparametric modelling, since both a0(·),b0(·) are functions of univariate variables.

The estimation for model (1.1) with independent observations has been investigated in several

papers. Ichimura (1993) proposed the form of the model (1.1). Following the lead of Härdle et

al (1993), Xia and Li (1999) estimated the index parameter α0 by a computationally expensive

cross-validation method. By assuming this cross-validation estimator is within n−δ-distance from

α0 for some δ ∈ (3/10, 1/2), Xia and Li (1999) showed that the estimator is root-n consistent.

More recently, Fan, Yao and Cai (2003) established a new computationally efficient procedure

based on the profile least-squares local linear weighted regression. They also addressed the issue

of deleting locally insignificant variables to avoid overfitting. But no asymptotic properties of

their estimator have been established.

The main purpose of this paper is to establish the asymptotic theory for the estimation of
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adaptive vary-coefficient linear modelling with the observations from a mixing processes, which is

applicable to both independent data and time series. We show that the estimator for the global

parameter α0 is root-n consistent without assuming it to be within a n−δ-distance from the true

value, which is a condition often imposed for the problem of this nature; see, for example, Härdle

et al (1993), Carroll et al. (1997) and Xia and Li (1999). Based on this result, we also show that

the coefficient functions a0(·) and b0(·) can be estimated asymptotically as well as if α0 were

given. Our asymptotic theory shows that two different bandwidths should be used in estimating

global parameter α0 and local parameters a0,b0. This is consistent with the common knowledge

that a global parameter should be estimated in an undersmoothed manner.

At the technical level, our approach is also different from that of Härdle et al (1993) and Xia

and Li (1999). Although Lemmas 4.1 and 4.2 in section 4 below played a fundamental role in

deriving the asymptotic properties of the estimators, they themselves are of independent interest.

They provide a general framework for establishing the root-n consistency and the asymptotic

normality for profile M -estimators (such as profile maximum likelihood estimation or profile least

squares estimation) for global parameters in semiparametric settings, and may be view as an

analogue of the results of Chen et al. (2003) which dealt with generalised method-of-moments es-

timation only. We validated the conditions of those two lemmas under adaptive varying-coefficient

linear model (1.1) in terms of the empirical process theory of Doukhan et al. (1995).

A short overview of the paper is as follows: The model and the estimation method are stated

in Section 2. Its asymptotic properties is presented in section 3. Two general lemmas on the

consistency and the asymptotic normality of profile M -estimation are established in section 4. We

prove in section 5 the main results. A uniform convergence rate of the profile kernel regression

estimator is established in the Appendix.

2 Estimation procedure

It is easy to see that model (1.1) is not identifiable, as we may replace the (a0,b0) by (a0 +

cαT

0 Xt,b0 − cα0) for any c ∈ R. To overcome this problem, we represent the model in a reduced
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form

Yt = a0{αT

0 Xt} + XT

t,−d b0{αT

0 Xt} + εt, (2.1)

where Xt,−d is the remaining vector of Xt with its d-th component deleted. Note (1.1) may always

be expressed in the form of (2.1) provided the last component of α0 is non-zero. Furthermore,

we assume that ||α0|| = 1, the first non-zero component of α0 is positive, and

E(Yt|Xt = x) 6= αT

0 xβTx + γTx + c

for some β,γ ∈ R
d and c ∈ R

1. Then α0, a0(·),b0(·) in (2.1) are all identifiable; see Theorem 1

of Fan et al. (2003). From now on, we always assume those conditions.

With observations {(Yt,Xt), 1 ≤ t ≤ n}, Fan et al. (2003) proposed an iterative profile least

squares estimation as follows.

1. With given α and Zt = αTXt,−d, minimise

n∑

t=1

[
Yt − a − c(Zt − z) − {b− d(Zt − z)}T

Xt,−d

]2
Kh{Zt − z}w{Zt} (2.2)

over θ = θ(z,α) = (a,b, c,d), leading to the estimators

θ̂(z,α, h) ≡ θ̂(z,α) ≡ {â(z,α, h), b̂(z,α, h)T, ̂̇a(z,α, h),
̂̇
b(z,α, h)T}T (2.3)

≡ {â(z,α), b̂(z,α)T, ̂̇a(z,α), ̂̇b(z,α)T}T = (â, b̂T, ĉ, d̂T)T,

where ḟ denote the derivative of a function f .

2. Let α̃ = β̂, where β̂ minimises

R(β) =
1

n

n∑

t=1

[
Yt − â{βTXt,α} − b̂{βTXt,α}TXt,−d

]2
w(αTXt). (2.4)

3. Repeat the above two steps with α = α̃ until the successive values of R(α̃) differ insignifi-

cantly. The final estimator for the index parameter is denoted as α̂.

In the above expressions, K(·) is a kernel function, Kh(·) = h−1K(·/h), h > 0 is a bandwidth,

w(·) = I[−L,L](·) (L > 0) is a weight function controling the edge effect in the estimation.
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In order to ensure that the estimator α̂ is root-n consistent, the bandwidth h used in the

iteration should be smaller than O(n−1/5); see Theorem 3.1 below. Such a small h is not optimal

for estimating coefficient functions a and b for which a different bandwidth h̄ should be used.

For fixed α, the sampling properties of the estimator θ̂ defined in (2.3) follows the standard

sampling theory of local linear regression estimation (Fan and Gijbels 1996, Fan and Yao 2003).

However it is more challenging to develop the asymptotic properties of estimator α̂. One fun-

damental difficulty underlying the complexity is the lack of an explicit expression for α̂ which is

defined in an iterative manner. To get around this difficulty, we slightly alter the definition of the

estimator for α and let

α̂ = arg min
α

Rn{â(·,α), b̂(·,α),α}, (2.5)

where

Rn{â(·,α), b̂(·,α),α} =
1

n

n∑

t=1

[
Yt − â{αTXt,α} − b̂{αTXt,α}TXt,−d

]2
w(αTXt). (2.6)

It is easy to see the backfitting iteration of (2.2) – (2.4) is an approximate and computationally

efficient way to evaluate α̂ defined in (2.5) while the definition (2.5) itself is theoretically more

tractable. We sketch below how we will proceed with the theoretical investigation.

With α given, the formula (2.2) divided by n is a consistent estimate of

Rz(a(·),b(·),α) = E

{(
Yt − a(Zt) − b(Zt)

TXt,−d

)2
w(Zt) | Zt = z

}

= E

{(
Yt − a(z) − b(z)TXt,−d

)2
w(z) | Zt = z

}
. (2.7)

Corresponding to (2.4), we define

R(a(·),b(·),α) = E

{(
Yt − a(Zt) − b(Zt)

TXt,−d

)2
w(Zt)

}
, (2.8)

which is related to Rz(a(·),b(·),α) via

R(a(·),b(·),α) =

∫
Rz(a(·),b(·),α)fZ(z) dz = E

{(
Yt − a(Zt) − b(Zt)

TXt,−d

)2
w(Zt)

}
, (2.9)

where fZ(z) = fZ(z,α) is the density function of Zt = Zt(α) = αTXt. Note that with α given,

the minimiser of (2.7) is

 a0(z,α)

b0(z,α)


 =

[
E
(
Xt X

T

t

∣∣∣Zt(α) = z
)]−1

[E(XtYt|Zt(α) = z)] , (2.10)
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where

Xt = (1,XT

t,−d)
Twith Xt,−d defined right after (2.1). (2.11)

It is easy to see from (2.9) that {a0(·,α), b0(·,α)} is also the minimizer of (2.8) for any fixed α.

Now the true value of the index parameter should satisfy

α0 = arg min
α

R(a0(·,α),b0(·,α),α). (2.12)

We may see intuitively that â(z,α) and b̂(z,α) defined in (2.3) are consistent estimators of

a0(z,α) and b0(z,α) (see Theorem 3.2). The estimator α̂ defined in (2.5) is a consistent estimator

of α0 given in (2.12) (Theorem 3.1), as (2.7)is a consistent estimator of R(a0(·,α),b0(·,α),α).

Finally, â0(z) ≡ â(z, α̂, h̄) and b̂0(z) ≡ b̂(z, α̂, h̄) (see (2.3)) are, respectively, the consistent

estimators for a0(z) ≡ a0(z,α0) and b0(z) ≡ b0(z,α0) (Theorem 3.2).

3 Main results

3.1 Regularity conditions and notations.

We always assume {(Yt,Xt)} is a strictly stationary process. Put

B = {α ∈ R
d : ‖α‖ = 1, the first non-zero element is positive, and the last element is non-zero},

and εt(α) = Yt − a0(α
TXt,α) − b0(α

TXt,α)TXt,−d, for α ∈ B. Then εt(α0) = εt defined in

(2.1). Note {εt} may not be an i.i.d. process. We denote by fξ|η(·|·) the conditional probability

density of ξ given η. Some regularity conditions are now in order.

(C1) (Moment conditions)

E|Yt|%r < ∞, E‖Xt‖%r < ∞ and E|εt|%r < ∞ for some integer r > 1 and some real number

% > 4 − 2/r. Furthermore, supα∈B E|εt(α)|%r < ∞.

(C2) (Conditions on probability densities)

The density fαTXt
(z) is continuous and bounded away from zero uniformly for α ∈ B.

Furthermore, the joint probability density function of (αTXt1 , · · · ,αTXts) exists and is

bounded uniformly for any t1 < · · · < ts and 1 ≤ s ≤ 2r − 1 and α ∈ B, where r is given in

(C1).
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(C3) (Inverse matrix conditions)

The matrix function A1(z,α) ≡ E
(
Xt X

T
t

∣∣αTXt = z
)

is positively definite for |z| ≤ L and

α ∈ B, where Xt is defined in (2.10).

(C4) (Conditions on the nonparametric functions)

The functions a0(z,α) and b0(z,α), defined in (2.10), are twice continuously differentiable

with respect to z and continuously differentiable with respect to α. Also, the derivative of

R(a0(·,α),b0(·,α),α) defined by (2.8) with respect to α and the expectation involved are

exchangeable.

(C5) (Mixing conditions)

The Process {(Yt,Xt)} is β-mixing with the mixing coefficients β(t) = O(t−b) for some

b > max{2(%r + 1)/(%r − 2), (r + a)/(1 − 2/%)}, where r and % are specified in (C1), and

a ≥ (r% − 2)r/(2 + r% − 4r).

(C6) (Conditions on the kernel function)

The kernel K(·) is a bounded and symmetric density function on R
1 with bounded support

SK . Furthermore, it has a finite variance such that |K(x)−K(y)| ≤ C|x− y| for x, y ∈ SK

and some 0 < C < ∞.

(C7) (Conditions on the bandwidth)

The bandwidth h satisfies the conditions

lim
n→∞

h = 0 and lim inf
n→∞

nh
2(r−1)a+(%r−2)

(a+1)% > 0 (3.1)

for some integer r ≥ 3. Furthermore, there exists a sequence of positive integers sn → ∞

such that sn = o((nh)1/2), ns−b
n → 0 and snh

2(%r−2)
2+b(%r−2) > 1 as n → ∞.

Remark 1. Conditions (C1) and (C2) may appear to be stronger than the standard ones

imposed for nonparametric regression estimation. This is due to the fact that we need to establish

the uniform convergence for nonparametric regression estimators for a(·,α) and b(·,α) for given

α ∈ B in order to obtain the root-n consistency for α̂. In fact the moment condition E(e|εt|) < ∞

employed by Härdle et al. (1993) and Xia and Li (1999) is stronger than the moment conditions
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in (C1). The β–mixing condition (C5) is not very strong either. Many linear and nonlinear time

series satisfy this condition; see, for example, section 2.6 of Fan and Yao (2003). The bandwidth

condition (C7) is also standard for this type of problem. Note (3.1) holds for h = O(n−1/5) if

a > {(r − 5)%− 2}/{5%− 2r + 2} with % > max{2(r − 2)/5, 2/(r − 5)} and r > 5. It also holds for

h = O(n−1/4) if a > {(r − 4)% − 2}/{4% − 2r + 2} with % > max{(r − 2)/2, 2/(r − 4)} and r > 4.

Before we end this section, we define some notation that will be used in the rest of the paper.

Let Xt0 ≡ 1, Dn = {1, 2, · · · , n}, Sw = [−L,L], µi,K =
∫

uiK(u) du and νi,K =
∫

uiK2(u) du.

Let S and S̃ be 2 × 2 matrices with, respectively, µi+j−2,K and νi+j−2,K as the (i, j)th elements.

Let s = (µ2,K , µ3,K)T be a 2 × 1 vector.

Put θ0(z,α) = (a0(z,α),b0(z,α)T, ȧ0(z,α), ḃ0(z,α)T)T, where ȧ0(z,α) = ∂a0(z,α)/∂z,

ḃ0(z,α) = ∂b0(z,α)/∂z. Similarly, we write ä0(z,α) = ∂2a0(z,α)/∂z2 and b̈0(z,α) = ∂2b0(z,α)/∂z2.

For notational convenience, we write

g = (g1, · · · ,gd)T = g(z,α) = (a(z,α),b(z,α)T)T. (3.2)

g0 = g0(z,α) and ĝ = ĝ(z,α) are defined in the similar manner. Assume g(z,α) is second order

differentiable. Denote by g1 = g1(z,α) the d × 1 vector whose jth element g
j
1 = g

j
1(z,α) =

∂gj(z,α)/∂z, and g2 = g2(z,α) the d × d matrix whose (i, j)-th element g
ij
2 = g

ij
2 (z,α) =

∂gi(z,α)/∂αj. Similarly, we define g01 = g01(z,α) = ∂g0(z,α)/∂z, g02 = g02(z,α) = ∂g0(z,α)/∂αT

and ĝ1 = ĝ1(z,α) = ∂ĝ(z,α)/∂z, ĝ2 = ĝ2(z,α) = ∂ĝ(z,α)/∂αT.

The Euclidean norm of g is denoted as before by ‖g‖ = (gTg)1/2. We also use the notation

‖g‖G = sup|z|≤L,α∈B ‖g(z,α)‖ for a continuous function g defined on Sw × B (c.f., § 5.2). Under

assumption (C4), such a norm can apply to g0(z,α) and its first order partial derivatives.

For α ∈ B fixed, we are also concerned with an alternative norm of g(z,α) as a function of

z. For any nonnegative integer κ and any smooth function g : Sw 7→ R
d, define the differential

operator Dκg(z) = dκg(z)/dzκ, note Sw = [−L,L] is the support of w(·) and is a bounded, convex

subset of R
1 with nonempty interior. For some φ > 0, let [φ] be the largest integer not greater

than φ, and define (if it exists)

‖g‖∞,φ = max
0≤κ≤[φ]

sup
|z|≤L

‖Dκg(z)‖ + sup
z 6=z′

|z|≤L

‖D[φ]g(z) −D[φ]g(z′)‖
|z − z′|φ−[φ]

.
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Further, let Cφ
c (Sw) be the set of all continuous functions g : Sw 7→ R

d with ‖g‖∞,φ ≤ c. With

these notations at hand, we will define a function space G in Subsection 5.2. Clearly, under

assumption (C4), such a norm may apply to the function g0(z,α) and its first order partial

derivatives (with α fixed) with φ = 2 and φ = 1 respectively.

3.2 Asymptotic properties.

We state the asymptotic properties of our estimation procedure in two steps. First Theorem 3.1

states that θ̂(z,α, h), defined in (2.3) with h = O(n−1/5), is asymptotically normal for any α ∈ B

fixed. Furthermore the same result still holds if α is replaced by a root-n consistent estimator.

Theorem 3.2 presents the asymptotic normality for the estimator α̂, defined in (2.5), with the

standard root-n convergence rate provided h = o(n−1/4).

Theorem 3.1 Let conditions (C1)-(C7) hold. Let h = O(n−1/5). Then it holds for α ∈ B that

√
nh

[
Hn

{
θ̂(z,α, h) − θ0(z,α)

}
− 1

2
h2B(z)(1 + oP (1))

]
D→ N{0,A(z)}, (3.3)

where Hn = diag(1, h) ⊗ Id×d, with Id×d the d × d identity matrix and ⊗ the sign of Kroneck

product,

B(z) =
{(

S−1s
)
⊗ Id×d

}
(ä0(z,α), b̈0(z,α)T)T =

(
(ä0(z,α), b̈0(z,α)T)µ2,K , 0, · · · , 0

)
T

∈ R
2d

and

A(z) = {fZ(z)}−1
(
S−1S̃S−1

)
⊗
(
G−1(z)G̃(z)G−1(z)

)
,

and G(z) and G̃(z) are two d × d matrices with, respectively, Gij(z) = E(Xt,i−1Xt,j−1|Zt = z)

and G̃ij(z) = E(εt(α)2Xt,i−1Xt,j−1|Zt = z) as the (i, j)th elements.

Furthermore, (3.3) still holds if α is replaced by α̌ provided α̌ − α = Op(n
−1/2).

Theorem 3.2 Let conditions (C1)-(C7) hold. Set Z o
t = αT

0 Xt. Then, if % ≥ 6, r > 3d and

nh4 = O(1), nh3+3d/r → ∞ as n → ∞, it holds that

√
n
{
α̂ − α0 + Γ−

1 Bh2(1 + oP (1))
} D→ N

(
0,Γ−

1 V(Γ−
1 )T

)
, (3.4)
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where, setting g01t = g01(Z
o
t ,α0) and g02t = g02(Z

o
t ,α0),

B = E
({

ä0(Z
o
t ) + b̈0(Z

o
t )TXt,−d

}
Ut

)
µ−1

0,Kµ2,K ,

Γ1 = 2E

[{
g01tX

T

t + g02t

}
T

XtX
T

t

{
g01tX

T

t + g02t

}]
w(Zo

t ),

V = Eε2
t

[
ΞtΞ

T

t − {E(ΞtX
T

t |Zo
t )}{E(XtX

T

t |Zo
t )}−1{E(XtΞ

T

t |Zo
t )}
]
,

and Γ−
1 is a generalized inverse of Γ1, with Ut = E

(
Xtg

T
01tXtX

T
t |Zo

t

)
G−1

0 (Zo
t )Xtw(Zo

t )+g02tXtw(Zo
t ),

Ξt = Xt

{
ȧ0(Z

o
t ) + ḃ0(Z

o
t )TXt,−d

}
w(Zo

t ), and G0(z) is a d × d matrix whose (i, j)th elements

G0
ij(z) = E(Xt,i−1Xt,j−1|Zo

t = z).

Furthermore, if nh4 = o(1), then (3.4) reduces to

√
n {α̂ − α0} D→ N

(
0,Γ−

1 V(Γ−
1 )T

)
. (3.5)

Corollary 3.3 Under the conditions of Theorem 3.2, with α̂ defined in (2.5) with h = o(n−1/4)

as the estimator of α in Theorem 3.1, we have

√
nh̄

[
H̄n

{
θ̂(z, α̂, h̄) − θ0(z,α0)

}
− 1

2
h̄2B0(z)(1 + oP (1))

]
D→ N{0,A0(z)}, (3.6)

where h̄ = O(n−1/5), H̄n = diag(1, h̄) ⊗ Id×d, and B0(z) and A0(z) are defined in the same way

as B(z) and A(z) with α replaced by α0.

This corollary easily follows from Theorems 3.1 and 3.2.

Remark 2. (i) The estimator θ̂(z, α̂, h̄) is asymptotically adaptive to unknown α0 in the sense

that θ̂(z, α̂, h̄) and θ̂(z,α0, h̄) share the same (first order) asymptotic distribution.

(ii) For α 6= α0, E{εt(α)} 6= 0. However the estimator θ̂(z,α, h̄) is still asymptotic unbiased

due to the least squares property; see Lemma 5.1 below.

4 Two important lemmas

To establish the asymptotic properties for the estimator α̂, we first establish two important

lemmas. Those two lemmas are of independent interest as we do not make use of the specific

forms of g(z,α) and B in the proofs. Therefore they are applicable to the estimators for parameter

vectors in general semiparametric settings.
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4.1 Consistency lemma

In this section, for generality, let B be a closed subset in R
d, and G the space of functions of form

g(z,α), defined on Sw × B, with a norm ‖g‖G . We are concerned with the functions g(z,α),

ĝ(z,α) and g0(z,α) in G. Let g0(z) = g0(z,α0). In Section 5, we will specify B and G with the

norm ‖g‖G in the context of the model (2.1).

Lemma 4.1 Suppose that α0 ∈ B satisfies R(g0(·),α0) = infα∈B R(g0(·,α),α), and that:

(i) Rn (ĝ(·, α̂), α̂) ≤ infα∈B Rn (ĝ(·,α),α) + oP (1).

(ii) For all δ > 0, there exists ε(δ) > 0 such that

inf
‖α−α0‖>δ

R (g0(·,α),α) ≥ R (g0(·),α0) + ε(δ).

(iii) Uniformly for all α ∈ B, R (g(·,α),α) is continuous [with respect to the metric ‖ · ‖G ] in

g(·,α) at g0(·,α).

(iv) ‖ĝ(·, ·) − g0(·, ·)‖G = oP (1).

(v) For all {δn} with δn = o(1),

sup
α∈B

sup
‖g(·,α)−g0(·,α)‖G≤δn

|Rn (g(·,α),α) − R (g(·,α),α)| = oP (1).

Then α̂ − α0 = oP (1).

Proof. The proof is similar to that of Corollary 3.2 in Pakes and Pollard (1989) and Theorem

1 in Chen et al (2003). By condition (ii), for all δ > 0,

P{‖α̂ − α0‖ > δ} ≤ P {R (g0(·, α̂), α̂) − R (g0(·),α0) ≥ ε(δ)} ,

hence it suffices to show that

R (g0(·, α̂), α̂) − R (g0(·),α0) = oP (1). (4.1)
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Note that

R (g0(·, α̂), α̂) − R (g0(·),α0)

= R (g0(·, α̂), α̂) − R (ĝ(·, α̂), α̂) (4.2)

+ R (ĝ(·, α̂), α̂) − Rn (ĝ(·, α̂), α̂) (4.3)

+ Rn (ĝ(·, α̂), α̂) − R (g0(·),α0) . (4.4)

That the expression in (4.2) tends to 0 in probability clearly follows from conditions (iii) and (iv).

The absolute value of the expression in (4.3) is bounded above by

sup
α∈B

|R (ĝ(·, α̂), α̂) − Rn (ĝ(·, α̂), α̂)| = oP (1),

which follows from conditions (iv) and (v). Finally, we have to show that the expression in (4.4)

tends to 0 in probability. As Rn (ĝ(·, α̂), α̂) = infα∈B Rn (ĝ(·,α),α) and note that

Rn (ĝ(·,α),α) = {Rn (ĝ(·,α),α) − R (ĝ(·,α),α)}

+ {R (ĝ(·,α),α) − R (g0(·,α),α)} + R (g0(·,α),α)

≤ sup
α∈B

|Rn (ĝ(·,α),α) − R (ĝ(·,α),α)|

+ sup
α∈B

|R (ĝ(·,α),α) − R (g0(·,α),α)| + R (g0(·,α),α) ,

≡ R1 + R2 + R (g0(·,α),α) , (4.5)

we have

Rn (ĝ(·, α̂), α̂) ≤ R1 + R2 + inf
α∈B

R (g0(·,α),α) = R1 + R2 + R (g0(·),α0) . (4.6)

It follows, from conditions (iv) and (v) that R1 = oP (1), and from conditions (iii) and (iv) that

R2 = oP (1), and we thus deduce from (4.6) that, for any ε > 0, as n → ∞, the probability

P {Rn (ĝ(·, α̂), α̂) ≤ ε + R (g0(·),α0)} → 1. (4.7)

Similarly, by exchanging Rn (ĝ(·,α),α) and R (g0(·,α),α) in (4.5), we can prove

P {R (g0(·),α0) ≤ ε + Rn (ĝ(·, α̂), α̂)} → 1. (4.8)

Therefore it follows from (4.7) and (4.8) that (4.4) tends to 0 in probability, and hence (4.1) is

proved. �
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4.2 Asymptotic normality lemma

Suppose R (g0(·,α),α) and Rn (ĝ(·,α),α) are differentiable with respect to α. Denote the deriva-

tives of R (g(·,α),α) and Rn (g(·,α),α) with respect to α by

Ṙ (g(·,α),α) =
dR (g(·,α),α)

dα
and Ṙn (g(·,α),α) =

dRn (g(·,α),α)

dα
.

Then as α0 and α̂ are the minimizers of R (g0(·,α),α) and Rn (ĝ(·,α),α), respectively, we have

Ṙ (g0(·,α0),α0) = Ṙ (g0(·),α0) = 0 and Ṙn (ĝ(·, α̂), α̂) = 0.

Define the ordinary derivative of Ṙ(g(·,α),α) with respect to α (if it exists) as

Γ1(g(·,α),α) =
dṘ (g(·,α),α)

dαT
=

d2R (g(·,α),α)

dαdαT
,

and the functional derivative Γ2 of Ṙ(g(·,α),α) with respect to g(·,α) at g0(·,α) in the direction

g(·,α) − g0(·,α) by

Γ2(g0(·, α), α)[g(·, α) − g0(·, α)] = lim
τ→0

[
Ṙ(g0(·, α) + τ(g(·, α) − g0(·, α)), α) − Ṙ(g0(·, α), α)

]
/τ

(4.9)

(if the limit exists) for all g(·,α) satisfying g0(·,α) + τ(g(·,α) − g0(·,α)) ∈ G with τ ∈ [0, 1].

Now we assume that α̂ is consistent and α0 ∈ B. Therefore the parameter space B and G

can be replaced by small or even shrinking sets. Define Bδ = {α ∈ B : ‖α − α0‖ ≤ δ} and

Gδ = {g ∈ G : ‖g(·,α) − g0(·,α)‖G ≤ δ}.

Lemma 4.2 Assume that Rn (ĝ(·,α),α) is differentiable, with respect to α, with the derivative

Ṙn (ĝ(·,α),α), and R (g0(·,α),α) is second order differentiable with respect to α, with the first

order derivative Ṙ (g0(·,α),α) and second order derivative Γ1 (g0(·,α),α). Suppose that α0 ∈ Bδ

satisfies Ṙ (g0(·,α0),α0) = 0, that α̂ − α0 = oP (1), and that:

(i) Ṙn (ĝ(·, α̂), α̂) = oP (n−1/2).

(ii) (1) Γ1(g0(·,α),α) is continuous at α = α0.

(2) Γ1 = Γ1(g0(·,α0),α0) is of a generalized inverse, Γ−
1 .
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(iii) For all α ∈ Bδ, the pathwise derivative, Γ2(g0(·,α),α)[g(·,α) − g0(·,α)] (c.f. (4.9)), of

Ṙ(g0(·,α),α) exists in all directions g(·,α) − g0(·,α) ∈ Gδ, and satisfies: 1) uniformly for

α ∈ Bδ, ‖Ṙ(ĝ(·,α),α) − Ṙ(g0(·,α),α) − Γ2(g0(·,α),α)[ĝ(·,α) − g0(·,α)]‖ = oP (n−1/2);

2) for all (g(·,α),α) ∈ Gδn
×Bδn

with a positive sequence δn = o(1): ‖Γ2(g0(·,α),α)[g(·,α)−

g0(·,α)] − Γ2(g0(·,α0),α0)[g(·,α0) − g0(·,α0)]‖ ≤ o(1)‖α − α0‖.

(iv) ĝ(·,α) ∈ G with probability tending to 1, and ‖ĝ(·,α) − g0(·,α)‖G = oP (1), ‖ĝ1(·,α) −

g10(·,α)‖G = oP (1), and ‖ĝ2(·,α) − g20(·,α)‖G ] = oP (1).

(v) For all sequences of positive numbers {δn} with δn = o(1),

sup
‖α−α0‖≤δn

sup
‖g(·,α)−g0(·,α)‖G≤δn

∥∥∥Ṙn (g(·,α),α) − Ṙ (g(·,α),α) − Ṙn (g0(·,α0),α0)
∥∥∥ = oP (n−1/2).

(vi) For some Bn = O(n−1/2) and some finite matrix V1,

√
n
{

Ṙn (g0(·,α0),α0) + Γ2(g0(·,α0),α0)[ĝ(·,α0) − g0(·,α0)] − Bn

}
D→ N(0, V1).

Then
√

n(α̂ − α0 + Γ−
1 Bn)

D→ N(0,Ω], where Ω = Γ−
1 V1(Γ

−
1 )T.

Remark 3. The objective function defining the semi-parametric estimators in Chen et al.

(2003) is of a GMM (generalized method of moments) type and hence their general Theorem

2 does not apply directly to the least-squares (in this paper) or maximum-likelihood-like semi-

parametric estimators. Their argument however can be helpful for the proof of this lemma. Note

that the conditions (i), (ii) and (v) specified for the derivative of the objective function in this

lemma are basically similar to those on the GMM type objective function in Theorem 2 of Chen

et al. (2003) while the conditions (iii), (iv) and (vi) are different and modified from theirs: In

fact, condition (iv) is much weaker than that of Chen et al. (2003) which requires the convergence

of rate oP (n−1/4), and condition (vi) allows a bias term Bn.

Proof. We only sketch the proof here. First we are establishing
√

n-consistency of α̂ to α0.

Owing to α̂ − α0 = oP (1) and condition (iv), we can choose a positive sequence δn = o(1) such

that P{‖α̂−α0‖ ≤ δn, ‖ĝ(·,α)−g0(·,α)‖G ≤ δn} → 1. So in the following we only need to look

at (g(·,α),α) ∈ Gδn
×Bδn

. In light of Ṙ (g0(·,α0),α0) = 0 and condition (ii), we have by Taylor

expansion that

Ṙ (g0(·, α̂), α̂) = Γ1 (g0(·,α0),α0) (α̂ − α0)(1 + oP (1)), (4.10)
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which implies that α̂ − α0 has the same convergence rate as that of Ṙ (g0(·, α̂), α̂) tending to 0.

Similarly to (5) and (6) of Chen et al. (2003), it is obvious that

‖Ṙ (g0(·, α̂), α̂) ‖ ≤ ‖Ṙ (g0(·, α̂), α̂) − Ṙ (ĝ(·, α̂), α̂) ‖

+ ‖Ṙ (ĝ(·, α̂), α̂) − Ṙn (ĝ(·, α̂), α̂) + Ṙn (g0(·,α0),α0) ‖

+ ‖Ṙn (ĝ(·, α̂), α̂) ‖ + ‖ − Ṙn (g0(·,α0),α0) ‖

≡ D1 + D2 + D3 + D4,

D1 ≤ ‖Ṙ (ĝ(·, α̂), α̂) − Ṙ (g0(·, α̂), α̂) − Γ2 (g0(·, α̂), α̂) [ĝ(·, α̂) − g0(·, α̂)]‖

+ ‖Γ2 (g0(·, α̂), α̂) [ĝ(·, α̂) − g0(·, α̂)] − Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]‖

+ ‖Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]‖

≡ D11 + D12 + D13.

Clearly, conditions (iii)(1) imply D11 = oP (n−1/2); condition (iii)(2) and (4.10) imply D12 =

‖Ṙ (g0(·, α̂), α̂) ‖×oP (1); condition (vi) implies D13 = OP (n−1/2) and D4 = OP (n−1/2); condition

(i) implies D3 = oP (n−1/2), and condition (v) implies D2 = oP (n−1/2). Therefore it follows that

‖Ṙ (g0(·, α̂), α̂) ‖ × (1 − oP (1)) = OP (n−1/2), and hence α̂ − α0 = OP (n−1/2).

Next, set Ln(α) = Ṙn (g0(·,α0),α0) + Γ1(α − α0) + Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0). It

is obvious that

‖Ln(α̂)‖ ≤ ‖Ṙn (ĝ(·, α̂), α̂) −Ln(α̂)‖ + ‖Ṙn (ĝ(·, α̂), α̂) ‖

≤ ‖Ṙ (ĝ(·, α̂), α̂) − Ṙ (g0(·, α̂), α̂) − Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]‖

+ ‖Ṙ (g0(·, α̂), α̂) − Γ1(α̂ − α0)‖

+ ‖Ṙn (ĝ(·, α̂), α̂) − Ṙ (ĝ(·, α̂), α̂) − Ṙn (g0(·,α0),α0) ‖

+ ‖Ṙn (ĝ(·, α̂), α̂) ‖

≡ D5 + D6 + D7 + D8.

Clearly, conditions (iii) and (iv) together with α̂ − α0 = OP (n−1/2) imply D5 = oP (n−1/2); in

view of Ṙ (g0(·,α0),α0) = 0, it follows by Taylor expansion with condition (ii)(1) as well as

α̂ − α0 = OP (n−1/2) that D6 = oP (n−1/2); condition (v) implies D7 = oP (n−1/2); and condition

(i) implies D8 = oP (n−1/2). Therefore Ln(α) = oP (n−1/2), which leads to

α̂ − α0 + Γ−

1
Bn = −Γ−

1

{
Ṙn (g0(·, α0), α0) + Γ2 (g0(·, α0), α0) [ĝ(·, α0) − g0(·, α0)] − Bn

}
+ oP (n−1/2),
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and hence the lemma follows from condition (vi). �.

5 Proof of main results

The following lemma is basic and is used throughout.

Lemma 5.1 Let εt(α) = Yt − a0(α
TXt,α)−b0(α

TXt,α)TXt,−d = Yt − g0(α
TXt,α)TXt. Then

for any measurable function g(·,α) = (a(·,α),b(·,α)T)T on R
1, we have

Eεt(α){a(αTXt,α) + b(αTXt,α)TXt,−d} = Eεt(α)g(αTXt,α)TXt = 0, (5.1)

where Xt was defined in (2.11).

Proof of Lemma 5.1. Note that the left hand side of (5.1) equals

∫ [
E
{(

Yt − a0(z,α) − b0(z,α)TXt,−d

) (
a(z) + b(z)TXt,−d

)∣∣∣αTXt = z
}]

fZ(z) dz,

and that by the definition of a0(·,α) and b0(·,α) in (2.10),

E
{(

Yt − a0(z,α) − b0(z,α)TXt,−d

)
Xt

∣∣∣αTXt = z
}

= 0.

Therefore (5.1) follows. �

5.1 Proof for Theorem 3.1.

It follows from (2.2) by least squares that

θ̂(z,α) = θ̂(z,α, h) = H−1
n

(
âz, b̂

T

z , ̂̇azh,
̂̇
b

T

z h

)T

= H−1
n

{
X (z)TW(z)X (z)

}−1 {
X (z)TW(z)Y

}
,

(5.2)

where Y = (Y1, · · · , Yn)T, W(z) = W(z,α) is an n × n diagonal matrix with Kh{Zt − z}w{Zt}

as its tth diagonal element, X (z) = X (z,α) is an n × 2d matrix with (XT
t , h−1(Zt − z)XT

t ) as its

tth row and Xt = (1,XT

t,−d)
T, and Hn = diag(1, h) ⊗ Id×d .

Denote by Φ̂ = Φ̂(z;α) = n−1X (z)TW(z)X (z) and Ψ̂ = Ψ̂(z;α) = n−1X (z)TW(z)Y with

(i, j)-th elements Φ̂i,j and Ψ̂i,j, respectively. Also, recall Xt,0 ≡ 1 for notational convenience.
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Then with the notations in (5.2), we have, for i, j = 1, · · · , d,

Φ̂i,j = n−1
n∑

t=1

Xt,i−1Xt,j−1Kh(Zt − z)w(Zt), (5.3)

Φ̂i,d+j = Φ̂d+j,i = n−1
n∑

t=1

Xt,i−1Xt,j−1((Zt − z)/h)Kh(Zt − z)w(Zt), (5.4)

Φ̂d+i,d+j = n−1
n∑

t=1

Xt,i−1Xt,j−1((Zt − z)/h)2Kh(Zt − z)w(Zt), (5.5)

and

Ψ̂i = n−1
n∑

t=1

YtXt,i−1Kh(Zt − z)w(Zt), (5.6)

Ψ̂d+i = n−1
n∑

t=1

YtXt,i−1((Zt − z)/h)Kh(Zt − z)w(Zt). (5.7)

Let θ0 ≡ θ0(z,α) = (a0(z,α),b0(z,α)T, ȧ0(z,α), ḃ0(z,α)T)T. Then by (5.3)-(5.7), we have

θ̂(z,α) − θ0(z,α) = Φ̂−1(Ψ̂ − Φ̂θ0) ≡ Φ̂−1Ŵ, (5.8)

where Ŵ = Ŵ(z;α) is a 2d-dimensional vector with elements

Ŵi = n−1
n∑

t=1

Y ∗
t Xt,i−1Kh(Zt − z)w(Zt). (5.9)

Moreover,

Ŵd+i = n−1
n∑

t=1

Y ∗
t Xt,i−1((Zt − z)/h)Kh(Zt − z)w(Zt) (5.10)

for i = 1, 2, · · · , d, with

Y ∗
t = Y ∗

t (z,α) = Yt −
{

a0(z,α) + XT

t,−db0(z,α)
}
−
{

ȧ0(z,α) + XT

t,−dḃ0(z,α)
}

(Zt − z).

With (2.1) and Zt = αTXt in mind, we then have, by Taylor’s expansion of order 2,

Y ∗
t =

1

2

{
ä0(ξ,α) + XT

t,−db̈0(ξ,α)
}

(Zt − z)2 + εt(α), (5.11)

where εt(α) = Yt − a0(α
TXt,α) − b0(α

TXt,α)TXt,−d, ä0(z,α) and b̈0(z,α) are the second

partial derivatives of a0(z,α) and b)0(z,α) with respect to z, respectively, and ξ = z + η (Zt − z)

with |η| < 1.

With ḡij(z) = ḡij(z,α) = E{Xt,iXt,j |Zt(α) = z} for i, j = 0, 1, · · · , d, we denote by ḡi(z) =

ḡi0(z), and Gi(z) = (ḡi1(z), · · · , ḡi,d−1(z))T (a (d − 1)-dimensional vector) . Also, as µi,K =
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∫
uiK(u) du, then, using time series asymptotics (see e.g., Lu and Cheng, 1997), it follows from

(5.3)-(5.5) and (5.9)-(5.10) together with (5.11) that, for i, j = 1, · · · , d,

Φ̂i,j = ḡi−1,j−1(z)fZ(z)w(z)µ0,K (1 + oP (1)), (5.12)

Φ̂i,d+j = Φ̂d+j,i = ḡi−1,j−1(z)fZ(z)w(z)µ1,K(1 + oP (1)) = 0 (owing to µ1,K = 0), (5.13)

Φ̂d+i,d+j = ḡi−1,j−1(z)fZ(z)w(z)µ2,K(1 + oP (1)), (5.14)

and

Ŵi = Bi−1(z)µ2,Kh2(1 + oP (1)) + n−1
n∑

t=1

εt(α)Xt,i−1Kh(Zt − z)w(Zt) (5.15)

and

Ŵd+i = Bi−1(z)µ3,Kh2(1 + oP (1)) + n−1
n∑

t=1

εt(α)Xt,i−1((Zt − z)/h)Kh(Zt − z)w(Zt)

= n−1
n∑

t=1

εt(α)Xt,i−1((Zt − z)/h)Kh(Zt − z)w(Zt) (owing to µ3,K = 0) (5.16)

where

Bi−1(z) =
1

2

{
ä(z)ḡi−1(z) + b̈(z)TGi−1(z)

}
w(z)fZ(z).

Now it follows from (5.12)-(5.14) that

Φ̂ =


 µ0,KG(z) 0d×d

0d×d µ2,KG(z)


w(z)fZ(z)(1 + oP (1))

= (S ⊗G(z))w(z)fZ (z)(1 + oP (1)) ≡ Φ(1 + oP (1)), (5.17)

where 0d×d is a d×d matrix of elements 0, and G(z) is a d×d matrix with (i, j)-th element equal

to Gij(z) = ḡi−1,j−1(z) for i, j = 1, 2, · · · , d.

Further, recall νi,K =
∫

uiK2(u) du, and denote the second terms on the right hand sides of

(5.15) and (5.16) by Ŵi,2 and Ŵi+d,2, respectively. Moreover, let Ŵc,2 =
∑d

i=1(ciŴi,2+ci+dŴi+d,2)

for any real constants ci. Then, under the assumptions of this theorem, we have

E(Ŵc,2)
2 = E

{
n−1

n∑

t=1

εt(α)

d∑

i=1

(ciXt,i−1 + ci+dXt,i−1((Zt − z)/h)) Kh(Zt − z)w(Zt)

}2

= (nh)−1V 2
c (z)(1 + o(1)), (5.18)

17



where

V 2
c (z) =





d∑

i=1

d∑

j=1

G̃i,j(z)(cicjν0,K + ci+dcj+dν2,K)



w2(z)fZ(z,α) ≡ cTV(2)(z)c (5.19)

with c = (c1, · · · , cd, cd+1, · · · , c2d)
T and

V(2)(z) =


 ν0,KG̃(z) 0d×d

0d×d ν2,KG̃(z)


w2(z)fZ(z,α) = (S̃⊗ G̃(z))w2(z)fZ(z,α),

and where G̃(z) is a d×d matrix with (i, j)-th element equal to G̃i,j(z) = E
(
εt(α)2Xt,i−1Xt,j−1|Zt = z

)

for i, j = 1, 2, · · · , d. Therefore, it follows from (5.15),(5.16), (5.18) and (5.19) that

Ŵ =
1

2
h2U(z)(1 + oP (1)) +

(
1

nh

)1/2

V(z)ξN (1 + oP (1)). (5.20)

Here

U(z) =


 µ2,KG(z)

0d×d




 ä(z)

b̈(z)


w(z)fZ(z,α) = (s ⊗G(z))


 ä(z)

b̈(z)


w(z)fZ(z,α),

V(z) is the root matrix of V(2)(z), i.e.

V(z) =
{
V(2)(z)

}1/2
=
(
S̃ ⊗ G̃(z)

)1/2
w(z)f

1/2
Z (z),

with V a d × d matrix such that VTV = V(2); ξN is a (2d)-dimensional random vector of

standard multivariate normal distribution, the proof of which is a routine by the argument of

CLT for strong mixing processes based on the Bernstein blocking technique: see, e.g., Hallin

et al. (2004, Theorem 3.1) and Lu and Linton (2004), and therefore the detail is omitted.

Finally, (3.3) in Theorem 3.1 follows from (5.17) and (5.20) with

B(z) = Φ−1(z)U(z) =
{(

S−1s
)
⊗ Id×d

}
(ä(z), b̈(z)T)T

and

A(z) = Φ−1(z)V(z)
(
Φ−1(z)V(z)Φ−1(z)

)T
= Φ−1(z)V(2)(z)Φ−1(z)

= {fZ(z)}−1
(
S−1S̃S−1

)
⊗
(
G−1(z)G̃(z)G−1(z)

)
.

When α is replaced by α̌ with α̌ − α = OP (n−1/2), then Žt = α̌TXt satisfies Žt − Zt =

(α̌ − α)TXt = OP (n−1/2)Xt. It is easily seen that the proof can be modified to prove the last

statement of this theorem. The details are omitted. �
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5.2 Proof for Theorem 3.2.

In this subsection, we are establishing the asymptotics for α̂ defined in Section 2, using the two

general lemmas developed in Section 4. We first specify some preliminary quantities used below,

under the adaptive varying-coefficient modelling of (2.1).

5.2.1 Preliminaries.

With the notations defined in Subsection 3.1, we are in a position to define G. For some c0 > 0,

G = {g :Sw × B 7→ R
d | For any fixed α ∈ B, g(·,α) ∈ C2

c0(Sw), g1(·,α) ∈ C1
c0(Sw)

and g2(·,α) ∈ C1
c0(Sw), and for any z ∈ Sw, ‖g(z,α) − g(z,α′)‖ ≤ C‖α − α′‖,

‖g1(z,α) − g1(z,α′)‖ ≤ C‖α − α′‖ and ‖g2(z,α) − g2(z,α′)‖ ≤ C‖α − α′‖

for any α,α′ ∈ B}, (5.21)

where the definition of C j
c0(Sw) for j = 1 and 2 was given at the end of Subsection 3.1.

As defined in (2.8),

R(g(·,α),α) = E
(
Yt − g(αTXt,α)TXt

)2
w(αTXt)

=

∫ (
y − a(αTx,α) − b(αTx,α)Tx(−d)

)2
w(αTx)fY,X(y,x)dydx,

where x(−d) is the (d − 1)-dimensional vector obtained by deleting the d-th component of x, and

fY,X(y,x) is the joint probability density function of (Yt,Xt); and

Rn(g(·,α),α) =
1

n

n∑

t=1

(
Yt − g(αTXt,α)TXt

)2
w(αTXt)

=
1

n

n∑

t=1

(
Yt − a(αTXt,α) − b(αTXt,α)TXt,−d

)2
w(αTXt).

Then we can deduce (the notation having been explained in section 4.2, for simplicity, we assume

dw(z)/dz = 0)

Ṙ(g(·,α),α) = −2E
(
Yt − g(αTXt,α)TXt

){
g1(α

TXt,α)XT

t + g2(α
TXt,α)

}
T

Xtw(αTXt),

Ṙn(g(·,α),α) = − 2

n

n∑

t=1

(
Yt − g(αTXt,α)TXt

){
g1(α

TXt,α)XT

t + g2(α
TXt,α)

}
T

Xtw(αTXt).

(5.22)
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Therefore, by Lemma 5.1, the ordinary derivative of R(g0(·,α),α) with respect to α,

Ṙ(g0(·,α),α) = −2E
(
Yt − g0(α

TXt,α)TXt

){
g01(α

TXt,α)XT

t

}
T

Xtw(αTXt),

and further the derivative of Ṙ(g0(·,α),α) with respect to α equals (as assumed in condition

(C4), the derivative and the expectation are exchangeable)

Γ1(g0(·, α), α)

= 2E
[{

g01(α
TXt, α)XT

t + g02(α
TXt, α)

}T

XtX
T

t

{
g01(α

TXt, α)XT

t + g02(α
TXt, α)

}]
w(αTXt)

− 2E
(
Yt − g0(α

TXt, α)TXt

) {
g0,11(α

TXt, α)XtX
T

t + g0,12(α
TXt, α)XT

t

}T

Xtw(αTXt),

where g0,11(z,α) = ∂g01(z,α)/∂z and g0,12(z,α) = ∂g01(z,α)/∂α. As ε(α0) = Yt−g0(Z
o
t ,α0)

T
Xt =

εt, as assumed, satisfies E(εt|Xt) = 0, hence

Γ1 = Γ1(g0(·, α0), α0)

= 2E
[{

g01(Z
o
t , α0)X

T

t + g02(Z
o
t , α0)

}T

XtX
T

t

{
g01(Z

o
t , α0)X

T

t + g02(Z
o
t , α0)

}]
w(Zo

t ). (5.23)

Furthermore, note that, by Lemma 5.1 with some algebraic calculations,

Ṙ(g0(·, α) + τ(g(·, α) − g0(·, α)), α) − Ṙ(g0(·, α), α)

= −2E
{
Yt −

(
g0(α

TXt, α) + τ(g(αTXt, α) − g0(α
TXt, α))

)T
Xt

}

×
{(

g01(α
TXt, α) + τ(g1(α

TXt, α) − g01(α
TXt, α))

)
XT

t

+
(
g02(α

TXt, α) + τ(g2(α
TXt, α) − g02(α

TXt, α))
)}T

Xtw(αTXt)

+ 2E
{
Yt − g0(α

TXt, α)TXt

} {(
g01(α

TXt, α)XT

t

)
+
(
g02(α

TXt, α)
)}T

Xtw(αTXt)

= −2τE
{
εt(α)

(
(g1(α

TXt, α) − g01(α
TXt, α))XT

t

)

−
(
(g(αTXt, α) − g0(α

TXt, α))TXt

) (
g01(α

TXt, α)XT

t + g02(α
TXt, α)

)}T

Xtw(αTXt)

+ 2τ2E
{
(g(αTXt, α) − g0(α

TXt, α))TXt

}

×
(
(g1(α

TXt, α) − g01(α
TXt, α))XT

t + (g2(α
TXt, α) − g02(α

TXt, α))
)T

Xtw(αTXt), (5.24)

where εt(α) = Yt − g0(α
TXt,α)TXt. Therefore the functional derivative of Ṙ(g(·,α),α) with

respect to g(·,α) at g0(·,α) in the direction g(·,α) − g0(·,α) satisfies

Γ2 (g0(·, α), α) [g(·, α) − g0(·, α)] = lim
τ→0

Ṙ(g0(·, α) + τ(g(·, α) − g0(·, α)), α) − Ṙ(g0(·, α), α)

τ

= −2E
{
εt(α)

(
(g1(α

TXt, α) − g01(α
TXt, α))XT

t

)

−
(
(g(αTXt, α) − g0(α

TXt, α))TXt

) (
g01(α

TXt, α)XT

t + g02(α
TXt, α)

)}T

Xtw(αTXt), (5.25)
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and therefore

Γ2 (g0(·,α0),α0) [g(·,α0) − g0(·,α0)]

= 2E
(
(g(Zo

t ,α0) − g0(Z
o
t ,α0))

T
Xt

)(
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

)
T

Xtw(Zo
t )

= 2

∫
Φ̃0(z) (g(z,α0) − g0(z,α0)) w(z)fZo

t
(z)dz, (5.26)

where Φ̃0(z) = E
{(

g01(z,α0)X
T
t + g02(z,α0)

)T
XtX

T
t

∣∣∣Zo
t = z

}
.

Next, we are establishing the consistency of α̂ to α0 by Lemma 4.1.

5.2.2 Proof of consistency of α̂ to α0

The consistency of α̂ can be proved by checking the conditions in Lemma 4.1 step by step:

As α̂ and α0 are the minimizers of Rn(ĝ(·,α),α) and R(g0(·,α),α), respectively, (i) and (ii)

hold obviously. (iii) also holds clearly by the following fact: noting Lemma 5.1 as well as the

boundedness of w(·),

sup
α∈B

|R(g(·,α),α) − R(g0(·,α),α)|

≤ sup
α∈B

|E
(
2ε(α) − (g(αTXt,α) − g0(α

TXt,α))TXt

)
(g(αTXt,α) − g0(α

TXt,α))TXtw(αTXt)|

≤ sup
α∈B

|E
(
(g(αTXt,α) − g0(α

TXt,α))TXt

)
(g(αTXt,α) − g0(α

TXt,α))TXtw(αTXt)|

≤ C‖g − g0‖G‖EXtX
T

t ‖, (5.27)

where the final inequality follows from the definition of norm ‖ · ‖G in Subsection 3.1. (iv) follows

clearly from Lemma 6.3 in the Appendix. For (v), letting δn = o(1) and ‖g−g0‖G ≤ δn, we notice

that

Rn(g(·,α),α) − R(g(·,α),α)

= {Rn(g(·,α),α) − Rn(g0(·,α),α)} + {Rn(g0(·,α),α) − R(g0(·,α),α)}

+ {R(g0(·,α),α) − R(g(·,α),α)}

= I + II + III,

where by (5.27) III tends to 0, uniformly for α ∈ B and with g satisfying ‖g − g0‖G ≤ δn. That

I tends to 0, uniformly for α ∈ B and g with ‖g − g0‖G ≤ δn, can be proved in the same way as

for III, because in fact E[I] = III; II can also be proved easily to tend to zero. �
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Finally, we are finishing the proof by Lemma 4.2.

5.2.3 Proof of asymptotic normality of α̂ to α0

As we have proved that α̂−α0 = oP (1), and from Lemma 6.3 in the Appendix, ‖ĝ−g0‖G = oP (1)

as well as ‖ĝ1 − g01‖G = oP (1) and ‖ĝ2 − g02‖G = oP (1), we can assume that α and g = (a,bT)T

lie in Bδ and Gδ, respectively, with δ = δn → 0, where

Bδ = {α ∈ B : ‖α − α0‖ ≤ δ},

Gδ = {g ∈ G : ‖g − g0‖G ≤ δ, ‖g1 − g01‖G ≤ δ, ‖g2 − g02‖G ≤ δ}. (5.28)

As α0 is the minimizers of R(g0(·,α),α) which is differentiable with respect to α, Ṙ(g0(·,α0),α0) =

0.

We proceed to check the conditions (i)-(vi) in Lemma 4.2:

(i): This is clear, as α̂ is the minimizers of Rn(ĝ(·,α),α) which is differentiable with respect

to α, and hence Ṙn(ĝ(·, α̂), α̂) = 0.

(ii): Both (ii)(1)-(2) are clear from Assumption (C4) in Section 3.

(iii): It follows from (5.24) with τ = 1 and (5.26) that

cT

{
Ṙ(ĝ(·,α),α) − Ṙ(g0(·,α),α) − Γ2 (g0(·,α),α) [ĝ(·,α) − g0(·,α)]

}

= 2cTE
{

(ĝ(αTXt,α) − g0(α
TXt,α))TXt

}

×
(
(ĝ1(α

TXt,α) − g01(α
TXt,α))XT

t + (ĝ2(α
TXt,α) − g02(α

TXt,α))
)

T

Xtw(αTXt)

= 2

∫
(ĝ(z,α) − g0(z,α))TE{Xtc

TXtX
T

t |Zt(α) = z}(ĝ1(z,α) − g01(z,α))w(z)fZ (z,α)dz

+ 2

∫
(ĝ(z,α) − g0(z,α))TE{XtX

T

t |Zt(α) = z}(ĝ2(z,α) − g02(z,α))cw(z)fZ (z,α)dz

≡ D̃1 + D̃2, (5.29)

from which (iii) (1) can be deduced as follows.

Set γ = (Id×d,0d×d) a d×(2d) matrix. Note that it follows from (5.8), the uniform consistency
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lemma (Lemma 6.3) and then (5.17) that

ĝ(z,α) − g0(z,α) = γ(θ̂(z,α) − θ0(z,α))

= γΦ̂−1Ŵ = (1 + oP (1))γΦ−1Ŵ

= (1 + oP (1))(µ0,Kw(z)fZ(z,α))−1G−1(z,α)Ŵ(1)(z,α), (5.30)

where oP (1) is uniform with respect to z ∈ Sw and α ∈ B , and Ŵ(1)(z,α) is the vector consisting

of the first d components of Ŵ defined in (5.9), that is

Ŵ(1)(z,α) = n−1
n∑

t=1

Y ∗
t (z,α)XtKh(Zt(α),−z)w(Zt(α)), (5.31)

where Y ∗
t (z,α) is as defined in (5.11) in the notation of this section as

Y ∗
t (z,α) = εt(α) + (g0(Zt(α),α) − g0(z,α) − ġ0(z,α)(Zt(α) − z))T Xt

= εt(α) +
1

2

(
g̈0(z + η(Zt(α) − z),α)(Zt(α) − z)2

)T
Xt (5.32)

with |η| < 1. Thus, setting Gc(z,α) = E{Xtc
TXtX

T
t |Zt(α) = z}, with uniformity of oP (1) with

respect to z ∈ Sw and α ∈ B in (5.30), together with (5.32)

D̃1 = 2

∫
((1 + oP (1))(µ0,Kw(z)fZ(z,α))−1G−1(z,α)Ŵ(1)(z,α))TGc(z,α)

× (ĝ1(z,α) − g01(z,α))w(z)fZ (z,α)dz

= 2(1 + oP (1))(µ0,K)−1

∫
G−1(z,α)Ŵ(1)(z,α))TGc(z,α)(ĝ1(z,α) − g01(z,α))dz

=
1√
n

(νn(ĝ1,α) − νn(g01,α)) + OP (h2)‖ĝ1 − g01‖G (5.33)

where νn(g1,α) = n−1/2
∑n

i=1 εt(α)XTw(Zt(α))G−1(Zt(α),α)Gc(Zt(α),α)g1(Zt(α),α). Using

the empirical process techniques, similarly to the proof of (v) below, we can show the stochastic

equicontinuity of νn(g1,α), and hence 1√
n
(νn(ĝ1,α)−νn(g01,α)) ≤ 1√

n
sup‖g1−g01‖G≤δ ‖νn(g1,α)−

νn(g01,α)‖ = oP (n−1/2); for detail, see the proof of (v) below as the proof there is more complex.

Also, as nh4 = O(1) is assumed as in a condition in Theorem 3.2 and ‖ĝ1 − g01‖G = oP (1),

we have OP (h2)‖ĝ1 − g01‖G = oP (n−1/2). Therefore D̃1 = oP (n−1/2). Similarly, we can prove

D̃2 = oP (n−1/2), and thus (iii)(1) follows from (5.29).
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In addition, it follows from (5.26) together with Lemma 5.1 and E(εt(α0)|Xt) = 0 that

Γ2 (g0(·,α),α) [g(·,α) − g0(·,α)] − Γ2 (g0(·,α0),α0) [g(·,α0) − g0(·,α0)]

= −2E (εt(α) − εt(α0))
(
(g1(α

TXt,α) − g01(α
TXt,α))XT

t

)T

Xtw(αTXt)

+ 2E

{
δt(α)

(
g01(α

TXt,α)XT

t + g02(α
TXt,α)

)T

Xtw(αTXt)

− δt(α0)
(
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

)
T

Xtw(Zo
t )

}

≡ Ω1 + Ω2,

where δt(α) = g(αTXt,α) − g0(α
TXt,α). By condition (C4),

|εt(α) − εt(α0)| = |
(
g0(α

TXt,α) − g0(Z
o
t ,α0)

)T

Xt|

≤ C‖α − α0‖(1 + ‖Xt‖)‖Xt‖,

and ‖g1(α
TXt,α) − g01(α

TXt,α)‖G = o(1), therefore Ω1 = o(1)‖α − α0‖. For Ω2, it is obvious

by condition (C4) and ‖α − α0‖ = o(1) that

δt(α) − δt(α0) = g(αTXt,α) − g(Zo
t ,α0) −

(
g0(α

TXt,α) − g0(Z
o
t ,α0)

)

= g1(Z
o
t ,α0)(1 + o(1))(α − α0)

TXt + g2(Z
o
t ,α0)

T(1 + o(1))(α − α0)

−
(
g01(Z

o
t ,α0)(1 + o(1))(α − α0)

TXt + g02(Z
o
t ,α0)

T(1 + o(1))(α − α0)
)

= oP (1)‖α − α0‖,

which follows from ‖g1(α
TXt,α)−g01(α

TXt,α)‖G = oP (1) and ‖g2(α
TXt,α)−g02(α

TXt,α)‖G =

oP (1); and

Ω3 ≡
(
g01(α

TXt,α)XT

t + g02(α
TXt,α)

)
−
(
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

)

≤ C‖α − α0‖(1 + ‖Xt‖).

Therefore it easily follows that Ω2 = oP (1)‖α − α0‖. Hence (iii)(2) follows.

(iv): It is clear from the uniform convergence lemma, Lemma 6.3, that

‖ĝ − g0‖G = OP

[(
nh1+2d/r

)−r/(2r+d)
]

+ O(h2),

‖ĝ1 − g10‖G = OP

[
h−1

(
nh1+2d/r

)−r/(2r+d)
]

+ O(h),
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‖ĝ2 − g20‖G = OP

[
h−1

(
nh1+2d/r

)−r/(2r+d)
]

+ O(h),

and therefore ‖ĝ−g0‖G → 0, ‖ĝ1−g10‖G → 0, and ‖ĝ2−g20‖G → 0 if nh3+3d/r → ∞ with r > 3d

as n → ∞. Hence (iv) follows.

(v): For notational convenience, let Ft = (Yt,Xt), m(Ft,g,α) = m1t(g,α)m2t(g,α)m3t(α)

with m1t(g,α) = Yt − g(αTXt,α)TXt, m2t(g,α) =
{
g1(α

TXt,α)TXt − g2(α
TXt,α)

}T
and

m3t(α) = Xtw(αTXt), and define the empirical process

νn(g,α) =
1√
n

n∑

t=1

{m(Ft,g,α) − Em(Ft,g,α)} .

Then it is obvious that

Ṙn(g(·,α),α) − Ṙ(g(·,α),α) = − 2√
n

νn(g,α),

and as Ṙ(g0(·,α0),α0) = 0, we clearly have

Ṙn(g(·,α),α) − Ṙ(g(·,α),α) − Ṙn(g0(·,α0),α0) = − 2√
n
{νn(g,α) − νn(g0,α0)}.

Therefore for (v), it suffices to prove the stochastic equicontinuity of the empirical process

{νn(g,α) : g ∈ G1, b ∈ B1}, where B1 and G1 are defined in (5.28) with δ = 1, which are

subsets of B and G, respectively, and suffices for our proof of (v) as δn < 1 for n large enough

by δn → 0. This stochastic equicontinuity follows by checking the following conditions, due to

Doukhan, Massart and Rio (1995, page 405):

(a) {Ft : t ≥ 1} is a stationary absolutely regular sequence with mixing coefficient β(s) ≤ Cs−b

for some b > r/(r − 1) and some r > 1,

(b) E[m̃2r(Ft)] < ∞ for r as in (a), where m̃(·) is the envelope of M = {m(·,g,α) : g ∈

G1, α ∈ B1}, that is |m(·,g,α)| ≤ |m̃(·)| for any g ∈ G1, α ∈ B1}.

(c) For any ε > 0, log N2(ε,M) ≤ Cε−2η for some η > 0, with b(1 − η) > r/(r − 1) for r as in

(a), where N2(ε,M) is the L2-bracketing cover number of M in (b).

We check those conditions as follows. Here, (a) holds by the condition (C5). To show (b),

notice that for α ∈ B1 and g ∈ G1, we have ‖α‖ ≤ ‖α0‖ + 1 ≡ C0, ‖g‖G ≤ ‖g0‖G + 1 ≡

C1, ‖g1‖G ≤ ‖g01‖G + 1 ≡ C2 and ‖g2‖G ≤ ‖g02‖G + 1 ≡ C3, and therefore for m ∈ M,
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|m(Ft,g,α)| ≤ (|Yt| + C1‖X‖)(C2‖Xt‖ + C3)‖X‖w0, where w0 = supz∈Sw
w(z). So we can take

m̃(Ft) = (|Yt| + C1‖X‖)(C2‖Xt‖ + C3)‖X‖w0, and hence (b) holds by condition (C1). Finally for

(c), as B is a bounded subset in R
d, for any ε > 0, we can cover B by finite number, N1 = Cε−(d−1),

of balls of radius ε with centers αj, j = 1, · · · , N1, in R
d, say, Bj, j = 1, · · · , N1, such that

∀α ∈ B, ∃αj, such that ‖α − αj‖ ≤ ε/(2C). (5.34)

Then for each given αj and for g ∈ G, by the definition of G in this section, g(·,αj) ∈ C2
c0(Sw),

and g1(·,αj) ∈ C1
c0(Sw) and g2(·,αj) ∈ C1

c0(Sw). Therefore, with the norm imposed on C2
c0(Sw)

by the sup norm ‖g‖∞ = supz∈Sw
‖g(z)‖ for g ∈ C2

c0(Sw), and similarly for C1
c0(Sw), it is well

known (c.f., van der Vaart and Wellner, 1996, Theorem 2.7.1) that we can cover C 2
c0(Sw) by finite

number N2 = N(ε, C2
c0(Sw), ‖ · ‖∞), of balls of functions centered at, say, g`,j(·), ` = 1, · · · , N2,

in C2
c0(Sw), such that

log N(ε, C2
c0(Sw), ‖ · ‖∞) ≤ const. × ε−1/2,

and

∀g(·,αj) ∈ C2
c0(Sw), ∃g`,j(·), such that ‖g(·,αj) − g`,j(·)‖ ≤ ε.

Similarly C1
c0(Sw) can be covered by a finite number N3 = N(ε, C1

c0(Sw), ‖ · ‖∞), balls of functions

centered at g
`,j
1 (·) and g

`,j
2 (·), respectively, ` = 1, · · · , N3, in C1

c0(Sw), such that

log N(ε, C1
c0(Sw), ‖ · ‖∞) ≤ const. × ε−1,

with

∀g1(·,αj) ∈ C1
c0(Sw), ∃ g

`,j
1 (·), such that ‖g1(·,αj) − g

`,j
1 (·)‖ ≤ ε,

and

∀g2(·,αj) ∈ C1
c0(Sw), ∃ g

`,j
2 (·), such that ‖g2(·,αj) − g

`,j
2 (·)‖ ≤ ε.

Thus we can cover G1 ⊂ G by finite number of N1N2 balls of centers g`,j(·), j = 1, · · · , N1,

` = 1, · · · , N2, since for any g(z,α) ∈ G, we can suitably choose αj and g`,j(·) such that

sup
z∈Sw

‖g(z,α) − g`,j(z)‖ ≤ sup
z∈Sw

‖g(z,α) − g(z,αj)‖ + sup
z∈Sw

‖g(z,αj) − g`,j(z)‖

≤ C‖α − αj‖ + sup
z∈Sw

‖g(z,αj) − g`,j(z)‖ ≤ 3

2
ε, (5.35)
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and similarly, we can cover G(1)
1 = {g1 : Sw × B 7→ R

d | g ∈ G1} and G(2)
1 = {g2 : Sw × B 7→

R
d×d | g ∈ G1} by finite number of N1N3 balls of centers g

`,j
1 (·) and g

`,j
2 (·), j = 1, · · · , N1,

` = 1, · · · , N3, respectively, since for any g1(z,α) ∈ G(1)
1 and g2(z,α) ∈ G(2)

1 , we can suitably

choose αj and g
`,j
1 (·) and g

`,j
2 (·), respectively, such that, as in (5.35),

sup
z∈Sw

‖g1(z,α) − g
`,j
1 (z)‖ ≤ ε, sup

z∈Sw

‖g2(z,α) − g
`,j
2 (z)‖ ≤ ε. (5.36)

Therefore, with αTXt ∈ Sw and g`,j(·) ∈ C2
c0(Sw), it follows from (5.34), (5.35) and (5.36) that

‖g(αTXt,α) − g`,j(αT

j Xt)‖

≤ ‖g(αTXt,α) − g`,j(αTXt)‖ + ‖g`,j(αTXt) − g`,j(αT

j Xt)‖

≤ ε + C‖Xt‖ ‖α − αj‖ ≤ ε(1 + C‖Xt‖),

similarly,

‖g1(α
TXt,α)−g

`,j
1 (αT

j Xt,αj)‖ ≤ ε(1+C‖Xt‖), ‖g2(α
TXt,α)−g

`,j
2 (αT

j Xt,αj)‖ ≤ ε(1+C‖Xt‖);

and with g ∈ G1, it follows that

‖g1(α
TXt,α)‖ ≤ ‖g01(α

TXt,α)‖ + 1 ≤ ‖g01‖G + 1,

‖g2(α
TXt,α)‖ ≤ ‖g02(α

TXt,α)‖ + 1 ≤ ‖g02‖G + 1,

Note, for any m ∈ M,

E|m(Ft,g,α) − m(Ft,g
`,j ,αj)|2 ≤ C(M1 + M2 + M3), (5.37)
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where

M1 = E|(m1t(g,α) − m1t(g
`,j ,αj))m2t(g,α)m3t(α)|2

≤ E[‖g(αTXt,α) − g`,j(αT

j Xt)‖) ‖Xt‖ ‖
{
g1(α

TXt,α)TXt − g2(α
TXt,α)

}
T

‖ ‖Xt‖ w(αTXt)]
2

≤ CεE[‖Xt‖ ‖
{
g1(α

TXt,α)TXt − g2(α
TXt,α)

}T

‖ ‖Xt‖ w(αTXt)]
2

≤ Cε2E[‖Xt‖2 (C‖Xt‖ + C)2 ‖Xt‖2] ≤ Cε2, (5.38)

M2 = E|m1t(g
`,j ,αj)(m2t(g,α) − m2t(g

`,j ,αj))m3t(α)|2

≤ E[‖Yt − g`,j(αT

j Xt)
T
Xt‖{‖g1(α

TXt,α) − g
`,j
1 (αT

j Xt,αj)‖ ‖Xt‖

+ ‖g2(α
TXt,α) − g2`, j(α

T

j Xt,αj)‖} ‖Xt‖ w(αTXt)]
2

≤ Cε2E[(|Yt| + c0‖Xt)
2(1 + C‖Xt‖)2‖Xt‖2] ≤ Cε2, (5.39)

M3 = E[m1t(g
`,j ,αj)m2t(g

`,j ,αj)(m3t(α) − m3t(αj))]
2 ≤ Cε2, (5.40)

and where C is allowed to change in value from line to line. Then it follows from (5.37) together

with (5.38), (5.39) and (5.40) that

‖m(Ft,g,α) − m(Ft,g
`,j ,αj)‖L2 ≤ Cε,

and thus N(Cε,M, ‖ · ‖L2) ≤ (N1N2)(N1N3)N1, which leads to

log N(Cε,M, ‖ · ‖L2) ≤ C(log N1 + log N2 + log N3) ≤ Cε−1.

Now (c) holds easily.

(vi): Finally we are in a position to establish (vi) of Lemma 4.2. Note that it follows from

(5.30) with α = α0 that

ĝ(z,α0) − g0(z,α0) = γ(θ̂(z,α0) − θ0(z,α0))

= γΦ̂−1(z,α0)Ŵ(z,α0) = (1 + oP (1))γΦ−1(z,α0)Ŵ(z,α0)

= (1 + oP (1))(µ0,Kw(z)fZ(z,α0))
−1G−1(z,α0)Ŵ

(1)(z,α0), (5.41)

where oP (1) is uniform with respect to z ∈ Sw , and Ŵ(1)(z,α0) is defined in (5.31). Then (5.26)
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together with Lemma 6.3 and (5.41) then leads to

Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]

= 2

∫
Φ̃0(z)(ĝ(z,α0) − g0(z,α0))w(z)f0(z,α0)dz

= (1 + oP (1))2µ−1
0,K

∫
Φ̃0(z)G−1(z,α0)Ŵ

(1)(z,α0)dz

= (1 + oP (1))2µ−1
0,Kn−1

n∑

t=1

∫
Φ̃0(z)G−1(z,α0)

×
{

εt +
1

2

(
g̈0(z + η(Zo

t − z))(Zo
t − z)2

)T
Xt

}
XtKh(Zo

t − z)w(Zo
t )dz

= (1 + oP (1))2µ−1
0,Kn−1

n∑

t=1

Φ̃0(Z
o
t )G−1(Zo

t ,α0)

×
{

εtµ0,K +
1

2

(
g̈0(Z

o
t )µ2,Kh2(1 + o(1))

)T
Xt

}
Xtw(Zo

t )

= (1 + oP (1))2

{
n−1

n∑

t=1

εtUt +
1

2
h2µ−1

0,Kµ2,KE
(
g̈0(Z

o
t ))TXtUt

)}
+ oP (n−1/2), (5.42)

as n−1
∑n

t=1

{
g̈0(Z

o
t ))TXtUt − E

(
g̈0(Z

o
t ))TXtUt

)}
= OP (n−1/2) according to the CLT for a

strongly mixing strictly stationary process, where

Ut = Φ̃0(Z
o
t )G−1(Zo

t ,α0)Xtw(Zo
t )

= E
(
Xtg01(Z

o
t ,α0)

T
XtX

T

t |Zo
t

)
G−1(Zo

t ,α0)Xtw(Zo
t ) + g02(Z

o
t ,α0)Xtw(Zo

t ). (5.43)

Now we have from (5.22) and (5.42) and then from (5.43) that

√
n
{
Ṙn(g0(·,α0),α0) + Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]

}

=
√

n

{
− 2

n

n∑

t=1

εt

(
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

)
T

Xtw(Zo
t )

+(1 + oP (1))2

[
n−1

n∑

t=1

εtUt +
1

2
h2µ−1

0,Kµ2,KE
(
g̈0(Z

o
t ))TXtUt

)]
+ oP (n−1/2)

}

=
√

n

{
− 2

n

n∑

t=1

εtVt + (1 + oP (1))h2µ−1
0,Kµ2,KE

(
g̈0(Z

o
t ))TXtUt

)
+ oP (n−1/2)

}
,

where Vt =
[
Xtg

T

01(Z
o
t ,α0) − {E

(
Xtg

T

01(Z
o
t ,α0)XtX

T
t |Zo

t

)
}G−1(Zo

t ,α0)
]
Xtw(Zo

t ). Therefore, by

CLT for mixing stationary process,

√
n
{

Ṙn(g0(·,α0),α0) + Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]

−(1 + oP (1))h2µ−1
0,Kµ2,KE

(
g̈0(Z

o
t ))TXtUt

)}
D→ N(0,V), (5.44)
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where

V = Eε2
t VtV

T

t = Eε2
t {ΞtΞ

T

t − E(ΞtX
T

t |Zo
t )G−1

t E(XtΞ
T

t |Zo
t )}

with Ξt = Xtg
T
01(Z

o
t ,α0)Xtw(Zo

t ) and Gt = G(Zo
t ,α0) = E(XtX

T
t |Zo

t ). The proof is completed.

�

6 Appendix: Uniform convergence.

We collect and prove some uniform convergence results which were used in Section 5. All limits

are taken as n → ∞ unless stated otherwise.

6.1 Technical lemmas

For the proof of uniform-consistency lemmas, we need to repeatedly use the following moment

inequalities, which are stated for reference below.

Lemma 6.1 (Cox and Kim (1995)’s moment inequality) Let {ξt} be a strongly mixing process

with Eξt = 0, and r a positive integer. Assume that for some q > 2,

Mqr = sup
t
{‖ξt‖qr} = sup

t
{(E|ξt|qr)1/(qr)} ≤ 1,

and that there is a constant ν not depending on t such that

E[|ξt|k] ≤ ν, 2 ≤ k ≤ 2r,

and that the mixing coefficients satisfy

∞∑

i=1

ir−1β(i)1−2/q < ∞.

Then there exists a constant C depending on r but not depending on the distribution of ξt nor on

ν, n, nor P̃ such that

E

(
n∑

t=1

ξt

)2r

≤ C



nrM2r

qr

∞∑

i=P̃

ir−1β(i)1−2/q +

r∑

j=1

njP̃ 2r−jνj





for any integers n and P̃ with 0 < P̃ < n.
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Proof. This is Theorem 1 of Cox and Kim (1995, page 152).

Lemma 6.2 (Gao, Lu and Tjøstheim (2004)’s moment inequality) Assume that the process

{(Xt, Yt) : t ∈ Z
1} is β-mixing and strictly stationary with Yt and Xt being R

1-valued respectively.

Let ξt = Ktθt = K((Xt − x)/h)θt with E[ξt] = 0, where θt = θ(Xt, Yt) and K(·) is a bounded

kernel function defined on R
1. The joint probability density fs(x1, · · · , xs) of (Xt1 , · · · , Xts) ex-

ists and is bounded uniformly for s = 1, · · · , 2r − 1, where r is some positive integer such that

E [|θt|qr] < ∞ for some q > 2. The mixing coefficient β satisfies

lim
T→∞

T a
∞∑

t=T

tr−1β(t)
qr−2

qr = 0

for some constant a ≥ (rq− 2)r/(2+ rq− 4r) with q > (4r− 2)/r. The probability kernel function

K(x) is a symmetric and bounded density function on R
1 with compact support, CK, and finite

variance such that |K(x) − K(y)| ≤ M |x − y| for x, y ∈ CK and 0 < M < ∞. The bandwidth

h = hn satisfies that

lim
n→∞

hn = 0 and lim inf
n→∞

nh
2(r−1)a+(qr−2)

(a+1)q
n > 0

for some integer r ≥ 3. Then there exists a constant C = C(r) depending on r but not depending

on the distribution of ξt nor on h, n such that

E



(

n∑

i=1

ξi

)2r

 ≤ C (nh)r . (6.1)

Proof. It is a special case of Theorem 1.1 of Gao, Lu and Tjøstheim (2003) with N = 1 there.

�

6.2 uniform convergence

Lemma 6.3 Under the conditions of Theorem 3.2, assume that |K(x) − K(y)| ≤ C‖x − y‖ for

any x, y ∈ R
1, and |w(x) − w(y)| ≤ C‖x − y‖ for any x, y ∈ Sw, and that |a(z,α) − a(z ′,α′)| ≤

C(|z − z′| + ‖α − α′‖) and ‖b(z,α) − b(z′,α′)‖ ≤ C(|z − z′| + ‖α − α′‖) for z, z′ ∈ R
1 and

α,α′ ∈ B, and that supα∈B E|εt(α)|2 < ∞. Let limn→∞ n2r+1h3(d−1) > 0. Then for Φ̂i,j(z,α),

Φ̂i+d,j+d(z,α) and Gij(z,α) = ḡi−1,j−1(z,α) defined in Subsection 5.1,

sup
z∈Sw ,α∈B

|Φ̂i,j(z,α) − µ0,KGij(z,α)w(z)fZ (z,α)| = OP

[(
nh1+2d/r

)−r/(2r+d)
+ h2

]
(6.2)
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sup
z∈Sw,α∈B

|Φ̂i+d,j+d(z,α)−µ2,KGij(z,α)w(z)fZ(z,α)| = OP

[
h−1

(
nh1+2d/r

)−r/(2r+d)
+ h

]
(6.3)

for i, j = 1, · · · , d,

sup
z∈Sw ,α∈B

‖ĝ(z,α) − g0(z,α)‖ = OP

[(
nh1+2d/r

)−r/(2r+d)
+ h2

]
, (6.4)

sup
z∈Sw ,α∈B

‖ĝ1(z,α) − g01(z,α)‖ = OP

[
h−1

(
nh1+2d/r

)−r/(2r+d)
+ h

]
, (6.5)

sup
z∈Sw ,α∈B

‖ĝ2(z,α) − g02(z,α)‖ = OP

[
h−1

(
nh1+2d/r

)−r/(2r+d)
+ h

]
. (6.6)

Proof of Lemma 6.3. As the proofs of (6.2)–(6.6) are similar, so we only sketch the proof of

(6.4) below. It follows from conditions (C2) and (C3) that fZ(z,α), which equals fαTXt
(z), and

G(z,α), which is equal to E
(
Xt X

T
t

∣∣αTXt = z
)
, are bounded away from zero over z ∈ Sw,α ∈ B.

Therefore, it is derived from (5.30) that ĝ(z,α)−g0(z,α) tending to 0 uniformly is equivalent to

Ŵ(1)(z,α) (see (5.31)) tending to 0 uniformly, where Ŵ(1)(z,α) can be separated into two parts

of the bias term and the error term owing to (5.32). As the bias term is easily taken care of, so

we are only concerned with the uniform convergence rate, for the error term, of

Ŵ2(z,α) =
1

n

n∑

t=1

εt(α)XtKh(αTXt − z)w(αTXt)

below. It follows from Lemma 5.1 that EŴ2(z,α) = 0. When α is fixed, the uniform convergence

rate of Ŵ2(z,α) with respect to z was established by Masry and Tjøstheim (1995). Here we

establish the lemma with convergence rate also uniform with respect to α ∈ B, by

sup
‖α‖=1

sup
z∈Sw

‖Ŵ2(z,α)‖ =
(
nh1+2d/r

)−r/(2r+d)
, (6.7)

owing to B ⊂ {α ∈ R
d : ‖α‖ = 1}.

For notation convenience, we denote B = {α ∈ R
d : ‖α‖ = 1} below. Because B and Sw are

compact, we can cover B and Sw by a finite number M = Mn of cubes Ik ⊂ B with centers αk in

B, satisfying ‖α − αk‖ ≤ const./M 1/(d−1) for any α ∈ Ik, and a finite number N = Nn of cubes

J` ⊂ Sw with centers z` in Sw, satisfying |z − z`| ≤ const./N for z ∈ J`, respectively, where M

and N are to be specified later. Therefore

sup
‖α‖=1

sup
z∈Sw

‖Ŵ2(z,α)‖ ≤ max
1≤k≤M

sup
z∈Sw

‖Ŵ2(z,αk)‖ + max
1≤k≤M

sup
α∈Ik

sup
z∈Sw

‖Ŵ2(z,α) − Ŵ2(z,αk)‖

≡ W21 + W22. (6.8)

32



We first consider W22. Note that

Ŵ2(z,α) − Ŵ2(z,αk)

=
1

n

n∑

t=1

Xt{εt(α)Kh(αTXt − z)w(αTXt) − εt(αk)Kh(αT

k Xt − z)w(αT

k Xt)}, (6.9)

and that

|εt(α) − εt(αk)| ≤ |a(αTXt,α) − a(αT

k Xt,αk)| + ‖b(αTXt,α) − b(αT

k Xt,αk)‖ ‖Xt,−d‖

≤ C‖α − αk‖(1 + ‖Xt‖)2,

and

|Kh(αTXt − z)w(αTXt) − Kh(αT

k Xt − z)w(αT

k Xt)| ≤ Ch−2‖α − αk‖ ‖Xt‖.

Thus

Ŵ2(z,α) − Ŵ2(z,αk)

≤ 1

n

n∑

t=1

‖Xt‖{h−1(1 + ‖Xt‖)2 + |εt(αk)|h−2 ‖Xt‖}‖α − αk‖

≤ 1

n

n∑

t=1

{
h−1(1 + ‖Xt‖)3 + |εt(αk)|h−2 ‖Xt‖2

}
‖α − αk‖, (6.10)

and it follows from (6.8) and (6.10) that

W22 ≤ max
1≤k≤M

sup
α∈Ik

1

n

n∑

t=1

{
h−1(1 + ‖Xt‖)3 + |εt(αk)|h−2 ‖Xt‖2

}
‖α − αk‖

≤ CM−1/(d−1) max
1≤k≤M

1

n

n∑

t=1

{
h−1(1 + ‖Xt‖)3 + |εt(αk)|h−2 ‖Xt‖2

}

≤ CM−1/(d−1)

{
h−1 1

n

n∑

t=1

(1 + ‖Xt‖)3 + max
1≤k≤M

1

n

n∑

t=1

|εt(αk)|h−2 ‖Xt‖2

}

≤ CM−1/(d−1)
{
h−1OP (1) + h−2W222 + h−2W223

}
, (6.11)

where OP (1) is uniform with respect to z ∈ Sw and α ∈ B as n → ∞, and

W222 = max
1≤k≤M

∣∣∣∣∣
1

n

n∑

t=1

(
|εt(αk)| ‖Xt‖2 − E|εt(αk)| ‖Xt‖2

)
∣∣∣∣∣ ,

W223 = max
1≤k≤M

E|εt(αk)| ‖Xt‖2.
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Clearly, by the condition that supα∈B E|εt(α)|2 < ∞,

W223 ≤ max
1≤k≤M

{
E|εt(αk)|2

}1/2 {
E‖Xt‖4

}1/2
= O(1), (6.12)

which is uniform with respect to z ∈ Sw and α ∈ B as n → ∞. Further, we consider W222. Set

ut,k = |εt(αk)| ‖Xt‖2 and ∆k = 1
n

∑n
t=1 (ut,k − Eut,k), and therefore W222 = max1≤k≤M |∆k|.

Applying Lemma 6.1 with P = 1 leads to E|∆k|2r ≤ Crn
−r, where Cr only depends on r. Thus,

if M = O(nr), then

P{W222 > 2A} = P

{
max

1≤k≤M
|∆k| > 2A

}
≤

M∑

k=1

P{|∆k| > A}

= CrMA−rn−r = CA−r → 0 (6.13)

as A → ∞, which leads to W222 = OP (1). This together with (6.11) and (6.12) implies

W22 = OP (M−1/(d−1)h−2) = OP {δn} , (6.14)

where we take M = (h2δn)−(d−1) with δn to be specified later, and OP (·) is uniform with respect

to z ∈ Sw and α ∈ B as n → ∞.

Next, we consider W21 in (6.8). As Ŵ2(z,αk) = Ŵ2(z`,αk) + (Ŵ2(z,αk) − Ŵ2(z`,αk)), we

can break W21 into two parts:

W21 ≤ max
1≤k≤M

max
1≤`≤N

Ŵ2(z`,αk) + max
1≤k≤M

max
1≤`≤N

sup
z∈J`

‖Ŵ2(z,αk) − Ŵ2(z`,αk)‖ ≡ W211 + W212.

(6.15)

For W212, note that, using the Lipschitz continuity of K(·) and the boundedness of w(·),

‖Ŵ2(z,αk) − Ŵ2(z`,αk)‖

= ‖ 1

n

n∑

t=1

εt(αk) Xt

{
Kh(αT

k Xt − z) − Kh(αT

k Xt − z`)
}

w(αT

k Xt)‖

≤ C
1

n

n∑

t=1

|εt(αk)| ‖Xt‖h−2|z − z`|w(αT

k Xt)

= Ch−2|z − z`|
1

n

n∑

t=1

|εt(αk)| ‖Xt,−d‖w(αT

k Xt),
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therefore, noting ‖Xt,−d‖ ≤ ‖Xt‖,

W212 = max
1≤k≤M

max
1≤`≤N

sup
z∈J`

‖Ŵ2(z,αk) − Ŵ2(z`,αk)‖

= C max
1≤k≤M

max
1≤`≤N

sup
z∈J`

h−2|z − z`|
1

n

n∑

t=1

|εt(αk)| ‖Xt‖w(αT

k Xt)

≤ Ch−2N−1 max
1≤k≤M

1

n

n∑

t=1

|εt(αk)| ‖Xt‖w(αT

k Xt)

= OP

(
h−2N−1

)
= OP (δn), (6.16)

where in the final equality of (6.16), we take N = (h2δn)−1, and OP (·) is uniform with respect to

z ∈ Sw and α ∈ B as n → ∞, the argument being the same as that for W222 = OP (1) and W223 =

O(1) in (6.11) in the above. Now we consider W211 in (6.15). With ξt = εt(αk) XtK((αT

k Xt −

z`)/h)w(αT

k Xt) and θt = εt(αk) Xtw(αT

k Xt) in Lemma 6.2, it follows from Lemma 6.2 that

P{W211 ≥ ε} ≤
M∑

k=1

N∑

`=1

P{‖W2(z`,αk)‖ ≥ ε} =

M∑

k=1

N∑

`=1

P{‖(nh)−1
n∑

i=1

ξi‖ ≥ ε}

≤
M∑

k=1

N∑

`=1

ε−2r(nh)−2rE‖
n∑

i=1

ξi‖2r ≤ ε−2r(nh)−2rMNC(nh)r

= Cε−2r(nh)−rMN = Cε−2r(nh)−r(h2δn)−d.

Therefore

W211 = OP

(
(nh)−1/2(h2δn)−d/(2r)

)
, (6.17)

where OP (·) is uniform with respect to z ∈ Sw and α ∈ B as n → ∞.

Finally, taking δn = (nh1+2d/r)−r/(2r+d), then N = (h2δn)−1 = (nh−3)r/(2r+d), and M =

(h2δn)−(d−1) = (nh−3)(d−1)r/(2r+d) = O(nr) as limn→∞ n2r+1h3(d−1) > 0. For such a δn, (6.13),

(6.14) and (6.16) hold simultaneously. Thus the result of (6.7) follows from (6.8), (6.14), (6.15),

(6.16) and (6.17). �
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