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For autoregressive moving average ~ARMA! models with infinite variance inno-
vations, quasi-likelihood-based estimators ~such as Whittle estimators! suffer from
complex asymptotic distributions depending on unknown tail indices+ This makes
statistical inference for such models difficult+ In contrast, the least absolute devi-
ations estimators ~LADE! are more appealing in dealing with heavy tailed pro-
cesses+ In this paper, we propose a weighted least absolute deviations estimator
~WLADE! for ARMA models+ We show that the proposed WLADE is asymptot-
ically normal, is unbiased, and has the standard root-n convergence rate even when
the variance of innovations is infinity+ This paves the way for statistical inference
based on asymptotic normality for heavy-tailed ARMA processes+ For relatively
small samples numerical results illustrate that the WLADE with appropriate weight
is more accurate than the Whittle estimator, the quasi-maximum-likelihood esti-
mator ~QMLE!, and the Gauss–Newton estimator when the innovation variance
is infinite and that the efficiency loss due to the use of weights in estimation is
not substantial+

1. INTRODUCTION

Let $ yt % be a stationary autoregressive moving average ~ARMA! time series
generated by the equation

yt � f1 yt�1 � {{{� fp yt�p � «t � u1«t�1 � {{{� uq«t�q , (1.1)
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where the innovation process $«t % is a sequence of independent and identi-
cally distributed ~i+i+d+! random variables and b � ~f1, + + + ,fp, u1, + + + , uq!'

is an unknown parameter vector+ When E«t
2 � `, it is well known that vari-

ous estimators such as the maximum likelihood estimator ~MLE!, Whittle
estimators, and least squares estimators ~LSE! for b are all asymptotically
normal and unbiased ~Brockwell and Davis, 1991!+ Furthermore, the least abso-
lute deviations estimator ~LADE! is also asymptotically normal; see Duns-
muir and Spencer ~1991! and Davis and Dunsmuir ~1997!+ When E«t

2 � `,
model ~1+1! is called the infinite variance ARMA ~IVARMA! model, which
defines a heavy-tailed process $ yt % + The IVARMA models are pertinent in
modeling heavy-tailed time series data often encountered in, for example,
economics and finance ~Koedijk, Schafgans, and De Vries, 1990; Jansen
and de Vries, 1991!+ For further references on statistical modeling for heavy-
tailed phenomena, we refer to Resnick ~1997! and Adler, Feldaman, and Taqqu
~1997!+

Statistical inference for IVARMA models has not been well explored yet+
Most available results concern infinite variance autoregressive ~IVAR! models
~i+e+, q � 0 in ~1+1!!+ Gross and Steiger ~1979! and An and Chen ~1982! obtained
the strong consistency and the convergence rates for LADE for IVAR models+
Davis and Resnick ~1985, 1986! derived the limiting distributions of the LSE
for IVAR models+ A more comprehensive asymptotic theory of M-estimators
for autoregressive ~AR! models was derived by Davis, Knight, and Liu ~1992!+
For IVARMA models, the asymptotic properties for several estimators have been
derived when the innovation distribution is in the domain of attraction of a
stable law distribution with index between 0 and 2+ For example, both the Whittle
estimator proposed by Mikosch, Gadrich, and Adler ~1995! and the Gauss–
Newton estimator proposed by Davis ~1996! converge in distribution to some
functions of a sequence of stable random variables+ Furthermore, it has been
proved that the M-estimator converges in distribution to the minimizer of a sto-
chastic process; see Davis ~1996! and Calder and Davis ~1998!+ Kokoszka and
Taqqu ~1996! extended the results of Mikosch et al+ ~1995! to fractional ARMA
models with infinite variance+ However, all the preceding limiting distributions
are complicated and depend intimately on the unknown tail indices of the under-
lying processes+ This makes it difficult to develop asymptotic approximations
for the purpose of statistical inference+ This paper provides a remedy for this
problem+

The difficulty of the asymptotic theory for LADE for IVARMA processes
may at least partially result from the fact that the residual of a linear predic-
tion for yt based on its lagged values depends on b nonlinearly, whereas
such a dependence is completely linear for pure AR processes+ Note that
this linearity implies that the objective function for least absolute devia-
tions estimation is convex and therefore the asymptotic normality of LADE
may be readily derived from the convex lemma ~Hjort and Pollard, 1993!+
One way to deal with a nonconvex objective function is to adopt a local
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linearization around the true value of the parameter, which enables one to
establish asymptotic properties of a local estimator defined as a local mini-
mizer around the true value of the parameter+ This is the line taken in
the paper by Davis and Dunsmuir ~1997!, which dealt with LADE for
ARMA models with E«t

2 � `+ On the other hand, Ling ~2005! proposed a
weighted least absolute deviations estimator ~WLADE! for IVAR models+ The
key idea of the WLADE is to weigh down the observations that are exces-
sively large, either positively or negatively+ Ling ~2005! showed that the
WLADE is asymptotically normal+ The idea of weighing down the large obser-
vations has also been used in estimation for autoregressive conditionally het-
eroskedastic ~ARCH! models with heavy tailed innovations by Horvath and
Liese ~2004!+

In this paper, we deal with the WLADE for IVARMA models+ By adopt-
ing the idea of local linearization mentioned previously, we show that a
local WLADE is asymptotic normal and unbiased under the condition that
E6«t 6d � �` for some d � 0 and the density function of «t and its deriva-
tive are bounded+ This facilitates statistical inference for IVARMA models
~even when E 6«t 6 � `! in a conventional fashion+ For example, a Wald
test for a linear hypothesis can be constructed; see Section 2+ For relatively
small samples a simulation study indicates that the proposed WLADE is
more accurate than the Whittle estimator, the quasi-maximum-likelihood es-
timator ~QMLE!, and the Gauss–Newton estimator when Var~«t ! � `+ Fur-
thermore, the efficiency loss of the WLADE with respect to the ~unweighted!
LADE is not significant with appropriately selected weights+ Because the
WLADE converges at a slower rate than the Whittle estimator and the Gauss–
Newton estimator, we also studied the large-sample properties of the WLADE
numerically+

Although we only deal with IVARMA models in this paper, the basic idea
of combining a weighted objective function with local linearization of the
residuals may apply to other infinite variance time series models, such as
the infinite variance autoregressive integrated moving average ~ARIMA! and
the integrated generalized autoregressive conditionally heteroskedastic
~IGARCH!, which are popular in financial econometrics+ Another open prob-
lem is to develop appropriate methods for choosing weight functions; see
Remark 3 in Section 2+2+

The rest of paper is organized as follows+ The WLADE and the associated
asymptotic properties are presented in Section 2+ In addition to showing the
asymptotic normality of the local WLADE, we also show that a ~global! esti-
mator sharing the same asymptotic property could be obtained by minimizing a
convex objective function if there is available an initial estimator within root-n
distance from the true value; see Theorem 2 in Section 2+2+ Section 3 gives all
the theoretical proofs of the results in Section 2+ Section 4 reports some numer-
ical results from a simulation study+
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2. WLADE AND ITS ASYMPTOTIC PROPERTIES

2.1. Weighted Least Absolute Deviations Estimators

Denote by Q � R p�q the parameter space that contains the true value b0 �
~f1

0 , + + + ,fp
0 ,u1

0 , + + + ,uq
0!' of the parameter b as an inner point+ For b� ~f1, + + + ,

fp,u1, + + + ,uq!' , put

«t ~b! � �
yt � f1 yt�1 � {{{� fp yt�p � u1«t�1~b!� {{{� uq«t�q~b!,

if t � 0,

0, otherwise,

(2.1)

where yt [ 0 for all t � 0+ Note that «t � «t~b0! because of this truncation+
We define the objective function as

Wn~b! � (
t�u�1

n

Kwt 6«t ~b!6 (2.2)

and the WLADE as

Zb � arg min
b

Wn~b!, (2.3)

where u � u~n! is a positive integer and the weight function, depending on a
constant a � 2, is defined as

Kwt � �1 � (
k�1

t�1

k�a 6yt�k 6��2

+ (2.4)

2.2. Asymptotic Normality of WLADE

To state the asymptotic normality of Zb, we introduce some notation first+ Let

v � ~v1, + + + , vp�q !
' � Mn ~b� b0 !+

It is easy to see that Zb � b0 � [v0Mn , where [v is a minimizer of

Tn~v! � (
t�u�1

n

Kwt ~6«t ~b0 � n�102v!6� 6«t ~b0 !6!+

Denote At~b! � ~At,1~b!, + + + ,At, p�q~b!!
' , where At, i~b! � �]«t~b!0]bi + By

~8+11+9! of Brockwell and Davis ~1991!, it holds for t � max~ p,q! that

�u~B!At, i ~b! � yt�i , i � 1, + + + , p

u~B!At, i�p~b!� «t�i ~b!, i � 1, + + + ,q,
(2.5)

where B is the backshift operator+
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For t � 0,61,62, + + + , define

Ut �(
i�1

p

fi
0 Ut�i � «t , Vt �(

j�1

q

uj
0 Vt�j � «t + (2.6)

Put Qt � ~Ut�1, + + + ,Ut�p,Vt�1, + + + ,Vt�q!
' , wt [ ~1 � (k�1

` k�a 6yt�k 6!�2 , and

S � E~wt Qt Qt
'!, V� E~wt

2 Qt Qt
'!+ (2.7)

We denote by 7v7 the euclidean norm for a vector v+
Some regularity conditions are now in order+

A1+ For b � Q, the polynomials u~z! � 1 � u1 z � {{{ � uq z q and f~z! �
1 � f1 z � {{{ � fp z p have no common zeros, and all roots of f~z! and u~z!
are outside the unit circle+

A2+ Innovation «t has zero median and a differentiable density function f ~x!
satisfying the conditions f ~0!� 0, supx�R6 f ~x!6� B1 � `, and supx�R6 f '~x!6�
B2 � `+ Furthermore, E6«t 6d � �` for some d � 0, and a � max$2,20d% +

A3+ As n r `, u r ` and u0n r 0+

The following proposition indicates that model ~1+1! has a unique strictly
stationary and ergodic solution under conditions A1 and A2+

Proposition 1+ Suppose that condition A1 holds and E6«t 6d � �` for some
d � 0. Then model (1.1) defines a unique strictly stationary and ergodic pro-
cess $ yt %.

Proof+ Condition A1 implies that

f�1~z!u~z! � (
j�0

`

cj z j,

where 6cj 6 � Cr j for some constants C � 0 and 0 � r � 1+ Let Dd� min$d,1% +
Then

(
j�0

`

6cj 6 DdE6«t�j 6 Dd � `+

The same argument as for Proposition 13+3+2 of Brockwell and Davis ~1991!
yields the result+ �

Remark 1+ Condition A3 eliminates asymptotically the bias in the estima-
tion resulting from the lack of observations yt for t � 0+

Remark 2+ Condition A2 does not rule out the possibility that E6«t 6 � `+
The purpose of introducing weights Kwt is to weigh down excessively large obser-
vations that reflect the heavy-tailed innovation distribution+ Therefore the asymp-
totic covariance matrix of the normalized WLADE, depending on S and V given
in ~2+7!, is a well-defined ~finite! matrix+ Note that Kwt � ~0,1# + Conditions A1
and A2 imply that for Dd � min$d,1% ,
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E�(
k�1

`

k�a 6yt�k 6� Dd � (
k�1

`

k�a DdE6yt�k 6 Dd � �`+

Hence (k�1
` k�a 6yt�k 6 � ` with probability one, which ensures that wt is well

defined+ Note that wt is stationary and ergodic under condition A1 and it is
asymptotically equivalent to Kwt for t � u ~see A3!+

We are now ready to state our main results+

THEOREM 1+ Let conditions A1–A3 hold. For any given positive random
variable M with P~0 � M � `!� 1, there exists a local minimizer Zb of Wn~b!
that lies in the random region $b : 7b � b0 � j0Mn 7 � M0Mn % for which

Mn ~ Zb� b0 !rL N�0,
1

4f 2~0!
S�1VS�1� ,

where j is a normal random vector with mean 0 and covariance matrix
~104f 2~0!!S�1VS�1.

Notice that the lack of convexity for the objective function Wn~b! compli-
cates the search for its minimizer+ As in Davis and Dunsmuir ~1997!, Wn~b!
may be linearized in a neighborhood of a good initial estimate Zb0 as follows:

GWn~b! � (
t�u�1

n

Kwt 6«t ~ Zb0 !� At
'~ Zb0 !~b� Zb0 !6+

The resulting estimator Db � arg minb GWn~b! shares the same asymptotic prop-
erty as the local WLADE+ See Theorem 2, which follows+

THEOREM 2+ Let conditions A1–A3 hold. Then

Mn ~ Db� b0 !rL N�0,
1

4f 2~0!
S�1VS�1� ,

provided that Zb0 � b0 � Op~n�102! .

Remark 3+ Although we only deal with the weight function defined in ~2+4!
explicitly, the preceding theorem holds for general weight function gt [
g~ yt�1, yt�2, + + +! provided

E $~gt � gt
2!~j 2 � j 3 !% � `, E $~gt � gt

2!~jt
2 � jt

3 � jt
4!% � `,

where j � (i�0
` r i 6y�i 6, jt � C0(i�t

` r i 6yt�i 6, 0 � r � 1, and C0 � 0 are
constants+ For example, we may use weights of more general form:

gt � �1 � (
k�1

t�1

k�a~ log k!d 6yt�k 6��g

, a � 2, g� 2, d � 0+ (2.8)

The numerical examples in Section 3 indicate that the accuracy of the WLADE
is not sensitive with respect to the value of a+ However the choice of g � 2
typically leads to a better estimator than those with g � 2, at least for model
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~4+1!+ Furthermore, it seems that d � 2,3,4 behave almost equally well+ How-
ever how to choose a weight function in general such that the resulting estima-
tor is of certain optimality remains an open question+

2.3. A Wald Test for Linear Hypotheses

The asymptotic normality of the estimator Zb stated in Theorem 1 facilitates
inference for model ~1+1!+ For example, we may consider a general form of
linear null hypothesis:

H0 : Gb0 � k,

where G is an s � ~ p � q! constant matrix with rank s and k is an s � 1 con-
stant vector+ A Wald test statistic may be defined as

Zn � ~G Zb� k!' �G 1

4n Df 2~0!
ZS�1 ZV ZS�1G '��1

~G Zb� k!,

and we reject H0 for large values of Zn+ In the preceding expression,

ZS �
1

n � u (t�u�1

n

Kwt ZQt ZQt
' , ZV�

1

n � u (t�u�1

n

~ Kwt
2 ZQt ZQt

'!+ (2.9)

Here ZQt is defined in the same manner as Qt but with b0 replaced by Zb, «t

replaced by «t~ Zb!, and yt � 0 for all t � 0 ~see ~2+6! and ~2+7!!, and Df ~0! is an
estimate for f ~0! defined as

Df ~0! �
1

bn
(

t�u�1

n

Kwt K�«t ~ Zb!

bn
�� (

t�u�1

n

Kwt , (2.10)

where K~{! is a kernel function on R and bn � 0 is a bandwidth+ Theorem 3,
which follows, shows that the asymptotic null distribution of Zn is xs

2+ It in fact
still holds if Zb in the definition of Zn is replaced by Db+

THEOREM 3+ Suppose conditions A1–A3 hold. Let kernel function K
be bounded, Lipschitz continuous, and of finite first moment. Let bn r 0 and
nbn

4 r ` as n r `. Then Zn rL xs
2 under H0.

3. PROOFS

We use the same notation as in Section 2+ For any fixed v � R p�q , put

Sn~v! � (
t�u�1

n

wt ~6«t ~b0 � n�102v!6� 6«t ~b0 !6!,

Sn
�~v! � (

t�u�1

n

wt ~6«t � n�102Qt
' v6� 6«t 6!,

Sn
*~v! � (

t�u�1

n

wt ~6«t ~b0 !� n�102At
'~b0 !v6� 6«t ~b0 !6!+
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We linearize «t~b! around b0; that is, «t~b! is approximated by

«t ~b0 !� At
'~b0 !~b� b0 !,

where At~b! is defined in ~2+5!+
We denote by rL the convergence in distribution and by P

&& the conver-
gence in probability+ Let C~Rs! be the space of the real-valued continuous func-
tions on Rs ~Rudin, 1991!+ For probability measures Pn and P on C~Rs!, we say
that Pn converges weakly to P in C~Rs! if * fdPn r * fdP for any bounded and
continuous function f defined on C~Rs!+ For random functions Sn,S defined on
C~Rs!, SnrL S if the distribution of Sn converges weakly to that of S in C~Rs!
~Billingsley, 1999!+ The term C denotes a positive constant that may be differ-
ent at different places+

3.1. Proof of Theorem 1

Before we prove Theorem 1, we first introduce a proposition that is of indepen-
dent interest+ Its proof is divided into several lemmas+ We always assume that
conditions A1–A3 hold+

PROPOSITION 2+ As n r `, it holds that Tn~v! rL T ~v! on C~R p�q! ,
where T ~v! � f ~0!v 'Sv � v 'N and N denotes an N~0,V! random vector.

LEMMA 1+ It holds that 6«t � «t~b0!6 � jt and 6At, i~b0! � Qt, i 6 � jt for
i � 1, + + + , p � q, where jt � C0(j�t

` r j 6yt�j 6, 0 � r � 1, C0 is a positive con-
stant, and Qt, i is the ith component of Qt .

Proof+ See Brockwell and Davis ~1991, pp+ 265–268!+

LEMMA 2+ Sn
�~v! rL T ~v! on C~R p�q! .

Proof+ We first prove the convergence for any fixed v+ Using the identity

6z � y 6� 6z 6 � �ysgn~z!� 2~ y � z!$I ~0 � z � y!� I ~ y � z � 0!%,

which holds for z � 0, we have

Sn
�~v! � �n�102 (

t�u�1

n

wt Qt
' vsgn~«t !

� 2 (
t�u�1

n

wt ~n
�102Qt

' v� «t !

� @I ~0 � «t � n�102Qt
' v!� I ~n�102Qt

' v � «t � 0!#

�: An � Bn +
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Notice that, by Lemma 1, we have 6Qt, i 6 � C(j�1
` r j 6yt�j 6 and

6wt
102 Qt, i 6 �

C(
j�1

`

r j 6yt�j 6

1 � (
k�1

`

k�a 6yt�k 6

� C (
k�1

`

kar k+ (3.1)

Then, Ewt
2~Qt

' v!2 � �`+ But, from conditions A1 and A2, $wt Qt
' vsgn~«t !% is

a stationary martingale difference sequence+ Therefore, applying a martingale
central limit theorem ~Hall and Heyde, 1980!, we obtain An rL v 'N+

For Bn, let

Wnt � wt ~n
�102Qt

' v� «t !I ~0 � «t � n�102Qt
' v!

and Ft�1 � s~«j , j � t � 1!+ Then

nEWnt
2 � nE~E~Wnt

2 6Ft�1!!

� nE�wt
2��

0

n�102Qt
' v

~n�102Qt
' v� z!2~ f ~z!� f ~0!! dz

� �
0

n�102Qt
' v

~n�102Qt
' v� z!2 f ~0!dz	�

� nE~wt
2 B2 n�2~Qt

' v!4 � wt
2 B1 n�302~Qt

' v!3 !+

Similarly to ~3+1!, we can obtain

Ewt
2~Qt

' v!4 � �`, Ewt
2~Qt

' v!3 � �`+

Therefore, we have proved that

lim sup
nr`

nEWnt
2 � 0+ (3.2)

On the other hand, on the set $Qt
' v � 0% , we may show that

(
t�u�1

n

E~Wnt 6Ft�1!r
f ~0!

2
E @wt ~Qt

' v!2I ~Qt
' v � 0!#

and

Var� (
t�u�1

n

~Wnt � E~Wnt 6Ft�1!!�r 0;

see Davis and Dunsmuir ~1997!+ Therefore,

(
t�u�1

n

Wnt r
f ~0!

2
E @wt ~Qt

' v!2I ~Qt
' v � 0!# + (3.3)
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Using the same argument for the second indicator in the summands of Bn,
we obtain that

Bn
P
&& f ~0!v 'Sv, (3.4)

so that the finite-dimensional distributions of Sn
� converge to those of T+ But

because Sn
� has convex sample paths, this implies that the convergence is in

fact on C~R p�q! ~see Davis and Dunsmuir, 1997, proof of Prop+ 1!+ �

LEMMA 3+ Sn
*~v! � Sn

�~v! P
&& 0 uniformly on compact sets.

Proof+ Notice that

Sn
*~v!� Sn

�~v!

� (
t�u�1

n

wt @~6«t ~b0 !� n�102At
'~b0 !v6� 6«t ~b0 !6!� ~6«t � n�102Qt

' v6� 6«t 6!#

� �n�102 (
t�u�1

n

wt At
'~b0 !vsgn~«t ~b0 !!� n�102 (

t�u�1

n

wt Qt
' vsgn~«t !

� 2 (
t�u�1

n

wt ~n
�102At

'~b0 !v� «t ~b0 !!@I ~0 � «t ~b0 ! � n�102At
'~b0 !v!

� I ~n�102At
'~b0 !v � «t ~b0 ! � 0!#

� 2 (
t�u�1

n

vt ~n
�102Qt

' v� «t !

� @I ~0 � «t � n�102Qt
' v!� I ~n�102Qt

' v � «t � 0!# +

First, we consider

L1 � n�102 (
t�u�1

n

wt @Qt
' vsgn~«t !� At

'~b0 !vsgn~«t ~b0 !!#

� n�102 (
t�u�1

n

wt Qt
' v~sgn~«t !� sgn~«t ~b0 !!!

� n�102 (
t�u�1

n

wt ~Qt
' v� At

'~b0 !v!sgn~«t ~b0 !!

�: K1 � K2 +

By Lemma 1 and the proof of ~3+1!, we know that

6wt ~Qt
'� At

'~b0 !!v6 � C7v7jt +

Then

K2 � n�102C7v7 (
t�u�1

n

(
j�t

`

r j 6yt�j 6� n�102C7v7 (
t�u�1

n

r t (
h�0

`

r h 6y�h 6
P
&& 0
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uniformly on compact sets+ For K1, we have

E6K16 � n�102 (
t�u�1

n

E~E~wt 6Qt
' v6 6sgn~«t !� sgn~«t ~b0 !!68Ft�1!!

� 2n�102 (
t�u�1

n

E~wt 6Qt
' v6P~$«t � 0,«t ~b0 ! � 0% � $«t � 0,«t ~b0 ! � 0%8Ft�1!!

� 2n�102 (
t�u�1

n

E~wt 6Qt
' v6P~$0 � «t � jt % � $�jt � «t � 0%8Ft�1!!

� 2n�102 (
t�u�1

n �E�wt 6Qt
' v6�

�jt

jt

f ~x! dx�	
� 4B1 n�102 (

t�u�1

n

E~wt
102 6Qt

' v6{wt
102jt !

� 4CB17v7n�102 (
t�u�1

n

(
h�0

`

~t � h!ar t�h

� 4CB17v7n�102� (
t�u�1

n

t ar t (
h�0

`

r h � (
t�u�1

n

r t (
h�0

`

har h	r 0

uniformly on compact sets, because we have the facts

wt
102 6Qt

' v6 � C7v7, wt
102jt �(

j�t

`

r jj a, and ~t � h!a � 2a~t a � ha !+

Therefore, L1
P
&& 0 uniformly on compact sets as n r `+

Now we consider

L2 � (
t�u�1

n

wt ~n
�102At

'~b0 !v� «t ~b0 !!I ~0 � «t ~b0 ! � n�102At
'~b0 !v!

� (
t�u�1

n

wt ~n
�102Qt

' v� «t !I ~0 � «t � n�102Qt
' v!

� (
t�u�1

n

wt ~n
�102At

'~b0 !v� «t ~b0 !� n�102Qt
' v� «t !

� I ~0 � «t ~b0 ! � n�102At
'~b0 !v!

� (
t�u�1

n

wt ~n
�102Qt

' v� «t !

� @I ~0 � «t ~b0 ! � n�102Qt
' v!� I ~0 � «t � n�102Qt

' v!#

� (
t�u�1

n

wt ~n
�102Qt

' v� «t !

� @I ~0 � «t ~b0 ! � n�102At
'~b0 !v!� I ~0 � «t ~b0 ! � n�102Qt

' v!#

� D1 � D2 � D3 +
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By a method similar to the proof for K2, we can obtain that D1
P
&& 0 uniformly

on compact sets+ On the other hand, denote ht � «t~b0!� «t + It can be verified
that

6I ~0 � «t ~b0 ! � n�102Qt
' v!� I ~0 � «t � n�102Qt

' v!6

� ~I ~�ht � «t � 0!� I ~n�102Qt
' v� ht � «t � n�102Qt

' v!!I ~ht � 0!

� ~I ~0 � «t � �ht !� I ~n�102Qt
' v � «t � n�102Qt

' v� ht !!I ~ht � 0!+

Then from condition A3 and by a method similar to the proof of Lemma 2, we
have

E6D2 6 � (
t�u�1

n

E�wt I ~Qt
' v � 0!

� �I ~ht � 0!��
�ht

0

��
n�102Qt

' v�ht

n�102Qt
' v �6n�102Qt

' v� x 6 f ~x! dx

� I ~ht � 0!��
0

�ht

��
n�102Qt

'v

n�102Qt
' v�ht�

� 6n�102Qt
' v� x 6 f ~x! dx	�

� C (
t�u�1

n

E $wt ~6n�102Qt
' v6jt � jt

2!%

� Cn�102 (
t�u�1

n

E $wt
102 6Qt

' v6{wt
102jt %� C (

t�u�1

n

E $wt
102jt %

2

� D21 � D22 +

By the same method as for K1, we can obtain that D21r 0+ On the other hand,

D22 � C (
t�u�1

n �(
h�0

`

r h�t~h � t !a�2

� C (
t�u�1

n

r 2 t�(
h�0

`

r hha � (
h�0

`

r ht a�2

� C (
t�u�1

n

r 2 t�(
h�0

`

r hha�2

� C (
t�u�1

n

r 2 t�(
h�0

`

r ht a�2

r 0+

Therefore, we have

E6D2 6r 0+ (3.5)

And we can obtain E6D36 r 0 similarly to ~3+5!+ Hence L2
P
&& 0 uniformly on

compact sets+
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By the same method as for L2, we have

L3 � (
t�u�1

n

wt ~n
�102At

'~b0 !v� «t ~b0 !!I ~n
�102At

'~b0 !v � «t ~b0 ! � 0!

� (
t�u�1

n

wt ~n
�102Qt

' v� «t !I ~n
�102Qt

' v � «t � 0! P
&& 0

uniformly on compact sets+ This completes the proof of this lemma+ �

LEMMA 4+ Sn~v! � Tn~v!
P
&& 0 uniformly on compact sets.

Proof+ Notice that we have the fact that under conditions A1 and A2, for any
given positive number M, there exist positive constants C � 0 and 0 � r � 1
such that for sufficiently large n

sup
7v7�M

6«t ~b0 � n�102v!6 � C(
j�0

`

r j 6yt�j 6+

Now we have

sup
7v7�M

6Sn~v!� Tn~v!6 � sup
7v7�M
(

t�u�1

n

6wt � Kwt 6@6«t ~b0 � n�102v!6� 6«t ~b0 !6# +

� C (
t�u�1

n (
k�t

`

k�a 6yt�k 6(
j�0

`

r j 6yt�j 6

1 � (
k�1

`

k�a 6yt�k 6

� C (
t�u�1

n

(
k�t

`

k�a 6yt�k 6�(
j�1

`

r jj a � 6yt 6�
� C (

t�u�1

n

6yt 6(
h�0

`

~h � t !�a 6y�h 6� C (
t�u�1

n

(
h�0

`

~h � t !�a 6y�h 6

� C� (
t�u�1

n

t�a02~6yt 6� 1!�(
h�0

`

h�a02 6y�h 6
P
&& 0

as nr `, by conditions A2 and A3 and the fact that ~h � t !�a � 2�a~ht !�a02 +
This completes the proof of Lemma 4+ �

Proof of Proposition 2+ For v � R p�q , define

Sn
**~v! � (

t�u�1

n

wt ~6«t ~b0 !� n�102At
'~b0 !v� n�1v 'Ht ~b0 !v6� 6«t ~b0 !6!,
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where

Ht ~b! � �
1

2

]2«t ~b!

]b]b '
� ~ht~i, j ! !~ p�q!�~ p�q! +

From the definition of «t~b! in expression ~2+1!, we have

u~B!
]2«t ~b!

]fi ]fj

� 0, i, j � 1, + + + , p,

u~B!
]2«t ~b!

]fi ]uj
� At�j, i ~b!, i � 1, + + + , p, j � 1, + + + ,q,

u~B!
]2«t ~b!

]ui ]uj
� At�j, i ~b!� At�i, j ~b!, i, j � 1, + + + ,q+

Similarly, replacing At�i, j ~or At�j, i ! by Qt�i, j ~or Qt�j, i ! in the preceding three
equalities, we can define Xt � ~Xt~i, j !!+ Then, ~ht~i, j !~b0!! can be well approx-
imated by ~Xt~i, j !! such that

6Xt~i, j !� ht~i, j !~b0 !6 � jt , i, j � 1, + + + , p � q, (3.6)

which can be proved in the same way as Lemma 1+
Notice that

Sn
**~v!� Sn

*~v!

� (
t�u�1

n

wt ~6«t ~b0 !� n�102At
'~b0 !v� n�1v 'Ht ~b0 !v6� 6«t ~b0 !� n�102At

'~b0 !v6!

� �
1

n (t�u�1

n

wt v 'Ht ~b0 !vsgn~«t ~b0 !� n�102At
'~b0 !v!

� 2 (
t�u�1

n

wt ~n
�1v 'Ht ~b0 !v� «t ~b0 !� n�102At

'~b0 !v!

� @I ~0 � «t ~b0 !� n�102At
'~b0 !v � n�1v 'Ht ~b0 !v!

� I ~n�1v 'Ht ~b0 !v � «t ~b0 !� n�102At
'~b0 !v � 0!#

� T1 � T2 +

Notice that �~10n!(t�u�1
n wt v 'Xt vsgn~«t ! r 0; we obtain

T1 � �
1

n (t�u�1

n

wt v 'Xt v@sgn~«t ~b0 !� n�102At
'~b0 !v!� sgn~«t !#� op~1!

WLADE ESTIMATION FOR IVARMA MODELS 865



by ~3+6!+ Using the same argument of E6K16r 0 in Lemma 3, we have T1
P
&& 0+

Similarly, we have

T21 � (
t�u�1

n

wt ~n
�1v 'Ht ~b0 !v� «t ~b0 !� n�102At

'~b0 !v!

� I ~0 � «t ~b0 !� n�102At
'~b0 !v � n�1v 'Ht ~b0 !v!

� (
t�u�1

n

wt ~n
�1v 'Xt v� «t � n�102Qt

' v!

� I ~0 � «t ~b0 !� n�102At
'~b0 !v � n�1v 'Ht ~b0 !v!

� op~1!+

Let

T21
~1! � (

t�u�1

n

wt ~n
�1v 'Xt v� «t � n�102Qt

' v!I ~0 � «t � n�102Qt
' v � n�1v 'Xt v!

and

T21
~2! � (

t�u�1

n

wt ~n
�1v 'Xt v� «t � n�102Qt

' v!

� @I ~0 � «t ~b0 !� n�102At
'~b0 !v � n�1v 'Ht ~b0 !v!

� I ~0 � «t � n�102Qt
' v � n�1v 'Xt v!# +

In the same way as the proofs of ~3+3! and ~3+5! for T21
~1! and T21

~2! , respectively,
we can obtain that T21

P
&& 0+ The same result holds for the rest term of T2+

Thus, it follows that Sn
**~v! � Sn

*~v! P
&& 0 uniformly on compact sets+

But,

6Sn
**~v!� Sn~v!6

� 
 (
t�u�1

n

wt ~6«t ~b0 !� n�102At
'~b0 !v� n�1v 'Ht ~b0 !v6� 6«t ~b0 � n�102v!6!


�
1

n (t�1

n

wt 6v '~Ht ~bn
*!� Ht ~b0 !!v6,

where bn
* is between b0 and b0 � n�102v+ Then, Sn

**~v! � Sn~v!
P
&& 0 uni-

formly on compact sets+ Therefore, combining Lemmas 3 and 4, we have
Tn~v! � Sn

�~v! P
&& 0 uniformly on compact sets+

By Lemma 2, we obtain that

Tn~v!rL T ~v! on C~R p�q !

as n r `+ This completes the proof+ �
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Proof of Theorem 1+ Note that the limit process in Proposition 2 has convex
sample paths and a unique minimizer:

j � �~10@2f ~0!# !S�1N+

Let Pn and P be the probability measures on C~R p�q ! induced by Tn and T,
respectively+ By Skorokhod’s representation theorem ~cf+ Pollard, 1984, pp+ 71–
73!, there exists a probability space ~V*,F *,P *! with processes T * and Tn

* hav-
ing the distributions P and Pn, respectively, such that Tn

* a+s+
&& T *+ Hence, there

exists a subset V' of V* with P *~V'!� 1 such that for any v � V' ,

sup
v�K
6Tn
*~v,v!� T *~v,v!6r 0 (3.7)

holds for any compact set K+ Denote the minimizer of T * by j *+ Then j * has
the same distribution as j+ For any given positive random variable M, let

jn
*~v! � arg min

7v�j *~v!7�M~v!

Tn
*~v,v!+

Now we show that jn
*~v! r j *~v!+ Suppose jn

*~v! r j *~v! does not hold;
then there is a subsequence n ' such that jn '

* ~v!r j '~v!� j *~v! and we know
7j '~v! � j *~v!7 � M~v!+ From the definition of jn

*~v!, we have

Tn
*~j *~v!!� Tn

*~jn
*~v!! � 0+

But, on the other hand,

Tn '
* ~j *~v!!� Tn '

* ~jn '
* ~v!!

� @Tn '
* ~j *~v!!� T *~j *~v!!#� @T *~j *~v!!� T *~jn '

* ~v!!#

� @T *~jn '
* ~v!!� Tn '

* ~jn '
* ~v!!#

� G1 � G2 � G3 +

From ~3+7!, we can obtain that G1 r 0 and G3 r 0+ Noticing that T *~v,v! is
continuous, we have

G2r T *~j *~v!!� T *~j '~v!! � 0+

This is a contradiction+ Therefore, jn
* a+s+

&& j *+
Define a sequence of local minimizers $jn% of Tn by

jn~v! � arg min
7v�j~v!7�M~v!

Tn~v,v!+

Then, jn converges in distribution to j+ The proof is completed+ �
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3.2. Proof of Theorem 2

We also use the substitution v � Mn ~b � b0!+ Then, minimizing GWn~b! is
equivalent to minimizing

ETn~v! � (
t�u�1

n

Kwt ~6«t ~ Zb0 !� At
'~ Zb0 !~b0 � Zb0 � n�102v!6� 6«t 6!+

Because ETn~v! has convex sample paths, we only need to prove that ETn~v! rL
T ~v! on C~R p�q! by Lemma 2+2 in Davis et al+ ~1992!+

Denote

EHt ~b! �
1

2 (i, j�1

p�q ]2«t ~b!

]bi ]bj

+

By Taylor expansion near Zb0 , for any fixed v � R p�q , we have

«t ~b0 � n�102v! � «t ~ Zb0 !� At
'~ Zb0 !~b0 � Zb0 � n�102v!� EHt ~b1t !Op~n

�1 !,

where b1t lies between Zb0 and b0 � n�102v+ We now have

«t ~ Zb0 !� At
'~ Zb0 !~b0 � Zb0 � n�102v!

� «t ~b0 � n�102v!� EHt ~b1t !Op~n
�1 !

� «t ~b0 !� n�102At
'~b0 !v� EHt ~b2 t !Op~n

�1 !� EHt ~b1t !Op~n
�1 !,

where b2 t lies between b0 and b0 � n�102v+ Hence, by a similar way to the proof
of Lemma 2 but replacing n�102Qt

' v by n�102Qt
' v� EHt~b0!Op~n�1!, we have

ETn~v! � (
t�u�1

n

Kwt @6«t ~b0 !� n�102At
'~b0 !v� EHt ~b2 t !Op~n

�1 !

� EHt ~b1t !Op~n
�1 !6� 6«t 6#

� (
t�u�1

n

Kwt ~6«t � n�102Qt
' v� EHt ~b0 !Op~n

�1 !6� 6«t 6!� op~1!rL T ~v!+

�

3.3. Proof of Theorem 3

Based on Theorem 1, Theorem 3 follows immediately from Lemmas 5 and 6 in
this section+ We assume that the conditions of Theorem 3 hold+

LEMMA 5+ ZS P
&& S and ZV P

&& V.
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Proof+ Denote

Zu~z! � 1 � Zu1 z � {{{� Zuq z q, Zf~z!� 1 � Zf1 z � {{{� Zfp z p+

Then

ZQt � ~ ZUt�1, + + + , ZUt�p , ZVt�1, + + + , ZVt�q !
',

where ZUt and ZVt are determined by

Zf~B! ZUt � «t ~ Zb!, Zu~B! ZVt � «t ~ Zb!+

Note that, by the definition of «t~b!, we have Zf~B!yt � Zu~B!«t~ Zb! where yt � 0
for t � 0+ Hence,

ZUt � Zu�1~B!yt , ZVt � Zu�2~B! Zf~B!yt , ~ yt � 0 for t � 0!+

Let

II1 �
1

n � u (t�u�1

n

Kwt ZQt ZQt
'�

1

n � u (t�u�1

n

wt Qt Qt
' ,

II2 �
1

n � u (t�u�1

n

wt Qt Qt
' +

Then, ZS � II1 � II2+ Obviously, II2 r S by the ergodic theorem+ For II1,
we first define a vector-valued function Qt ~b! � ~Ut�1~b!, + + + ,Ut�p~b!,
Vt�1~b!, + + + ,Vt�q~b!!

' , and its components are determined as follows:

f~B!Ut ~b! � «t , u~B!Vt ~b!� «t +

We denote EQt � Qt~ Zb! and divide II1 into three terms as follows:

II1 �
1

n � u (t�u�1

n

~ Kwt � wt ! ZQt ZQt
'�

1

n � u (t�u�1

n

wt ~ ZQt ZQt
'� EQt EQt

'!

�
1

n � u (t�u�1

n

wt ~ EQt EQt
'� Qt Qt

'!

� J1 � J2 � J3 +

It is easy to obtain that J1
P
&& 0 by Lemma 1 and the definition of ZQt + Notice

that the ~1,1!th element of J2 is

J2
~1,1! �

1

n � u (t�u�1

n

wt ~ ZUt�1 � Ut�1~ Zb!!~ ZUt�1 � Ut�1~ Zb!!
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and

wt
102 6 ZUt�1 � Ut�1~ Zb!6 � wt

102jt � C, wt
102 6 ZUt�1 � Ut�1~ Zb!6� C

for some positive constant C and jt defined in Lemma 1+ It follows that
J2
~1,1! P

&& 0, and similarly we can prove that the rest elements of J2 converge to
zero in probability+ Hence J2

P
&& 0+ For J3, noticing that Qt � Qt~b0!, we have

EQt � Qt � Qt ~ Zb!� Qt ~b0 !�
]Qt ~bt

*!

]b '
~ Zb� b0 !,

where bt
* lies between Zb and b0+ Noticing that wt

1027~]Qt ~b
* !!0]b ' 7 � C,

wt
1027Qt7 � C, and wt

1027 EQt7 � C, we obtain that J3
P
&& 0+ Now it has been

proved that ZS P
&& S+

In the same way we can prove ZV P
&& V+ �

LEMMA 6+ It holds that Df ~0! P
&& f ~0! .

Proof+ Define

Zf ~0! �
1

[sw bn~n � u! (t�u�1

n

wt K�«t ~ Zb!

bn
�,

where [sw � ~n � u!�1(t�u�1
n wt ; then

6 Zf ~0!� Df ~0!6 � 
 1

[s Kw bn~n � u! (t�u�1

n

~ Kwt � wt !K�«t ~ Zb!

bn
�


� 
 [s Kw � [sw

[s Kw [sw bn~n � u! 
 (t�u�1

n

wt K�«t ~ Zb!

bn
�

�
C

[s Kw bn~n � u! (t�u�1

n

(
k�t

`

k�a 6yt�k 6� Op~1!
 [s Kw � [sw

[s Kw [sw bn



� op~1!� Op~1!
1

~n � u!bn
(

t�u�1

n

~ Kwt � wt !
P
&& 0,

where [s Kw � ~n � u!�1(t�u�1
n Kwt + So we need to prove that

Zf ~0! P
&& f ~0!+

Notice that

6 Zf ~0!� f ~0!6 � P1 � P2 ,
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where

P1 � 
 1

[sw bn~n � u! (t�u�1

n

wt�K�«t ~ Zb!

bn
�� K� «t

bn
��
 ,

P2 � 
 1

[sw bn~n � u! (t�u�1

n

wt K� «t

bn
�� f ~0!
 +

But, Lipschitz continuity of K~x! insures that there exists a positive number L
such that 6K~x! � K~ y!6 � L6x � y 6 for any x, y, and then, from Theorem 1
and the assumptions on bn, we have

P1 �
L

[sw bn
2~n � u! (t�u�1

n

wt 6«t ~ Zb!� «t 6

�
L

[sw bn
2~n � u! (t�u�1

n

wt ~6«t ~ Zb!� «t ~b0 !6� 6«t ~b0 !� «t 6!

�
L

[sw bn
2~n � u! (t�u�1

n

wt7 Zb� b077At ~bt
**!7

�
C

[sw bn
2~n � u! (t�u�1

n

(
k�t

`

r k 6yt�k 6

�
C

[sw bn
2Mn
Mn 7 Zb� b07�

C

[sw bn
2~n � u! (t�u�1

n

r t (
h�0

`

r h 6y�h 6
P
&& 0,

where b* lies between Zb and b0+ For P2, equivalently we need to prove that

I �
1

[sw bn~n � u! (t�u�1

n

wt K� «t

bn
� P
&& f ~0!+ (3.8)

In fact, I � ~10 [sw!I1 � f ~0! where

I1 �
1

bn~n � u! (t�1

n

wt K� «t

bn
��

1

n � u (t�u�1

n

wt f ~0!+

Notice that

EI1
2 �

1

~n � u!2 (t�u�1

n

E�wt� 1

bn

K� «t

bn
�� f ~0!�	2

�
2

~n � u!2 (
u�1�i�j�n

E�wi wj� 1

bn

K� «i

bn
�� f ~0!�� 1

bn

K� «j

bn
�� f ~0!�	

� I11 � I12 +
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But

I11 �
2

n � u
E�wt

2�K 2� «t

bn
� 1

bn
2

� f 2~0!�	
�

2

bn~n � u!
�

�`

`

K 2~x! f ~bn x! dxE~wt
2!�

2f 2~0!

n � u
Ewt

2r 0

by the assumptions on K~x!, and

6I12 6 �
2

~n � u!2 
 (u�1�i�j�n

E�wi wj�K� «i

bn
� 1

bn

� f ~0!�	
� �

�`

`

K~x!~ f ~bn x!� f ~0!! dx

� �

�`

`

K~x!6 f ~bn x!� f ~0!6 dx E��K� «i

bn
� 1

bn

� f ~0!�	� Cbnr 0

by condition A3 and the assumptions on K~x!+ Noticing that [sw r Ewt , we
have ~3+8!+ The proof of Lemma 6 is completed+ �

4. NUMERICAL PROPERTIES

We conducted a simulation study to illustrate the finite-sample properties of
the proposed WLADE in five aspects: namely, ~i! its accuracy; ~ii! its sampling
distribution; ~iii! comparison with the unweighted LADE, the Whittle estima-
tor ~Mikosch et al+, 1995!, QMLE, and the Gauss–Newton estimator ~Davis,
1996!; ~iv! the selection of a, g, and d in ~2+8!; and ~v! the performance of the
Wald test statistic Zn+

We generated data from a simple ARMA~1,1! model:

yt � f1 yt�1 � «t � u1«t�1, (4.1)

with t2, Cauchy, or N~0,1! innovation distribution+ Unless specified otherwise,
we always set u � 20, a � 3, and d � 0+

Tables 1 and 2 list the means and the standard deviations ~SD! of the WLADE
for f1 and u1 from the 1,000 samples from model ~4+1! with sample size n �
200 or 400 and the true value ~f1,u1! � ~0+4,0+7!, ~0+3,0+5!, or ~�0+5,�0+5!+
The estimates are very accurate in general, and the accuracy increases when
the sample size increases from 200 to 400+We also included in the tables asymp-
totic standard deviations ~AD! derived from Theorem 1 with ~S,V! replaced
by their estimators in ~2+9! and with f ~0! replaced by ~2+10! with the kernel
K~x! � e�x0~1 � e�x!2 and the rule-of-thumb bandwidth bn � 1+06 � n�105

~Silverman 1986, p+ 40!+ The values of SD and AD are quite close to one another+
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To investigate the sampling distributions of the WLADE, we drew 16,000
samples of size n � 400 from ~4+1! with ~f1,u1! � ~0+3,0+5! and t2 or Cauchy
innovations+ For each sample, the WLADEs for both f1 and u1 were obtained+
We divided @�6,6# into small intervals with equal length 0+2+ For each small
interval, we computed the ~normalized! relative frequency for the occurrence
of the event that the normalized WLADE falls into the interval+ Those relative
frequencies are plotted against the center of intervals in Figures 1 and 2+
We superimposed the N~0,1! density function in the figures, which is the lim-
iting density of the normalized WLADE+ Even with sample size n � 400, the

Table 1. Means and standard deviations of WLADE for model ~4+1! with t~2!
innovations

n � 200 n � 400

f1 u1 f1 u1 f1 u1

0+4 0+7 b 0+4092 0+6982 0+4078 0+6959
SD 0+1013 0+0831 0+0716 0+0537
AD 0+1156 0+0846 0+0779 0+0574

0+3 0+5 b 0+3019 0+5038 0+3009 0+4970
SD 0+1153 0+1101 0+0916 0+0842
AD 0+1165 0+1144 0+0926 0+0848

�0+5 �0+5 b �0+4928 �0+4952 �0+4992 �0+4959
SD 0+1075 0+1044 0+0705 0+0799
AD 0+1164 0+1201 0+0779 0+0807

Table 2. Means and standard deviations of WLADE for model ~4+1! with
Cauchy innovations

n � 200 n � 400

f1 u1 f1 u1 f1 u1

0+4 0+7 b 0+4087 0+6918 0+4095 0+6924
SD 0+0787 0+0535 0+0550 0+0382
AD 0+0748 0+0530 0+0498 0+0379

0+3 0+5 b 0+3095 0+4917 0+3014 0+4936
SD 0+0850 0+0776 0+0405 0+0360
AD 0+0806 0+0749 0+0441 0+0371

�0+5 �0+5 b �0+4994 �0+4925 �0+5009 �0+4974
SD 0+0774 0+0849 0+0440 0+0498
AD 0+0754 0+0831 0+0438 0+0478
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estimated values of the density functions match their asymptotic limits very
well+

Figure 3 presents the box plots of the average absolute error ~AAE! ~6 Zf1 �
0+3 6� 6 Zu1 � 0+5 6!02 for the unweighted LADE, the WLADE, the Whittle esti-
mator, the QMLE, and the Gauss–Newton estimator from 1,000 samples with
sample size n � 400 drawn from ~4+1!+ Here, we set d � 2+ For the samples
with heavy-tailed innovations, that is, t2 and Cauchy, the WLADE performed
better than the Whittle estimator, QMLE, and the Gauss–Newton estimator+ In
fact, the improvement from using the WLADE over the preceding three estima-
tors is more pronounced when the tails are heavier ~i+e+, with Cauchy distribu-
tion!+ The Gauss–Newton estimator performed the best with Gaussian
innovations+ However it is noticeable that there was an efficiency loss due to
the introduction of weights in the estimation, although such a loss was not sig-
nificant at least in the setting used in our simulation+

Figure 1. Estimated values ~�! for the density functions of the normalized Zf1 ~shown
in ~a!! and Zu1 ~shown in ~b!!, together with their asymptotic limit—the N~0,1! density
~solid curves! for model ~4+1! with t2 innovations+
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Because the convergence rate of the WLADE is slower than the Gauss–
Newton estimator ~Mikosch et al+, 1995; Davis, 1996!, we compared the two
estimators with large sample size n between 2,000 and 8,000+ For each setting,
1,000 samples were drawn from model ~4+1! with Cauchy innovations+ The
parameters ~f1,u1! were set at ~�0+3,0+2!, ~0+3,�0+5!, ~�0+3,0+5!, ~0+1,�0+6!,
~0+3,0+5!, ~0+6,0+7!, ~0+4,0+6!, ~�0+4,�0+6!, ~�0+3,�0+4!, and u � Mn + It turned
out that when f1u1 � 0, the WLADE performed better than the Gauss–Newton
estimator for all n � 8,000+ However, when f1u1 � 0, the WLADE was better
than the Gauss–Newton estimator only for n � 3,000+ The box plots of the
AAE for parameters ~f1,u1!� ~�0+3,0+2!, ~�0+3,�0+4!, ~0+6,0+7! are displayed
in Figure 4+

We also compared the WLADE using a general form of weights ~2+8! with
different a, g, and d+ To this end, we drew 1,000 samples from model ~4+1! with

Figure 2. Estimated values ~�! for the density functions of the normalized Zf1 ~shown
in ~a!! and Zu1 ~shown in ~b!!, together with their asymptotic limit—the N~0,1! density
~solid curves! for model ~4+1! with Cauchy innovations+
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~f1,u1! � ~0+3,0+5! and n � 400+ Figure 5 presents the box plots of the AAEs
with t2, Cauchy, and normal innovations+ They suggest that the WLADE is
fairly robust with respect to the value of a+ However, the WLADE is more sen-
sitive to g+ It is evident that we should choose g as small as possible, that

Figure 3. Box plots of the AAE of LADE ~L!,WLADE ~WL!,Whittle estimator ~WH!,
QMLE ~Q! and Gauss–Newton estimator ~G–N! for model ~4+1!+

Figure 4. Box plots of the AAE of WLADE ~W! and Gauss–Newton ~N! estimator
for model ~4+1! for the large-sample case+
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is, g � 2, which corresponds to the default weight function used in this paper+
On the other hand, the performances with d � 1,2, and 3 do not differ
significantly+

Finally, we approximated the P-value of the Wald test proposed in Sec-
tion 2+3 for testing AR~1! against ARMA~1,1! models by the relative fre-
quency ZP for the occurrence of the event that the AR~1! null hypothesis was
rejected in a simulation with 1,000 replications+ The data were generated from
~4+1! with ~f1,u1! � ~0+3,0! or ~f1,u1! � ~0+3,0+5! and innovation to be t~2!,
Cauchy, or N~0,1!+We repeated the experiment with sample size equal to, respec-
tively, 200, 400, and 600 for the nominal significance level between 0 and 0+1+
Figure 6 plots the difference between ZP and the nominal significance level against
the nominal level with data generated from ~4+1!+ With ~f1,u1! � ~0+3,0!, Fig-
ure 6~a!–~c! indicate that the x2-asymptotic approximation for the significance
level is accurate, especially for n � 400 and 600+ With ~f1,u1! � ~0+3,0+5!,
Figure 6~d!–~f ! illustrate that the test is powerful in detecting the departure
from the AR~1! hypothesis+

Figure 5. Box plots of AAE of WLADE with different a, g, and d for model ~4+1!+
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