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Abstract
Climate change poses challenges for decision makers across society, not just in preparing for
the climate of the future but even when planning for the climate of the present day. When
making climate sensitive decisions, policy makers and adaptation planners would benefit from
information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days)
and thresholds (e.g. days above 28 ◦C), not just mean changes. Here, we translate observations
of weather into observations of climate change, providing maps of the changing shape of
climatic temperature distributions across Europe since 1950. The provision of such
information from observations is valuable to support decisions designed to be robust in today’s
climate, while also providing data against which climate forecasting methods can be judged
and interpreted. The general statement that the hottest summer days are warming faster than
the coolest is made decision relevant by exposing how the regions of greatest warming are
quantile and threshold dependent. In a band from Northern France to Denmark, where the
response is greatest, the hottest days in the temperature distribution have seen changes of at
least 2 ◦C, over four times the global mean change over the same period. In winter the coldest
nights are warming fastest, particularly in Scandinavia.

Keywords: climate, thresholds, distributions, quantiles, climate change, regional climate
change, observations, climate adaptation, climate impacts
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1. Introduction

Global warming consists of complex changes in local climate
which have implications for sectors as diverse as water
management (Milly et al 2008, DEFRA 2012, Carpenter

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

et al 1999), building design (DEFRA 2012, CIBSE 2005),
agriculture (Challinor and Wheeler 2008, Lobell and Burke
2008, IPCC 2007b, Porter and Semenov 2005) and insurance
(Mills 2005). Providing guidance at these local scales is a key
element of efforts to supply ‘climate services’ (WMO 2011).
This is intrinsically challenging because organizations are
vulnerable to different aspects of climate: different thresholds,
variables and spatial patterns in the distribution of weather
variables which constitutes climate (IPCC 2007a, Stainforth
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et al 2007). Assessments of where and which societal
vulnerabilities are changing fastest require information on
how all these aspects are co-varying. Here we use a
gridded dataset of observations (Haylock et al 2008) to
provide such information by mapping the changing shape
of local climate (Chapman et al 2013) across Europe. The
implications are highlighted for some societally relevant
thresholds including freezing point and temperatures related
to labour productivity (Hsiang 2010, Zivin and Neidell 2010)
and building overheating (DEFRA 2012, CIBSE 2006). The
approach provides information at scales relevant for both
local decisions and national planning, while also being
of significance for the evaluation of climate models (van
Oldenborgh et al 2009) and the study of processes which
influence local climate change. Our aim is to process
observations of weather variables into observations of climate
change. Some choices are inevitable in this process and
the implications of these are tested, but the incorporation
of methodological assumptions is minimized to the greatest
extent possible so that the results can be interpreted as
representing the robustly identifiable changes in climate
experienced over the last 60 years as closely as possible.

Section 2 provides a description of the dataset used, along
with the interpretational approach adopted and the rationale
for such an approach. Section 3 illustrates the application
of the method at three locations. Given the large natural
variability in climatic datasets, a key element of the analysis
is the process for identifying robust messages. Examples are
presented of illustrative situations in which robust messages
can and cannot be extracted. In section 4 maps of observed
changes in European climate are generated for summer
and winter, for a selection of quantiles representing the
changing shape of the temperature distributions, and for
two application-relevant thresholds. The implications of these
results are reviewed in the conclusions.

2. From weather to climate

Observations of weather variables are taken on at least a
daily basis at thousands of weather stations around the
world. Many of these datasets stretch back to the mid-20th
century with some going back hundreds of years (Parker et al
1992). Several recent initiatives have taken these data and
constructed high-resolution gridded datasets of daily weather
information across large regions (Haylock et al 2008, Yatagai
et al 2012). Some of these processed datasets, and even
some of the underlying station data, are openly available for
use by researchers and policy makers. For many purposes,
however, they are of limited direct value because they don’t
provide information about the aspects of changing climate
which impact policy/business decisions and climate impacts
research. By acknowledging that climate is inherently a
distribution, and changing climate a changing distribution
(Stainforth et al 2007, IPCC 2012, Hansen et al 2012),
these data can be analysed in a model independent manner
to provide a more valuable picture of how local climate is
changing; one which more closely reflects perceptions of
climate change.

A description of climate change on a regional basis
requires an exploration of correlated variations across mul-
tiple dimensions: space (geographical variations), likelihood
(rare versus common events in the climatic distribution),
variable (the aspect of climate under consideration), and time
(the period over which a change is considered). Using the
state-of-the-art E-OBS dataset (Haylock et al 2008), which
runs from 1950 to 2011, we present climate change variations
in space and quantile for four variables: maximum and
minimum daily temperatures in summer and winter.

The E-OBS dataset is constructed using data from 2316
stations but the station density varies considerably across
Europe (see Haylock et al 2008) with the highest density
of stations in the UK, the Netherlands and Switzerland,
and relatively low densities in the Balkans, Scandinavia,
Iberia and Northern Africa. The E-OBS data at 0.5◦ × 0.5◦

resolution is used in this analysis; higher resolution gridded
data is available but the use of such data for this purpose is
not considered justified given the density of the underlying
observational network.

At 0.5◦ × 0.5◦ the data has a resolution of roughly
40–50 km. The term ‘local climatic distributions’ is used
to refer to results on this scale. ‘Regional’ behaviour refers
to the results across clusters of several such grid boxes.
The grid box resolution is somewhat higher than the typical
resolution of global circulation models (GCMs, ∼100 km)
but a little lower than is typical in regional climate models
(∼25 km). To the extent that the E-OBS dataset reflects
the underlying observations it is appropriate to examine
grid box results individually. This is not the case for
GCMs where the numerical solution is not expected to
necessarily be representative of the solutions of the continuous
equations at the smallest scale of the model. The method
described herein could be applied to, and interpreted for,
individual grid boxes and even individual station data, thus
providing higher resolution information than is available from
models. However, gridded observational datasets are also
subject to limitations, due to in-homogeneities in the data
and inaccuracies arising from the interpolation procedures
(Hofstra et al 2009, 2010). These limitations are more
significant in regions with fewer stations. As a consequence
the results below are more reliable in some regions than
others; in North Africa they are not considered at all reliable
because there are so few stations. Spatial correlation patterns
are however outputs of the approach. Here we focus on
regionally consistent behaviour because this is unlikely to be
the result of inaccuracies in the dataset. The application of the
approach to individual grid boxes or individual station data
would require careful analysis of the reliability of the data at
that location.

Our aim is to maintain as close a link as possible to
the underlying observed quantities while representing them
in terms of climate, a set of distributions. It is commonly
accepted that climate change could lead to changes in
the mean, changes in the mean and variance, or to more
complicated variations in the shape of climatic distributions
(IPCC 2012), but there have been very few studies on what
observations tell us about such changes at the local scale
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(see Vinnikov et al 2002 for one such). This information
would be valuable not only for decision makers but also as
a guide for research into how local geographic factors affect
the consequences of synoptic scale changes. Previous studies
which have considered regional distributions or extremes,
have made assumptions including: (i) the presence of a
continuous linear trend over time (Reich 2012, Simolo et al
2010, Min et al 2013, Alexander et al 2006), (ii) spatial
dependences (Simolo et al 2010, Reich 2012, Alexander et al
2006), and (iii) that the changing shape can be captured
by changes in only low order moments (e.g. mean and
variance) (Jones et al 2009). Such assumptions are debatable
given the complexity of the drivers of local climate. The
possibility of multi-decadal climatic oscillations (Schlesinger
and Ramankutty 1994, Chambers et al 2012) suggests that
the first is an oversimplification while the last is questionable
in such a complex nonlinear system. Regarding the second,
the presence of spatial dependences is of course clear, but
applying assumptions regarding their character at any given
quantile, and their consistency across any given region, risks
providing misleading information unless it can be founded on
well understood physical mechanisms. We therefore propose
a method which remains as close as possible to simply
representing the data. Any spatial, variable or likelihood
relationships which arise can thus be interpreted with greater
confidence, simplifying their use in societal planning. If, in
the future, their physical basis can be understood then this can
provide a foundation for better local information regarding
plausible future climate change.

3. The identification of robust changes in climate

The local climate for a variable at some time in the past
can conceptually be represented by a distribution, D1. In
the present day the same variable has distribution D2. Our
interest is in how, or whether, D1 and D2 differ. Consider daily
maximum (hereafter ‘daytime’) summer (June/July/August)
temperatures in the gridbox around Bordeaux. A distribution
of this variable is constructed using 9 years of data centred
on 1954 and compared with another using 9 years of data
centred on 1997 (see figure 1(a) and appendix A). From this
can be extracted the change in the probability of remaining
below a certain threshold, 1C (figure 1(a)). The thresholds
of relevance vary according to the natural or human system
of interest. Two aspects of economic interest are labour
productivity, which has been shown to decrease when daytime
temperatures exceed about 28 ◦C (Hsiang 2010, Zivin and
Neidell 2010) and overheating in buildings, which has been
related to temperatures exceeding 28 and 26 ◦C (DEFRA
2012, CIBSE 2006). For these, as for many thresholds it
is most intuitive to consider the change in the exceedance
probability (−1C) which has increased by 0.17 at 28 ◦C for
summer days in Bordeaux over this period.

For such information to be useful its robustness must
be assessed. Repeating the analysis using ten different
period pairs with equal length separations in time (i.e.
1954–1997, 1955–1998, . . . , 1963–2006, see appendix A),
produces ten pairs of distributions and ten assessments of

Figure 1. Changing cumulative distribution functions for maximum
daily (daytime) summer temperatures for three E-OBS grid boxes.
Red cdfs are centred on each year from 1954 to 1963 (1954 only in
(a)). Green cdfs are centred on each year from 1997 to 2006 (1997
only in (a)). In (a) the blue horizontal line shows 1Tq for the
median quantile (q = 0.5), the vertical red line 1CT at T = 28 ◦C.
In (b)–(d) the vertical red line (thin black line) is the smallest
(largest) 1CT at T = 28 ◦C; the corresponding cdfs are shown as
solid (dashed) blue and black lines representing the earlier and later
period respectively. Locations are: (a) and (b) Bordeaux, France,
(c) western Algarve, Portugal, (d) eastern Piedmont, Italy.

the change in exceedance probability over a 43 year period
(figures 1(b)–(d)). This represents an estimate of the range
of behaviour due to short timescale variability (see Chapman
et al 2013) while also capturing the diversity of longer
timescale variability in the data. They are not, however,
independent samples. We therefore take a conservative
approach to the evaluation of these ten values by considering
only the smallest and largest change (see appendix B). A large
value for the smallest change suggests a robust, large signal
over the last 60 years at the given threshold e.g. 0.17 at 28 ◦C
around Bordeaux (figure 1(b)). A small value for the largest
change implies a robust signal of little change, e.g. −0.04
at 28 ◦C in the Algarve, Portugal (figure 1(c)). A large range
(maximum minus minimum values for−1C) implies no clear
signal e.g. −0.04 minimum with 0.24 maximum at 28 ◦C in
Piedmont, Italy (figure 1(d)).

This approach quantifies changes between two periods
in time; it cannot attribute (Stott 2003) these changes to,
for instance, the enhanced greenhouse effect or multi-decadal
internal climatic oscillations (Schlesinger and Ramankutty
1994, Chambers et al 2012). This is not a detriment
when optimizing plans for the climate of the present day.
Information on where and how vulnerabilities are changing is
useful irrespective of the physical drivers, particularly when
planning requirements, or conventional approaches, are based
on illustrative past years (Hitchin et al 1983) or probability
distributions constructed over historic periods (Milly et al
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Figure 2. Maps of the exceedance probability (upper plots) and the smallest evaluated change in exceedance probability, smallest −1CT ,
(lower plots) over the 1950–2011 period for (a) T = 0 ◦C for nighttime winter temperatures (left plots), and (b) T = 28 ◦C for daytime
summer temperatures (right plots).

2008). In the context of either human-induced climate change
or multi-decadal oscillations, the method can be interpreted
as quantifying how global, or large scale, variations in the
system, manifest themselves on the smaller scales of human
society (at least in locales where land-use change is not
considered a significant factor).

The ability to separate long timescale variations
(which the analysis captures) from shorter ones (which
are incorporated within the individual cdfs) is limited by
the timeseries of observations available (see appendix A).
However, the approach makes no assumptions of spatial
relationships so when coherent spatial patterns of change
emerge it provides confidence that such patterns represent a
signal which is robust in that region.

4. Maps of climate change

Mapping the smallest changes in the threshold exceedance
probability produces some clear patterns for both a zero
degree threshold in daily minimum (hereafter ‘nighttime’)
temperatures in winter and a 28 ◦C threshold in daytime
temperatures in summer—see figure 2. In many parts of
Ireland, northern England, southern Scotland and southern

Sweden, the fraction of winter nights which fall below zero
degrees has decreased by at least 0.05–0.1. North west Italy
and the western Pyrenees show even greater changes in this
threshold. Most of southern Sweden and coastal Norway have
in addition seen a substantial decrease (∼0.05–0.15) in the
fraction of winter daytime temperatures which fall below
zero (figure S3 available at stacks.iop.org/ERL/8/034031/
mmedia). These changes presumably relate to observed
changes in snow reliability in Scandinavian skiing resorts
(Moen and Fredman 2007). In summer, the 28 ◦C threshold in
daytime temperatures is changing fastest in western France,
eastern Spain and central Italy; changes in the fraction of
days above this threshold are often greater than 0.15 in these
regions. Smaller but nevertheless substantial changes (>0.06,
sometimes >0.1) with implications for labour productivity
and building design/management are seen across northern
France, Germany and Eastern Europe; even across southern
England changes greater than 0.04 are found.

Although changes in frequency are important for
impact-specific thresholds, for research objectives such as
understanding the processes which link climate at different
spatial scales, and for climate model evaluation, it is more
useful to have information on the changing local distributions.
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Figure 3. Maps of the smallest evaluated change in temperature (smallest 1Tq) over the 1950–2011 period for daytime summer
temperatures at the following quantiles of the cumulative distribution function: (a) q = 0.95, (b) q = 0.75, (c) q = 0.50, (d) q = 0.25, and
(e) q = 0.05.

Are they simply shifting or are they changing shape (IPCC
2012) and in either case are the changes consistent across
regions? To answer these questions quantile-specific changes
are evaluated (Chapman et al 2013) (1T in figure 1(a)). Again
a large (small) value for the smallest (largest) change over
ten samples is interpreted as providing an indication of robust
large (small) changes.

The smallest (largest) change in five quantiles across
the distributions of summer daytime and winter nighttime
temperatures are presented in figures 3 and 5 (figures 4
and 6). Daytime summer temperatures tend to increase most
in the upper quantiles in many regions (figure 3). At the
0.95 quantile a band across northern Europe from northern
France to Denmark and southern Sweden show substantial
changes of at least 2 ◦C (figure 3(a)). At the 0.75 and 0.5
quantiles the greatest changes are further south in central
France and Germany (figure 3(b)). Eastern Spain and central
Italy show very substantial changes, in some places at least
2.5 ◦C, across the whole distribution, but for most regions
the low, 0.25 and 0.05 quantiles, show smaller changes.
Much of southern and western Iberia along with Norway
and Sweden reveal either robustly small changes or no clear
signal at all quantiles (figures 4 and 3). By contrast it is the
lowest quantiles which show large change in nighttime winter
temperatures (figures 5 and 6) for large parts of Europe. This
is evident in only the most extreme, 0.05 quantile, for central
western Europe but for Norway and Sweden it is seen in

all quantiles below the median, where the smallest changes
can be over 3 ◦C. Changes in Spain are close to zero and
sometimes negative even in the lowest quantiles but in central
and southern Portugal they are positive across all quantiles.
The relatively small size of the region with a positive signal
and the substantial difference with that seen in the surrounding
region suggests that this result should be treated cautiously
without further understanding of the underlying datasets or
the processes responsible.

Changes in summer nighttime temperatures are smaller
than in daytime temperatures; smallest values less than 1.5 ◦C
across most of Europe (figures S5 and S6 available at stacks.
iop.org/ERL/8/034031/mmedia). Few large scale regional
patterns are evident although northern Portugal is a hot spot
for mid- to-upper quantiles. The strong signal in nighttime
temperatures in winter in central western Europe is not
apparent in daytime winter temperatures but large changes are
found in this variable in the lowest quantiles in central Italy
and the northern Balkans (figure S7 available at stacks.iop.
org/ERL/8/034031/mmedia). The signal in daytime winter
temperatures in Scandinavia is clear but less strong than in
the nighttime values.

5. Concluding remarks

Previous work has demonstrated that timeseries of local
temperatures are sufficiently long to identify a warming
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Figure 4. As figure 3 but for largest change in temperature (largest 1Tq). Note the different colour scale.

Figure 5. Maps of the smallest evaluated change in temperature (smallest 1Tq) over the 1950–2011 period for nighttime winter
temperatures at the following quantiles of the cumulative distribution function: (a) q = 0.95, (b) q = 0.75, (c) q = 0.50, (d) q = 0.25, and
(e) q = 0.05.
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Figure 6. As figure 5 but for largest change in temperature (largest 1Tq). Note the different colour scale.

trend (van Oldenborgh et al 2009); this work uses them
to provide a picture of changing local climate distributions
of value to both policy makers and researchers. Given the
relatively short timeseries and the large natural variations
it is important to focus on aspects which are robust in the
record. Thus changes are highlighted only when they are
consistently large, or small, when analysed over different
periods, and only when a consistent message is seen across
a region. In identifying locations/quantiles/variables with
substantial changes, a conservative approach has been taken
by presenting the smallest change found over the multiple
periods analysed.

The analysis presented herein has used gridded observa-
tions. The approach could be applied to reanalysis datasets or
directly to the underlying station data, both of which come
with different underlying limitations. One might expect the
large scale patterns to be similar to those presented herein but
the sensitivity of the results to different ways of processing the
observational data would be informative in the identification
of robust local changes.

These results illustrate that at specific quantiles, local
changes can be substantially more than four times greater
than the global mean annual mean change. They are not
well represented by the local mean change because the
local distributions change shape in a manner which does not
allow for a simple relationship between the mean and other
quantiles. These are important points for policy negotiations
based on the two degrees guardrail (Richardson et al 2009).
The results demonstrate the complex pattern of changes

seen in recent European climate. They represent a key
input to climate services and provide a yard stick against
which scientists and users can evaluate model-derived data.
For regional climate research they represent observations
of climate change against which theories of global/local
relationships can be assessed; a key step towards the provision
of decision-relevant climate predictions on sub-continental
scales.
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Appendix A. Data processing

The E-OBS dataset (Haylock et al 2008) provides a timeseries
of daily maximum and minimum temperatures (Tmax,Tmin)
on a 0.5◦ × 0.5◦ grid over Europe from 1950 to 2011.
E-OBS version 6.0 is used in this analysis. Taking data
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only for the season under consideration (June/July/August
for summer, December/January/February for winter), the
cumulative distribution function (cdf), C, is constructed
using τ years of data centred on year t1. A second cdf is
constructed for some later period centred on t2 and changes
evaluated in terms of both the changing quantile function for
specific temperatures,1CT (figures 1(a) and 2), and changing
quantiles (1Tq) for specific values of cumulative probability,
q (figures 1(a) and 3–6).

In a stationary climate, C would be independent of t;
variations between time periods would be a consequence
only of the finite sample size specified by τ . Both 1CT
and 1Tq must be interpreted in the context of such natural
variability. The impact of high frequency variations (inter- and
intra-year) is explored by varying τ (see the supplementary
materials available at stacks.iop.org/ERL/8/034031/mmedia).
(See Chapman et al 2013 for an illustration using synthetic
data built from mathematically defined distributions.) The
impact of low frequency variations (decadal timescales) is
evaluated by repeating the analysis n times while maintaining
the same value of1t (= t2−t1) i.e. multiple evaluations of the
change over time windows of equal length but with different
start and end dates.

Given the limited length timeseries available a balance
must be struck between n, τ and 1t. Each should be as large
as possible in order to (respectively): (i) evaluate the impact of
low frequency natural variability, (ii) maximize the resolution
of the cdfs and thus minimize the uncertainty resulting from
high frequency variability, and (iii) maximize the signal/noise
of any long term changes. We use n = 10, τ = 9 and1t = 43.
With τ = 9, the cdfs consist of >800 values. The results are
robust to higher and lower values of τ—see supplementary
figures S9–S16 (available at stacks.iop.org/ERL/8/034031/
mmedia).

1CT is extracted directly from the cdfs.1Tq is calculated
using the method of Chapman et al (2013).

Appendix B. Smallest/largest changes

The exceedance probability for temperature T is (1−CT) and
thus a change in exceedance probability is simply −1CT .
In figure 2 (figures 3 and 5) each grid box is calculated
independently and shows the value of −1CT (1Tq) for the
cdf pair where |1CT | (|1Tq|) is a minimum i.e. the ‘signed
equivalent’ of the minimum absolute value of the change
in exceedance probability across all ten sample pairs. This
is termed the ‘smallest change’. Figures 4 and 6 contain
maps of the signed equivalent of the maximum absolute
change—termed ‘the largest change’.
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