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Abstract

We consider time series that, possibly after integer differencing or integrat-

ing or other detrending, are covariance stationary with spectral density that is

regularly varying near zero frequency, and unspecified elsewhere. This semi-

parametric framework includes series with short, long and negative memory.

We consider the consistency of the popular log-periodogram memory estimate

that, conventionally but wrongly, assumes the spectral density obeys a pure

power law. The local-to zero misspecification leads to increased bias, which

is liable to prevent the usual central limit theorem from holding. The order of

the bias is calculated for several slowly-varying factors, and some discussion of

mean squared error and bandwidth choice is included.
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1. INTRODUCTION

The spectral density at low frequencies determines the long-run behaviour of sta-

tionary time series. Let the covariance stationary and invertible process zt, t =

0,±1, ..., have a spectral density function f(λ), λ ∈ (−π, π], defined by

cov(zt, zt+j) =
π∫
−π
f(λ) cos (jλ) dλ, j = 0,±1, .... (1)

In practice, a finite realization, z1, ..., zn, may be the outcome of integer differencing

or integrating or deterministic detrending of a nonstationary or non-invertible series.

With a ∼ b meaning that a/b → 1, we assume that f(λ) is regularly-varying at zero

frequency, that is

f(λ) ∼ L

(
1

λ

)
λ−2d , as λ→ 0+, (2)

where 0 ≤ |d| < 1/2 and, for positive argument x, the function L (x) is slowly-varying

(in Karamata’s sense), being positive and measurable on some neighbourhood [X,∞),

with

L (cx) /L (x)→ 1 as x→∞, all c > 0. (3)

Detailed discussions of slowly-varying functions, and their applications in probabil-

ity theory, are contained in Seneta (1974) and Bingham, Goldie and Teugels (1987).

A basic property is that as x→∞ L (x) can diverge, or converge to zero, or converge

to a positive constant, or oscillate, and for any a > 0,

xaL (x)→∞, x−aL (x)→ 0, as x→∞. (4)

Therefore in (2) the power law λ−2d dominates the slowly varying factor L (1/λ) so

that, for any L, as λ → 0+ f(λ) still diverges for 0 < d < 1/2, and still f(0) = 0

for −1/2 < d < 0, while when d = 0 f(λ) diverges when L (x) → ∞ as x → ∞ and

f(0) = 0 when L (x)→ 0 as x→∞.
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The simplest example of such L is

L (x) ≡ C > 0. (5)

Others include (see Bingham, Goldie and Teugels (1987, p. 16))

L (x) = C logk x , k ≥ 1, (6)

where log1 x = log x and logk x = logk−1 log x, k ≥ 2, as well as powers and rational

functions of the logk x, k ≥ 1 (e.g. L (x) = 1/ log x), and

L (x) = C exp

{
k∏
j=1

(logj x)aj

}
, 0 < aj < 1, j = 1, ..., k ≥ 1, (7)

L (x) = C exp {log x/ log2 x} . (8)

Let Aj,k denote the σ-field of events generated by zt, j ≤ t ≤ k, and define αj =

supA∈A−∞,t,B∈At+j ,∞ |P (AB)− P (A)P (B)| for j > 0. Then if αj → 0 as j → ∞,

zt is said to be α−mixing. Suppose for the purposes of this paragraph that zt is

Gaussian, in which case the coeffi cient of complete regularity decays at the same rate

as αj, see Ibragimov and Rozanov (1978, pp. 111, 113). Thus from Ibragimov and

Rozanov (1978, pp. 178) zt satisfying (2) cannot be α−mixing when d > 0 (because

not every positive power of f(λ) is integrable). The usual examples of Gaussian

α−mixing processes have bounded spectral density, e.g. a stationary and invertible

autoregressive moving average (ARMA), and thus satisfy (2) with d = 0 and constant

L, (5). However α−mixing does not rule out all unbounded f(λ). From Ibragimov

and Rozanov (1978, pp. 179, 180),

f(λ) = C∗ exp

{
∞∑
j=1

cos jλ

j(log j + 1)

}
(9)

for some C∗ > 0 implies zt is α−mixing. The spectral density in (9) satisfies

f(λ) ∼ C log(1/λ) as λ→ 0+, (10)
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which corresponds to combining (6) for k = 1 with (2) for d = 0. Incidentally under

(9) αj decays very slowly, like 1/ log j (and thus does not satisfy conditions for central

limit theory for statistics such as the sample mean of zt, 1 ≤ t ≤ n). From Ibragimov

and Rozanov (1978, p. 180) a process with spectral density the reciprocal of the right

side of (9) (which converges like (log(1/λ))−1 as λ→ 0+) is also α−mixing.

Under additional conditions to (2) (see Yong, 1974) the autovariance sequence

satisfies

cov(zt, zt+j) ∼
L (j) π

cos(dπ)Γ(2d)
j2d−1, as j →∞. (11)

The probability literature covers the asymptotic behaviour of various simple statistics

under (11), in particular linear and quadratic forms (see e.g. Taqqu (1975), Dobrushin

and Major (1979), Fox and Taqqu (1985, 1987)). However, the frequency domain

form (2) perhaps provides greater intuitive appeal. Early empirical support for the

notion of a divergent spectral density at zero frequency was noted by Granger (1966).

He reported nonparametric spectral density estimates for a number of economic time

series, and while these are inevitably finite at zero frequency, they are strongly peaked

there, and his Figure 1 is suggestive of a spectral singularity at zero frequency. Of

course such an outcome could also be consistent with nonstationarity (such as a unit

root), and he did not present formulae such as (2), but clearly (2) with d > 0 and any

L, or even with d = 0 and diverging L, is consistent with his "typical spectral shape".

The leading methods of semiparametric estimation of the memory parameter d have

also been frequency-domain. However, they have mainly focussed on the simple

power law form, with (5) assumed in (2), that is

f(λ) ∼ Cλ−2d , as λ→ 0+. (12)

The leading fractional parametric models (which specify f(λ) parametrically for all

λ), namely f(λ) ∝
∣∣1− eiλ∣∣−2d (Adenstedt (1974)) and its extension to fractionally-

integrated ARMA (FARIMA) spectra are covered by (12). In (12) the knife-edge
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case d = 0 describes short memory, when a FARIMA reduces to an ARMA, while the

cases 0 < d < 1/2 and −1/2 < d < 0 repectively describe long memory and antiper-

sistence. However, methods of estimating such parametric models are inconsistent

when f(λ) is misspecified, in particular high-frequency misspecification produces as-

ymptotic bias even in estimates of the low-frequency parameter d. This drawback is

overcome (at cost of slower convergence, and of requiring choice of a smoothing num-

ber) by semiparametric methods, based on (12), in particular log-periodogram and

local Whittle estimates of d and C, see e.g. Geweke and Porter-Hudak (1983), Kuen-

sch (1987), Robinson (1995a,b), where the latter two references established that both

estimates are asymptotically normal for all d ∈ (−1/2, 1/2), and with an asymptotic

variance that is constant with respect to d. Thus, standard large-sample inference

using these estimates is very simple to implement. Extensions to estimates based on

nonstationary processes have been developed by Velasco (1999a,b) and subsequent

authors.

In principle, one could specify a particular L in (2) up to an unknown scale factor as

in (6)-(8), for example, and accordingly modify the estimates, and we would expect to

achieve good statistical properties if L is correctly chosen. One could also imagine

specifiying L up to finitely many unknown parameters, e.g. L (x) = C (log x)θ for

unknown θ, and extend the semiparametric methods to estimate d, C and the addi-

tional parameter vector. However in either case the prospect of correct specification

of L seems far-fetched, and of greater practical interest is the robustness of existing

estimates to unknown, nonparametric, L.

Robinson (1994a) investigated asymptotic properties of the averaged periodogram

statistic, and functionals of it of interest, including a semiparametric estimate of

d,under (2) with unknown L. Define the discrete Fourier transform

w(λ) = (2πn)−1/2
n∑
t=1

zte
itλ, λ ∈ (−π, π], (13)
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and the periodogram

I(λ) = |w(λ)|2 , λ ∈ (−π, π]. (14)

The averaged periodogram is defined as

F̂ (λ) =
[nλ/2π]∑
j=1

I(λj), 0 < λ ≤ π, (15)

where [.] here denotes integer part and λj = 2πj/n, For a user-chosen integer m

∈ [1, n/2) satisfying

1/m+m/n→ 0 as n→∞, (16)

Robinson (1994a) showed that

F̂ (λm)/F (λm)→p 1, as n→∞, (17)

where

F (λ) =

∫ λ

0

f(h)dh. (18)

For this purpose (2) was assumed but (like a good deal of the long memory literature)

under the restriction 0 < d < 1/2 (though there seems no reason why a similar result

should not hold also for −1/2 < d ≤ 0), as well as regularity conditions. Further,

Robinson (1994a) proposed the following averaged periodogram estimate of d :

d̃q =
1

2
−

log
{
F̂ (qλm)/F̂ (λm)

}
2 log q

, (19)

where q is chosen in the interval (0, 1) . He showed that under the same conditions

as imposed for (17),

d̃q →p d, as n→∞. (20)

Under somewhat stronger conditions he obtained a rate of convergence in (20),

Op(n
−η), for some η > 0. The property (20), like (17), holds for any slowly varying

L, which is unknown to the practitioner. Intuitively both properties might be antici-

pated due to (3) and the ratio forms in the left hand side of (17) and in d̃q. Robinson
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(1994b) discussed mean squared error and optimal choice of m in this setting. The

present paper addresses the above issues with respect to the log-periodogram esti-

mate, which, like d̃q but unlike the local Whittle estimate, is defined in closed form,

so relatively easily yields information on rates of convergence. Soulier (2010) es-

tablished a lower bound for the rate of converrgence of estimates of d in (2), and

proved it to be optimal, illustrating his results with the log periodogram estimate.

Giraitis, Robinson and Samarov (1997) had considered similar issues with respect to

(12), but Soulier (2010) found that the presence of an unanticipated L can produce

much slower rates, and that unlike under (12), the log periodogram estimate is no

less effi cient than the local Whittle estimate, cf. Robinson (1995a, 1995b), where

the asymptotic distributional results derived in the latter references may only hold

alongside bandwidth choices that yield unacceptable imprecision.

The following section considers the consistency of the log-periodogram estimate.

Section 3 evaluates the order of magnitude of the bias in several slowly varying ex-

amples, with some discussion of mean sqared error and bandwidth choice. Section 4

provides some concluding remarks.

2. CONSISTENCY OF LOG PERIODOGRAM ESTIMATE

We employ the version of the log-periodogram estimate proposed by Robinson

(1995a) (which is slightly simpler than Geweke and Porter-Hudak’s (1983)). For m

as described in the previous section, define

νj = log j − 1

m

m∑
k=1

log k, 1 ≤ j ≤ m, (21)

and introduce the additional notation

v
(`)
j =

j∑
k=1

ν`k, 1 ≤ j ≤ m, (22)
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for integer `. The log-periodogram estimate we consider is

d̂ = −1

2

m∑
j=1

νj log I(λj)/v
(2)
m . (23)

Define also

Uj = log {I(λj)/f(λj)} . (24)

We introduce two assumptions.

Assumption 1 As n→∞.

1

m

m∑
j=1

νjUj = op(1). (25)

The unprimitive Assumption 1 can hold under a variety of conditions, including

when zt is a Gaussian process, a linear process, or a fractional process driven by a

mixing input, indeed Robinson (1995a), Hurvich, Deo and Brodsky (1998) and Velasco

(1999a) establish central limit theorems for m1/2(d̂ − d) which entail an Op(m
−1/2)

bound in (25). Strictly, these and other references assume (12) rather than the more

general (2) but essentially the same arguments apply.

Assumption 2 Uniformly in δ ∈ (0, 1],{
L

(
x

1 + δ

)
/L (x)

}1/δ
→ 1 as x→∞. (26)

For any δ > 0 the slow variation property (3) implies (26), but Assumption 2

imposes uniformity. Note also from Bingham, Goldie and Teugels (1987, Theorem

1.2.1, p.6) that slow variation implies that (3) holds uniformly on each compact c−set

in (0,∞). The parameter δ measures the discrepancy of arguments of L (x/(1 + δ))

and L (x) so the power 1/δ in (26) does not look unnatural. Bingham, Goldie and

Teugels (1987, p.16) mention an "infinitely oscillating" example of L,

L(x) = exp
{

(log x)1/3 cos(log x)1/3
}
. (27)
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This satisfies (3) but not (26), indeed one would not expect a statistical procedure

to work in such circumstances. In Section 3 we show that Assumption 2 holds for

several examples of L.

In the following theorem the intermediate terms on the right hand sides of (28) and

(29) are (identical) expressions for bias, whose rates are obtained in the examples of

Section 3.

Theorem Let (2), (16) and Assumptions 1 and 2 hold. Then as n→∞,

d̂ = d− 1

2m

m∑
j=1

νj log

{
L

(
1

λj

)}
+ op(1) (28)

= d− 1

2m

m−1∑
j=1

log

{
L

(
1

λj

)
/L

(
1

λj+1

)}
v
(1)
j + op(1) (29)

→ p d. (30)

Proof For some ε > 0 (2) implies that we can write f(λ) = L (1/λ)λ−2d for

|λ| < ε. Thus for suffi ciently large n, (16) implies

d̂ − d = −1

2

m∑
j=1

νj log

{
L

(
1

λj

)}
/v(2)m −

1

2

m∑
j=1

νjUj/v
(2)
m . (31)

Noting that

v(2)m ∼ m as m→∞ (32)

(see Robinson, 1995a), we have

d̂ − d = − 1

2m+ o(1)

m∑
j=1

νj log

{
L

(
1

λj

)}
+ op(1) (33)

by Assumption 2. By Abel summation by parts, definition (22) and the identity

v
(1)
m = 0,

m∑
j=1

νj log

{
L

(
1

λj

)}
=

m−1∑
j=1

log

{
L

(
1

λj

)
/L

(
1

λj+1

)}
v
(1)
j . (34)

A bound for the absolute value of (34) is

m−1∑
j=1

∣∣∣∣log

{
L

(
1

λj+1

)
/L

(
1

λj

)}∣∣∣∣ (−v(1)j ) (35)
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because v(1)j < 0 for 1 ≤ j < m. For 1 ≤ j < m,

−v(1)j =
j

m

m∑
k=1

log k −
j∑

k=1

log k. (36)

For r ≥ 1,
r∑

k=1

log k ≤
r+1∫
1

log xdx = (r + 1) log(r + 1)− r (37)

and
r∑

k=1

log k ≥
r∫
0

log xdx = r log r − r. (38)

Thus

−v(1)j ≤
j

m
{(m+ 1) log(m+ 1)−m} − j log j + j. (39)

By Assumption 2 there exists ε > 0 independent of δ such that for large enough x

1

δ

∣∣∣∣log

{
L

(
x

1 + δ

)
/L (x)

}∣∣∣∣ < ε. (40)

Thus, taking x = n/(2πj), δ = 1/j there exists ε > 0 independent of j such that for

large enough n/m

j

∣∣∣∣log

{
L

(
1

λj+1

)
/L

(
1

λj

)}∣∣∣∣ < ε, 1 ≤ j ≤ m. (41)

Thus for large enough n, in view of (16) and using (38) again and (as frequently in

the following section) the inequality |log(1 + y)| ≤ |y|, (35) is bounded by

ε
m−1∑
j=1

{
1

m
{(m+ 1) log(m+ 1)−m} − (log j − 1)

}
≤ ε

(
m− 1

m
{(m+ 1) log(m+ 1)−m} − (m− 1) log(m− 1) + 2(m− 1)

)
≤ ε

[
(m− 1)

{
(1 +

1

m
) log(m+ 1)− log(m− 1)

}
+m

]
≤ ε [m log((m+ 1) / (m− 1)) + 2m]

≤ ε

[
m log(1 +

2

m− 1
) + 2m

]
≤ ε

[
2m

m− 1
+ 2m

]
≤ 3εm. (42)

From (31), (34), (35) and arbitrariness of ε the proof is completed.

10



3. EXAMPLES AND RATES

The paragraph following Assumption 2 argues that the assumption does not much

strengthen the slow variation property of L, but it is nevertheless desirable to check

it in several cases, and this will desirably indicate rates of convergence. Throughout

the derivations it is understood that x is chosen arbitrarily large and δ ∈ (0, 1].

1. L(x) = C(1 +Dx−β), 0 < β ≤ 2, D 6= 0.

This is actually a case of (12), and was assumed in the central limit theorem for

d̂ of Robinson (1995a), because some refinement of (12) is necessary in order to get

a rate of convergence and thence limit distribution theory. The order of the bias is

thus already known in this case and we consider it here only to verify that estimating

the bias by approximating (35) produces a sharp outcome. We have

log

{
L

(
x

1 + δ

)
/L (x)

}
= log

{
(1 +D(x/(1 + δ))−β)/(1 +Dx−β)

}
. (43)

This has absolute value∣∣log
{

1 +Dx−β((1 + δ)β − 1))/(1 +Dx−β)
}∣∣ ≤ ∣∣Dx−β((1 + δ)β − 1))/(1 +Dx−β)

∣∣
≤ 8 |D| δx−β ≤ Kδx−β, (44)

where K denotes a generic positive constant, and, here and subsequently, we use the

inequalities |(1 + y)a − 1| ≤ 4y for y ∈ (0, 1], a ∈ (0, 1/2], and 1 +Dy ≥ 1/2 for small

enough positive y. Thus Assumption 2 is checked. Further, (44) implies that the

modulus in (35) is bounded by K(n/j)β/j ≤ K(n/m)β/j, rather than (as in (41))

ε/j, so the calculation in (42) implies that

1

2m

m∑
j=1

νj log

{
L

(
1

λj

)}
= O((

m

n
)β). (45)

This accords with the bias calculation implicit in Robinson (1995a) so the bound (45)

is in fact sharp. For the central limit theorem for m1/2(d̂− d) one needs at least that
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m2β+1/n2β → 0 as n → ∞, while on the other hand the asymptotic mean squared

error (MSE) of d̂ is of form a/m + b(m/n)2β, for a, b > 0, producing the optimal

rate for m, n2β/(2β+1), for example n4/5 in the case β = 2 mostly considered in the

bandwidth choice literature.

2. L(x) = C(1 +D(log x)−1), D 6= 0.

Again (12) is satisfied, but there is less local smoothness than in the preceding

example 1. We have

log

{
L

(
x

1 + δ

)
/L (x)

}
= log

{
(1 +D(log (x/(1 + δ)))−1)/(1 +D(log x)−1)

}
= log

{
1 +D (log x)−1

(
(1− log(1 + δ)/ log x)−1 − 1

)
/(1 +D(log x)−1)

}
. (46)

This is bounded in absolute value by

2 |D| (log x)−1
(
(1− log(1 + δ)/ log x)−1 − 1

)
≤ 4 |D| log(1 + δ)(log x)−2 ≤ Kδ(log x)−2, (47)

using the inequality (1 − y)−1 − 1 ≤ 2y for small enough positive y. Thus we have

checked Assumption 2. Also, arguing as in example 1, (47) gives

1

2m

m∑
j=1

νj log

{
L

(
1

λj

)}
= O((log (n/m))−2). (48)

No central limit theorem for m1/2(d̂ − d) is thus possible unless (log (n/m))−2 =

o(m−1/2), for which a necessary condition is m = o((log n)4). The MSE of d̂ is

a/m + b(log (n/m))−4, which is of order (log n)−4 when m is chosen to increase like

(log n)β for any β ≥ 4.

3. L(x) = C(log x)β, β 6= 0.
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This generalizes (6) with k = 1. We have

log

{
L

(
x

1 + δ

)
/L (x)

}
= β log

{
log

(
x

1 + δ

)
/ log x

}
= β log {1− log (1 + δ) / log x} , (49)

which is bounded in absolute value by

|β log (1 + δ) / log x| ≤ Kδ/ log x. (50)

Thus Assumption 2 holds, and arguing as before

1

2m

m∑
j=1

νj log

{
L

(
1

λj

)}
= O((log (n/m))−1). (51)

Direct integral approximation of the left side leads to the same result, so the bound

in (51) appears to be sharp. It is interesting to note that the rate is independent of

the power β, and is half as good as in example 2, where (12) held. In the present case

the central limit theorem for m1/2(d̂−d) would require (log (n/m))−1 = o(m−1/2), for

which a necessary condition is m = o((log n)2). The MSE of d̂ is of order (log n)−2

when m is chosen to increase like (log n)β for any β ≥ 2.

4. L(x) = C logk x, k ≥ 2.

This possibility was mentioned in (6), and discussed by Soulier (2010) in case k = 2.

We have

log

{
L

(
x

1 + δ

)
/L (x)

}
= log

{
logk

(
x

1 + δ

)
/ logk x

}
= logk

{
log(

x

1 + δ
)

}
− logk+1 x

= logk {log x(1− log(1 + δ)/ log x)} − logk+1 x

= logk−1 {log2 x+ log(1− log(1 + δ)/ log x)} − logk+1 x

= logk−1 {log2 x(1 + log(1− log(1 + δ)/ log x)/ log2 x)}

− logk+1 x. (52)
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For k = 2 this has absolute value

|log {1 + log(1− log(1 + δ)/ log x)/ log2 x}| ≤ |log {1− log(1 + δ)/ log x} / log2 x|

≤ log(1 + δ)/(log x log2 x)

≤ δ/(log x log2 x). (53)

For k ≥ 3 (52) is

logk−2 {log3 x+ log(1 + log(1− log(1 + δ)/ log x)/ log2 x)} − logk+1 x

= logk−2 {log3 x(1 + log(1 + log(1− log(1 + δ)/ log x)/ log2 x)/ log3 x)}

− logk+1 x, (54)

and by continuing the arguments in (52) and (53) it is eventually seen that (54) is

bounded in absolute value by

δ/
k∏
j=1

logj x. (55)

Thus Assumption 2 holds, and

1

2m

m∑
j=1

νj log

{
L

(
1

λj

)}
= O(

∣∣∣∣∣ k∏j=1 logj(n/m)

∣∣∣∣∣
−1

). (56)

The rate improves with increasing k as expected, albeit slowly.

5. L (x) = C exp
{

(log x)β
}
, 0 < β < 1.

This is a special case of (7). We have

log

{
L

(
x

1 + δ

)
/L (x)

}
= (log

(
x

1 + δ

)
)β − (log x)β

= (log x)β
{

(1− log (1 + δ) / log x)β − 1
}
. (57)

This is bounded in absolute value by

K(log x)β log (1 + δ) / log x ≤ Kδ(log x)β−1, (58)
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to check Assumption 2, and arguing as before

1

2m

m∑
j=1

νj log

{
L

(
1

λj

)}
= O(|log(n/m)|β−1). (59)

6. L (x) = C exp {log x/ log2 x} .

This is (8). We have

log

{
L

(
x

1 + δ

)
/L (x)

}
= log

(
x

1 + δ

)
/ log2

(
x

1 + δ

)
− log x/ log2 x

=

{
log

(
x

1 + δ

)
log2 x− log2

(
x

1 + δ

)
log x

}
/ log2

(
x

1 + δ

)
log2 x. (60)

The numerator is

{log x− log (1 + δ)} log2 x− {log(log x− log (1 + δ))} log x

= {log x− log (1 + δ)} log2 x− {log(log x(1− log (1 + δ) / log x)} log x

= − log (1 + δ) log2 x− {log(1− log (1 + δ) / log x} log x, (61)

which is bounded in absolute vale by Kδ log2 x. The denominator of (60) is

log(log x− log (1 + δ)) log2 x = log(log x(1− log (1 + δ))/ log x) log2 x

= {log2 x+ log(1− log (1 + δ))/ log x} log2 x

∼ (log2 x)2 . (62)

Thus Assumpton 2 is checked, and arguing as before

1

2m

m∑
j=1

νj log

{
L

(
1

λj

)}
= O(|log2(n/m)|−1), (63)

the slowest rate of any of our examples.

4. FINAL COMMENTS

We have considered the consistency of the semiparametric log-periodogram regres-

sion memory estimate in the presence of an unanticipated slowly-varying factor in the
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spectral density, under a general condition on the function, and verified this condi-

tion and calculated convergence rates in several examples. As implied by the results

of Soulier (2010), these convergence rates are mostly slow, to the extent that un-

less the bandwidth m grows extremely slowly the bias will be too large to allow the

central limit theorem to hold. Practically this might suggest picking m very small,

unless n is extremely large, but the effect would likely be unacceptable imprecision

in the estimate. Soulier (2010) discussed the bandwidth choice issue, with numerical

illustrations.

Similar results hold for the original log-periodogram estimate of Geweke and Porter-

Hudak (1983). Note that νj in (21) is identical to log λj−m−1Σm
k=1 log λk, and Geweke

and Porter-Hudak’s (1983) version replaces νj by 2 log(sinλj/2)−2m−1Σm
k=1 log(sinλk/2),

where 2 log(sinλ/2) = log λ+O(λ2) as λ→ 0+. Similar results also hold for improved

modifications of log-periodogram regression (Moulines and Soulier, 1999) and for the

local Whittle estimate and its modified versions. We also anticipate similar out-

comes for extensionss of these estimates that allow for possible nonstationarity or

non-invertibility (see e.g. Velasco, 1999a, 1999b).

If we are to be concerned about the effect of a possible slowly-varying factor on

inference on long memory, we might also worry about its effect on nonparametric

spectral estimation and conventional autocorrelation-consistent variance estimation.

These are both based on the assumption of a finite, positive spectral density. When

there is actually a divergent slowly-varying factor a nonparametric spectral estimate

at zero frequency will lose consistency, while a divergent or convergent-to-zero slowly-

varying factor would appear to invalidate the usual autocorrelation-robust rules of

inference, though in view of (17) appropriate ones can be constructed (see Robinson,

1994a).

The possibility of investigating the presence of a slowly-varying factor and its form

might be pursued. Since d̂ is at least consistent for d, the normalized periodograms
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I(λj)λ
2d̂
j might be employed in nonparametric estimation of L, or in a hypothesis test.

However the slow convergence of d̂ could prove an obstacle, and even if asymptotically

valid procedures can be developed, they would surely require an extremely long time

series, while it may be recalled that under (12), Robinson (1995a) found that estimates

of d and C are asymptotically perfectly correlated.
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