

CEP Discussion Paper No 893

October 2008

(Revised January 2012)

Motivation and Sorting in Open Source

Software Innovation

Sharon Belenzon and Mark Schankerman

Abstract
This paper studies the role of intrinsic motivation, reputation, and reciprocity in driving open source

software innovation. Unlike previous literature based on survey data, we exploit the observed pattern

of contributions - the .revealed preference. of developers - to infer the underlying incentives driving

the decision to contribute source code. Using detailed information on code contributions and project

membership, we classify software developers into distinct types and study how contributions from

each developer type vary according to the open source license type and other project characteristics.

We find that developers strongly sort by license type, project size, and corporate sponsorship, and that

reciprocity is important only for a small subset of projects. We also show that contributions have a

substantial impact on the performance of open source projects.

Keywords: Open source software, innovation, incentives, intrinsic motivation, motivated agents,

reputation, reciprocity

JEL Classifications: L14, L17, L41, O31 and O32

This paper was produced as part of the Centre’s Productivity and Innovation Programme. The Centre

for Economic Performance is financed by the Economic and Social Research Council.

Acknowledgements
We would like to thank Jacques Cremer, Marc Ivaldi, Josh Lerner, Jean Tirole and seminar

participants at the NBER for constructive comments on an earlier version of the paper. We gratefully

acknowledge the financial support from the British Academy and the Centre for Economic

Performance at the London School of Economics, which made it possible for us to construct the data

set used in this project. We thank Hadar Gafni for excellent research assistance during the project.

Sharon Belenzon is an Associate of the Centre for Economic Performance, London School of

Economics. He is also an Assistant Professor of Strategy at the Fuqua School of Business, Duke

University, USA. Mark Schankerman is a Research Associate of the Centre for Economic

Performance and Professor of Economics, London School of Economics and the first James and

Pamela Muzzy Chair in Entrepreneurship at the University of Arizona's Eller College of Management.

Published by

Centre for Economic Performance

London School of Economics and Political Science

Houghton Street

London WC2A 2AE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or

transmitted in any form or by any means without the prior permission in writing of the publisher nor

be issued to the public or circulated in any form other than that in which it is published.

Requests for permission to reproduce any article or part of the Working Paper should be sent to the

editor at the above address.

 S. Belenzon and M. Schankerman, republished 2012

ISBN 978-0-85328-300-3

1. Introduction

This paper studies how motivations and sorting behavior a¤ect innovation in open source software. In

particular, we study the decision of independent developers to contribute code to di¤erent types of open

source projects, and the impact of these contributions on project performance.

In open source software (OSS), the source code is available for public use and development under

speci�c conditions which depend on the license governing the project. Programmers who contribute to

open source are typically unpaid, though corporate sponsorship and �nancing have increased sharply in

recent years. This raises an important question: How is open source innovation sustained in the face of

free-rider problems and in the absence of direct monetary compensation? This is a central issue not only

for the software sector, but also for other areas in which �open commons�production has been proposed,

including databases, biotechnology, and nanotechnology.1

Management and economic scholars have studied this question and have proposed four broad types of

theoretical explanations for the paradox. First, developers may be intrinsically motivated to contribute by

their strong identi�cation with the �ideology�underlying the open source movement (Raymond, 2001).2

Second, code contribution and active participation in the OS community may enhance reputation via

greater peer recognition (Raymond, 2001) or commercial rewards in the labor market (Lerner and Tirole,

2001, 2002; Johnson, 2002, 2004). Third, developers may expect to gain later from reciprocal contribu-

tions from projects to which they have previously contributed (Lakhani and von Hippel, 2003). Fourth,

developers may also �enjoy�(get utility value) from participation (Shah, 2006). For such �hobbyists,�the

marginal utility of e¤ort may be positive, at least over some range of e¤ort (Kreps, 1997; Glazer, 2004).

These explanations involve varying levels of intrinsic and extrinsic motivation, which have been treated

empirically in a number of studies within an OS setting. Though these studies have provided evidence

for diverse motivations, they share two important limitations. First, prior works are typically based on

relatively small samples of contributors to open source projects (Haruvy, Wu, and Chakravarty, 2003;

Hertel, Krishnan, and Slaughter, 2003). The second, and more important limitation, is that they rely

exclusively on what programmers say their motivations are, without any direct way to corroborate these

�announced preferences.� 3

The strategy of this paper is to utilize revealed preferences, as captured by observed code contributions,

1Good general discussions of open source in software and other areas are available in Lerner and Tirole (2005) and Maurer
and Scotchmer (2006). For a recent book arguing the case for open source in biotechnology, see Hope (2008), and on
nanotechnology, Bruns (2001).

2The original open source license that embodies this view is the general purpose license (GPL), which requires that the
source code and any subsequent code that builds on it or embodies it must remain open source.

3One notable exception is Hann, Roberts, Slaughter, and Fielding (2004), who test the labor market hypothesis of Lerner
and Tirole (2002) by studying the relationship between wages of developers and their contributions to the Apache OSS
project. They �nd that wages are related to contributors ranking by the Apache Foundation, but not to the volume of
their contributions, suggesting that contributions may be motivated more by labor market signaling than by human capital
accumulation.

2

in order to try to quantify how reputation, reciprocity, utility, and intrinsic motivations each drive open

source innovation. Our empirical analysis of code contributions to OSS projects is based on a large-scale

dataset with detailed information on both the contributing and receiving projects. Each contribution

includes a dyad consisting of a contributing project, where the contributor is a registered member, and a

receiving project to which the code is submitted. The distinction between the contributing and receiving

projects is central to our empirical analysis of sorting, because we seek to establish whether developers af-

�liated with certain types of contributing projects systematically target certain kinds of receiving projects.

The key variation comes from the fact that projects vary in the degree to which their licenses are �open,�

in the spirit of open source. Though open, unrestricted access was the original driving force behind the

�free software�movement (Raymond, 2001), many projects now incorporate OSS contributions under a

variety of licenses that allow for the source code to be used in proprietary ways that limit terms of use (for

discussion, see Lerner and Schankerman, 2010). For ease of exposition, we refer to the latter as �closed�

projects.

To study this sorting, we exploit characteristics of the projects such as the license type, size, pro-

gramming language, operating system, and intended audience. We study the empirical determinants of

contributions by focusing on four distinct groups of developers, whose pro�le we infer based on to the

types of open source license which govern the contributing project with which they are a¢ liated: open,

closed, mixed, and anonymous. We investigate how the pattern of contributions from each developer type

varies across the various characteristics of the contributing-receiving project dyads. The key innovation

in our approach is that we exploit the observed pattern of contributions �the �revealed preferences�of

developers �to infer the underlying incentives.

Our econometric approach is to aggregate code contributions into cells de�ned by a set of detailed

characteristics of the contributing developers and receiving projects, and then to use these cells as the

observations in the estimation procedure. We then explore how the likelihood of code contribution varies

by the likely motivation of the contributing developer, and the expected potential intrinsic or extrinsic

reward that is associated with the speci�c bundle of receiving project characteristics. The key identi�ca-

tion assumption in this paper is that the characteristics of contributing and receiving projects (such as

license type) are exogenous with respect to the decisions of individual developers to contribute. The main

identi�cation concern with this approach would be unobserved developer or project heterogeneity which

may be correlated both with the level of contributions and some of the characteristics of the contributing

or receiving project. However, because our focus is on the interactions between the contributing developer

type and project characteristics (not on the level e¤ects of these characteristics), such heterogeneity would

induce bias only if it is correlated with these interactions, which is much less likely. For example, code

contributions are likely to be a¤ected by the unobserved quality of the contributing developer. However,

3

while this unobserved quality would a¤ect her level of contributions, there is no reason to expect that it

would a¤ect the distribution of her contributions in relation to project characteristics.

The empirical �ndings in this paper show that developers seem to strongly sort on a variety of ob-

served project characteristics. We interpret this as consistent with the view that software developers are

heterogeneous with respect to their motivations. First, we �nd assortative matching on the project license

type. Open contributors almost exclusively contribute to projects with open licenses, indicating an im-

portant role for �motivated agents��developers dedicated to the ideology of the open source movement.

Closed contributors primarily contribute to projects with closed (more commercial) licenses. If developers

understand that such matching occurs, this �nding is consistent with the reputation incentive �they go

where reputation gains are most likely to be obtained.

Second, contributors from closed projects are more likely to contribute to larger projects and to those

that are sponsored by corporations. This evidence supports the view that labor market reputation (career

concern) plays an important role, as emphasized by Lerner and Tirole (2002). At the same time, however,

we also �nd that, to a lesser extent, the size of the receiving project matters for other developer types.

This indicates that the peer recognition motive also plays a role.

Third, open contributors are much more likely to contribute to projects aimed at end users (e.g.,

computer games), while closed contributors target developer-oriented (e.g., programming tool) projects.

This is potentially important since the development of software tools is the �basic research�that is critical

to the long-run sustainability of the sector. These �ndings also suggest that open source development

by intrinsically motivated agents is more of a substitute for proprietary software innovation on the end-

product side.4 All these three �ndings on sorting behavior are robust to various empirical speci�cations

including a wide range of control variables.

Fourth, we �nd that reciprocity plays a limited role in sustaining innovation. Developers are more likely

to contribute to projects from which they have previously received contributions, controlling for various

observed project characteristics. Reciprocity is more common among closed (commercially oriented)

developers than for open developers (motivated agents). This suggests that reciprocity is associated more

with building reputations than with intrinsic motivation. Relatedly, the vast majority of projects exhibit

no reciprocal contributions. But while we observe reciprocity in only a small percentage of projects,

reciprocal contributions account for a large fraction of the contributions for those projects.

Finally, we empirically examine the relationship between project performance and the contributions

received from project-member developers versus non-members. We show that both internal (member)

and external contributions strongly a¤ect project performance, but the impact of contributions by non-

members is much larger. Interestingly, while sorting strongly a¤ects the �ow of contributions from di¤erent

4 It is important to note that our data set does not include the Linux open source project, which is a widely used operating
system.

4

developer types to projects, we �nd no di¤erences in the impacts of these di¤erent (external) contributions

on project performance. That is, sorting behavior by developers a¤ects the quantity, but not the quality,

of contributions.

Our �ndings that motivations are heterogenous, and induce sorting behavior, should also be relevant

for theories about employment contract design beyond the OSS context. Principal agency theory, with

its focus on extrinsic rewards, has been the dominant paradigm for thinking about employment contracts.

But in the last ten years a number of studies have begun to explore the interaction between intrinsic and

extrinsic motivations and its implications for optimal contracting.5 This literature shows that optimal

incentives may depend strongly on the form and heterogeneity of worker motivation. When intrinsic

motivation is strong (e.g., in the academic and NGO sectors), low-powered incentives may be more

e¢ cient for the principal, and extrinsic incentives may even crowd out intrinsic motivation.6 In addition,

the sorting behavior that can arise from heterogeneous motivations may need to be taken into account

for econometric studies of contract design (Ackerberg and Botticini, 2002).

In this paper we treat the choice of project license as exogenous. Lerner and Tirole (2002) model the

choice of open source license, arguing that the relevant trade-o¤ is between greater proprietary control

with the more commercial, closed licenses and a potentially greater pool of contributors with more open

licenses.7 The sorting e¤ect of the project license plays a central role in their theory, and our results provide

econometric evidence supporting their perspective. We leave for future work the task of incorporating

both the choice of license and the resulting sorting e¤ects into one empirical framework.

The paper is organized as follows: Section 2 sets out the theoretical framework and discusses various

developer motivations for open source innovation, which generates the empirical hypotheses we then

investigate. Section 3 describes the data set and the key variables used in the empirical analysis. Section

4 presents the econometric framework for studying sorting behavior of developers. Section 5 presents

descriptive statistics on the main features of sorting by developers. In Section 6 we present the empirical

results on sorting and discuss their implications. Section 7 presents evidence on the impact of contributions

from di¤erent sources on the performance of open source projects. Brief concluding remarks follow.

2. Theoretical Background and Hypotheses

There are two broad classes of theories about what motivates programmers to contribute to open source

projects: intrinsic and extrinsic motivation. The concept of extrinsic motivation was �rst introduced

by Skinner (1953) and further developed by Deci (1971), who de�ned extrinsically motivated behaviors

5This work has focused primarily on government and non-pro�t organizations, where it is believed that workers may
be either intrinsically motivated or more strongly motivated agents in the sense that their preferences are aligned with the
employer�s mission. Leading examples include Frey (1997), Kreps (1997), Francois (2000), Murdock (2002), Bénabou and
Tirole (2003), Besley and Ghatak (2005), Delfgauuw and Dur (2007, 2008), and Prendergast (2008).

6For a empirical examples of crowding out e¤ects, see Frey (1997) and Frey and Oberholzer-Gee (1997).
7We paraphrase here, using �open�and �closed�according to our present working de�nition.

5

as those that are seen by actors as means to an end. When thusly motivated, actions are performed

merely in order to attain some separable outcome to which external rewards are attached (such as status,

approval, or monetary compensation). This is what most people in economics and management would

associate with �incentives.�8 In the absence of a commensurably meaningful reward the action would not

be performed. In contrast, an individual is considered intrinsically motivated to act if she �performs an

activity for no apparent reward except the activity itself�(Deci, 1972).

Within psychology, the study of intrinsic motivations remains dominated by the work of Deci and

Ryan, who incorporated the concepts of intrinsic motivations into their self-determination theory (SDT).

This theory explores what intrinsic motivation consists of, above and beyond being merely the opposite

of the more intuitive extrinsic motivation. As well, intrinsic motivation is here construed as having its

own type of rewards �hard to observe though they may be. Thus, SDT builds on the premise that some

actions in and of themselves can satisfy the three crucial psychological needs of competence, autonomy, and

relatedness, leading to �an energizing state that, if satis�ed, conduces toward health and well-being, but,

if not satis�ed, contributes to pathology and ill-being�(Ryan and Deci, 2000). The need for competence

leads people to seek challenges that are optimal for their ability level and to attempt to both maintain

and enhance those skills and abilities (Ryan, 1995). The construct of autonomy concerns the degree to

which action and experience are initiated and governed by �the self,�in accord with self-endorsed values,

needs, and intentions. Relatedness is the need to feel recognized and accepted by those who are viewed

as signi�cant.

Motivation studies in management typically discuss ways for managers to provide feedback, rewards,

and a sense of belonging to employees in order to boost their internalization of organizational goals.

However, most of these studies do not di¤erentiate between extrinsic and intrinsic motivations, despite

the fact that these concepts underlie many work-motivation theories. A recent review of motivation theory

in the management literature calls for integration of various motivation sub-theories that have developed

in the management �eld (Locke and Latham, 2004). As they show, intrinsic and extrinsic motivation

concepts are interwoven into di¤erent theoretical concepts in the growing literature, but they highlight

that empirical work which explicitly tackles �extrinsic� versus �intrinsic�motivation in organizational

setting is still scarce. One exception is Baard, Deci, and Ryan (2004), who �nd that if employees possess

a higher sense of autonomy (they feel relatively independent and in charge of their own work), their

intrinsic motivation is higher, which increases their work performance. Similarly, Ilardi, Leone, Kasser,

and Ryan (1993) use self-reported measures of intrinsic motivation to �nd that higher intrinsic motivation

increased self-reported measures of job satisfaction in the workplace. However, by and large, there are

almost no systematic econometric analyses that credibly separate and distinguish between intrinsic and

8See Gibbons (1998) for a good review.

6

extrinsic motivation, and even fewer that actually assess their relative importance in economic production

and exchange.

The �eld of economics has historically not embraced the concept of intrinsic motivation, though in

recent years it has begun to garner some attention. For example, a theoretical paper by Bénabou and

Tirole (2003) provides conditions under which external rewards may undermine intrinsic motivations.

Murdock (2002) models intrinsic motivation as generating some surplus in addition to economic returns

of a trade. He assumes that people care about what they do (intrinsic motivation) in addition to being

paid for it. He also assumes that people derive utility from accomplishing goals, and accomplishing goals

is independent from any �nancial reward. Thus intrinsic motivation determines level of e¤ort in the task.

The net returns from a project consist of returns from intrinsic motivation and �nancial returns. The net

returns could be still positive even if �nancial returns are negative. So, a �rm can commit to a project

in cases of negative �nancial return provided intrinsic motivation would increase employees�participation

e¤ort and thus net return would be positive. The motivating example for this model is Merck, Inc.�s

development of a drug that cures river blindness. The �nancial returns of the project was negative

ex-ante, but the company decided to complete the project because not going through would have had

negative impact on researchers�morale.9 Kreps (1997) discusses the challenge in trying to understand the

interplay between intrinsic and extrinsic motivation, especially when the extrinsic rewards are not sharply

de�ned. However, his overall assessment is that understanding this interaction is important, though it

may result in �messy�and partially non-economic considerations involving the form of individuals�utility

functions.

The Open Source Software domain is a good setting for this type of research, as it depends on both

intrinsic and extrinsic factors to function. Lakhani and Wolf (2005) operationalize motivation according to

the social psychology constructs of Deci (1971), using survey instruments on a sample of developers listed

in SourceForge.net. They also separated intrinsic motivation into enjoyment-based intrinsic motivation

and obligation/community-based intrinsic motivation (in accord with Lindenberg (2001), who called for

studies on norm-based intrinsic motivation). The survey items to measure intrinsic motivation were

based on self-reported responses to various reasons for why developers contribute, such as whether doing

so would improve their programming skills, whether the contributions were made for results that might be

useful for their own work, and whether they contributed because doing so would enhance their professional

status. They found that intrinsic motivation is in fact the strongest driver of OSS project participation.

Our paper closely relates to Roberts, Hann, and Slaughter (2006), who distinguish motivations as

pure extrinsic (for pay), internalized extrinsic (voluntary but for personal use bene�t or status), and pure

intrinsic (solely for the joy of doing it). Their empirical setting, like ours, is the OSS community. They

9 In a related vein, Akerlof and Kranton (2003), Bénabou and Tirole (2003), and Francois (2000) also discuss the concept
and implication of nonpecuniary bene�ts.

7

also derive their hypotheses from self-determination theory of motivation and then determine relationships

between motivation, participation in OSS projects, and project performance. However, in terms of the

empirical methodology, our study di¤ers substantially from theirs, which relied on 288 responses to an

online survey. Aside from being substantially larger, our sample also eliminates any bias that may result

from the self-reported nature of online surveys.

We identify three types of developers based on the expected relative importance they attach to in-

trinsic motivation when making code contributions: open, closed, and mixed. For this, we assume that

developers reveal themselves as �motivated agents��which is one form of intrinsic motivation �if they

are members only of projects that have open licenses, because these projects adhere more closely to the

original philosophy of OSS. Such attachment to projects with open licenses �and disinclination to con-

tribute those with more closed licenses � indicates an identi�cation by such developers with the (OSS)

objectives of such projects. This is how Besley and Ghatak (2005) de�ne �motivated agents��alignment

of preferences between the employee and employer.

Conversely, we assume that developers reveal a preference for extrinsic motivation if they belong only

to projects with closed license types. We also argue that anonymous developers are likely to resemble the

intrinsic developer type, because it is doubtful that these developers could bene�t from external bene�ts

such as reputation or peer recognition. We consider as mixed those developers for which there is no

clear evidence on whether they should care more about intrinsic or extrinsic motivation. Put simply, our

empirical investigation is an e¤ort to document, within a set of OSS developers, systematic patterns of

behavior that are consistent with the predictions of intrinsic and extrinsic motivation theory.

We proceed by identifying four classes of motivations which run the spectrum from highly intrinsic to

highly extrinsic: Pure intrinsic motivation, Utility/Learning, Reciprocity, and Reputation. The literature

and available small-sample survey evidence suggest a role for each of these motivations in open source

development (e.g., Haruvy et al., 2003; Lakhani and von Hippel, 2003; Hertel, Krishnan, and Slaughter,

2003; Lerner and Tirole, 2002). Out of the four motivation types, we can see that reputation relies most

directly on extrinsic mechanisms. This is because the very notion of �reputation� requires an external

agent to form an opinion of the subject. At the other extreme, pure intrinsic reputation is simply de�ned

as lacking extrinsic dimensions. Thus, these two are at the tail ends of the motivation spectrum. On the

other hand, reciprocity and utility/learning are likely to lie along the continuum, since both share features

of internal and external motivations. The hypotheses we formulate aim to assess the relative importance of

each motivation type in driving OSS contribution, while acknowledging the important point that an agent

may be driven by more than one motivation type. We proceed by discussing the empirical implication of

each motivation class, and we suggest testable hypotheses.

Pure intrinsic motivation. As discussed earlier, a salient feature of OSS is that many of its developers

8

have a strong ideological preference for keeping their source code fully open. In economic terms, this

means that for a developer who is a¢ liated only with open projects, the utility derived from making a

code contribution is larger if it is made to a project that is itself open. In the extreme, this utility would

be zero if the contribution were made to a project with any other license type. In psychological terms,

purely motivated developers should achieve greater levels of autonomy �through acting in accord with

self-endorsed values, needs, and intentions, as well as a stronger sense of ideological relatedness to the

relevant OSS community. This leads to our �rst hypothesis:

Hypothesis 1a (intrinsic motivation, open/anonymous developers): Open (closed) projects should

receive more (fewer) contributions from anonymous and open developers.

This aspect of the intrinsic motivation hypothesis predicts positive (but not necessarily exclusive)

sorting of open developers to open-license projects. That is, more intrinsically motivated developers

(those more likely to be anonymous or open developers who are members of projects with highly open

licenses) would be more likely to contribute to projects with highly open licenses because these more

closely match the OSS philosophy.

The debate between advocates of open source and proprietary software has been polarized, with

strident criticism from both sides of the divide (for discussion, see Lerner and Schankerman, 2010). In

this context, there may also be developers ideologically motivated against contributing to HO projects,

whose licenses may be viewed as �anti-property rights.� 10 To the extent this view is widely held, the

ideological motivation may also induce sorting by closed developers. It is important to emphasize that

this type of sorting should be considered a form of intrinsic motivation, because it is ideologically based.

Hypothesis 1b (intrinsic motivation, closed developers): Closed (open) projects should receive more

(fewer) contributions from closed developers.

Reputation. The reputation-related motivations in OSS communities have been well documented (e.g.,

Hertel et al., 2003; Markus et al., 2000). Here, the bene�ts are much more starkly extrinsic, since it is

clear to see how status and respect from the other members of a community may motivate contributors to

expend e¤ort even in the absence of pecuniary rewards. However, their relative importance in comparison

to other types of motivation is subject to debate. Lerner and Tirole (2002) argue that developers improve

their labor market prospects by signaling their quality through participation in open source projects.

These signaling bene�ts are likely to be greater: (1) when the project to which they contribute is larger and

more visible (Johnson, 2002), (2) when the project reveals the outcome of the contribution; for example,

by being accepted by the project manager, (3) when the project is sponsored by commercial �rms, and

10The highly open GPL license is also known by some open source advocates as �copyleft�to emphasize this anti-property
rights perspective.

9

(4) when the project is aimed at developer-users rather than end users. The prediction of the commercial

reputation (labor market signaling) hypothesis is that closed developers should sort positively on these

four dimensions. Importantly, because reputational bene�ts clearly should not matter to anonymous

contributors, this group can serve as a benchmark against which reputation e¤ects are evaluated.

The second type of reputation gain is basic peer recognition, which is unrelated to labor market payo¤s.

Peer recognition should also be greater for larger projects, projects that reveal patch outcomes, and those

aimed at programming tools rather than end users. Whether peer recognition should be regarded as

intrinsic or extrinsic motivation is less clear. On the one hand, peer recognition is likely to depend on the

quality of a developer�s contribution and to thus also lead to more externalized rewards such as status or

monetary compensation. On the other, peer recognition by itself is consistent with the relatedness element

of the SDC theory �the need to feel recognized by those who are viewed as signi�cant. Nonetheless, it is

important to note that whether reputation works via the labor market or peer recognition, it should play

no role for anonymous contributors, since they cannot bene�t from it. Moreover, among non-anonymous

developers, we expect that reputation would be less important for contributors who sort (primarily)

into open projects. This is because intrinsic motivation (in the form of motivated agents) plays a more

important role for them. In contrast, extrinsically motivated (closed) developers should be more attracted

to more visible projects, where their gains from reputation are likely to be greater.

This discussion leads to the following set of hypotheses:

Hypothesis 2a (reputation, project size): All developer types, except anonymous, should be more likely

to contribute to larger projects.

Hypothesis 2b (reputation, visible contribution outcome): All developer types, except anonymous,

should be more likely to contribute to projects that reveal the outcome of the contribution. Anonymous

developers should either be una¤ected by this, or be negatively a¤ected, if this crowds out their intrinsic

(ideology) motivation.

As proposed by Lerner and Tirole (2002), commercial sponsorship of a project can increase e¤ectiveness

of labor market signaling by developers, which should make such projects more attractive to extrinsically

motivated developers. Thus:

Hypothesis 2c (reputation, corporate sponsorship): Closed developers should be more likely to con-

tribute to projects that are sponsored by corporations. However, anonymous and open developers should

either be una¤ected by this, or be negatively a¤ected, if this crowds out their intrinsic (ideology) motiva-

tion.

Finally, the reputation gains are likely to be greater when the developer�s peer group is more able to

10

understand the technical merit of her contributions, both for reputation in the labor market and peer

recognition. Therefore, to the extent that reputation is valuable to extrinsically motivated developers, we

expect these gains to be larger when the intended audience for the receiving project is developers rather

than end users. This leads to:

Hypothesis 2d (reputation, intended audience): Both open and closed developers should be more likely

to contribute to projects that are intended to be used by developers (as opposed to end users). Anonymous

developers should not systematically sort on this dimension.

Reciprocity. The earliest proponents of open source emphasized the role that reciprocity (sometimes

also known as �gift culture�) plays in sustaining incentives for innovation. The hypothesis is that devel-

opers who are members of a project may make contributions either in direct response to, or anticipation

of, contributions made by other developers to their project. Evidence from surveys of programmers cer-

tainly points to its importance. The idea that reciprocity can be sustained as an equilibrium over time

is also well grounded in the economic theory of repeated games, though whether its assumptions �t the

open source context is open to dispute. This equilibrium can be rationalized by the theory of repeated,

non-cooperative games if players (code contributors) can detect and e¤ectively punish those who deviate

from reciprocity strategies. However, within the open source context, it is di¢ cult in practice to identify

such deviation (i.e., how can one know what level of contributions reveals such deviation) and to punish it.

It may also be easier to sustain such reciprocity in particular kinds of projects, where the set of potential

contributors is more readily known and thus non-reciprocal behavior is more easily spotted.

This construct may impact both intrinsic and extrinsic motivation. If the OSS developer feels that

doing work now may result in future bene�ts through others�reciprocity, then this will elicit an extrinsic

motivation. On the other hand, if the developer feels compelled to contribute in order to �give back,�

then reciprocity may elicit an intrinsic motivation. Empirically, there is some evidence that both e¤ects

will be relevant. For example, Shah (2006) �nds that one of the most important reasons for developers to

contribute to open platforms was a sense of reciprocity. Apart from deriving satisfaction from developing

a code, contributors felt that helping others in the community was important because they had bene�ted

from others�contributions.

The psychological contract theory also suggests that some contracts may involve strong emotional ties

and loyalties, which necessitate reciprocal appreciation of intrinsic motivation (Rousseau and McLean

Parks, 1993; Schein, 1965). This goes beyond simple transactions and involves socio-emotional implicit

agreements or perceptions of agreements. From this perspective, the reciprocity encountered in organi-

zations may have both intrinsic and extrinsic components. More relatedly, current work exploring the

motivations behind OSS has pointed to reciprocity as a plausible mechanism. Lakhani and von Hippel

(2003) �nd that reciprocity is the most important reason contributors cite for posting answers on Usenet

11

groups. These people either repay for the bene�ts they had received or contribute in expectation of ben-

e�tting from the community in the future. But it is important to note that we are agnostic as to whether

reciprocity works through extrinsic or intrinsic channels (or both). This leads to:

Hypothesis 3 (reciprocity): Contributions from members of project i to project j in year t should be

more likely when members of project j have contributed to project i at some point prior to year t:

Utility/learning: Like reciprocity, utility and learning motivations can consist of intrinsic and extrinsic

components. Developers may contribute code to projects because they enjoy doing so (intrinsic) or because

they learn from the process, which can provide bene�ts later (extrinsic). In addition, they may hope to

in�uence the direction of the software project in ways from which they expect to bene�t later. Such

learning and in�uencing bene�ts from making contributions are likely to be stronger if the contributing

and receiving projects use the same programming language or operating system.11 Thus:

Hypothesis 4 (utility/learning): Projects are likely to receive more contributions from developers who

are a¢ liated with other projects that have the same programming language or operating system.

3. Data

The data are taken from SourceForge, the largest web host for open source software projects. SourceForge

provides a publicly accessible platform, introduced in 1999, where developers interact during the software

development process. We developed specialized software algorithms that accessed each project registered

on SourceForge over the period 1999�2010, and extracted all available information about the project, the

participating developers, and their software code contributions. The �nal data set covers the 211,705

open source projects registered on SourceForge over this period, and all code contributions made to these

projects. While our raw sample includes information on all 211,705 projects registered on SourceForge.net

as of November 2010, the distribution of code contributions by receiving projects is highly concentrated,

with only 6,316 (3 percent) receiving any external contributions over the ten years covered by the data.

Interestingly, including internal contributions only raises that �gure to 3.4 percent. The majority of

the analysis focuses on the smaller sample of active projects. The Data Appendix provides a detailed

description of the data collection, as well as a number of consistency checks.

We begin by de�ning some key terms. A contribution is de�ned as any contributed code that aims

to advance the software in a particular manner (whether or not it is accepted by the project manager).

There is no limit (minimum or maximum) on the number of lines of code it involves. This de�nition is

11The similarity in language may also be a driver because developers incur e¤ort costs in making code contributions, and
they may be more likely to contribute when these costs are lower. This could be the case when the programming languages
of contributing and receiving project are similar. We acknowledge that it is not possible to distinguish empirically between
the role of lower e¤ort costs and utility/learning bene�ts.

12

maintained throughout the sample period. Our de�nition is standard in the empirical literature on code

contributions using SourceForge data. We exclude software bug reports and �xes, which are more minor

interventions.

The contributing project is the project with which the developer making the patch contribution is

a¢ liated as a registered member. If the developer belongs to more than one project, we treat each sep-

arate project as a contributing project. We treat contributions made by anonymous developers, and by

developers are not registered as members of any projects, as separate categories. We de�ne the receiving

project as the one to which the patch contribution is submitted. The distinction between the contributing

and receiving projects is central to our empirical analysis of sorting, because our objective is to establish

whether developers a¢ liated with certain types of projects (in terms of their license type) systematically

target certain kinds of projects. Finally, we de�ne external contributions as patches submitted by de-

velopers who are not registered members of the receiving project, and internal contributions as patches

submitted by developers to projects of which they are members.

The key variables in the empirical analysis are as follows:

Project License Type: The most important project characteristic we consider in this paper is license

type. Each project is governed by a set of rules that de�ne the terms of use of the software developed by

its members and other participants. These terms of use are de�ned by the project license, which focuses

mainly on the extent to which commercial use is allowed. Licenses that constrain such use more severely

are referred to in the literature on open source as �more restrictive.�We label the projects governed by

these licenses as �open,�because the impact of these restrictive licenses is to keep software free, in the

spirit of �Open Software.� Two main features de�ne the restrictiveness of a license: (1) the extent to

which the code and any of its modi�cations can be subsequently embodied in commercial software and

(2) whether modi�cations to the code have to remain open source (i.e., the binary code must remain open

and accessible).12 The projects in our data cover about 44 license types. Using the description of each

license type (http://www.opensource.org/licenses), we classify licenses into three categories:

1. Highly Open (HO): This type includes the GPL (General Purpose License) license. It requires

that any �le, regardless of code origin, which is combined under certain circumstances with a �le

under GPL must be licensed under GPL. This license type is regarded as ideologically closest to

the original idea behind the �free software�movement, and its objective is to preserve a fully open

software commons and limit commercial gains from software development to the maximum possible

extent.

2. Open (O): The license requires that modi�ed versions of the program can only be distributed if the

source code remains open source, but it can be used commercially. There are no restrictions on the
12For a good discussion of di¤erent license types and their restrictions, see Lerner and Tirole (2002).

13

license conditions of the modi�cations and extensions of the code, provided that they remain open

source. Examples include Lesser GPL, Common Public License, and Sun Public License.

3. Closed (C): The license allows modi�cations and extensions of the open source code to be integrated

into commercial software, and these do not have to remain open source. Examples include BSD,

Python, and MIT.

Projects may have more than one license type. In cases of multiple licenses (7 percent of the sample

projects), we classify the project as HO if at least one of its licenses is highly open, and as C if all of

its licenses are closed.13 The remaining projects are classi�ed as O. In the complete sample, 47 percent

operate under an HO license and 43 percent under a C license.14 Among projects that receive at least one

code contribution, 60 percent operate under HO licenses, and 25 percent under C licenses. This di¤erence

re�ects that fact that highly open projects receive fewer contributions per project than those under closed

licenses.

As mentioned earlier, a project can receive contributions from its members (internal contributions) or

developers who have no formal a¢ liation with the focal project (external contributions). In the sample,

39 percent of contributions are internal. The remaining 61 percent are external, coming either from

developers who are formally a¢ liated with other projects (but not the focal project), are not members of

any project, or do not reveal their identity when making their contribution (anonymous developers). In

what follows, we focus the analysis of sorting behavior on the pattern of these external contributions. In

the empirical section we study the impact of di¤erent types of contributions, both internal and external,

on the performance of the receiving projects.

Developer Types: We assign each developer a �type� based on the types of projects to which she

belongs as a registered member. We classify a developer as open if all of the projects to which she belongs

operate under highly open license, as de�ned above. We de�ne a developer as closed if all of the projects

to which she belongs operate under closed licenses. All other developers who are members of projects are

classi�ed as mixed. The majority of developers belong to very few projects �the mean number of projects

of which a developer is a member is 1.4 (median is 1, 99th percentile is 7). In addition, we use two other

categories: �Anonymous�developers are those who submit contributions without revealing their identity

to the receiving project manager or members. �Non-members�are contributors who are not registered as

members of any project.

Of the 149,956 developers registered on SourceForge (i.e., having a unique user name), 68 percent

have no a¢ liation to any project, 15 percent are open developers, 9 percent are closed developers, and

13The results reported in the paper are robust to alternative assumptions, such as classifying projects as highly open only
if all of their licenses are highly open, or classifying projects as closed only if the majority of their licenses are closed.
14 In their study of the determinants of project license type, Lerner and Tirole (2002) use an earlier and smaller sample

but �nd a very similar distribution of license types.

14

the remaining are classi�ed as mixed. Of the total sample of developers, only 22,512 (15 percent) make

at least one contribution to projects with which they are not a¢ liated (�external contributions�) over

the ten-year sample period.

Size of Project: The size of the project is de�ned by the number of developers registered as formal

members, including the project manager.15 Size is a central measure in our analysis because it is our key

test of Hypothesis 2a on the reputation motive.

Most projects are small � the median project has one member (mean is 4.1). The distribution is

sharply skewed, however �the project at the 90th percentile of the size distribution has 10 members (99th

percentile is 37 members). Larger projects receive more (external) contributions than small projects.

Conditional on receiving at least one external contribution, projects above the median size receive an

average of 28.5 contributions, compared to only 8.8 for below median-size projects.

Resolution of the code contribution: From information on SourceForge, we know whether the open

source project reveals to outsiders whether an individual code contribution has been accepted (i.e., in-

corporated in the project software). In total, 46 percent of projects registered on SourceForge reveal the

outcome of (at least some) contributions.

Intended Audience: SourceForge identi�es the intended audience for each registered software project

from among 19 groups. We aggregate these groups into �ve categories for the empirical analysis: De-

velopers (programming tools), End Users, System Administrators, Mixed (of the preceding three), and

Other.16 About 30 percent of projects receiving contributions are developer-oriented and 18 percent tar-

get end users. We also include a separate category for projects that do not specify intended audience (16

percent of projects).

Programming Language: Projects fall under one of 70 di¤erent programming languages. Based on

discussions with software developers, we group these languages into �ve broad categories: object-oriented,

imperative, scriptive, dynamic, and other (Data Appendix for details). We also include a separate category

for projects that do not specify their programming languages (14 percent of projects).

Operating System: Each project is conducted on one or more operating system, which is the platform

on which the program runs. We use four groups of operating systems: Microsoft, Open Source Indepen-

dent, POSIX, and Mixed (Data Appendix for details). We also include a separate category for projects

that do not specify their operating system platform (20 percent of projects).

15An alternative measure of size is the total number of patches received by the project. However, because we want to
explain the pattern of developer code contributions, it would be problematic to treat this measure as exogenous for small
projects since the developer�s decision to contribute would a¤ect the measure of project size.
16The End User category includes end users/desktop and advanced end users. The �Other� category, which account for

about four percent of projects, includes mainly aerospace, education, science/research and healthcare.

15

4. Econometric Speci�cation

Our primary objective is to estimate the e¤ect of project characteristics on the pattern of code contribu-

tions. To do this, we �rst aggregate patches into cells, where each cell is de�ned by a set of characteristics of

the contributing and receiving projects. These cells become the observations in the estimation procedure.

The empirical task is to relate the number of contributions between di¤erent cells to the characteristics

of the contributing and receiving projects de�ning those cells.

Since the number of contributions is an integer, we use an econometric model for count data. We

adopt a Negative Binomial speci�cation

Yc;r = exp(�Xc + �Xr + �XcXr + �cr) ((1))

where Yc;r denotes the number of contributions from projects in cell c to projects in cell r; Xc is a vector of

characteristics of the contributing project c (including the developer type), Xr is a vector of characteristics

of the receiving project r; and we assume that the negative binomial error is conditionally independent of

the characteristics in (Xc; Xr), E(�cr j Xc; Xr) = 0: The model is estimated by maximum likelihood.17

Our primary interest is in the interaction coe¢ cients between the developer type and the receiving

project characteristics, the �0s: These coe¢ cients describe how developers endogenously sort (i.e. target

their contributions) on the license type and other receiving project characteristics. We refer to these

interaction coe¢ cients as the �sorting parameters.�

We use the following dimensions to de�ne cells. For the contributing project, we focus on the developer

type. As explained earlier, we infer the developer type from the project a¢ liations (membership) of

the developer. Using the contributing developer type allows us to examine whether developers sort �

i.e., target � projects with speci�c types of open source licenses. For the receiving project, we use

�ve characteristics: license type, intended audience, programming language, operating system, and age.

Project age is important because we measure the number of contributions made over the entire life of the

project on SourceForge, and this will depend on how long the project has been registered. Each of these

dimensions of the contributing and receiving projects are de�ned as dummy variables. An example of a cell

is the total number of contributions (over the sample period 2001�2010) made by highly open developers

to projects with a closed license and a particular intended audience, operating system, programming

language, and project age. The total number of cells in the regression equals the product of the number

of developer types, intended audiences, operating systems, programming languages, and project ages for

which information on contributions is available.18

17The alternative, Poisson model imposes the strong restriction that the conditional mean and variance of Ycr are equal.
The Negative Binomial model allows for �overdispersion� of the form V ar(Yc;r) = E(Yc;r) + �[E(Yc;r)]

2 and estimates the
overdispersion parameter � along with the other parameters. Our estimates easily reject the Poisson case � = 0:
18Some cells have only dormant projects which receive no contributions at all over the sample period, in which case we

drop them in the estimation procedure.

16

The key point to recognize here is that the dependent variable, Yc;r; is de�ned on the basis of a set

of contributing and receiving project characteristics at the cell level, not at the level of the individual

contribution. These cells are de�ned in terms of the set of developer type (the contributing project charac-

teristic we focus on) and the receiving project characteristics described above. Thus there is no ambiguity

about the contributing developer type in the sorting, even though we analyze �ows of contributions at

the cell level.

As explanatory variables in the regressions, we include a complete set of dummy variables for the

contributing developer type and the receiving project characteristics, and their interactions. In addition,

we include the average size (number of registered members) of the receiving projects in each cell, interacted

with the developer type, to allow for sorting by developers on project size. We also control for the number

of potentially receiving projects in the same cell since that will a¤ect the �ow of contributions.19 We

include projects that do not receive any contributions over the sample period provided that they are in

a cell where at least project received one or more contributions. We drop cells if all projects in the cell

received no contributions over the entire sample period.

We must normalize one of the coe¢ cients on the interaction dummy variables between developer and

license type (since we also control for additive e¤ects in these dimensions). The choice of normalization

only a¤ects the interpretation, not the estimation, of parameters. We set the coe¢ cient on the open

developer�HO license interaction equal to zero, so all estimated interaction coe¢ cients measure impacts

relative to this reference group, i.e., relative to the expected number of contributions by open developers

to projects with HO licenses.

The identi�cation assumption we use is that the license type, and other project characteristics, are

exogenous with respect to the individual developer�s decision to contribute. The main source of concern

is unobserved project quality, which might be correlated both with the observed characteristics of, and

the number of contributions made to, a project. Our empirical strategy should be more robust to this

problem, however, because our primary focus is on the interactions between the contributing developer

type and project characteristics, the � coe¢ cients �not on the level e¤ects given by (�; �). Unobserved

heterogeneity will induce bias only if it is correlated with these interactions. While higher-quality projects

may attract more contributions, it is not clear why this should systematically a¤ect one type of contributor

more than the other.

There is also a concern that our measure of project size � the number of registered members �

might be endogenous if unobserved project quality both attracts more members and makes it more likely

that developers will contribute patches to the project. While we control for many observed project

19We do not control for the number of potentially contributing developers because there is no way to do this for one
important category, Anonymous developers. This means that it is di¢ cult to interpret di¤erences in the levels of sorting
coe¢ cients across developer types. Our main focus will be the sorting behavior of each developer type separately.

17

characteristics that might be correlated with project quality, we cannot rule out the possibility of an

unobserved element to quality. If this is present, we expect the coe¢ cient on project size to be biased

upward. However, and this is the key point for our analysis, there is no obvious reason to expect this

upward bias to be di¤erent for di¤erent types of developers. As we will show, we �nd that project size

matters much more for closed developers �where the theory suggests that labor market signaling should

be more important. Thus, while we cannot rule out the possibility that our estimated marginal e¤ect of

project size on contributions may be upward biased, we believe our key inference is robust to this concern.

Finally, one might be concerned that project size itself depends on the project manager�s initial choice

of open source license and other project characteristics. What would be the consequences for our �ndings if

this is so? Suppose that the project license type (or other characteristics) a¤ects not only contributions but

also membership. In the econometric work on sorting, we exclude internal contributions. It is reasonable

to assume that developers who become members of a project are those most interested in the project,

and thus most likely to contribute heavily to the project if they did not become members. This implies

that we would underestimate the impact of sorting on the actual �ow contributions the project receives,

since we do not capture the internal contributions made by developers who are induced to register as

members by the manager�s initial choice of project characteristics. In this sense, our empirical conclusion

that there is strong sorting by developers is conservative.

5. Descriptive Statistics

Developers in our sample make 103,712 external code contributions. Table 1 shows how these contributions

distribute across developer types. Of the total, 31 percent come from non-members, 18 percent from

anonymous contributors, 14 percent from open developers, and 13 percent from closed developers. The

remaining contributions are from mixed developers. Mixed developers are the most active contributors,

with an average of 11.2 contributions per developer. The least active developers are non-members, with

only 2.1 contributions per developer. However, while they contribute fewer code contributions, in Section

7 we show that the contributions by non-members have a much larger impact on project performance

than the other categories of external contributors.

Open developers tend to be members of fewer projects than closed and mixed developers (means of

1.5, 2.0, and 2.9 projects, and 99th percentile values of 5, 11, and 12, respectively). However, there is no

substantial di¤erence in the number of distinct projects to which developers of di¤erent types contribute

(not reported in the Table 1): mean values are 1.4, 1.5, and 1.5, respectively. Non-member developers

tend to focus their contributions more narrowly (an average of only 1.1. projects) than developers who

belong to projects.

Table 2 summarizes key aspects of sorting behavior by developers: how they target their contributions

18

toward di¤erent types of projects. Several interesting patterns emerge. First, there is strong sorting of

contributions on project license type. Both anonymous and open developers are much more likely to

contribute to projects operating under highly open licenses. For anonymous developers, more than 80

percent of their contributions go to such projects, with a further 10 percent or more directed to moderately

open projects. Open developers follow a similar pattern: two thirds of their contributions go to highly

open projects, with an additional 17 percent that go to moderately open projects. In sharp contrast,

closed developers focus more heavily on projects with closed licenses �36 percent going to such projects

(as compared 9 and 16 percent for anonymous and open developers).

Second, there is strong sorting on the intended audience of the project. Closed developers are 3.5

times more likely to contribute to projects aimed at developing programming tools than to projects

whose main audience is end users. In sharp contrast, anonymous developers are almost four times more

likely to contribute to projects aimed at end users compared to projects targeting other developers. Open

developers do not seem to favor either end-user or developer projects. While there does not appear to be

any clear sorting by open developers in this table, once we control for other factors in the econometric

analysis (Section 6) we �nd that there is also strong sorting toward end-user projects by open developers

as well. This pattern of sorting on intended audience of the software project is interesting because, given

the importance of cumulative innovation in software, programming tools are likely to contribute more to

the long-run technological advance in this sector than end-user products.

Third, closed developers sort much more strongly on the size of the project as compared to anonymous

or open developers. For example, 43.9 percent of contributions by closed developers go to projects with

more than 10 members, whereas the corresponding �gures are 30.7 percent for open developers and only

17.7 percent for anonymous contributors.

These two �ndings �sorting by intended audience and project size �are consistent with the hypothesis

that closed developers are more driven by the motive to build a reputation and signal it in labor markets,

since programming skills are more e¤ectively signaled via contributions to developer tools (where the

audience has the technical skills to evaluate them), and to more visible projects. In the econometric

analysis, we will also provide further evidence that supports the importance of the reputation motive,

while we also consider and try to rule out other explanations for this observed sorting behavior.

6. Econometric Results

6.1. Baseline Speci�cation

Table 3 presents the estimated parameters (marginal e¤ects) for the baseline model. We focus on the

sorting coe¢ cients that describe matching between the contributing developer type and the license and

size of the receiving project. The regression also includes a complete set of additive dummy variables

19

for the receiving project characteristics (parameters omitted for brevity). Each sorting coe¢ cient gives

the impact of a unit change in the control variable on the expected number of contributions, all de�ned

relative to the number of contributions contributed by the open developer to a project with an HO license

(this is the reference category). Sorting behavior by a developer type is revealed by comparing the sorting

coe¢ cients for that developer type across projects with di¤erent licenses.20 21

The empirical results show that there is strong sorting behavior by developers. Turning �rst to column

2, we see that open developers are much more likely to contribute to projects that have highly open licenses

than to those with less open licenses. Changing the project license from highly open to open reduces the

number of contributions by open developers by 1.62. Since the average number of contributions by open

developers at the cell level is 9.3, this is equivalent to a 17.4 percent reduction. Moving from an open to

a closed license is associated with an additional reduction in contributions of 0.34, or 3.7 percent. The

�2 test strongly rejects the hypothesis that there is no sorting by license type for highly open developers

(p-value< .001).

Contributions by anonymous developers cannot be driven by career concerns because they do not

reveal their identity and cannot gain from peer recognition or labor market signaling. Thus anonymous

contribution activity indicates either the importance of ideology as motivation (�motivated agents�) or

pure utility/learning value from contributing. If they are primarily intrinsically motivated agents, we

expect them to sort on highly open projects, whereas the utility value/learning incentive predicts no

systematic sorting on license type. Column 1 in Table 4 shows that anonymous developers sort in a

way similar to highly open developers. The sorting coe¢ cient on HO licenses is not statistically di¤erent

from zero, which is the same as for open developers. Moreover, anonymous developers show the same

disinclination to contribute to projects with less open or closed licenses. This is shown by the statistically

signi�cant, negative sorting on open and closed licenses (-2.20 and -2.95, respectively). These results for

highly open and anonymous developers provide support for the �pure intrinsic motivation�hypothesis,

indicating that these types of developers attach value to the open source ideology that favors highly

restrictive (open) licenses. This evidence strongly supports Hypothesis 1a.

We �nd the opposite pattern of sorting by closed developers (column 4). They are much more likely

to contribute to projects with less open or closed licenses. For example, comparing the sorting coe¢ cients

for the C and HO licenses (-1.40 and -2.93, respectively), we see that moving from an C to an HO license

reduces the number of contributions by closed developers by 1.53. This represents an 18.7 percent fall

20Di¤erences in the sorting coe¢ cients across developer types, for a given license, re�ect di¤erences in both the numbers
of potentially contributing developers of each type and their intensity of contributions.
21Table 3 includes the mean number of contributions by di¤erent developer types at the �cell� level, which we use to

compute percentage impacts in the discussion which follows. For completeness, we provide here more information on these
di¤erences. The mean, median and 99th percentile of the distribution of contributions at the cell level are as follows:
Anonymous developers �12.1, 1, and 114; Open developers �9.3, 1, and 142; Mixed developers �16.7, 9, and 180; Closed
developers �8.2, 0, and 145; and Non-members �21.0, 3, and 326.

20

in their contributions at the cell level (= 1.53/8.2). Again, we decisively reject the null hypothesis that

there is no sorting by closed developers (p-value <.001). This evidence is consistent with Hypothesis 1b.

Interestingly, we do not �nd any sorting behavior for mixed developers (column 3), who are registered

members of (multiple) projects with di¤erent types of licenses. We cannot reject the null hypothesis that

there is no sorting for these developers (p-value = .51). This indicates an indi¤erence to the choice of

project license type, both in their choices on membership and in their contribution activity.

Finally, the results in column 5 show that non-member developers exhibit behavior which is very

similar to open and anonymous developers. In particular, non-member contributors sort toward highly

open licenses. Moving from an HO to a C license reduces the number of contributions by non-member

by 2.43 (= 2.65-5.08). Their average number of contributions at the cell level is 21.0, so this change in

license type reduces their contributions by 11.6 percent.

We turn next to the impact of project size on the in�ow of contributions. Project size plays two roles.

First, the number of members who belong to a project may be a proxy for unobserved project quality.

If this is so, larger projects would attract more contributions from all developer types. Second, project

size may be associated with more exposure and thus larger reputation gains.22 But these gains can come

both in the form of greater peer recognition and/or labor market signaling bene�ts. Thus they can be

enjoyed both by open developers and more commercially oriented, closed developers. Hence there is no

theoretical prediction as to whether open or closed developers should value project size more strongly.

This is an empirical question.

Nonetheless, we can distinguish between the project quality and reputation e¤ects associated with

project size in the following way. Reputation bene�ts should not be relevant to developers who contribute

anonymously. In deciding where to contribute, however, anonymous developers are likely to prefer higher

quality projects (e.g., if they get greater utility value from such projects). Therefore, we can infer the im-

pact of project quality on contributions from the behavior of the anonymous type. Under the assumption

that other developer types have similar preferences for contributing to high-quality projects, we can iden-

tify the reputation e¤ect associated with project size by taking the coe¢ cient on size for each developer

type minus the corresponding coe¢ cient for anonymous developers.

Turning to the result, we �nd a statistically signi�cant e¤ect of project size for anonymous developers,

but the impact is not large. The point estimate of 2.66 implies that a ten percent increase in project size

raises contributions by 0.266, which is only 2.2 percent of the average number of contributions at the cell

level by these developers. The fact that size matters at all for them, however, is interesting because it

indicates that the utility gains from contributing are related to project size (or project quality for which

22Larger projects may be more visible, but an individual�s contribution in a large project may be less salient. Thus it is
not clear whether larger projects generate greater indivisual reputation gains. We are grateful to the Associate Editor for
pointing this out. However, as we discuss in the text, the parameter estimates indicate that such gains are increasing in
project size (controlling for pure utility value of contributing to larger projects).

21

it may serve as a proxy).

Subtracting the point estimate for the anonymous developers from the size coe¢ cients for the other

developer types, we get the following estimates for how reputation gains are related to receiving project

size: 0.03 for open developers, 0.31 for mixed, 0.91 for closed, and 0.56 for non-members. These coe¢ cients

indicate that reputation gains for open developers do not appear to be related to project size, as we

measure it, but they are related for the other developer types, especially the more commercially oriented,

closed developers.23 This �nding strongly supports Hypotheses 2a on reputation and project size.

Finally, the test statistics in Table 4 con�rm that intended audience, programming language, and op-

erating system all signi�cantly a¤ect the pattern of contributions. We decisively reject the null hypothesis

that each of these (sets of) dummy variables do not a¤ect contributions (p-value < .001 for each of the

three cases).

To summarize, our key empirical �nding is that project characteristics, including license type, a¤ect

the level of contributions by each developer type. This means that the choices managers of open source

projects make in this regard are important. We illustrate this point in more detail in Section 6.5.

To test our Hypothesis 2d, on reputation and intended audience, Table 4 explores sorting patterns

on intended audience.24 We add interaction terms for each developer type with their intended audience

dummies: developer tools and end users. The pattern of results shows that there is strong sorting on

intended audience both by open and closed developers. Starting with open developers, shown in column

2, moving from developer tools to end-user projects is associated with an increase in the number of

contributions of 2.12 (= 0.65+1.47). This change in intended audience type reduces their contributions

by 22.8 percent (relative to the cell average number of contributions). Anonymous developers show

a similar pattern. Moving from developers tools to end users raises their number of contributions by

1.25 (= -1.56+2.81), or 10.3 percent of average cell number of contributions. In sharp contrast, closed

developers seem to express a strong preference for developer tools projects. Moving from end users to

developer tools increases the number of contributions made by closed developers by 1.91 (= 2.05-0.14),

accounting for 23.3 percent of contributions by this developer type. Interestingly, non-member developers

continue to be similar to open developers in terms of intended audience sorting, while the sorting pattern

for mixed developers is similar to that of closed developers.

These �ndings provide only partial support for Hypothesis 2d. We �nd the predicted sorting by closed

developers toward developer tool projects, where labor market signaling bene�ts are likely to be larger.

However, we also �nd sorting by open and anonymous developers toward end-user projects, whereas our

23We also estimated the baseline speci�cation in Table 3 separately for di¤erent receiving project sizes. The results show
the same pattern of sorting between developer type and receiving project license, for di¤erent size categories.
24 It is important to note that license type is highly correlated with intended audience. This makes identifying sorting by

license type and intended audience more di¢ cult. In our sample, 87 percent of end-user projects have a highly open license,
as compared to only 31 for developer projects.

22

prediction was that open developers would favor developer tools and anonymous would not sort on this

dimension.

6.2. Robustness Analysis

Matching on programming skills and software architecture

One concern is that the observed sorting behavior might be due, at least in part, to similarity in

programming language or software architecture, which developers seek to exploit, but which might be

correlated with project license type. If developers are matching their skills to the programming language

or software architecture (e.g., operating system), we might be confounding the mechanism that induces

sorting. To address this concern, we perform the following test. We exclude anonymous and non-member

developers, focusing only on member developers, and de�ne cells on the basis of the programming language.

We de�ne a new dummy variable that receives the value of one for cells where the programming languages

of the contributing and receiving projects are the same and re-estimate the baseline speci�cation with

this additional control variable. In cases where a contributing developer belongs to multiple projects, the

contribution is counted separately for each project, so the matching dummies are de�ned at level of the

contributing-receiving projects pair.

The sorting results continue to hold in this extended speci�cation which controls for programming

language match. As expected, the e¤ect of programming language match is large and highly signi�cant,

with a marginal e¤ect of 0.45 (standard error of 0.042), relative to a cell average number of contributions

of 1.8. Moving from a HO to a C license reduces contributions by open developers by 12 percent, and

increases it by 9 percent for closed developers. These estimates are very close to those where we exclude

the programming language match dummy (13 and 12 percent).

We also repeat the above analysis matching on the operating systems of the contributing and receiving

projects. Matching on operating systems, as expected, strongly a¤ects contributions (a marginal e¤ect

of 0.47 with standard error of 0.09, as compared to the mean cell contribution of 2.21). The licensing

sorting e¤ects remain robust. Moving from a HO to a C license reduces open developer contributions by

16 percent, and raises closed developer contributions by 16 percent.

Project quality

There is no reason to expect that unobserved project quality is systematically correlated with the

interaction between project license and developer type. Nonetheless, we perform an additional test to

check robustness by introducing two direct measures of project quality. The �rst is the cumulative number

of downloads of the project on SourceForge prior to the year of contribution. The second measure is the

lag between the contributing year and project registration year. The idea behind this second measure is

that higher-quality projects are more likely to attract contributions for a longer period of time (rather

than just a burst when the project is launched). In the baseline analysis, we did not use information on

23

the year of contributions in the de�nition of cells. However, in order to conduct these additional tests we

need to rede�ne cells more �nely, including the year of contribution as an additional dimension.

The main results on sorting continue to hold when we introduce these controls for project quality

(results are omitted for brevity). We �nd that past cumulative downloads are positively, and signi�cantly,

related to the number of contributions received by a project in a given year �which is consistent with

downloads being an indicator of project quality �but we do not �nd any statistically signi�cant e¤ect for

the contributions lag. Importantly, the pattern and magnitude of sorting are robust to these new controls.

For example, the estimates imply that moving from an HO to C license reduces average contributions by

anonymous and open developers by 32 and 24 percent, and raises contributions by closed developers by 27

percent. These impacts are actually somewhat larger than the baseline e¤ects, con�rming that di¤erences

in project quality (at least as we measure it) are not driving the sorting results.

Variation over time and removing outliers. We perform two �nal robustness checks of our sorting

e¤ects. First, the role of intrinsic motivation may be changing over time. Corporate involvement in the

open source community has been increasing, which may be a re�ection of a less sharp ideological divide

between the open source and proprietary software communities. Therefore, we check the sensitivity of the

sorting e¤ects to temporal shifts. We estimate the baseline model separately for the periods 1999�2005

and 2006�2010, based on project registration year (the same pattern of results holds when we split the

sample by contribution year instead). We �nd that sorting on license type holds for both periods, but

sorting is actually substantially stronger in the 2006�2010 period. For the pre-2006 period, moving from

an HO to C license reduces contributions by 12 and 24 percent for anonymous and open developers, and

raises contributions by 23 percent for closed developers. For the post-2005 period, moving from an HO

to C license reduces contributions by 28 and 30 percent for anonymous and open developers, and raises

contributions by 41 percent for closed developers.

Second, the distribution of contributions is highly skewed �a small number of projects receive a large

fraction of contributions, and a small number of developers make a signi�cant share of contributions.

Because there may be unobserved heterogeneity in these groups, we check the robustness of the results

to removing outlier projects and developers. We drop projects that receive a very large number of

contributions and developers who make a very high number of contributions (in each case, we winsorize

at the 99th percentile). In both cases, the same pattern of sorting continues to hold.

6.3. Extensions

In this section we discuss two additional experiments to re�ne our inferences about the role of reputation.

Public resolution of contributions

The �rst extension exploits information on whether the receiving project announces whether the

contribution made by a developer is accepted or rejected. After a developer makes a contribution, the

24

project manager (or members) decides whether or not to accept it and to make the decision public on

SourceForge. The decision is made for each contribution separately, but projects di¤er in the degree to

which they make these outcomes public.25

We use this information to identify the reputation incentive more sharply. There are two theoretical

predictions, both embodied in Hypothesis 2b. The �rst is that the decision to contribute for anonymous

developers should not be a¤ected by whether projects publish the decision because they cannot bene�t

from any peer-based or commercial reputation gains. However, if anonymous developers are also driven

by intrinsic motivation (including open source ideology), publishing the outcome might be viewed by

them as an extrinsic motivation device that actually crowds out their intrinsic desire to contribute to such

projects. In this case, contributions by anonymous developers should be lower for projects with public

resolution.

The second part of Hypothesis 2b is that developers who are motivated by either peer-based or

commercial reputation should be more likely to contribute to projects with public resolution than other

developers. Thus we can test whether reputation matters directly by examining whether contributions by

non-anonymous developers are higher for such projects. However, since both peer-based and commercial

(labor market) reputations can be at work, we have no a priori prediction about which types of developers

should be most sensitive to public resolution.

To study these hypotheses, we de�ne a dummy variable equal to one for projects that reveal the

outcome for at least 50 percent of the contributions they receive over the sample period.26 With this

threshold, 71.1 percent of the projects are identi�ed as having public resolution. Projects that disclose

resolution tend to be larger than projects that do not (mean project sizes are 5.7 and 4.2 respectively;

mean number of contributions received are 16.1 and 7.8). We add this public resolution dummy as an

additional dimension for de�ning the cells for the estimation procedure, and re-estimate the baseline

speci�cation.

Table 5 presents the results. Our earlier �ndings about sorting on license type are similar to the

baseline results in Table 4. Both anonymous and open developers sort strongly on projects with highly

open licenses, while closed developers systematically target projects with less open licenses. There are

two new �ndings here. First, the estimated coe¢ cient on the public resolution dummy variable is posi-

tive and statistically signi�cant for all developer groups, except anonymous developers. This is a direct

con�rmation of the hypothesis that reputation is a motivation for contributions, and con�rms Hypothesis

2b.27 Moreover, public resolution has the largest impact for open and closed developers. The estimated

25 In total, these projects receive 68,294 �closed�contributions, of which 14,147 (20.7 percent) have no reported resolution,
45,844 (67.1 percent) have an �Accepted� resolution and the remaining 8,303 contributions get a �Rejected� resolution.
Overall, 67.7 percent of projects receiving contributions publish the resolution to some degree.
26We also tried two alternative thresholds �25 and 75 percent �to de�ne the dummy variable for public resolution. The

main conclusions from this analysis are robust to the choice of the threshold, though the parameter estimates di¤er somewhat.
27The only other likely explanation for why public resolution matters for non-anonymous developers is that the decision

25

coe¢ cient of 4.01 for open developers implies that they contribute about 60 percent more contributions

on average to projects with public resolution (= 4.01/6.7), while for closed developers the �gure is 54

percent (= 3.15/5.8). For the other developer groups the implied increase in smaller, about 15 percent.

The second important �nding is that the estimated coe¢ cient for anonymous developers is negative,

and marginally signi�cant, with a p-value of 0.066. These developers do not value public resolution �

which is consistent with the theoretical prediction since they do not enjoy the reputation gains. More

striking is the fact that anonymous developers are actually less likely to contribute to projects with public

resolution indicates that such publication may crowd out the intrinsic motivation underlying anonymous

contributions. This �nding is robust to using alternative thresholds for classifying projects as having

public resolution.28

Corporate sponsorship

Increasingly, large �rms have invested substantial �nancial and technical resources in open source

development, including paying employees to participate in such projects.29 This is likely to include

sponsorship and other form of involvement with projects registered on SourceForge. Knowing which

projects have a substantial corporate involvement should help us pin down more sharply the role of labor

market signaling, as distinct from reputation associated with peer recognition. The main prediction

(Hypothesis 2c) is that developers motivated by commercial reputation �in particular, closed developers

�should be more likely to contribute to projects with corporate sponsorship, conditional on the license

type of the receiving project. Corporate sponsorship should have a zero e¤ect on anonymous developers

since labor market signaling plays no role for them, or a negative e¤ect if sponsorship is viewed as an

extrinsic payo¤ and crowds out of intrinsic motivation. Unless labor market reputation matters for open

developers, we expect corporate sponsorship to either have a zero e¤ect on their contributions or a negative

e¤ect if they are �motivated agents�with a anti-proprietary software ideology.

Unfortunately, SourceForge does not separately identify whether a project is corporate sponsored, or

more generally the level of corporate involvement in any form. To examine this, we sent an e-mail survey

of registered members of the largest 1,000 projects (measured by number of contributions received) listed

on SourceForge to determine whether projects were initiated by for-pro�t companies or not-for-pro�t

organizations. We received responses for 217 projects, but the information only allowed us to identify

the status clearly for 93 projects.30 Therefore, to augment the usable sample, we performed extensive

to publish is a proxy for unobserved project quality. This cannot be ruled out, but in that case we would expect publishing
to induce contributions from all develper groups, including anonymous developers. The empirical results are not consistent
with this alternative explanation.
28The results in the text are based on a 50 percent threshold. Using a 25 percent threshold, the estimated coe¢ cient

(standard error) on the public resolution dummy for anonymous developers is -0.83 (0.64); with a 75 percent threshold, we
get -2.14 (0.41).
29For discussion, see Lerner and Schankerman (2010). On IBM�s involvement in open source, see

http://www.research.ibm.com/journal/sj/442/capek.pdf
30The remaining responses classi�ed projects as being initiated by individual developers, but it was not clear whether the

26

manual investigation of each remaining project to identify whether there was corporate involvement,

either directly in the project or indirectly through o¤ering a proprietary product that incorporates code

from the project. Because both forms of engagement provide opportunities to developers for labor market

signaling, we classify such projects as having a �corporate sponsor.�We also checked whether projects

had a clear not-for-pro�t mission. This investigation allowed us to increase the sample to 148 projects.31

These projects are typically the larger and more active projects on SourceForge �the median number

of members is 22, and these 148 projects account for about 45 percent of all contributions received in

the complete sample. The distribution of contributions by developer types and corporate sponsorship

(Table 6) shows clear sorting behavior. Anonymous developers target 86 percent of their contributions to

not-for-pro�t projects, while 79 percent of contributions by closed developers go to corporate sponsored

projects. Open developers favor not-for-pro�t projects (55 percent) but this sorting is weaker. This result

indicates some role for signaling and other labor market considerations even for open developers.32

To analyze sorting on corporate sponsorship more formally, we estimate a Probit model that relates

whether a contribution goes to a corporate project (dependent variable equal to one) or a not-for-pro�t

project, conditional on a set of dummy variables for developer type and receiving project characteristics.33

Table 7 summarizes the results, and con�rms the pattern found in Table 6. In column 1 we include only

dummies for developer types. Closed developers are 32.4 percentage points (or 65.7 percent, evaluated

at the sample mean) more likely to contribute to corporate projects than open developers. Anonymous

developers are 36.2 percentage points (or 73.4 percent) less likely to engage with corporate projects than

open developers. In column 2 we add a control for project size and �nd the same pattern of results. In

column 3 we add dummies to control for the license type of the receiving project. There is no signi�cant

change in the point estimates. Interestingly, the estimates also show that corporate projects are least

likely to use an HO license. Finally, in column 4 we add a full set of dummy controls for the intended

audience, programming language, and operating system of the receiving project. Even with all these

controls, we again �nd the same sorting of closed developers toward corporate projects, relative to open

developers, but the magnitude is smaller by about half. In addition, with these controls there is now

no di¤erence between anonymous and open developers. The results from this analysis strongly con�rm

founding developers started the project with intent to commercialize or get corporate sponsorship in the future.
31 Importantly, we did not classify projects as not-for pro�t as a default option. To be so classi�ed, a project had to indcate

clearly a non-commercial intent in their mission on their website or the various online forums we examined, and there had
to be no company support (or stated intention to seek it), and no commercial products we could identify as building on the
project.
32One example of a project to which both open and closed developers contribute is Jboss. This project is incorporated

in RedHat�s products, such as Jboss Entreprise Middleware. Interestingly, anonymous contributors are the only type that
almost never contribute to this project, con�rming their strong intrinsic motivation in favor of highly open (and non-corporate)
projects.
33We do not adopt the �cell� framework in this section because, despite the large number of contributions covered by the

projects in this restricted sample, the �degrees-of-freedom�which are used for cell construction dependent almost solely on
the number of receiving projects, regardless of how many contributions they receive. In the current sample, we have only
148 (mostly large) projects, which is too few to break up by bundles of project characteristics in a meaningful way.

27

Hypothesis 2c.

6.4. Evidence on Reciprocity

In this section we analyze the role of reciprocity in open source innovation. Early proponents of open

source software argued that reciprocity was an important motive for developers to contribute, and one

that would be self-sustaining (e.g., Raymond, 2001). Similar claims have been made in other, so-called

�gift-culture,� settings. However, to our knowledge, this is the �rst empirical evidence of reciprocity in

the software context. The primary hypothesis we are interested in is whether developers associated with

highly open projects �those presumably most closely aligned with the open source ideology �are more

likely to engage in reciprocity than other license types.

We focus on reciprocity at the project level (rather than individual contributing developer) because we

want to be able to control for matching between projects on various dimensions. We de�ne a contribution

from a developer who is a member of project i to project j in year t as reciprocal if project i received

a contribution from j prior to year t. We measure the degree of reciprocity as the percentage of all

contributions made by project i that go to projects which previously contributed to it.

Table 8 presents some descriptive statistics on reciprocity. Three features stand out. First, reciprocity

is rare at the project level. For the sample as a whole, only 4.9 percent of active projects (i.e., those that

receive at least one contribution) are engaged in any reciprocal contributions.34 However, these tend to be

larger projects, which account for 37 percent of total patches received. Second, closed projects are more

likely to involve reciprocity �7.5 percent for closed versus 4 percent for highly open projects. This is also

true when measured in terms of the percentage of contributions �closed projects with reciprocity account

for 74.8 percent of received contributions, while it is only 20.6 percent for highly open projects. This

�nding is surprising since one might think that �intrinsically motivated agents,� who care about open

source ideology, would be more likely to reciprocate than commercially oriented developers. The fact

that we �nd the reverse strongly suggests that reciprocity also has a signaling motive for the individual

developer. Finally, while only a small minority of projects engage in reciprocity, it plays a large role

for those that do. Among those projects, 44.6 percent of all contributions made by those projects are

reciprocal, and again this is most pronounced for closed projects.

However, these two-way contributions do not necessarily re�ect a reciprocity motive. They may occur

because similarities between projects reduce the e¤ort cost for developers to make such contributions. To

pin down more sharply whether highly open projects are more likely to engage in reciprocity, we estimate

Probit regressions of whether a contribution is reciprocal. To control for project similarity, we include

a set of dummy variables that capture whether the contributing and receiving projects match on license

34While truncation may cause us to underestimate the occurrence of reciprocity somewhat �some reciprocal contributions
may not have yet occurred within the period of observation �the number is so low that we think truncation is very unlikely
to reverse this �nding.

28

type, programming language, operating system, and intended audience. We also control for additive

dummies for each of these dimensions.

Table 9 presents the results. Column 1 shows that reciprocity is more likely to occur when there is

matching on license type and intended audience. The impacts are substantial, especially for license type �

matching on license type raises the likelihood of reciprocity by 12 percentage points, which is 64.2 percent

of its sample mean. However, reciprocity is not a¤ected by whether there is a match on programming

language or operating system. This �nding suggests that reciprocity is not primarily driven by project

similarities that reduce the cost of making contributions. These results continue to hold when we include

the size of the contributing and receiving projects (column 2).

In column 3 we look more closely at matching on license type, including separate dummy variables

for matching on di¤erent types of licenses. What is striking is that reciprocity is much higher when there

is matching on closed licenses, but there is no e¤ect when projects are matched on more open license

types. This again is inconsistent with the hypothesis that reciprocity is a major driver of contributions

for developers strongly aligned with the open source ideology. While more research on this topic is needed,

it appears from these results that reciprocity is more connected to signaling or other considerations that

are, evidently, most important to developers associated with closed projects.

6.5. Application to the Management of Open Source Projects

In previous sections we showed there is sorting behavior among contributing developers. This implies that

the choice of a project�s open source license and other characteristics a¤ects the �ow of contributions to

the project. For example, a more open license increases contributions by highly open developers but, at

the same time, reduces those of other developer types. Thus project manager face a trade-o¤ in selecting

these characteristics.

Lerner and Tirole (2002) emphasize the trade-o¤ that project managers face between the degree of

proprietary control and the expected number of contributions. They argue that, while more open licenses

weaken property rights over the software, such licenses presumably attract more widespread participation

among potential contributing developers. Our evidence suggests that the impact of the choice of license

is less clear-cut. More open licenses can either increase or reduce overall contributions �it depends on

the sorting behavior of di¤erent types of developers. For this reason, the empirical facts about sorting

are important for open source project managers.

We illustrate this point with two examples. The �rst shows how the openness of the license a¤ects

the total number of contributions received by a project. Let �l�!L denote the change in the number

of contributions received that occurs when license type shifts from l to L; holding all other project

characteristics constant. This will depend on how strong the sorting is between each type of developer

and project license. We can use our estimated sorting coe¢ cients from Table 4 to compute this e¤ect.

29

Let �dl denote the sorting coe¢ cient for developer type d and receiving project (cell) l: This gives the

expected number of contributions by all developers of type d to projects with license l; relative to the

normalized group which is contributions by open developers to projects with an HO license (�HO;HO =

0):35 Then the e¤ect of changing the license from type l to L on the total expected number of contributions,

denoted by �l!L; is given by �l!L =
P
d(�dL � �dl) where the summation is over the �ve di¤erent

developer groups.

Using the parameter estimates from the baseline speci�cation in Table 4, we get the following results:

�HO�!C = �5:22, �HO�!O = �6:80; and �O�!C = 0:09: To illustrate the interpretation, �HO�!C =

�5:22 means that switching from a highly open to a closed license, holding all other project characteristics

constant, is associated with a decline of 5.22 (external) contributions. This represents a 9.2 percent

reduction in the number of external patches received, computed at the cell mean. Switching from an

highly open to an open license also reduces contributions, by about 12 percent.

These calculations indicate that, for the sample as a whole, the highly open licenses maximize the

expected number of contributions. Of course, this result does not mean that managers should always

choose highly open licenses, since these also involve constraints on the ability to appropriate commercial

returns from the project. But the computation shows that the nature of the project license can make a

real di¤erence to the �ow of contributions, and thus the rate of innovation in open source software. One

should also take into account the possibility that sorting might also a¤ect the quality of contributions �

i.e., code contributions from di¤erent types of developers might have di¤erent marginal productivities In

the next section, we study this question.

In the second example, we show that the choice of license should depend on the intended audience

of the project. The reason is that the sorting behavior of di¤erent types of developers may itself vary

with this (or other) project characteristics. To analyze this, we re-estimate the baseline model separately

for projects whose intended audience is developer programing tools and end users, and use the estimated

sorting coe¢ cients to predict how the choice of license type a¤ects total contributions for each project

type. For brevity we do not report the full set of estimated parameters for each project type.36

For end-user projects, this computation yields the following results: �HO�!C = �5:16, �HO�!O =

�10:91; and �O�!C = 5:77: Computed at the cell mean number of contributions for end user projects,

these �gures imply that moving from a highly open to a closed license reduces external contributions by

about 12.5 percent, and by about 26.4 percent if an open license were adopted. This indicates that the

35Recall that the sorting parameter captures the e¤ect of the number of potentially contributing developers of that type,
because we do not separately control for the number of developers in the regression.
36The split by intended audience substantially reduces sample size (number of distinct cells), and the estimates are less

precise than for the pooled sample reported in Table 3. Nonetheless, the results again reveal sorting by developers on license
type, but this varies by the intended audience and is less sharp than when we pool the data (this is because developers also
sort on intended audience and this is controlled for in this exercise by splitting the sample of projects). In particular, open
and anonymous developers tend to favor projects with HO licenses, especially in end-user projects, and closed developers
favor closed licenses for developer tool projects.

30

highly open license maximizes the �ow of contributions for end user projects. For developer tool projects,

we get �HO�!C = 4:00, �HO�!O = 8:28; and �O�!C = �4:28: These imply that the intermediate, open

license maximizes contributions for developer tool projects.

How do these predictions line up with the actual choices project managers make? For end-user

projects, the prediction is con�rmed. In the sample, the highly open license is dominant for such projects:

87 percent have highly open licenses, with open and closed licenses accounting for only 5 and 8 percent,

respectively. However, for developer tool projects, there is a more even distribution across license types

than is predicted by our sorting coe¢ cients: 31 percent for highly open, 33 percent for open, and 36 for

closed licenses. Of course, project managers may also have other considerations in choosing a license, not

just maximizing the in�ow of contributions.

7. The Impact of Contributions on Project Performance

We have shown that software developers exhibit strong sorting behavior in their (external) contributions to

open source projects. In particular, developers who are members of projects are more likely to contribute

to other projects that match on the license type. As we show in the previous section, this sorting is

important for potential managers of open source projects because it means that the selection of the type

of open source license will a¤ect the expected volume and mix of code contributions received by the

project. In this section we go a step further by studying whether this matching behavior also a¤ects the

quality of the contributions received by the projects. To do this, we estimate the impact of di¤erent types

of contributions on the performance of open source projects, and then examine whether the impact is

greater when the contributing developer is matched (in terms of the license type) to the receiving project.

Beginning in 2006, SourceForge provides information that can be used to study the performance of

projects. We focus on projects that received at least one contribution over the sample period 2001�2010.

We were able to match about 66 percent of these projects to those used in our analysis of sorting. For

the others, either the name of the project changed or there was no available performance data. For this

analysis, we measure project performance by the number of times the project is downloaded. This is a

good indicator of the extent to which the project di¤uses among potential users and developers.37

We begin with a standard log-linear function that relates performance of a project i in year t; Yit to

the aggregate stock of contributions it receives, Sit; and a set of other control variables which we denote

by Z: The speci�cation can be expressed as

lnYit = � lnSit + �Zit + �it

37We also experimented with two other measures: the number of web hits the project gets on the SourceForge site, and
the number of the project�s web pages that are viewed by users registered on SourceForge (the latter measure is more likely
to capture di¤usion among software developers). The qualitative results with these alternative performance measures are
similar to those reported in this section.

31

where � is a normally distributed error term where we assume to be independent of lnS and Z: In

specifying the appropriate aggregate stock of contributions, however, we do not simply add up all past

patch contributions regardless of their type. Instead, we treat di¤erent types of contributions as perfect

substitutes but allow their marginal productivities to di¤er. Speci�cally, we use

Sit = �
J
j=1�jSijt

where Sijt is the stock of contributions of type j for project i in year t:

Substituting this expression for the stock of contributions, we get the following estimating equation

for performance

lnYit = � ln (�
J
j=1�jSijt) + �Zit + �it (7.1)

The assumption that code contributions from di¤erent sources are perfect substitutes is reasonable since

they all represent the same type of input in the production (performance) function �new software code

for the same program.38 We need to normalize one of the � parameters �we set �1 = 1;which means that

the parameter �j represents the marginal productivity of the stock of contributions of type j relative to

the marginal productivity of contributions of type one: The coe¢ cient � is the elasticity of performance

with respect to the aggregate stock of contributions.

In all of the performance regressions, we normalize the coe¢ cient on the stock of contributions from

non-member developers (the choice is immaterial and only a¤ects the interpretation of the parameters).

Each stock is computed as the cumulative number of contributions of the speci�ed type from the project�s

inception (registration date on SourceForge). In all regressions we include controls for the intended

audience, programming language, operating system, size of the project (number of members), and the

year of registration on SourceForge. We estimate this regression by nonlinear least squares, and report

standard errors clustered at the project level.

Table 9 reports the parameter estimates. In column 1 we begin with a simple speci�cation using only

the total stock of contributions received by the project, regardless of source (including non-members).

We �nd that project performance is strongly related to contributions received, with a signi�cant elasticity

of 0.307. This result underlines the importance of choices made by project managers that in�uence the

�ow of contributions, including license type and other project characteristics. In addition, performance

is positively related to the project size, and also varies across the other project characteristics used as

control variables (we strongly reject the hypothesis that these characteristics do not a¤ect performance,

p-value<.001).

However, this association between the stock of contributions and downloads hides an important di¤er-

ence. In column 2 we break down contributions into three separate stocks: internal contributions (from

38This modi�ed Cobb-Douglas production function speci�cation was �rst used by Griliches (1986), who used it to study
the impact of basic and applied research on productivity.

32

developers who are members of the same project), external contributions (from developers who do not

belong to the project), and non-member contributions made by developers who do not belong to any

SourceForge project. The result is striking �while the overall elasticity is virtually unchanged, at 0.304,

the estimated marginal productivities of both internal and external contributions are much smaller than

for non-member contributions (which is normalized to unity). The estimated marginal productivity for

internal contributions is 0.344, only a third as large as for non-member developers, while the marginal

productivity for external contributions is 0.620. Despite the di¤erence in point estimates, we cannot

reject the hypothesis that internal and external patches have the same marginal productivity (p-value

=0.08), but we strongly reject that they are the same as for non-member developers.

Finally, in column 3 we disaggregate the external contributions into two groups: Matched, where the

license type of the contributing developer is the same as the receiving project, and Unmatched, where the

license type is di¤erent. The results show that Matched and Unmatched contributions have very similar

(not statistically di¤erent) marginal productivities, estimated at 0.174 and 0.169, respectively. Moreover,

these are also very similar to the marginal productivity for internal contributions, estimated at 0.222.

However, all three of these are dramatically smaller than the marginal productivity of contributions made

by non-member developers (normalized to unity).39

This analysis of project performance reveals two key facts. First, contributions do matter for project

performance. Second, while sorting behavior of developers a¤ects the �ow of contributions to di¤erent

types of projects (as we showed in Section 6.1), this sorting does not a¤ect the marginal productivity of

the contributions. The one exception to this is contributions made by developers who do not belong to

any project, which have much larger impact on performance. One possible explanation for this di¤erence

is that the incentives for signaling may be greater for developers who do not belong to any projects and

that, as a consequence, they make more e¤ort in providing higher quality contributions. Unfortunately,

we cannot test this interesting hypothesis in the absence of a direct measure of the quality of code

contributions.

8. Concluding Remarks

This paper explores the role of intrinsic motivation, reputation, and reciprocity motives in driving open

source software innovation. The empirical analysis exploits a large-scale dataset with detailed information

about code contributed to open source software projects, as well on and the characteristics of contributing

and receiving projects. We study the pattern of contributions by �ve distinct developer groups �open,

39 In these regressions we include contributions made by anonymous developers together with highly restrictive developers,
since we found in Section 6.1 that their sorting behavior was very similar. The results are robust, however, to including a
separate stock of contributions for anonymous developers. As an additional robustness check to account for the skewness of
project downloads, we windsorized the data at both the 97th and 99th percentile and re-estimated all speci�cations in Table
9. The results are very similar to those reported in the table.

33

closed, mixed, anonymous and non-member �and infer their underlying motivations from the �revealed

preference�of projects chosen.

The central �nding is that developers of di¤erent types strongly sort on observed project characteristics

�most notably, the openness of the license, project size, and corporate sponsorship. The empirical pattern

of sorting behavior points to an important role for (intrinsically) motivated agents, as well as reputation,

especially in terms of commercial reputation for closed developers. To a lesser extent we �nd support

for the reciprocity motive in sustaining open source software innovation. Finally, we show that code

contributions a¤ect the performance (quality) of open source projects. However, contributions by non-

members seem to be a much more important determinant of quality than those made by project members.

There are two main directions for further research. The �rst is to develop and estimate an empirical

framework that incorporates both the choice of license contract and the resulting sorting e¤ects � for

example, by integrating the work in this paper with the model of Lerner and Tirole (2002). A second

direction is to study in more detail how contributions from di¤erent types of developers, both members

and non-members, a¤ect the performance of open source projects, and to integrate this inquiry with

knowledge spillovers among open source contributors.

34

A. Appendix

A.1. Data construction

We developed specialized web crawler software that extracts information from the SourceForge website (a
procedure that takes about a week to complete). We used two di¤erent versions of the crawler software to
implement the extraction (changes in the website format required this): November 2005 and September
2010. In each extraction we retrieved information for all projects listed on SourceForge, as well as all
relevant information for each project. This repetition of the extraction allows us to check the consistency of
information both within and across projects over time. This is important in order to address the concerns,
raised by Howison and Crowston (2004), about arbritrary dumping of information on SourceForge.

The 2005 extraction covers 77,813 projects, while our �nal 2010 extraction (on which the econometric
analysis is based) includes 215,072 projects, an increase of 76.4%. In the 2005 extraction, only 4,086
projects receive at least one internal or external contribution, which is 5.3% of all registered projects. In the
2010 extraction, the corresponding �gure is 3.5% of all projects. There has been a shift in the distribution
of projects across license types from 2005 to 2010, with closed licenses more heavily represented in the
later sample. The composition of the 2010 sample is as follows: 46.7% Highly Open, 9.8% Open, and
43.5% Closed. The composition in 2005 is: 68.7% Highly Open, 15.2% Open, 13.5% Closed, 2.0% Public
Domain, and 0.7% unidenti�ed. This shift over time toward projects with closed licenses is likely to re�ect
the increasing involvement of corporate-sponsored open source activity.

The number of developers registered in SourceForge also increased sharply over time, from 113,191 in
2005 to 211,711 in 2010, an increase of 87.0%. Of those registered in 2005, 13.5% of developers made at
least one contribution in the 2000�2005 period. Of the developers registered in 2010, 12.3% made at least
one contribution in the 2000�2010 period.

We run checks for two distinct aspects of data consistency: 1) the risk that contributions from existing
projects are dropped by SourceForge (attrition of contributions), and 2) the risk that projects are dropped
over time by SourceForge (attrition of projects). Given that our econometric analysis focuses on the
pattern of contributions, attrition of contributions is presumably the more serious concern as it associated
with incompleteness of the history of the object of interest. The attrition may vary over time and thus
can potentially bias our results (for example, younger projects have a more complete history �le, and
systematically have a di¤erent license type than older projects). In cases of project attrition, however, we
do not observe these projects in the 2010 extraction but, for those that are present, we have the complete
historical information on submission of contributions.

Before turning to the details, we summarize our �ndings brie�y as follows. First, we �nd no evidence
of contribution attrition. For the projects in the 2010 extraction, the history �les are complete (i.e., there
are no contributions registered for projects in 2005 that are missing in 2010). Second, we do �nd evidence
of project attrition �some projects active before 2010 were dropped from SourceForge and do not appear
in the 2010 extraction. However, as explained below, we do not think that any systematic bias in our
econometric analysis is likely to be caused by this attrition.

We begin with project attrition between the two data extractions. Of the 77,813 projects registered
on SourceForge in 2005, 67% also appear in 2010. Of the active projects (those that receive at least
one contribution), the corresponding percentage is 83%. There are two main reasons why projects are
dropped from the sample over time. First, some projects were removed from SourceForge (for example,
Arkipel Project was an active project in 2005, but does not appear in SourceForge in 2010). Second, some
projects change their names, which makes it di¢ cult to identify them using automated name-matching.
These projects are not dropped from the data, and should not cause any bias in a single cross-sectional
extraction. An example of a name-changing project is ActionCube (its 2005 name), which appears under
the name AssaultCube in 2010.

We turn next to contribution attrition �i.e., the extent to which code contributions are dropped from
registered projects over time. The 2005 data extraction includes 51,545 contributions, 85% of which also

35

appear in the 2010 extraction. Nearly all of the contributions that do not appear in the 2010 extraction
are missing because the projects themselves have been dropped. Only 200 contributions that appear in
the 2005 data and belong to projects that are included in the 2010 data extraction are missing from the
2010 data. That is, while some projects are dropped from the sample over time, observing a project in a
given year provides a very accurate information on the history of code submission. We conclude that there
is no evidence of substantial �dumping�or time-inconsistency with regard to information on contributions.

There are two main reasons why contributions are dropped through project attrition. First, several
large projects were de-activated and their activity was transferred from SourceForge to other web-
sites. For example, 55% of the dropped contributions belong to Python, which moved to the website
http://www.python.org/. However, during the period that Python appears on the SourceForge website,
we observe its complete historical and current contributions. Second, some projects, such as Scons and
Jython, do not provide access to their history in 2010, but did provide access in 2005 (e.g., the site for
Scons, http://sourceforge.net/projects/scons/develop does not provide information on submissions).

We also checked whether characteristics of the projects registered on SourceForge change over time. We
turn �rst to our most important characteristic �the project license type. Of the projects in 2010 that were
also registered before 2005, 93.3% have the same license type recorded at both dates. A similar pattern
holds for other project characteristics �the �gures for intended audience and programming language are
94.1% and 83.8%, respectively.

De�nition of programming language categories
We use �ve categories in the empirical analysis. The programming languages included in each are as

follows:
Object-oriented: Java, C++, Smalltalk, Visual Basic NET, C#, Object Pascal, Delphi/Kylix, Visual

Basic, Ada, D, Groovy, PL/SQL, AspectJ, COBOL, JSP, LPC, REALbasic, Visual FoxPro, Zope,
OCaml, and Simula

Imperative: C, Fortran, Standard ML, PROGRESS, and Pascal
Scriptive: JavaScript, PHP, Tcl, Rexx, ActionScript, Emacs-Lisp, VBScript, Cold Fusion, AWK, and

AppleScript
Dynamic: Perl, Python, Dylan, Erlang, Forth, Lisp, Logo, Scheme, Lua, and Modula
Objective: C, Ruby, ASP.NET, Common Lisp, Pike, Prolog, Ei¤el, REBOL, and Euler
Other: Assembly, UnixShell, ASP, Haskell, APL, MATLAB, BASIC, XBasic, Euphoria, IDL, Lab-

VIEW, XSL, and VHDL/Veril.

De�nition of operating system categories
We use four categories of operating systems in the empirical analysis. Using Lerner and Tirole (2002),

Wikipedia, and http://osapa.org/wiki/index.php/SF/Freshmean Trove, we group the operating systems
into the following categories:

Microsoft : all of Microsoft�s operating systems (e.g., MS-DOS and WinXP)
POSIX : Linux, Solaris and BSD
Open Source independent : any independent open source operating system
Mixed : any software that operates on more than one operating system

36

References

[1] Akerlof, G., and Kranton, R. (2003). Identity and the economics of organizations. Journal of Eco-

nomic Perspectives, 19(1): 9-32

[2] Ackerberg, D., and Botticini, M. (2002). Endogenous matching and the empirical determinants of

contract form. Journal of Political Economy, 110(3): 564-91

[3] Baard, P., Deci, E., and Ryan, R. (2004). Intrinsic need satisfaction: a motivational basis of perfor-

mance and well-being in two work settings. Journal of Applied Social Psychology, 34(10): 2045-2068

[4] Bénabou, R., and Tirole, J. (2003). Intrinsic and extrinsic motivation. Review of Economic Studies,

70(3): 489-520

[5] Besley, T., and Ghatak, M. (2005). Competition and incentives with motivated agents. American

Economic Review, 95(3): 616-36

[6] Bruns, B. (2001). Open sourcing nanotechnology research and development: issues and opportunities.

Nanotechnology (Institute of Physics), 12: 198-210

[7] Deci, E. (1971). E¤ects of externally mediated rewards on intrinsic motivation. Journal of Personality

and Social Psychology,18: 105-115

[8] Deci, E. (1972). Intrinsic motivation, extrinsic reinforcement, and inequality. Journal of Personality

and Social Psychology, 22: 113-120

[9] Deci, E., and Ryan, R. (1985). Intrinsic Motivation and Self-determination in Human Behavior. New

York: Plenum Press.

[10] Deci, E., and Ryan, R. (2000). Intrinsic and extrinsic motivations: classic de�nitions and new direc-

tions. Contemporary Educational Psychology 25: 54�67

[11] Delfgaauw, J., and Dur, R. (2007). Signalling and screening of workers�motivation. Journal of Eco-

nomic Behavior and Organization, 62(4): 605-24

[12] Delfgaauw, J., and Dur, R. (2008). Incentives and workers�motivation in the public sector. Economic

Journal, 118: 171-91

37

[13] Francois, P. (2000). Public service motivation as an argument for government provision. Journal of

Public Economics, 78(3): 275-99

[14] Frey, B. (1997). Not Just for the Money. Cheltenham: Elgar Publishers.

[15] Frey, B., and Oberholzer-Gee, F. (1997). The cost of price incentives: an empirical analysis of

motivation crowding-out. American Economic Review, 87(4): 746-55

[16] Gibbons, R. (1998). Incentives in organizations. Journal of Economic Perspectives 12(4): 115-132

[17] Glazer, A. (2004). Motivating devoted workers. International Journal of Industrial Organization,

22(3): 427-40

[18] Griliches, Z. (1986). Productivity, R&D, and basic research at the �rm level in the 1970s. American

Economic Review, 76(1): 141-154

[19] Hann, I-H., Roberts, J., Slaughter, S., and Fielding, R. (2004). An empirical analysis of economic

returns to open source participation. Working paper 2006-ES, Tepper School of Business, Carnegie-

Mellon University.

[20] Haruvy, E., Wu, F., and Chakravarty, S. (2003). Incentives for developers�contributions and prod-

uct performance metrics in open source development: an empirical investigation. Working paper,

University of Texas at Dallas.

[21] Hertel, G., M. Krishnan and Slaughter, S. (2003), �Motivation in Open Source Projects: An Internet-

based Survey of Contributors to the Linux Kernel,�Research Policy, 32(7): 1159-77

[22] Hope, J. (2008). Biobazaar: The Open Source Revolution and Biotechnology. Cambridge, MA: Har-

vard University Press.

[23] Howison, J., and Crowston, K. (2004). The perils and pitfalls of mining SourceForge. In Proceedings

of the International Workshop on Mining Software Repositories: 7-11

[24] Ilardi, B., Leone, D., Kasser, T., and Ryan, R. (1993). Employee and supervisor ratings of motivation:

main e¤ects and discrepancies associated with job satisfaction and adjustment in a factory setting.

Journal of Applied Social Psychology 23(21): 1789-1805

38

[25] Johnson, J. (2002). Open source software: private provision of a public good. Journal of Economics

and Management Strategy, 11: 637-62

[26] Johnson, J. (2004). Collaboration, peer review and open source software. Unpublished working paper,

Cornell University.

[27] Kreps, D. (1997). Intrinsic motivation and extrinsic incentives. American Economic Review, Papers

and Proceedings, 87(2): 359-364

[28] Lakhani, K., and Wolf, R. (2005). Why hackers do what they do: understanding motivation and

e¤ort in free/open source software projects. In J. Feller, B. Fitzgerald, S. Hissam, and K. R. Lakhani

(eds.), Perspectives on Free and Open Source Software. Cambridge: MIT Press.

[29] Lakhani, K., and von Hippel, E. (2003). How open source software works: �free�user-to-user assis-

tance. Research Policy, 32: 923-43

[30] Lerner, J., and Schankerman, M. (2010). The Comingled Code: Open Source and Economic Devel-

opment. Cambridge: MIT Press.

[31] Lerner, J., and Tirole, J. (2001). The open source movement: key research questions. European

Economic Review, 45(4-6): 819-26

[32] Lerner, J., and Tirole, J. (2002). Some simple economics of open source. Journal of Industrial Eco-

nomics, 52: 197-234

[33] Lerner, J., and Tirole, J. (2005). The economics of technology sharing: open source and beyond.

Journal of Economic Perspectives, 19(2): 99-120

[34] Lindenberg, S. (2001). Intrinsic motivation in a new light. Kyklos, 54(2/3): 317-342

[35] Locke, E., and Latham, G. (2004). What should we do about motivation theory? Six recommenda-

tions for the twenty-�rst century. Academy of Management Review 29(3): 388-403

[36] Maurer, S., and Scotchmer, S. (2006). Open source software: the new intellectual property paradigm.

NBER Working Paper 12148

39

[37] Murdock, K. (2002). Intrinsic motivation and optimal incentive contracts. RAND Journal of Eco-

nomics, 33(4): 650-71

[38] Prendergast, C. (2008). Intrinsic motivation and incentives. American Economic Review, 98(2): 201-

05

[39] Raymond, E. (2001). The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. Cambridge: O�Reilly Press.

[40] Roberts, J., Hann, I-H., and Slaughter, S. (2006). Understanding the motivations, participation,

and performance of open source software developers: a longitudinal study of the Apache projects.

Management Science 52(7): 984-999

[41] Rousseau, D., and McLean Parks, J. (1993). The contracts of individuals and organizations. Research

In Organizational Behavior, 15: 1-43

[42] Ryan, R. (1995). Psychological needs and the facilitation of integrative processes. Journal of Person-

ality, 63: 397-427

[43] Ryan, R., and Deci, E. (2000). Self-determination theory and the facilitation of intrinsic motivation,

social development, and well-being. American Psychologist, 55(1): 68-78

[44] Schein, E. (1965). Organization Psychology. Prentice-Hall: Englewood Cli¤s, NJ.

[45] Shah, S. (2006). Motivation, governance and the viability of hybrid forms in open source software

development. Management Science, 52(7): 1000-1014

[46] Skinner, B. (1953). Science and Human Behavior. New York: Macmillan.

40

(1) (2) (3) (4) (5) (6)

Developers # Contributions
Receiving

Projects
Contributions per
Developer (2)/(1)

Contributions per
Project (2)/(3)

Project
Membership per

Developer

External Contributors

Anonymous NA 18,722 1,939 NA 9.7 NA

Non-members 15,133 32,293 4,071 2.1 7.9 NA

Highly restrictive 3,211 14,326 2,026 4.5 7.1 1.5

Mixed 2,308 25,802 1,784 11.2 14.5 2.9

Unrestrictive 1,860 12,569 1,356 6.8 9.3 2.0

Internal Contributors

Highly restrictive 1,184 11,213 581 9.5 19.3 1.5

Mixed 1,026 21,769 592 21.2 36.8 3.0

Unrestrictive 474 9,822 277 20.7 35.5 2.7

TABLE 1. BREAKDOWN OF CONTRIBUTIONS: DEVELOPER LEVEL

Notes: This table reports the breakdown of contributions by developer type. Developer types are as follows: Anonymous – developers who do
not reveal their identity when making code contributions; Highly restrictive – developers who are only members of projects with highly
restrictive licenses; Unrestrictive – developers who are only members of projects with unrestrictive licenses; Mixed – developer who are
members of both highly restrictive and unrestrictive projects; Non-members – developers who do not belong to any project, but whose identity is
known. Project size is defined as number of members.

(1) (2) (3) (4) (5)

Mixed Non-members

License Type

Highly restrictive 81.3 67.0 37.6 45.6 57.5

Restrictive 9.9 16.9 26.0 35.0 21.2

Unrestrictive 8.8 16.2 36.4 19.4 21.3

Intended Audience

Developers 8.5 21.7 35.6 40.6 24.1

End-users/Desktop 32.6 24.0 10.2 11.0 42.7

Other 58.9 54.3 54.2 48.4 33.2

Project Size

1–5 73.1 49.3 38.4 37.9 37.7

6–10 9.2 20.0 17.7 19.4 22.5

11–50 16.9 26.6 36.9 38.1 34.8

> 50 0.8 4.1 7.0 4.6 5.0

Notes: This table reports the distribution of code contributions by developers of different types and receiving
project characteristics. We exclude internal contributions – contributions from developers to projects of which they
are members. Project size is defined as number of members.

Contributing developers

TABLE 2. DISTRIBUTION OF CODE CONTRIBUTIONS BY DEVELOPER TYPE
AND RECEIVING PROJECT CHARACTERISTICS (%)

Anonymous
Highly

Restrictive Unrestrictive

(1) (2) (3) (4) (5)

Anonymous Open Mixed Closed Non-members
Project license type:

Highly Open (HO) 2.19 0.00 0.47 -2.93** 5.08**
(2.34) (0.82) (0.46) (1.42)

Open (O) -2.20** -1.62** 0.99 -2.03** 2.10*
(0.70) (0.57) (1.18) (0.60) (1.16)

Closed (C) -2.95** -1.96** 0.59** -1.40** -2.65**
(0.38) (0.41) (0.97) (0.62) (1.07)

ln(Number of members) 2.66** 2.69** 2.97** 3.57** 3.22**
(0.45) (0.047) (0.46) (0.49) (0.42)

Average # contributions per cell 12.1 9.3 16.7 8.2 21.0

Hypotheses tests: Sorting on
license type

H0: HR=R=UR p<0.001 p<0.001 p<0.001 p<0.001 p<0.001

H0: HR=UR p<0.001 p<0.001 p=0.51 p<0.001 p=0.51

Notes: This table reports the estimated marginal effects (evaluated at the mean) on the interaction terms between the contributing
developer type and the license type, and number of members of the receiving project. The regression includes complete sets of
linear dummies for receiving project year of registration, intended audience, operating system, and programming language. We
also include a linear control for the number of projects in the cell. We reject the following hypotheses: Intended Audience=0 (p-
value<0.001), Programming Language=0 (p-value<0.001), Operating Systems=0 (p-value<0.001), Size coefficients are equal (p-
value<0.001). Over-dispersion parameter estimate 3.20 (0.016). Standard errors are robust to arbitrary heteroskedasticity. **
significant at 1%, * significant at 5%.

Dependent variable: Number of contributions (Negative Binomial, N=7,705)

TABLE 3. BASELINE SPECIFICATION

Developer type

(1) (2) (3) (4) (5)

Anonymous Open Mixed Closed Non-members
Project license type:

Highly Open (HO) 3.56** 0.00 0.54 -2.95** 5.08**
(1.14) (0.70) (0.35) (1.23)

Open (O) -1.03** -1.39** 0.35 -2.30** 2.78*
(0.67) (0.45) (0.83) (0.45) (1.23)

Closed (C) -2.06** -1.83** 0.27 -1.72** -3.11**
(0.50) (0.36) (0.76) (0.52) (1.19)

Project intended audience:

Developer Tools -2.81** -1.47** 0.46** 2.05** -1.65**
(0.39) (0.057) (0.85) (0.72) (0.54)

End Users -1.56** 0.65** -1.28** 0.14** 0.53
(0.62) (0.99) (0.66) (0.67) (0.96)

ln(Number of members) 2.47** 2.65** 2.95** 3.58** 3.14**
(0.36) (0.030) (0.31) (0.33) (0.32)

Average # contributions per cell 12.1 9.3 16.7 8.2 21.0

Hypotheses tests: Sorting on
license type

H0: HR=R=UR p <0.001 p<0.001 p<0.001 p<0.001 p<0.001

H0: HR=UR p<0.001 p<0.001 p=0.08 p<0.001 p<0.001

Notes: This table reports the estimated marginal effects (evaluated at the mean) on the interaction terms between the contributing
developer type and the license type, number of members of the receiving project, and two intended audience dummies –
developer tools and end users. The regression includes complete sets of linear dummies for receiving project year of registration,
intended audience, operating system, and programming language. We also include a linear control for the number of projects in
the cell. We reject the following hypotheses: Programming Language=0 (p-value<0.001), Operating Systems=0 (p-value<0.001),
Size coefficients are equal (p-value<0.001). Over-dispersion parameter estimate 3.17 (0.064). Standard errors are robust to
arbitrary heteroskedasticity. ** significant at 1%, * significant at 5%.

Developer type

TABLE 4. INTENDED AUDIENCE

Dependent variable: Number of contributions (Negative Binomial, N=7,705)

(1) (2) (3) (4) (5)

Anonymous Open Mixed Closed Non-members
Project license type:

Highly Open (HO) 1.39 0.00 0.72 -2.12** 3.15**
(1.48) (0.57) (0.30) (0.79)

Open (O) -1.47** -1.12** 1.92* -1.18** 2.51**
(0.44) (0.36) (0.93) (0.47) (0.99)

Closed (C) -1.94** -1.37** 1.17** -0.74** 2.19**
(0.29) (0.29) (0.77) (0.50) (0.71)

Public Resolution -1.13* 4.01** 1.83** 3.15** 2.31
(0.62) (0.86) (0.60) (0.90) (0.49)

ln(Number of members) 2.90** 1.40** 1.81** 2.06** 2.09**
(0.34) (0.22) (0.25) (0.29) (0.21)

Average # contributions per cell 8.7 6.7 12.0 5.8 15.0

Hypotheses tests: Sorting on
license type

H0: HR=R=UR p<0.001 p<0.001 p=0.52 p<0.001 p=0.11

H0: HR=UR p<0.001 p<0.001 p=0.27 p<0.001 p=0.27

TABLE 5. PUBLIC RESOLUTION

Dependent variable: Number of contributions (Negative Binomial, N=10,755)

Notes: This table reports the estimated marginal effects (evaluated at the mean) of the interaction terms between the contributing
developer type and the license type, number of members of the receiving project and a dummy for whether the receiving project
publicly reports the outcome of code contributions. Public Resolution takes a value of one for projects that report resolution for at
least fifty percent of the contributions they receive. We drop contributions for which a decision has not been made as of the data
extraction date. The regression includes complete sets of linear dummies for receiving project year of registration, intended
audience, and operating system. We also include a linear control for the number of projects in the cell. We reject the following
hypotheses: Public Resolution coefficients equal (p-value<0.001), Intended Audience=0, Programming Language (p-
value<0.001), Operating Systems=0 (p-value<0.001), Size coefficients are equal (p-value<0.001). Over-dispersion parameter
estimate 3.20 (0.14). Standard errors are robust to arbitrary heteroskedasticity. ** significant at 1%, * significant at 5%.

Developer type

(1) (2) (3) (4) (5) (6)

Number of projects Anonymous Open Mixed Closed Non-members

Corporate Sponsorship 73 85.8 54.8 35.7 21.0 21.3

Not-for-profit 75 14.2 45.2 64.3 79.0 78.7

Total 148 12,134 5,529 11,922 10,658 5,444

TABLE 6. PATTERN OF CONTRIBUTIONS BY CORPORATE SPONSORSHIP (in percent)

Notes: This table reports the pattern of contributions for projects with strong corporate involvement (Corporate Sponsorship) and for not-for-profit projects.

(1) (2) (3) (4)

Dummy for developer type:
Open: base category

Anonymous
-0.362**

(0.147)
-0.288*
(0.135)

-0.253*
(0.123)

-0.014
(0.089)

Mixed
0.339**

(0.079)
0.278**

(0.063)
0.198**

(0.061)
0.165**

(0.045)

Closed
0.324**

(0.081)
0.274**

(0.084)
0.227*
(0.106)

0.144*
(0.063)

Non-members
0.188**

(0.072)
0.118*
(0.062)

0.105
(0.060)

0.111**
(0.043)

Dummy for license type:
Highly Open: base category

Open
0.491**

(0.112)
0.303**

(0.122)

Closed
0.250**

(0.148)
0.111
(0.171)

ln(Number of members) 0.262* 0.083* 0.100**
(0.053) (0.043) (0.037)

Dummies for Intended Audience No No No Yes

Dummies for Programming Languages No No No Yes

Dummies for Operating Systems No No No Yes

R2 0.212 0.250 0.361 0.443

TABLE 7. DEVELOPER TYPE AND CORPORATE SPONSORSHIP

Dependent variable: Dummy for Contribution to Corporate Sponsored Project (N=45,687)

Notes: This table reports marginal effect estimates from (Probit) regressions for whether a code is contributed
to a corporate project, rather that to a non-for-profit project. The dummy equals one if the contribution is to a
corporate project, and zero if the contribution is to a non-for-profit project. Analysis is at the contribution
level. We include only contributions to projects that we can clearly identify as either corporate or ntn-for-
profit. Standard errors are robust to arbitrary heteroskedasticity and allow for serial correlation through
clustering by receiving projects. * denotes statistical significance at the 5% level, and ** at the 1% level.

(1) (2) (3) (4) (5)

Receiving license
type: # of projects

% of projects with
reciprocal contributions

% of contributions
received by reciprocal

projects
% of contributions made

by reciprocal projects

% of contributions from
projects in (1) that are

reciprocal

All 256 4.9 37.0 22.7 44.6

Highly Open (HO) 142 4.0 20.6 23.4 36.0

Open (O) 45 5.5 46.0 8.0 39.3

Closed (C) 69 7.5 74.8 52.0 50.7

TABLE 8. PATTERN OF RECIPROCITY

Notes: This table reports the pattern of reciprocity of contributions for projects with different license types. This table includes only projects that
receive at least one reciprocal contribution.

(1) (2) (3)

Dummy for matching on license type:

All licenses
0.120**

(0.027)
0.109**

(0.025)

Highly Open (HO)
0.031
(0.058)

Open (O)
0.061
(0.075)

Closed (C)
0.547**

(0.137)

Dummy for matching on intended
audiences

0.054**
(0.019)

0.045**
(0.016)

0.048**
(0.047)

Dummy for matching on Programming
Language

0.012
(0.023)

-0.037
(0.021)

-0.035
(0.020)

Dummy for matching on Operating
Systems

0.049
(0.027)

0.030
(0.022)

0.032
(0.022)

ln(Number of members), receiving 0.003** 0.003
(0.001) (0.001)

ln(Number of members), contributing -0.001 -0.001
(0.002) (0.002)

R2 0.330 0.368 0.375

TABLE 9. DETERMINANTS OF RECIPROCITY

Dependent variable: Dummy for Reciprocity (N=5,266)

Notes: This table reports marginal effect estimates from (Probit) regressions for whether a code
contribution is reciprocal. The dummy equals one if the contribution is reciprocal and zero
otherwise. The dummy variable for matching on license type takes the value one if the
contributing and receiving projects have the same license. Other matching dummies are defined
similarly. Standard errors are robust to arbitrary heteroskedasticity and allow for serial
correlation through clustering by receiving projects. * denotes statistical significance at the 5%
level, and ** at the 1% level.

(1) (2) (3)

Elasticity: Total Contributions Stock 0.307**
(0.007)

0.305**
(0.007)

0.309**
(0.008)

Marginal Productivity: Non-member
Contributions (normalization) 1.000 1.000

Relative Marginal Productivity: Internal
Contributions

0.344**
(0.143)

0.222**
(0.065)

Relative Marginal Productivity: External
Contributions

0.620**
(0.138)

Relative Marginal Productivity: Matched
Contributions

0.174**
(0.033)

Relative Marginal Productivity:
Unmatched Contributions

0.169**
(0.028)

ln(Number of members) 0.015** 0.015** 0.015**
(0.001) (0.001) (0.001)

Test: Marginal Productivity
Internal=Marginal Producitivity External
(p-value) NA 0.08 NA

Test: Marginal Productivity
Matched=Unmatched Marginal
Productivity (p-value) NA NA 0.88

Adjusted-R2 0.544 0.544 0.542

TABLE 10. CONTRIBUTIONS AND PROJECT PERFORMANCE

Non-linear Least Squares (N=37,833)

Notes: This "non-members" table reports estimates from nonlinear least squares regressions of the log of
project downloads on various stocks of contributions, plus dummy variable controls for project
characteristics including intended audience, programming language, operating system, and project
registration year. Standard errors are robust to arbitrary heteroskedasticity. ** significant at 1%, *
significant at 5%.

Dependent variable: ln(Number of Project Downloads).

CENTRE FOR ECONOMIC PERFORMANCE
Recent Discussion Papers

892 Guy Michaels
Ferdinand Rauch
Stephen J. Redding

Urbanization and Structural Transformation

891 Nicholas Bloom
Christos Genakos
Ralf Martin
Raffaella Sadun

Modern Management: Good for the
Environment or Just Hot Air?

890 Paul Dolan
Robert Metcalfe

Comparing willingness-to-pay and subjective
well- being in the context of non-market goods

889 Alberto Galasso
Mark Schankerman

Patent Thickets and the Market for Innovation:
Evidence from Settlement of Patent Disputes

888 Raffaella Sadun Does Planning Regulation Protect Independent
Retailers?

887 Bernardo Guimaraes
Kevin Sheedy

Sales and Monetary Policy

886 Andrew E. Clark
David Masclet
Marie-Claire Villeval

Effort and Comparison Income
Experimental and Survey Evidence

885 Alex Bryson
Richard B. Freeman

How Does Shared Capitalism Affect Economic
Performance in the UK?

884 Paul Willman
Rafael Gomez
Alex Bryson

Trading Places: Employers, Unions and the
Manufacture of Voice

883 Jang Ping Thia The Impact of Trade on Aggregate
Productivity and Welfare with Heterogeneous
Firms and Business Cycle Uncertainty

882 Richard B. Freeman When Workers Share in Profits: Effort and
Responses to Shirking

881 Alex Bryson
Michael White

Organizational Commitment: Do Workplace
Practices Matter?

880 Mariano Bosch
Marco Manacorda

Minimum Wages and Earnings Inequality in
Urban Mexico. Revisiting the Evidence

879 Alejandro Cuñat
Christian Fons-Rosen

Relative Factor Endowments and International
Portfolio Choice

878 Marco Manacorda The Cost of Grade Retention

877 Ralph Ossa A ‘New Trade’ Theory of GATT/WTO
Negotiations

876 Monique Ebell
Albrecht Ritschl

Real Origins of the Great Depression:
Monopoly Power, Unions and the American
Business Cycle in the 1920s

875 Jang Ping Thia Evolution of Locations, Specialisation and
Factor Returns with Two Distinct Waves of
Globalisation

874 Monique Ebell
Christian Haefke

Product Market Deregulation and the U.S.
Employment Miracle

873 Monique Ebell Resurrecting the Participation Margin

872 Giovanni Olivei
Silvana Tenreyro

Wage Setting Patterns and Monetary Policy:
International Evidence

871 Bernardo Guimaraes Vulnerability of Currency Pegs: Evidence from
Brazil

870 Nikolaus Wolf Was Germany Ever United? Evidence from
Intra- and International Trade 1885 - 1993

869 L. Rachel Ngai
Roberto M. Samaniego

Mapping Prices into Productivity in
Multisector Growth Models

868 Antoni Estevadeordal
Caroline Freund
Emanuel Ornelas

Does Regionalism Affect Trade Liberalization
towards Non-Members?

867 Alex Bryson
Harald Dale-Olsen

A Tale of Two Countries: Unions, Closures
and Growth in Britain and Norway

866 Arunish Chawla Multinational Firms, Monopolistic
Competition
and Foreign Investment Uncertainty

865 Niko Matouschek
Paolo Ramezzana
Frédéric Robert-Nicoud

Labor Market Reforms, Job Instability, and the
Flexibility of the Employment Relationship

864 David G. Blanchflower
Alex Bryson

Union Decline in Britain

863 Francesco Giavazzi
Michael McMahon

Policy Uncertainty and Precautionary Savings

The Centre for Economic Performance Publications Unit

Tel 020 7955 7284 Fax 020 7955 7595 Email info@cep.lse.ac.uk
Web site http://cep.lse.ac.uk

	Tables_os_v24 TM.pdf
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8
	TABLE 9
	TABLE 10

