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Estimating GARCH Models: When to Use What?
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Abstract

The class of GARCH models has proved particularly valuable in modelling time series with

time varying volatility. These include financial data, which can be particularly heavy tailed. It

is well understood now that the tail heaviness of the innovation distribution plays an important

role in determining the relative performance of the two competing estimation methods, namely

the maximum quasilikelihood estimator based on a Gaussian likelihood (GMLE) and the log-

transform based least absolutely deviations estimator (LADE); see Peng and Yao (2003). A

practically relevant question is when to use what. We provide in this paper a solution to this

question. By interpreting the LADE as a version of the maximum quasilikelihood estimator

under the likelihood derived from assuming hypothetically that the log squared innovations

obey a Laplace distribution, we outline a selection procedure based on some goodness-of-fit

type statistics. The methods are illustrated with both simulated and real data sets. Although

we deal with the estimation for GARCH models only, the basic idea may be applied to address

the estimation procedure selection problem in a general regression setting.

Some key words: Estimation procedure selection; GARCH; Gaussian likelihood; Heavy tail; Laplace dis-

tribution; Least absolute deviations estimator; Maximum quasilikelihood estimator; Time series.
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1 Introduction

Several methods exist for estimating parameters in GARCH models with unknown innovation

distributions. The maximum quasilikelihood estimator facilitated by hypothetically assuming the

innovation distribution to be Gaussian is arguably the most frequently used estimator in prac-

tice, which we simply call the Gaussian maximum likelihood estimator (GMLE). The asymptotic

properties of the GMLE is fully understood now. In fact, it is a well behaved estimator when the

innovation distribution has finite fourth moment. However when the innovation distribution is

heavy tailed with an infinite fourth moment, the estimators may not be asymptotically normal,

the range of possible limit distributions is extraordinarily large, and the convergence rate is slower

than the standard rate of n1/2; see, e.g. Hall & Yao (2003). To overcome the drawbacks due to the

possible slow convergence rates of the GMLE, Peng & Yao (2003) propose a log-transform based

least absolute deviations estimator (LADE) as an alternative which is robust with respect to the

heavy tails of the innovation distribution. In fact the LADE is asymptotically normal with the

standard convergence rate n1/2 under the assumption that the second moment of the innovation

distribution is finite. Monte Carlo experiments reported in Peng & Yao (2003) indicate that the

relative performance of the two estimators hinges critically on the tail heaviness of the innova-

tion distribution. Indeed LADE is preferred for the processes with very heavy tailed innovation

distributions.

In practice the innovation distribution is unknown. A practically relevant question is how to

choose an appropriate estimator for a given practical situation. In this paper we put forward a

proposal to choose between the GMLE and the LADE based on some goodness-of-fit measures.

To this end, we view the LADE also as a maximum quasilikelihood estimator based on the

hypothesis that the log squared innovations follow a Laplace distribution. Our approach is based

on the intuition that we should use the GMLE if the innovation distribution is close to a normal

distribution, and use the LADE if the distribution of the log squared innovations is close to a

Laplace distribution. Some goodness-of-fit statistics are defined to measure the closeness of those

distributions; see section 2.3 below. We have shown that our selection procedure is consistent in

the sense that the probability of choosing the ‘correct’ estimator converges to 1. The numerical

experiments illustrate that the proposed procedure exhibits desirable finite sample performance.

Although we only deal with the estimation for GARCH models in this paper, the general idea
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may be applied for selecting, for example, between L1 and L2 estimator in a general regression

setting; see the relevant discussion in section 4.

The asymptotic properties of the GMLE have been studied initially by Weiss (1986) for pure

ARCH(p) processes, by Lee & Hansen (1994) and Lumsdaine (1996) for GARCH(1,1) processes,

under the assumption that the innovation distribution has finite fourth moment. Further stud-

ies for general GARCH(p, q) processes without the condition of fourth finite moment may be

found in Hall & Yao (2003), Berkes, Horváth & Kokoszka (2003), Straumann & Mikosch (2006),

and Mikosch & Straumann (2006). See also Straumann (2005). Complex asymptotic proper-

ties were also observed from a Whittle estimator by Giraitis & Robinson (2001) for heavy tailed

GARCH(1,1) models. The asymptotic properties of Lp-estimators for ARCH(p) models were

established by Horvath and Liese (2004).

The rest of the paper is organized as follows. The methodology is presented in section 2. It

also contains a consistency result. Section 3 reports numerical illustrations with both simulated

and real data sets. Miscellaneous remarks are given in section 4. The technical proof is relegated

to the Appendix.

2 Methodology

2.1 Model

A generalized autoregressive conditional heteroscedastic, GARCH, model with orders p ≥ 1 and

q ≥ 0 is defined as

Xt = σtεt, and σ2
t ≡ σt(θ)

2 = c+

p∑

i=1

biX
2
t−i +

q∑

j=1

ajσ
2
t−j , (2.1)

where c > 0, bj ≥ 0 and aj ≥ 0 are unknown parameters, θ = (c, b1, · · · , bp, a1, · · · , aq)
T, {εt} is a

sequence of independent and identically distributed random variables with mean 0 and variance 1,

and εt is independent of {Xt−k, k ≥ 1} for all t. The distribution of εt is unknown. When q = 0,

(2.1) reduces to an autoregressive conditional heteroscedastic, ARCH, model. The necessary and

sufficient condition for (2.1) to define a unique strictly stationary process {Xt, t = 0,±1,±2, · · · }

with EX2
t < ∞ is that

p∑

i=1

bi +

q∑

j=1

aj < 1. (2.2)
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Furthermore, for such a stationary solution, EXt = 0 and var(Xt) = c/(1 −
∑p

i=1 bi −
∑q

j=1 aj);

see Giraitis et al. (2000), and also Theorem 4.4 of Fan & Yao (2003). Under condition (2.2),

σ2
t = σt(θ)

2 may be expressed as

σt(θ)
2 =

c

1−
∑q

j=1 aj
+

p∑

i=1

biX
2
t−i +

p∑

i=1

bi

∞∑

k=1

q∑

j1=1

· · ·

q∑

jk=1

aj1 · · · ajkX
2
t−i−j1−···−jk

, (2.3)

where the multiple sum vanishes if q = 0; see Hall & Yao (2003).

2.2 Two estimators

The GMLE is defined as

θ̂ = argmin
θ

n∑

t=ν+1

[ X2
t

σ̃t(θ)2
+ log{σ̃t(θ)

2}
]
, (2.4)

where σ̃t(θ)
2 is a truncated version of σt(θ)

2 defined as

σ̃t(θ)
2 =

c

1−
∑q

j=1 aj
+

min(p,t−1)∑

i=1

biX
2
t−i +

p∑

i=1

bi

∞∑

k=1

q∑

j1=1

· · ·

q∑

jk=1

aj1 · · · ajk (2.5)

× X2
t−i−j1−···−jk

I(t− i− j1 − · · · − jk ≥ 1),

which depends on the observations Xt−1, · · · , X1 only; c.f. (2.3), and ν ≥ 1 is an integer which

controls the effect of the truncation. Note for a purely ARCH model (i.e. q = 0), we choose ν = p.

The GMLE can be motivated by temporarily assuming that εt ∼ N(0, 1). Given {Xk, k ≤ ν}

with ν ≥ max(p, q), the conditional density function of Xν+1, · · · , Xn is then proportional to

{ n∏

t=ν+1

σt(θ)
2
}−1/2

exp
{
−

1

2

n∑

t=ν+1

X2
t

σt(θ)2

}
.

Maximizing this (conditional) likelihood with σt(θ)
2 replaced by σ̃t(θ)

2 leads to the GMLE esti-

mator θ̂; see (2.4).

The LADE, proposed by Peng and Yao (2003), requires a different parametrization as follows.

Let C0 > 0 be a constant such that the median of e2t is equal to 1, where et = C
1/2
0 εt. Then (2.1)

may now be expressed as

Xt = stet, and s2t ≡ st(α)
2 = γ +

p∑

i=1

βiX
2
t−i +

q∑

j=1

ajs
2
t−j , (2.6)

where s2t = σ2
t /C0, γ = c/C0, βi = bi/C0, and α = (γ, β1, · · · , βp, a1, · · · , aq)

T . Note that now

log(X2
t ) = log{st(α)

2}+ log(e2t ), (2.7)
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and the median of log(e2t ) is 0. Thus the true value of α minimizes E| log(X2
t ) − log{st(α)

2}|.

This motivates the LADE

α̂ = argmin
α

n∑

t=ν+1

| log(X2
t )− log{s̃t(α)

2}|, (2.8)

where s̃t(α)
2 is a truncated version of st(α)

2 defined as

s̃t(α)
2 =

γ

1−
∑q

j=1 aj
+

min(p,t−1)∑

i=1

βiX
2
t−i +

p∑

i=1

βi

∞∑

k=1

q∑

j1=1

· · ·

q∑

jk=1

aj1 · · · ajk (2.9)

× X2
t−i−j1−···−jk

I(t− i− j1 − · · · − jk ≥ 1),

which directly follows from (2.5).

In fact the LADE may also be viewed as a maximum quasilikelihood estimator by temporarily

assuming log(e2t ) having a Laplace distribution with density to 0.5λ exp(−λ|x|), where λ > 0 is a

constant. By (2.7), the (conditional) likelihood function based on the observations Xν+1 · · · , Xn

(given {Xk, k ≤ ν}) is then proportional to

exp
[
− λ

n∑

t=ν+1

| log(X2
t )− log{st(α)

2}|
]
.

Maximizing this with st(α)
2 replaced by s̃t(α)

2 leads to the LADE α̂; see (2.8). Note E(ε2t ) < ∞

if log(e2t ) has the above Laplace distribution with λ < 1.

2.3 Selecting an estimation procedure

The performance of θ̂ and α̂ hinges critically on the tail heaviness of the innovation distribution.

When E(|εt|
4−δ) < ∞ for any δ > 0, θ̂ is asymptotically normal. Furthermore the convergence rate

is the standard n1/2 provided E(ε4t ) < ∞. When εt is heavy tailed in the sense that E(|εt|
d) = ∞

for some 2 < d < 4, the asymptotic distribution of θ̂ is no longer normal with a convergence

rate slower than n1/2, and it depends on infinite many unknown parameters of the underlying

distribution. Those asymptotic results have been established under different settings by, for

example, Lee and Hansen (1994), Lumsdaine (1996), Hall and Yao (2003), Berkes et al. (2003),

Straumann and Mikosch (2006), and Mikosch and Straumann (2006). On the other hand, the

LADE α̂ is always asymptotically normal with the convergence rate n1/2 provided E(ε2t ) < ∞.

Simulation studies also indicate that the finite sample performance of the LADE is better than

that of the GMLE when, for example, E(|εt|
3) = ∞. See Peng and Yao (2003).
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Since the distribution of εt is unknown in practice, it is rather difficult, if not impossible, to

inference on how many moments εt has. A pertinent question is which estimator, between the

GMLE and the LADE, we should use in practice. We provide an answer to this question below.

If we knew the distribution of innovations εt, the genuine maximum (conditional) likelihood

estimator would be used. Intuitively we would expect that the GMLE is a better option when the

distribution of εt is close to N(0, 1), and the LADE is better when the distribution of log(e2t ) is

approximately a Laplace distribution; see the discussion at the end of section 2.2. This suggests

that we may compare the closeness of those two pair distributions to select a good estimation

procedure.

Denoted by Φ(·) the N(0, 1) distribution function, and by G(·) the distribution function with

the density function 0.25 exp(−|x|/2). Let ε̂t = Xt/σ̃t(θ̂) be the residuals derived from the GMLE.

In practice, we standardize ε̂t such that the first two sample moments are 0 and 1. Let êt =

Xt/s̃t(α̂) be the residuals derived from the LADE. In practice, we ‘standardize’ êt such that

the sample median of ê2t is 1 and the sample mean of | log(ê2t )| is 2. This may be achieved by

letting log(ê2t ) = C1 log{C2X
2
t /s̃t(α̂)

2} for appropriate positive constants C1 and C2. Note that

Φ(εt) ∼ U(0, 1) when εt ∼ N(0, 1), and G{log(e2t )} ∼ U(0, 1) when G(·) is the distribution

function of log(e2t ). Let F̂n,1(·) be the empirical distribution of {Φ(ε̂t), ν < t ≤ n}, and F̂n,2(·)

the empirical distribution of [G{log(ê2t )}, ν < t ≤ n]. We define the goodness-of-fit statistics

below to measure the distances between F̂n,i and the uniform distribution on (0, 1).

TMLE =

∫ 1

0
|F̂n,1(x)− x|dx, TLADE =

∫ 1

0
|F̂n,2(x)− x|dx. (2.10)

Obviously these statistics are reminiscent of the Cramér-von Mises goodness-of-fit statistics. In

practical implementation, we use the Riemann approximations of these integrals:

TMLE =
n∑

t=ν+1

∣∣ t− ν

n− ν
− ut

∣∣(ut − ut−1), TLADE =
n∑

t=ν+1

∣∣ t− ν

n− ν
− vt

∣∣(vt − vt−1), (2.11)

where uν+1 ≤ uν+2 ≤ · · · ≤ un are the order statistics of {Φ(ε̂t), ν < t ≤ n}, and vν+1 ≤ vν+2 ≤

· · · ≤ vn the order statistics of [G{log(ê2t )}, ν < t ≤ n].

Selection rule: we use the LADE if TMLE > TLADE, and the GMLE otherwise.

Let F1 and F2 denote, respectively, the distribution function of Φ(εt) andG{log(e2t )}. Theorem

1 below indicates that the selection role defined above is consistent. Its proof is given in the

Appendix.
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Theorem 1. Let {Xt} be defined by (2.1) for which condition (2.2) holds. Let ν → ∞ and

ν/n → 0 as n → ∞. Suppose that for some constant κ1, κ2 > 0,

||θ̂ − θ|| = OP (n
−κ1), ||α̂− α|| = OP (n

−κ2). (2.12)

Furthermore, for any constant δ0 > 0, there exists δ > 0 for which

sup
0≤x≤1

|F1(x+ δ)− F1(x− δ)| < δ0, sup
0≤x≤1

|F2(x+ δ)− F2(x− δ)| < δ0. (2.13)

Then as n → ∞, P (TMLE > TLADE) → 1 provided

∫ 1

0
|F1(x)− x|dx >

∫ 1

0
|F2(x)− x|dx. (2.14)

Condition (2.12) requires that both the GMLE and the LADE are, respectively, nκ1 and

nκ2 consistent, which has been established under certain regularity conditions. For the LADE,

κ2 = 1/2 (Peng & Yao 2003). For the GMLE, the value of κ1 is related to the tail heaviness of the

distribution of εt. In fact such a positive κ1 always exists for the GMLE when E(ε2t ) < ∞ (Hall

& Yao 2003, Mikosch & Straumann 2006, and Straumann 2005). Condition (2.13) is fulfilled if,

for example, both F1 and F2 admit bounded probability density functions.

3 Numerical illustration

In this section, we first illustrate the proposed selection procedure with the data simulated from

GARCH(1,1) and ARCH(2) models. In both cases we took the errors εt to beN(0, 1), standardized

t or skewed t with d = 3 or 6 degrees of freedom. A skewed t random variable is defined as

(0.8|V0|+ 0.6V1)/(V2/d)
1/2,

where V0 and V1 are N(0, 1) random variables, V2 ∼ χ2(d), and V0, V1 and V2 are independent with

each other. See Azzalini and Capitanio (2003). We also used εt such that log(ε2t ) is of a Laplace

distribution. We further experimented with the semi-strong ARCH/GARCH models defined in

terms of martingale difference innovations

εt = sgn(ξt)[1 + (η2t − 1)/{1 + exp(σ2
t )}]

1/2,

where ξt and ηt are independent N(0, 1) random variables. We used c = 1, (b1, b2) = (0.7, 0.2) for

the ARCH(2) model, and (b1, a1) = (0.2, 0.7) for the GARCH(1,1) model. Setting the sample size
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Table 1: Simulation results for GARCH(1,1) model – relative frequencies for the oc-
currences of the events {TLADE < TMLE} and {ELADE < EMLE} in 200 replications.

Distribution of εt n TLADE < TMLE ELADE < EMLE

N(0, 1) 250 0.000 0.290
500 0.000 0.235
1000 0.000 0.295

t(6) 250 0.030 0.360
500 0.000 0.425
1000 0.000 0.450

skewed t(6) 250 0.065 0.430
500 0.065 0.470
1000 0.005 0.490

t(3) 250 0.575 0.655
500 0.680 0.650
1000 0.790 0.695

skewed t(3) 250 0.805 0.710
500 0.925 0.725
1000 0.965 0.775

Laplace 250 1.000 0.745
500 1.000 0.765
1000 1.000 0.845

Martingale 250 1.000 0.070
difference 500 1.000 0.850

1000 1.000 0.730

n = 250, 500 and 1000, we drew 200 samples for each setting. We used ν = 20 in the estimation

for GARCH models.

The relative frequencies for the occurrence of the event {TLADE < TMLE} in the 200 replications

are listed in Table 1 for GARCH(1,1) model, and in Table 2 for ARCH(2) model. We also included

in the tables the relative frequencies of the occurrence of the event {ELADE < EMLE}, where the

estimation errors are defined as

ELADE =

p∑

i=1

|β̂i/γ̂ − bi/c|+

q∑

j=1

|âj − aj |, EMLE =

p∑

i=1

|̂bi/ĉ− bi/c|+

q∑

j=1

|âj − aj |,

see (2.6) and (2.1). For the models with normal innovations, the GMLE is the genuine MLE, and

is always the preferred estimator according to our selection procedure. On the other hand, the

LADE is always selected when log(e2t ) has the Laplace distribution. For the models with t(d)-

innovations, the results are less clear-cut. Overall the GMLE is preferred when d = 6 while the

LADE is preferred when d = 3. Furthermore the preference for the GMLE when d = 6 and that
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Table 2: Simulation results for ARCH(2) model – relative frequencies for the occur-
rences of the events {TLADE < TMLE} and {ELADE < EMLE} in 200 replications.

Distribution of εt n TLADE < TMLE ELADE < EMLE

N(0, 1) 250 0.000 0.290
500 0.000 0.260
1000 0.000 0.260

t(6) 250 0.015 0.415
500 0.000 0.470
1000 0.000 0.450

skewed t(6) 250 0.075 0.510
500 0.055 0.460
1000 0.010 0.505

t(3) 250 0.570 0.605
500 0.675 0.625
1000 0.770 0.725

skewed t(3) 250 0.840 0.700
500 0.890 0.730
1000 0.975 0.785

Laplace 250 1.000 0.795
500 1.000 0.825
1000 1.000 0.800

Martingale 250 1.000 0.170
difference 500 1.000 0.930

1000 1.000 0.995

for the LADE when d = 3 increase when the sample size n increases. The models with skewed

t-innovations tend to be in favour of LADE more often than those with (centered) t-innovations

with the same degrees of freedom. For semi-strong GARCH/ARCH models with martingale

difference innovations, the LADE is preferred. This may be due to the fact that the innovation

distribution is very different from normal and L1 estimation is more robust. Overall there is a

clear synchrony between the occurrences of the two events {TLADE < TMLE} and {ELADE < EMLE};

indicating that overall the preferred method by the T -measures leads to more accurate estimates

for the parameters.

Now we apply the method to two centered daily return series: the Switzerland stock index

(SWI) in 2 January 1991 – 31 December 1998, and the B Share of the Shanghai Stock Exchange

(SHB) in 2 January 2001 – 31 December 2004. The length of the series are, respectively, 1859

and 946. The P -value of the Jarque-Bear Test is 0.000 for both the series, and the kurtosis

is 5.72665 for SWI and 5.761476 for SHB. For each of those two series, we fit the first half
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series with GARCH(1,1) models using both the GMLE and the LADE. The sample size used in

the estimations is n = 930 for SWI, and 473 SHB. The values of the goodness-of-fit statistics

(TMLE, TLADE) are (0.026, 0.057) for SWI, and (0.044, 0.041) for SHB. Thus our selection rule

prefers the GMLE for SWI, and the LADE for SHB.

With the sample size fixed at n = 930 for SWI and n = 473 for SHB, we also perform one-

step ahead prediction of the squared returns for each of the second half series. The prediction is

based on the fitted GARCH(1,1) models using both the GMLE and the LADE. With LADE, the

predicted squared returns are of the form ŝ2tSe, where Se is the sample variance of the residuals

êj ≡ Xj/ŝj (j < t); see (2.6). The root mean squares error of the prediction based on the GMLE

is 1.750 for SWI, and 4.757 for SHB. The root mean squares error based on the LADE is 2.715

for SWI, and 2.894 for SHB. Thus the GMLE provided the more accurate prediction for SWI

while the LADE predicted SHB better. This shows that the estimation method preferred by our

selection rule also provided better prediction.

4 Miscellaneous remarks

Although we deal with the estimation for GARCH models only in this paper, the idea may apply

to select an appropriate estimation method in, for example, a general regression model

y = f(X) + ε. (4.1)

When f is known up to some unknown parameters, it is a parametric regression model. When

f is completely unknown, it is a nonparametric regression problem. Nevertheless both the least

squares estimation (LSE) and least absolutely deviations estimation (LADE) are well-developed in

both parametric and nonparametric setting. Intuitively LSE should be used when the distribution

of ε is close to a normal distribution while LADE should be used when the distribution of ε is

close to a Laplace distribution. The procedure presented in section 3.2 is readily applicable for

the selection between those two estimation methods.

The above problem may be seen as to choose the most relevant distribution from the union

of the normal distribution family and the Laplace distribution family. In this sense it is a kind

of model selection problem. However we argue that such an estimation-selection problem is

different from the conventional model-selection problems often featured in statistical literature.

The standard information criteria such as the AIC are designed to select the most relevant model
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from a given smooth parametric family under the assumption that the family contains the true

model as one of its members. When the truth is not in the family, the criteria such the TIC

(Takeuchi 1976, Konishi and Kitagawa 1996) may be used to select the ‘best’ approximation for

the truth within the given family. However to our best knowledge, no criteria may be applied to

select an ‘optimum’ approximate model for the truth across two or more parametric families. The

lack of such a criterion is due to the fact that the maximum likelihood principle may not apply

across different distribution families.

We may embed the two distribution families into one via, for example, a convex combination.

This is to consider, for the regression model (4.1), the error distribution family

πN(0, σ2) + (1− π)L(0, λ), π ∈ [0, 1], σ2 > 0, λ > 0,

where L(0, λ) denotes the Laplace distribution centered at 0 and with scale parameter λ. Now

the MLE for π is typically neither 0 nor 1. Consequently the MLE for f(·) is neither LSE nor

LADE. Therefore this approach, though legitimate on its own, would not provide an answer to

the problem concerned.
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Appendix: Proof of Theorem 1

We use the same notation as in section 2. Put Ut = Φ(εt), Ût = Φ(ε̂t), Vt = G{log(e2t )} and

V̂t = G{log(ê2t )}. Let An = {||θ̂ − θ|| < n−κ1/2} and Bn = {||α̂ − α|| < n−κ2/2}. It follows from

(2.12) that P (An) → 1 and P (Bn) → 1. Denote by ‘
P

−→’ the convergence in probability, and

C,C1 and C2 some generic positive constants which may be different at different places. We split

the proof into several lemmas. We assume that the conditions of Theorem 1 always hold in this

appendix.

Lemma 1. As n → ∞, it holds that
∑

t>ν E
{
|Xt|

∣∣σt(θ)− σ̃t(θ)
∣∣} → 0.
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Proof. It follows from (2.3) and (2.5) that for any t > p,

E|σt(θ)
2 − σ̃t(θ)

2| ≤ E(X2
t )

p∑

i=1

bi
∑

k≥(t−p)/q

q∑

j1=1

· · ·

q∑

jk=1

aj1 · · · ajk

≤ E(X2
t )

p∑

i=1

bi
(a1 + · · ·+ aq)

(t−p)/q

1− (a1 + · · · aq)1/q
,

see also (2.2). Hence

∑

t>ν

[E|σt(θ)
2− σ̃t(θ)

2|]1/2 ≤ C
∑

t>ν

(a1+ · · ·+aq)
(t−p)/(2q) ≤ C

(a1 + · · ·+ aq)
(ν−p)/(2q)

1− (a1 + · · · aq)1/(2q)
→ 0. (A.1)

Note that E(X2
t ) < ∞, which is ensured by (2.2). By (A.1), it holds that

n∑

t=ν+1

E
{
|Xt|

∣∣σt(θ)− σ̃t(θ)
∣∣} ≤ C

∑

t>ν

[E{|σt(θ)− σ̃t(θ)|
2}]1/2 ≤ C

∑

t>ν

[E{|σt(θ)
2− σ̃t(θ)

2|}]1/2 → 0.

This completes the proof. �

Lemma 2. As n → ∞, (n− ν)−1
∑

ν<t≤nE
∣∣Xt{σ̃t(θ̂)− σ̃t(θ)}I(An)

∣∣ → 0.

Proof. It holds on the set An that
∑

1≤j≤q âj is bounded from the above by a constant smaller

than 1 for all sufficiently large n.

Replace the sum over 1 ≤ k < ∞ in the third term on the RHS of (2.5) by the sum over

1 ≤ k ≤ nκ1/4, and denote by σ̌t(θ)
2 the resulting function on the RHS. Then similar to Lemma

1, we may show that

n∑

t=ν+1

E[|Xt|{|σ̃t(θ̂)− σ̌t(θ̂)|+ |σ̃t(θ)− σ̌t(θ)|}I(An)] → 0. (A.2)

On the other hand,

1

n− ν

n∑

t=ν+1

E{|Xt||σ̌t(θ̂)− σ̌t(θ)|I(An)} ≤
C

n− ν

n∑

t=ν+1

[E{|σ̌t(θ̂)− σ̌t(θ)|
2I(An)}]

1/2

≤
C

n− ν

n∑

t=ν+1

[E{|σ̌t(θ̂)
2 − σ̌t(θ)

2|I(An)}]
1/2 ≤ C1{E(X2

t )}
1/2n−κ1/2nκ1/4 → 0.

The result required follows from this and (A.2). �

Lemma 3. For any given constant x,

(i) sup0≤x≤1
1

n−ν

∑
ν<t≤n |I(Ût ≤ x)− I(Ut ≤ x)|

P
−→ 0, and

(ii) sup0≤x≤1
1

n−ν

∑
ν<t≤n |I(V̂t ≤ x)− I(Vt ≤ x)|

P
−→ 0.

12



Proof. We prove (i) first. Since the standard normal density function is bounded, it holds that

|Ût − Ut| ≤ C|ε̂t − εt| ≤ C1|Xt||σ̃t(θ̂)− σt(θ)|/σ̃t(θ̂).

Note that 1/σ̃t(θ̂) is bounded from above by a finite constant on the set An for all sufficiently

large n. It follows from Lemmas 1 and 2 that (n − ν)−1
∑

ν<t≤nE{|Ût − Ut|I(An)} → 0. This

implies that for any δ > 0,

1

n− ν

n∑

t=ν+1

I(|Ût − Ut| > δ, An)
P

−→ 0. (A.3)

Note that

|I(Ût ≤ x)− I(Ut ≤ x)| ≤ I(Ût ≤ x, Ut > x) + I(Ût > x,Ut ≤ x)

≤ I(|Ût − Ut| > δ) + I(Ut ∈ [x− δ, x+ δ]).

Therefore

sup
x

1

n− ν

n∑

t=ν+1

|I(Ût ≤ x)− I(Ut ≤ x)| ≤
1

n− ν

n∑

t=ν+1

I(|Ût − Ut| > δ,An) (A.4)

+ sup
x

1

n− ν

n∑

t=ν+1

I(Ut ∈ [x− δ, x+ δ]) + I(Ac
n).

For any given δ0 > 0, P (Ac
n) < δ0 for all sufficiently large n. Note that

sup
x

1

n− ν

n∑

t=ν+1

I(Ut ∈ [x− δ, x+ δ])

≤ sup
x

∣∣ 1

n− ν

n∑

t=ν+1

I(Ut ∈ [x− δ, x+ δ])− F1(x+ δ) + F1(x− δ)
∣∣+ sup

x
|F1(x+ δ)− F1(x− δ)|.

By the Glivenko-Cantelli Theorem (p.284 of Chow and Teicher 1997), the first term on the RHS

of the above expression converges to 0 almost surely. Condition (2.13) implies that the second

term may be smaller than δ0 by choosing δ sufficiently small. Now the result follows from (A.4)

and (A.3).

Now we prove (ii). Since a Laplace density function is bounded,

|V̂t − Vt| ≤ C| log(ê2t )− log(e2t )| = C| log{st(α)
2/s̃t(α̂)

2}|

≤ C[| log{st(α)
2/s̃t(α)

2}|+ | log{s̃t(α)
2/s̃t(α̂)

2}|].
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Note that for x ≥ 0, log(1 + x) ≤ x, and st(α)
2 ≥ s̃t(α)

2 ≥ γ > 0. Hence the above expression

implies that

|V̂t − Vt| ≤ C
[ |st(α)2 − s̃t(α)

2|

s̃t(α)2
+ |s̃t(α)

2 − s̃t(α̂)
2|
{I{s̃t(α)2 > s̃t(α̂)

2}

s̃t(α̂)2
+

I{s̃t(α)
2 ≤ s̃t(α̂)

2}

s̃t(α)2
}]

≤
C

γ
[|st(α)

2 − s̃t(α)
2|+ |s̃t(α)

2 − s̃t(α̂)
2|{1 + γ/s̃t(α̂)

2}].

When n is sufficiently large, s̃t(α̂)
2 is bounded from below by a positive constant on the set Bn.

Thus it holds on Bn that

|V̂t − Vt| ≤ C1|st(α)
2 − s̃t(α)

2|+ C2|s̃t(α)
2 − s̃t(α̂)

2|.

Now using the similar arguments as in the proofs of Lemmas 1 and 2, we may show that

∑

t>ν

E|st(α)
2 − s̃t(α)

2| → 0, and
1

n− ν

n∑

t=ν+1

E{|s̃t(α)
2 − s̃t(α̂)

2|I(Bn)} → 0.

Now proceeding as the proof for (i) above, we may obtain the required result. �

Proof of Theorem 1. Let Fn,1 and Fn,2 be, respectively, the empirical distribution of {Ut, ν <

t ≤ n} and {Vt, ν < t ≤ n}. By Lemma 3 and the Glivenko-Cantelli Theorem, it holds that

sup
x

|F̂n,i(x)− Fi(x)| ≤ sup
x

|F̂n,i(x)− Fn,i(x)|+ sup
x

|Fn,i(x)− Fi(x)|
P

−→ 0,

for i = 1, 2. This and condition (2.14) entail the required result. �
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