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Abstract 
Financial markets are incomplete, thus for many agents borrowing is possible only by 

accepting a financial contract that specifies a fixed repayment. However, the future income 

that will repay this debt is uncertain, so risk can be inefficiently distributed. This paper argues 

that a monetary policy of nominal GDP targeting can improve the functioning of incomplete 

financial markets when incomplete contracts are written in terms of money. By insulating 

agents' nominal incomes from aggregate real shocks, this policy effectively completes the 

market by stabilizing the ratio of debt to income. The paper argues that the objective of 

nominal GDP should receive substantial weight even in an environment with other frictions 

that have been used to justify a policy of strict inflation targeting. 
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1 Introduction

Following the onset of the recent financial crisis, inflation targeting has increasingly found itself under

attack. The frequent criticism is not that it has failed to achieve what it purports to do — to avoid

a repeat of the inflationary 1970s or the deflationary 1930s — but that central banks have focused

too much on price stability and too little on financial markets.1 Such a view implicitly supposes

there is a tension between the goals of price stability and financial stability when the economy is hit

by shocks. However, it is not clear why this should be so, there being no widely accepted argument

for why stabilizing prices in goods markets causes financial markets to malfunction.

The canonical justification for inflation targeting as optimal monetary policy rests on the presence

of pricing frictions in goods markets (see, for example, Woodford, 2003). With infrequent price

adjustment due to menu costs or other nominal rigidities, high or volatile inflation leads to relative

price distortions that impair the efficient operation of markets, and which directly consumes time

and resources in the process of setting prices. While there is a consensus on the importance of

these frictions when analysing optimal monetary policy, it is increasingly argued that monetary

policy must also take account of financial-market frictions such as collateral constraints or spreads

between internal and external finance.2 These frictions can magnify the effects of both shocks and

monetary policy actions and make these effects more persistent. But the existence of a quantitatively

important credit channel does not in and of itself imply that optimal monetary policy is necessarily

so different from inflation targeting unless new types of shocks are introduced (Faia and Monacelli,

2007, Carlstrom, Fuerst and Paustian, 2010, De Fiore and Tristani, 2012).

This paper studies a simple and compelling friction in financial markets that immediately and

straightforwardly leads to a stark conflict between the efficient operation of financial markets and

price stability. The friction is a modest one: financial markets are assumed to be incomplete. Those

who want to borrow can only do so through debt contracts that specify a fixed repayment (effectively

issuing non-contingent bonds). The argument is that many agents, households in particular, will find

it very difficult to issue liabilities with state-contingent repayments resembling equity or derivatives.

Implicitly, it is assumed to be too costly to write lengthy contracts that spell out in advance different

repayments conditional on each future state of the world.

The problem of non-contingent debt contracts for risk-averse households is that when borrowing

for long periods, there will be considerable uncertainty about the future income from which fixed

debt repayments must be made. The issue is not only idiosyncratic uncertainty — households do not

know the future course the economy will take, which will affect their labour income. Will there be a

1White (2009b) and Christiano, Ilut, Motto and Rostagno (2010) argue that stable inflation is no guarantee of
financial stability, and may even create conditions for financial instability. Christiano, Motto and Rostagno (2007)
suggest that credit growth ought to have a role as an independent target of monetary policy. Contrary to these
arguments, the conventional view that monetary policy should not react to asset prices is advocated in Bernanke and
Gertler (2001). Woodford (2011) makes the point that flexible inflation targeting can be adapted to accommodate
financial stability concerns, and that it would be unwise to discard inflation targeting’s role in providing a clear
nominal anchor.

2Starting from Bernanke, Gertler and Gilchrist (1999), there is now a substantial body of work that integrates
credit frictions of the kind found in Carlstrom and Fuerst (1997) or Kiyotaki and Moore (1997) into monetary DSGE
models. Recent work in this area includes Christiano, Motto and Rostagno (2010).
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productivity slowdown, a deep and long-lasting recession, or even a ‘lost decade’ of poor economic

performance to come? Or will unforeseen technological developments or terms-of-trade movements

boost future incomes, and good economic management successfully steer the economy on a path

of steady growth? Borrowers do not know what aggregate shocks are to come, but must fix their

contractual repayments prior to this information being revealed.

The simplicity of non-contingent debt contracts can be seen as coming at the price of bundling

together two fundamentally different transfers: a transfer of consumption from the future to the

present for borrowers, but also a transfer of aggregate risk to borrowers. The future consumption

of borrowers is paid for from the difference between their uncertain future incomes and their fixed

debt repayments. The more debt they have, the more their future income is effectively leveraged,

leading to greater consumption risk. The flip-side of borrowers’ leverage is that savers are able to

hold a risk-free asset, reducing their consumption risk.

To see the sense in which this bundling together of a transfer of risk and borrowing is inefficient,

consider what would happen in complete financial markets. Individuals would buy or sell state-

contingent bonds (Arrow-Debreu securities) that make payoffs conditional on particular states of

the world (or equivalently, write loan contracts with different repayments across all states of the

world). Risk-averse borrowers would want to sell relatively few bonds paying off in future states

of the world where GDP and thus incomes are low, and sell relatively more in good states of the

world. As a result, prices of contingent bonds paying off in bad states would be relatively expensive

and those paying off in good states relatively cheap. These price differences would entice savers

to shift away from non-contingent bonds and take on more risk in their portfolios. Given that the

economy has no risk-free technology for transferring goods over time, and as aggregate risk cannot

be diversified away, the efficient outcome is for risk-averse individuals to share aggregate risk, and

complete markets allow this to be unbundled from decisions about how much to borrow or save.

The efficient financial contract between risk-averse borrowers and savers in an economy subject

to aggregate income risk (abstracting from idiosyncratic risk) turns out to have a close resemblance

to an ‘equity share’ in GDP. In other words, borrowers’ repayments should fall during recessions

and rise during booms. This means the ratio of debt liabilities to GDP should be more stable than

it would be in a world of incomplete financial markets where debt liabilities are fixed while GDP

fluctuates.

With incomplete financial markets, monetary policy has a role to play in mitigating inefficiencies

because private debt contracts are typically denominated in terms of money. Hence, the real degree

of state-contingency in financial contracts is endogenous to monetary policy. If incomplete markets

were the only source of inefficiency in the economy then the optimal monetary policy would aim

to make nominally non-contingent debt contracts mimic through variation in the price level the

efficient financial contract that would be chosen with complete financial markets.

Given that the efficient financial contract between borrowers and savers resembles an equity

share in GDP, it follows that a goal of monetary policy should be to stabilize the ratio of debt

liabilities to GDP. With non-contingent nominal debt liabilities, this can be achieved by having a

non-contingent level of nominal income, in other words, a monetary policy that targets nominal
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GDP. The intuition is that while the central bank cannot eliminate uncertainty about future real

GDP, it can in principle make the level of future nominal GDP (and hence the nominal income of

an average person) perfectly predictable. Removing uncertainty about future nominal income thus

alleviates the problem of nominal debt repayments being non-contingent.

A policy of nominal GDP targeting generally deviates from inflation targeting because any

fluctuations in real GDP would lead to fluctuations in inflation of the same size and in the opposite

direction. Recessions would feature higher inflation and booms would feature lower inflation, or

even deflation. These inflation fluctuations can be helpful because they induce variation in the real

value of nominally non-contingent debt, making it behave more like equity, which promotes efficient

risk sharing. A policy of strict inflation targeting would convert nominally non-contingent debt into

real non-contingent debt, which would imply an uneven and generally inefficient distribution of risk.

The inflation fluctuations that occur with nominal GDP targeting would entail relative-price

distortions if prices were sticky, so the benefit of efficient risk sharing is most likely not achieved

without some cost. It is ultimately a quantitative question whether the inefficiency caused by incom-

plete financial markets is more important than the inefficiency caused by relative-price distortions,

and thus whether nominal GDP targeting is preferable to inflation targeting.

This paper presents a model that allows optimal monetary policy to be studied analytically in

an incomplete-markets economy with heterogeneous agents. The basic framework adopted is the

life-cycle theory of consumption, which provides the simplest account of household borrowing and

saving. The model contains overlapping generations of individuals: the young, the middle-aged, and

the old. Individuals are risk averse, having an Epstein-Zin-Weil utility function. Individuals receive

incomes equal to fixed age-specific shares of GDP (labour supply is exogenous, but this simplifying

assumption can be relaxed). The age-profile of income is assumed to be hump shaped: the middle-

aged receive the most income; the young receive less income; while the old receive the least. Real

GDP is uncertain because of aggregate productivity shocks, but there are no idiosyncratic shocks.

Young individuals would like to borrow to smooth consumption, repaying when they are middle-

aged. The middle-aged would like to save, drawing on their savings when they are old. The economy

is assumed to have no investment or storage technology, and is closed to international trade. There

are no government bonds and no fiat money, and no taxes or fiscal transfers such as public pensions.

In this world, consumption smoothing is facilitated by the young borrowing from the middle-aged,

repaying when they themselves are middle-aged and their creditors are old. It is assumed the only

financial contract available is a non-contingent nominal bond. The basic model contains no other

frictions, and initially assumes that prices and wages are fully flexible.

The concept of a ‘natural debt-to-GDP ratio’ provides a useful benchmark for monetary policy.

This is defined as the ratio of (state-contingent) debt liabilities to GDP that would prevail were

financial markets complete, which is independent of monetary policy. The actual debt-to-GDP

ratio in an economy with incomplete markets would coincide with the natural debt-to-GDP ratio if

forecasts of future GDP were always correct ex post, but will in general fluctuate around it when

the economy is hit by shocks. The natural debt-to-GDP ratio is thus analogous to concepts such as

the natural rate of unemployment and the natural rate of interest.
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If all movements in real GDP growth rates are unpredictable then the natural debt-to-GDP ratio

turns out to be constant (or if utility functions are logarithmic, the ratio is constant irrespective

of the statistical properties of GDP growth). Even when the natural debt-to-GDP ratio is not

completely constant, plausible calibrations suggest it would have a low volatility relative to real

GDP itself.

Since the equilibrium of an economy with complete financial markets would be Pareto efficient in

the absence of other frictions, the natural debt-to-GDP ratio also has desirable welfare properties.

A goal of monetary policy in an incomplete-markets economy is therefore to close the ‘debt gap’,

defined as the difference between the actual and natural debt-to-GDP ratios. It is shown that doing

this effectively ‘completes the market’ in the sense that the equilibrium with incomplete markets

would then coincide with the hypothetical complete-markets equilibrium. Monetary policy can affect

the actual debt-to-GDP ratio and thus the debt gap because that ratio is nominal debt liabilities

(which are non-contingent with incomplete markets) divided by nominal GDP, where the latter is

under the control of monetary policy.

When the natural debt-to-GDP ratio is constant, closing the debt gap can be achieved by

adopting a fixed target for the level of nominal GDP. With this logic, the central bank uses nominal

GDP as an intermediate target that achieves its ultimate goal of closing the debt gap. This turns

out to be preferable to targeting the debt-to-GDP ratio directly because a monetary policy that

targets only a real financial variable would leave the economy without a nominal anchor. Nominal

GDP targeting uniquely pins down the nominal value of incomes and thus provides the economy

with a well-defined nominal anchor.

It is important to note that in an incomplete-markets economy hit by shocks, whatever action a

central bank takes or fails to take will have distributional consequences. Ex post, there will always

be winners and losers. Creditors lose out when inflation is unexpectedly high, while debtors suffer

when inflation is unexpectedly low. It might then be thought surprising that inflation fluctuations

would ever be desirable. However, the inflation fluctuations implied by a nominal GDP target

are not arbitrary fluctuations — they are perfectly correlated with the real GDP fluctuations that

are the ultimate source of uncertainty in the economy, and which themselves have distributional

consequences when individuals are heterogeneous. For individuals to share risk, it must be possible

to make transfers ex post that act as insurance from an ex-ante perspective. The result of the

paper is that ex-ante efficient insurance requires inflation fluctuations that are negatively correlated

with real GDP (a countercylical price level) to generate the appropriate ex-post transfers between

debtors and creditors.

It might be objected that there are infinitely many state-contingent consumption allocations

that would also satisfy the criterion of ex-ante efficiency. However, only one of these — the hypo-

thetical complete-markets equilibrium associated with the natural debt-to-GDP ratio — could ever

be implemented through monetary policy. Thus for a policymaker solely interested in promoting ef-

ficiency, there is a unique optimal policy that does not require any explicit distributional preferences

to be introduced.

The model also makes predictions for how different monetary policies will affect the volatility
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of financial-market variables such as credit and interest rates. It is shown that policies implying an

inefficient distribution of risk, for example, inflation targeting, are associated with greater volatility

in financial markets when compared to the nominal GDP targeting policy that allows the economy

to mimic the hypothetical complete-markets equilibrium. Stabilizing inflation implies that new

lending as fraction of GDP is excessively procyclical: credit expands too much during a boom and

falls too much during a recession. Similarly, inflation targeting implies that real interest rates will

be excessively countercyclical, permitting real interest rates to fall too much during an expansion.

These findings allow the tension between price stability and efficient risk sharing to be seen in more

familiar terms as a trade-off between price stability and financial stability.

Determining which of these objectives is the more quantitatively important requires introducing

nominal rigidity into the model, allowing for there to be a cost associated with inflation fluctuations

due to relative-price distortions. Nominal rigidity is introduced with a simple model of predeter-

mined price-setting, but in a way that allows the welfare costs of inflation to be calibrated to match

levels found in the existing literature. With both incomplete financial markets and sticky prices,

optimal monetary policy is a convex combination of a nominal GDP target and a strict inflation

target. After calibrating all the parameters of the model, the conclusion is that the nominal GDP

target should receive approximately 95% of the weight.

This paper is related to a number of areas of the literature on monetary policy and financial

markets. First, there is the empirical work of Bach and Stephenson (1974), Cukierman, Lennan

and Papadia (1985), and more recently, Doepke and Schneider (2006), who document the effects of

inflation in redistributing wealth between debtors and creditors. The novelty here is in studying the

implications for optimal monetary policy in an environment where inflation fluctuations with such

distributional effects may actually be desirable because financial markets are incomplete.

The most closely related theoretical paper is Pescatori (2007), who studies optimal monetary

policy in an economy with rich and poor individuals, in the sense of there being an exogenously

specified distribution of assets among otherwise identical individuals. In that environment, both

inflation and interest rate fluctuations have redistributional effects on rich and poor individuals, and

the central bank optimally chooses the mix between them (there is a need to change interest rates

because prices are sticky, with deviations from the natural rate of interest leading to undesirable

fluctuations in output). Another closely related paper is Lee (2010), who develops a model where

heterogeneous individuals choose less than complete consumption insurance because of the presence

of convex transaction costs in accessing financial markets. Inflation fluctuations expose households

to idiosyncratic labour-income risk because households work in specific sectors of the economy, and

sectoral relative prices are distorted by inflation when prices are sticky. This leads optimal monetary

policy to put more weight on stabilizing inflation. Differently from those papers, the argument here

is that inflation fluctuations can actually play a positive role in completing otherwise incomplete

financial markets (and where debt arises endogenously owing to individual heterogeneity).3

3In other related work, Akyol (2004) analyses optimal monetary policy in an incomplete-markets economy where
individuals hold fiat money for self insurance against idiosyncratic shocks. Kryvtsov, Shukayev and Ueberfeldt (2011)
study an overlapping generations model with fiat money where monetary policy can improve upon the suboptimal
level of saving by varying the expected inflation rate and thus the returns to holding money.
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The idea that inflation fluctuations may have a positive role to play when financial markets are

incomplete is now long-established in the literature on government debt (and has also been recently

applied by Allen, Carletti and Gale (2011) in the context of the real value of the liquidity available

to the banking system). Bohn (1988) developed the theory that nominal non-contingent government

debt can be desirable because when combined with a suitable monetary policy, inflation will change

the real value of the debt in response to fiscal shocks that would otherwise require fluctuations in

distortionary tax rates.

Quantitative analysis of optimal monetary policy of this kind was developed in Chari, Christiano

and Kehoe (1991) and expanded further in Chari and Kehoe (1999). One finding was that inflation

needs to be extremely volatile to complete the market. As a result, Schmitt-Grohé and Uribe (2004)

and Siu (2004) argued that once some nominal rigidity is considered so that inflation fluctuations

have a cost, the optimal policy becomes very close to strict inflation targeting. This paper shares

the focus of that literature on using inflation fluctuations to complete financial markets, but comes

to a different conclusion regarding the magnitude of the required inflation fluctuations and whether

the cost of those fluctuations outweighs the benefits. First, the benefits of completing the market

in this paper are linked to the degree of household risk aversion, which is in general unrelated to

the benefits of avoiding fluctuations in distortionary tax rates, and which proves to be large in the

calibrated model. Second, the earlier results assumed government debt with a very short maturity.

With longer maturity debt (household debt in this paper), the costs of the inflation fluctuations

needed to complete the market are much reduced.4

This paper is also related to the literature on household debt. Iacoviello (2005) examines the

consequences of household borrowing constraints in a DSGE model, while Guerrieri and Lorenzoni

(2011) and Eggertsson and Krugman (2012) study how a tightening of borrowing constraints for

indebted households can push the economy into a liquidity trap. Differently from those papers, the

focus here is on the implications of household debt for optimal monetary policy. Furthermore, the

finding here that the presence of household debt substantially changes optimal monetary policy does

not depend on there being borrowing constraints, or even the feedback effects from debt to aggregate

output stressed in those papers. Cúrdia and Woodford (2009) also study optimal monetary policy

in an economy with household borrowing and saving, but the focus there is on spreads between

interest rates for borrowers and savers, while their model assumes an insurance facility that rules

out the risk-sharing considerations studied here. Finally, the paper is related to the literature on

nominal GDP targeting (Meade, 1978, Bean, 1983, Hall and Mankiw, 1994) but proposes a different

argument in favour of that policy.

The plan of the paper is as follows. Section 2 sets out the basic model and derives the equilibrium

conditions. The main optimal monetary policy results are given in section 3. Section 4 introduces

some extensions of the basic model and studies the observable consequences of following a suboptimal

monetary policy. Section 5 introduces sticky prices and hence a trade-off between incomplete markets

and price stability. Finally, section 6 draws some conclusions.

4This point is made by Lustig, Sleet and Yeltekin (2008) in the context of government debt.
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2 A model of a pure credit economy

The population of an economy comprises overlapping generations of individuals. Time is discrete and

is indexed by t. A new generation of individuals is born in each time period and each individual lives

for three periods. During their three periods of life, individuals are referred to as the ‘young’ (y), the

‘middle-aged’ (m), and the ‘old’ (o), respectively. An individual derives utility from consumption

of a composite good at each point in his life. There is no intergenerational altruism. At time t,

per-person consumption of the young, middle-aged, and old is denoted by Cy,t, Cm,t, and Co,t.

Individuals have identical lifetime utility functions, which have the Epstein-Zin-Weil functional

form (Epstein and Zin, 1989, Weil, 1990). Future utility is discounted by subjective discount factor

δ (0 < δ <∞), the intertemporal elasticity of substitution is σ (0 < σ <∞), and α is the coefficient

of relative risk aversion (0 < α <∞). The utility Ut of the generation born at time t is

Ut =
V

1− 1
σ

y,t

1− 1
σ

, where Vy,t =

(
C

1− 1
σ

y,t + δ
{
Et
[
V 1−α
m,t+1

] 1
1−α
}1− 1

σ

) 1

1− 1
σ

,

Vm,t =

(
C

1− 1
σ

m,t + δ
{
Et
[
V 1−α
o,t+1

] 1
1−α
}1− 1

σ

) 1

1− 1
σ

, and Vo,t = Co,t. [2.1]

The utility function is written in a recursive form with Vy,t, Vm,t, and Vo,t denoting the continuation

values of the young, middle-aged, and old in terms of current consumption equivalents.5

The number of young individuals born in any time period is exactly equal to the number of

old individuals alive in the previous period who now die. The economy thus has no population

growth and a balanced age structure. Assuming that the population of individuals currently alive

has measure one, each generation of individuals has measure one third. Aggregate consumption at

time t is denoted by Ct:

Ct =
1

3
Cy,t +

1

3
Cm,t +

1

3
Co,t. [2.2]

All individuals of the same age at the same time receive the same income, with Yy,t, Ym,t, and

Yo,t denoting the per-person incomes (in terms of the composite good) of the young, middle-aged,

and old, respectively, at time t. Age-specific incomes are assumed to be time-invariant multiples of

aggregate income Yt, with Θy, Θm, and Θo denoting the multiples for the young, middle-aged, and

old:

Yy,t = ΘyYt, Ym,t = ΘmYt, Yo,t = ΘoYt, where Θy,Θm,Θo ∈ (0, 3) and
1

3
Θy+

1

3
Θm+

1

3
Θo = 1.

[2.3]

Real GDP is specified as an exogenous stochastic process. This assumption turns out not to affect

the main results of the paper, but is relaxed later.6 The growth rate of real GDP between period

5The functional form reduces to the special case of time-separable isoelastic utility when the coefficient of relative
risk aversion is equal to the reciprocal of the intertemporal elasticity of substitution (α = 1/σ).

6The introduction of an endogenous labour supply decision need not affect the results unless prices or wages are
sticky.

7



Figure 1: Age profile of non-financial income

Age

Income/GDP per person

1

Young Middle-aged Old

1− βγ

1 + (1 + β)γ

1− γ

t− 1 and t, denoted by gt ≡ (Yt − Yt−1)/Yt−1, is given by

gt = ḡ + ςxt, where Ext = 0, Ex2t = 1, and xt ∈ [x, x], [2.4]

with xt being an exogenous stationary stochastic process with bounded support. The growth rate

gt has mean ḡ and standard deviation ς. Defining β in terms of the parameters δ, σ, α, ḡ, and ς

(and the stochastic process of xt), the following parameter restriction is imposed:

0 < β < 1, where β ≡ δE
[
(1 + gt)

1−α] 1−1/σ
1−α . [2.5]

The income multiples Θy, Θm, and Θo for each generation are parameterized to specify a hump-

shaped age profile of income in terms of β and a single new parameter γ:

Θy = 1− βγ, Θm = 1 + (1 + β)γ, and Θo = 1− γ. [2.6]

The income multiples are all well-defined and strictly positive for any 0 < γ < 1. The general

pattern is depicted in Figure 1. As γ → 0, the economy approaches the special case where all

individuals alive at the same time receive the same income irrespective of age, while as γ→ 1, the

differences in income between individuals of different ages are at their maximum with old individuals

receiving a zero income. Intermediate values of γ imply age profiles that lie between these extremes,

thus the parameter γ can be interpreted as the gradient of the age profile of income over the life

cycle. The presence of the coefficient β in the specification [2.6] implies that the income gradient

from young to middle-aged is less than the gradient from middle-aged to old.7

There is assumed to be no government spending and no international trade, and the composite

good is not storable, hence the goods-market clearing condition is

Ct = Yt. [2.7]

The economy has a central bank that defines a reserve asset, referred to as ‘money’. Reserves

7Introducing this feature implies that the steady state of the model will have some convenient properties. See
section 2.3 for details.
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held between period t and t+ 1 are remunerated at a nominal interest rate it known in advance at

time t. The economy is ‘cash-less’ in that money is not required for transactions, but money is used

by agents as a unit of account in writing financial contracts and in pricing goods. One unit of the

composite good costs Pt units of money at time t, and πt ≡ (Pt − Pt−1)/Pt−1 denotes the inflation

rate between period t−1 and t. Monetary policy is specified as a rule for setting the nominal interest

rate it. Finally, in equilibrium, the central bank will maintain a supply of reserves equal to zero.

2.1 Incomplete financial markets

Asset markets are assumed to be incomplete. No individual can sell state-contingent bonds (Arrow-

Debreu securities), and hence in equilibrium in this economy, no such securities will be available to

buy. The only asset that can be traded is a one-period, nominal, non-contingent bond. Individuals

can take positive or negative positions in this bond (save or borrow), and there is no limit on

borrowing other than being able to repay in all states of the world given non-negativity constraints

on consumption. With this restriction, no default will occur, and thus bonds are risk free in nominal

terms.8

Bonds that have a nominal face value of 1 paying off at time t+ 1 trade at price Qt in terms of

money at time t. These bonds are perfect substitutes for the reserve asset defined by the central

bank, so the absence of arbitrage opportunities requires that

Qt =
1

1 + it
. [2.8]

The central bank’s interest-rate policy thus sets the nominal price of the bonds.

Let By,t and Bm,t denote the net bond positions per person of the young and middle-aged at the

end of time t (positive denotes saving, negative denotes borrowing). The absence of intergenerational

altruism implies that the old will make no bequests (Bo,t = 0) and the young will begin life with no

assets. The budget identities of the young, middle-aged, and old are respectively:

Cy,t +
Qt

Pt
By,t = Yy,t, Cm,t +

Qt

Pt
Bm,t = Ym,t +

1

Pt
By,t−1, and Co,t = Yo,t +

1

Pt
Bm,t−1. [2.9]

Maximizing the lifetime utility function [2.1] for each generation with respect to its bond holdings,

subject to the budget identities [2.9], implies the Euler equations:

δEt

 Pt
Pt+1

 Vm,t+1

Et
[
V 1−α
m,t+1

] 1
1−α


1
σ
−α(

Cm,t+1

Cy,t

)− 1
σ

 = Qt

= δEt

 Pt
Pt+1

 Vo,t+1

Et
[
V 1−α
o,t+1

] 1
1−α


1
σ
−α(

Co,t+1

Cm,t

)− 1
σ

 . [2.10]

8With the utility function [2.1], marginal utility tends to infinity as consumption tends to zero. Thus, individuals
would not choose borrowing that led to zero consumption in some positive-probability set of states of the world,
so this constraint will not bind. Furthermore, given that the stochastic process for GDP growth in [2.4] has finite
support, for any particular amount of borrowing, it would always be possible to set the standard deviation ς to be
sufficiently small to ensure that no default would occur.
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With no issuance of government bonds, no bond purchases by the central bank (the supply

of reserves is maintained at zero), and no international borrowing and lending, the bond-market

clearing condition is

1

3
By,t +

1

3
Bm,t = 0. [2.11]

Equilibrium quantities in the bond market can be summarized by one variable: the gross amount

of bonds issued.9 Let Bt denote gross bond issuance per person, Lt the implied real value of the

loans that are made per person, and Dt the real value of debt liabilities per person that fall due at

time t. Assuming that (as will be confirmed later) the young will sell bonds and the middle-aged

will buy them, these variables are given by:

Bt ≡ −
By,t

3
, Lt ≡

QtBt

Pt
, and Dt ≡

Bt−1

Pt
. [2.12]

It is convenient to introduce variables for age-specific consumption, loans, and debt liabilities mea-

sured relative to GDP Yt. These are denoted with lower-case letters. The real return (ex post) rt

between periods t − 1 and t is defined as the percentage by which the real value of debt liabilities

is greater than the real amount of the corresponding loans. These definitions are listed below:

cy,t ≡
Cy,t

Yt
, cm,t ≡

Cm,t

Yt
, co,t ≡

Co,t

Yt
, lt ≡

Lt
Yt
, dt ≡

Dt

Yt
, and rt ≡

Dt − Lt−1
Lt−1

. [2.13]

Using the definitions of the debt-to-GDP and loans-to-GDP ratios from [2.13] it follows that:

dt =

(
1 + rt
1 + gt

)
lt−1. [2.14a]

The real interest rate ρt (ex-ante real return) between periods t and t+1 is defined as the conditional

expectation of the real return between those periods:10

ρt = Etrt+1. [2.14b]

Using the age-specific incomes [2.3] and the definitions in [2.12] and [2.13], the budget identities

in [2.9] for each generation can be written as:

cy,t = 1− βγ+ 3lt, cm,t = 1 + (1 + β)γ− 3dt − 3lt, and co,t = 1− γ+ 3dt. [2.14c]

Similarly, after using the definitions in [2.12] and [2.13], the Euler equations in [2.10] become:

δEt

(1 + rt+1)(1 + gt+1)
− 1
σ

 (1 + gt+1)vm,t+1

Et
[
(1 + gt+1)1−αv

1−α
m,t+1

] 1
1−α


1
σ
−α(

cm,t+1

cy,t

)− 1
σ

 = 1

= δEt

(1 + rt+1)(1 + gt+1)
− 1
σ

 (1 + gt+1)vo,t+1

Et
[
(1 + gt+1)1−αv

1−α
o,t+1

] 1
1−α


1
σ
−α(

co,t+1

cm,t

)− 1
σ

 , [2.14d]

9In equilibrium, the net bond positions of the household sector and the whole economy are of course both zero
under the assumptions made.

10This real interest rate is important for saving and borrowing decisions, but there is no actual real risk-free asset
to invest in.
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where vm,t ≡ Vm,t/Yt and vo,t ≡ Vo,t/Yt denote the continuation values of middle-aged and old

individuals relative to GDP. Using equation [2.1], these value functions satisfy:

vm,t =

(
c
1− 1

σ
m,t + δ

{
Et
[
(1 + gt+1)

1−αv1−αo,t+1

] 1
1−α
}1− 1

σ

) 1

1− 1
σ

, and vo,t = co,t. [2.14e]

The ex-post Fisher equation for the real return on nominal bonds is obtained from the no-

arbitrage condition [2.8] and the definitions in [2.12]:

1 + rt =
1 + it−1
1 + πt

. [2.15]

Finally, goods-market clearing [2.7] with the definition of aggregate consumption [2.2] requires:

1

3
cy,t +

1

3
cm,t +

1

3
co,t = 1. [2.16]

Before examining the equilibrium of the economy under different monetary policies, it is helpful

to study as a benchmark the hypothetical world of complete financial markets.

2.2 The complete financial markets benchmark

Suppose it were possible for individuals to take short and long positions in a range of Arrow-Debreu

securities for each possible state of the world. Suppose markets are sequentially complete in that

securities are traded period-by-period for states of the world that will be realized one period in

the future, and that individuals only participate in financial markets during their actual lifetimes

(instead of all trades taking place at the ‘beginning of time’).11 Without loss of generality, assume the

payoffs of these securities are specified in terms of real consumption, and their prices are quoted in

real terms. Let Kt+1 denote the kernel of prices for securities with payoffs of one unit of consumption

at time t+ 1 in terms of consumption at time t. The prices are defined relative to the (conditional)

probabilities of each state of the world.

Let Sy,t+1 and Sm,t+1 denote the per-person net positions in the Arrow-Debreu securities at the

end of period t of the young and middle-aged respectively (with So,t+1 = 0 for the old, who hold

no assets at the end of period t). These variables give the real payoffs individuals will receive (or

make, if negative) at time t + 1. The price of taking net position St+1 at time t is EtKt+1St+1 (if

negative, this is the amount received from selling securities).

In what follows, the levels of consumption obtained with complete markets (and the corre-

sponding value functions) are denoted with an asterisk to distinguish them from the outcomes with

incomplete markets. The budget identities of the young, middle-aged, and old are:

C∗y,t +EtKt+1Sy,t+1 = Yy,t, C∗m,t +EtKt+1Sm,t+1 = Ym,t + Sy,t, and C∗o,t = Yo,t + Sm,t. [2.17]

Maximizing utility [2.1] for each generation with respect to holdings of Arrow-Debreu securities,

11This distinction is relevant here. As will be seen, sequential completeness is the appropriate notion of complete
markets for studying the issues that arise in this paper.
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subject to the budget identities [2.17], implies the Euler equations:

δ

 V ∗m,t+1

Et
[
V ∗1−αm,t+1

] 1
1−α


1
σ
−α(

C∗m,t+1

C∗y,t

)− 1
σ

= Kt+1 = δ

 V ∗o,t+1

Et
[
V ∗1−αo,t+1

] 1
1−α


1
σ
−α(

C∗o,t+1

C∗m,t

)− 1
σ

, [2.18]

where these hold in all states of the world at time t+1. Market clearing for Arrow-Debreu securities

requires:

1

3
Sy,t +

1

3
Sm,t = 0. [2.19]

Let St+1 denote the gross quantities of Arrow-Debreu securities issued at the end of period t.

By analogy with the definitions of Lt and Dt in the case of incomplete markets (from [2.12]), let

L∗t denote the value of all securities sold, which represents the amount lent to borrowers, and let

D∗t be the state-contingent quantity of securities liable for repayment, the equivalent of borrowers’

debt liabilities. Supposing, as will be confirmed, that securities would be issued by the young and

bought by the middle-aged, these variables are given by:

St+1 ≡ −
Sy,t+1

3
, L∗t ≡ EtKt+1St+1, and D∗t ≡ St. [2.20]

In what follows, let c∗y,t, c
∗
m,t, c

∗
o,t, l

∗
t , d

∗
t , and r∗t denote the complete-markets equivalents of the

variables defined in [2.13].

Starting from the definitions in [2.13] and [2.20], it can be seen that equation [2.14a] also holds for

the complete-markets variables d∗t , r
∗
t , and l∗t−1. The real interest rate is defined as the expectation

of the real return, so equation [2.14b] also holds for ρ∗t and r∗t+1. Using the age-specific income levels

from [2.3] and the definitions from [2.13] and [2.20], the budget identities [2.17] can be written as

in equation [2.14c] with l∗t and d∗t . The definition of the real return r∗t together with [2.20] implies

that Et[(1 + r∗t+1)Kt+1] = 1. Using these definitions again, the Euler equations [2.18] imply that the

equations in [2.14d] hold for c∗y,t, c
∗
m,t, c

∗
o,t, v

∗
m,t, v

∗
o,t, and r∗t , with the value functions satisfying the

equivalent of [2.14e].

It is seen that all of equations [2.14a]–[2.14e] in the incomplete-markets model hold also under

complete markets. The distinctive feature of complete markets is that the Euler equations in [2.18]

also imply the following equation holds in all states of the world: (1 + gt+1)v
∗
m,t+1

Et
[
(1 + gt+1)1−αv∗

1−α
m,t+1

] 1
1−α


1
σ
−α(

c∗m,t+1

c∗y,t

)− 1
σ

=

 (1 + gt+1)v
∗
o,t+1

Et
[
(1 + gt+1)1−αv∗

1−α
o,t+1

] 1
1−α


1
σ
−α(

c∗o,t+1

c∗m,t

)− 1
σ

.

[2.21]

This condition reflects the distribution of risk that is mutually agreeable among individuals who have

access to a complete set of financial markets. The condition equates the growth rates of marginal

utilities of those individuals whose lives overlap (and their consumption growth rates in the case of

time-separable utility).
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2.3 Equilibrium conditions

There are nine endogenous real variables: the age-specific consumption ratios cy,t, cm,t, and co,t; the

value functions vm,t and vo,t; the loans- and debt-to-GDP ratios lt and dt; and the real interest rate

ρt and the ex-post real return rt. Real GDP growth gt is exogenous and given by [2.4]. Common to

both incomplete and complete financial markets are the ten equations in [2.14a]–[2.14e] and [2.16].

By Walras’ law, one of these equations is redundant, so the goods-market clearing condition [2.16]

(seen to be implied by [2.14c]) is dropped in what follows.

With incomplete markets, the equilibrium conditions [2.14a]–[2.14e] are augmented by the ex-

post Fisher equation [2.15], to which must be added a monetary policy rule since this equation refers

to the nominal interest rate. Thus, two equations are added, corresponding to the two extra nominal

variables, the inflation rate πt and the nominal interest rate it. With complete markets, one extra

equation [2.21] is appended to the system [2.14a]–[2.14e]. There are no extra endogenous variables,

but condition [2.21] renders redundant one of the two equations in [2.14d]. Since none of the

equilibrium conditions includes nominal variables, the complete-markets equilibrium is independent

of monetary policy.

Finding the equilibrium with incomplete markets is complicated by the fact that the real payoff

of the nominal bond is endogenous to monetary policy. However, owing to the substantial overlap

between the equilibrium conditions under incomplete and complete markets, there is a sense in

which there is only one degree of freedom for the equilibria in these two cases to differ, and thus

only one degree of freedom for monetary policy to affect the equilibrium with incomplete markets.

To make this analysis precise, define Υt to be the realized debt-to-GDP ratio relative to its

expected value:

Υt ≡
dt

Et−1dt
, with Υt =

{
1 + rt
1 + gt

}/
Et−1

{
1 + rt
1 + gt

}
. [2.22]

The second equation states that Υt is also the unexpected component of portfolio returns rt relative

to GDP growth gt, where that equation follows from [2.14a]. With complete markets, equations

[2.13] and [2.20] imply that Υ∗t = (St/(1 + gt))/Et−1[St/(1 + gt)]. Since the portfolio St is a variable

determined by borrowers’ and savers’ choices, Υ∗t is also determined. With incomplete markets, it

can be seen from equation [2.15] that Υt will depend on monetary policy. But once Υt is determined,

portfolio returns in all states of the world (relative to expectations) are known, which closes the

model.

If Υt has been determined then equation [2.22] implies that the debt-to-GDP ratio dt is a state

variable. In the model, the debt-to-GDP ratio is a sufficient statistic for the wealth distribution

at the beginning of period t. It would therefore be expected that there is a unique equilibrium

conditional on having determined Υt. There are two caveats to this. First, since the model does not

feature a representative agent, there is the possibility of multiple equilibria if substitution effects

were too weak relative to income effects. Second, since the model features overlapping generations of

individuals, there is the possibility of multiple equilibria due to rational bubbles. Suitable parameter

restrictions will be imposed to rule out both of these types of multiplicity.
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Given that dt is a state variable, the uniqueness of the equilibrium will depend on the system

of equations [2.14a]–[2.14e] having the saddlepath stability property together with a unique steady

state. This issue is investigated by examining the perfect-foresight paths implied by equations

[2.14a]–[2.14e]. Starting from time t0 onwards, suppose there are no shocks to real GDP growth

(ς = 0 in [2.4]) so gt = ḡ, and suppose there is no uncertainty about portfolio returns, hence Υt = 1.

With future expectations equal to the realized values of variables, equations [2.14b] and [2.14d]

reduce to:

ρt = rt+1, and δ(1+rt+1)(1+gt+1)
− 1
σ

(
cm,t+1

cy,t

)− 1
σ

= 1 = δ(1+rt+1)(1+gt+1)
− 1
σ

(
co,t+1

cm,t

)− 1
σ

. [2.23]

The perfect-foresight paths are determined by equations [2.14a], [2.14c], and [2.23] (with no uncer-

tainty, [2.14e] is redundant). The analysis proceeds by reducing this system to two equations in

two variables: one non-predetermined variable, the real interest rate ρt, and one state variable, the

debt-to-GDP ratio dt.

Proposition 1 The system of equations [2.14a], [2.14c], and [2.23] has the following properties:

(i) Any perfect foresight paths {ρt0 , ρt0+1, ρt0+2, . . .} and {dt0 , dt0+1, dt0+2, . . .} must satisfy a pair

of first-order difference equations F (ρt, dt, ρt+1, dt+1) = 0.

(ii) The system of equations has a steady state:

d̄ =
γ

3
, l̄ =

βγ

3
, c̄y = c̄m = c̄o = 1, and r̄ = ρ̄ =

1 + ḡ

β
− 1 =

(1 + ḡ)
1
σ

δ
− 1, [2.24]

where [2.4] and [2.5] imply β = δ(1 + ḡ)1−
1
σ when ς = 0. The steady state is not dynamically

inefficient (ρ̄ > ḡ) if β satisfies 0 < β < 1. Given 0 < β < 1, this steady state is unique if and

only if:

σ ≥ σ(γ,β), where
βγ

1 + β
< σ(γ,β) <

1

2
, lim

γ→0
σ(γ,β) = 0, and

∂σ(γ,β)

∂γ
> 0. [2.25]

(iii) If the parameter restrictions [2.5] and σ ≥ σ(γ,β) are satisfied then in the neighbourhood of

the steady state there exists a stable manifold and an unstable manifold. The stable manifold

is an upward-sloping line in (dt, ρt) space, and the unstable manifold is either downward sloping

or steeper than the stable manifold.

Proof See appendix A.8. �

Focusing first on the steady state, note that given the age profile of income in Figure 1 and a

preference for consumption smoothing, the young would like to borrow and the middle-aged would

like to save. In the absence of any fluctuations in real GDP, and with the parameterization of the age

profile of income in [2.6], the model possesses a steady state where the age-profile of consumption is

flat over the life-cycle. The parameterization [2.6] also has the convenient property that the value of

debt obligations at maturity relative to GDP is solely determined by the income age-profile gradient

parameter γ, while the formula for the equilibrium real interest rate is identical that found in an
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Figure 2: Borrowing and saving patterns
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economy with steady-state real GDP growth of ḡ and a representative agent having discount factor

δ and elasticity of intertemporal substitution σ. Greater changes in individuals’ incomes over the

life-cycle imply that there will be more borrowing in equilibrium, while faster GDP growth or greater

impatience increase the real interest rate. With the parameter restriction 0 < β < 1 from [2.5], the

steady state is not dynamically inefficient (the real interest rate ρ̄ exceeds the growth rate ḡ).

The equilibrium borrowing and saving patterns are depicted in Figure 2. The young borrow from

the middle-aged and repay once they, the young, are middle-aged and the formerly middle-aged are

old.12 Lending to the young provides a way for the middle-aged to save. Note that all savings are

held in the form of ‘inside’ financial assets (private IOUs) created by those who want to borrow.

Under the model’s simplifying assumptions, there are no ‘outside’ assets (for example, government

bonds or fiat money).13

Given that 0 < β < 1, Proposition 1 shows that the steady state [2.24] is unique if the elas-

ticity of intertemporal substitution is sufficiently large relative to the gradient of the age-profile of

income. These two conditions are sufficient to rule out multiple equilibria, and will be assumed in

what follows. Out of steady state, the dynamics of the debt ratio and the real interest rate are de-

termined by the first-order difference equation from Proposition 1, which in principle can be solved

for (dt+1, ρt+1) given (dt, ρt). With a unique steady state, the model has the property of saddlepath

12The model is designed to represent a pure credit economy where the IOUs of private agents are exchanged for
goods, and where IOUs can be created without the need for financial intermediation. The role of ‘money’ is confined
to that of a unit of account and a standard of deferred payments (what borrowers are promising to deliver when their
IOUs mature). The downplaying of money’s role as a medium of exchange is in line with Woodford’s (2003) ‘cashless
limit’ analysis where the focus is on the use of money as a unit of account in setting prices of goods.

13The trade between the generations would not be feasible in an overlapping generations model with two-period
lives. In that environment, saving is only possible by acquiring a physically storable asset or holding an ‘outside’
financial asset. In the three-period lives OLG model of Samuelson (1958), the age profile of income is monotonic, so
there is little scope for trade between the generations. As a result, the equilibrium involving only ‘inside’ financial
assets is dynamically inefficient. This inefficiency can be corrected by introducing an ‘outside’ financial asset. Here,
under the parameter restrictions, the steady-state real interest rate is above the economy’s growth rate, which is
equivalent to the absence of dynamic inefficiency (Balasko and Shell, 1980). There are then no welfare gains from
introducing an outside asset.
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stability: starting from a particular debt ratio dt0 at time t0, there is only one real interest rate ρt0

consistent with convergence to the steady state.14

3 Monetary policy in a pure credit economy

This section analyses optimal monetary policy in an economy with incomplete markets subject to

exogenous shocks to real GDP growth. A benchmark for monetary policy analysis is the equilibrium

in the hypothetical case of complete financial markets.

3.1 The natural debt-to-GDP ratio

In monetary economics, it is conventional to use the prefix ‘natural’ to describe what the equilibrium

would be in the absence of a particular friction, such as nominal rigidities or imperfect information.

For instance, there are the concepts of the natural rate of unemployment, the natural rate of interest,

and the natural level of output. Here, the friction is incomplete markets, not nominal rigidities,

but it makes sense to refer to the equilibrium debt-to-GDP ratio in the absence of this friction as

the ‘natural debt-to-GDP ratio’. Just like any other ‘natural’ variable, the natural debt-to-GDP

ratio is independent of monetary policy, while shocks will generally perturb the actual equilibrium

debt-to-GDP ratio away from its natural level, to which it would otherwise converge. Furthermore,

the natural debt-to-GDP ratio has efficiency properties that make it a desirable target for monetary

policy.

The natural debt-to-GDP need not be constant when the economy is hit by shocks (just as the

natural rate of unemployment may change over time), but there are two benchmark cases where it

is in fact constant even though shocks occur. These cases require restrictions either on the utility

function or on the stochastic process for GDP growth.

Proposition 2 Consider the equilibrium of the economy with complete financial markets (the so-

lution of equations [2.14a]–[2.14e] and [2.21]). If either of the following conditions is met:

(i) the utility function is logarithmic (α = 1 and σ = 1 in [2.1]);

(ii) real GDP follows a random walk (the random variable xt in [2.4] is i.i.d.);

then the equilibrium is as follows, with a constant natural debt-to-GDP ratio:

d∗t =
γ

3
, l∗t =

βγ

3
, c∗y,t = c∗m,t = c∗o,t = 1, ρ∗t =

1 + Etgt+1

β
− 1, and r∗t =

1 + gt
β
− 1. [3.1]

The real interest rate is also constant (ρ∗t = (1 + ḡ)/β− 1) when GDP growth is i.i.d.

Proof See appendix A.9. �

14Proposition 1 establishes the saddlepath stability property locally for parameters for which there is a unique
steady state. Numerical analysis confirms the saddlepath stability property holds globally for these parameters. See
appendix A.1 for further details, including a discussion of why non-convergent paths cannot be equilibria.
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Intuitively, the case of real GDP following a random walk can be understood as follows. If a

shock has the same effect on the level of GDP in the short run and the long run then it is feasible

in all current and future time periods for each generation alive to receive the same consumption

share of total output as before the shock. Since the utility function is homothetic, given relative

prices for consumption in different time periods, individuals would choose future consumption plans

proportional to their current consumption. If consumption shares are maintained then no change of

relative prices is required. In this case, all individuals would have the same proportional exposure

to consumption risk. Since each individual has a constant coefficient of relative risk aversion, and

as this coefficient is the same across all individuals, constant consumption shares are equivalent

to efficient risk sharing. For constant consumption shares to be consistent with individual budget

constraints it is necessary that debt repayments move one-for-one with changes in GDP. Thus, the

efficient financial contract between borrowers and savers resembles an equity share in GDP, which

is equivalent to a constant natural debt-to-GDP ratio.

If the short-run and long-run effects of a shock to GDP differ then it is not feasible at all times

for generations to maintain unchanged consumption shares because generations do not perfectly

overlap. Relative prices of consumption at different times will have to change, which will generally

change individuals’ desired expenditure shares of lifetime income on consumption at different times.

However, with a logarithmic utility function, current consumption will be an unchanging share of

lifetime income, and so efficient risk sharing (given that all individuals have log utility) requires

stabilization of individuals’ consumption shares. This again requires debt repayments that move in

line with GDP.

The ‘debt gap’ d̃t is defined as the actual debt-to-GDP ratio (dt) relative to what the debt-to-

GDP ratio would be with complete financial markets (d∗t ):

d̃t ≡
dt
d∗t
. [3.2]

This concept is analogous to variables such as the output gap or interest-rate gap found in many

monetary models. The next section justifies the claim that the goal of monetary policy should be

close the debt gap, that is, to aim for d̃t = 1.

3.2 Pareto efficient allocations

Before considering what can be achieved by a central bank setting monetary policy, first consider

the economy from the perspective of a social planner who has the power to mandate allocations

of consumption to specific individuals by directly making the appropriate transfers. The planner

maximizes a weighted sum of individual utilities subject to the economy’s resource constraint.

Starting at some time t0, the welfare function maximized by the planner is

Wt0 = Et0−2

[
1

3

∞∑
t=t0−2

βt−t0ΩtUt

]
, [3.3]

which includes the utility functions [2.1] of all individuals alive at some point from time t0 onwards.
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The Pareto weight assigned to the generation born at time t is denoted by βt−t0Ωt/3, where the

variable Ωt is scaled for convenience by the term βt−t0 (using β from [2.5] as a discount factor),

and by the population share 1/3 of that generation when its members are alive. A Pareto-efficient

allocation is a maximum of [3.3] subject to the economy’s resource constraints for a particular

sequence of Pareto weights {Ωt0−2,Ωt0−1,Ωt0 ,Ωt0+1, . . .}, where the weight Ωt for individuals born

at time t may be a function of the state of the world at time t.15

The Lagrangian for maximizing the social welfare function subject to the economy’s resource

constraint Ct = Yt (with aggregate consumption Ct as defined in [2.2]) is:

Lt0 = Et0−2

[
1

3

∞∑
t=t0−2

βt−t0ΩtUt +
∞∑
t=t0

βt−t0Λt

(
Yt −

1

3
Cy,t −

1

3
Cm,t −

1

3
Co,t

)]
, [3.4]

where the Lagrangian multiplier on the time-t resource constraint is βt−t0Λt (the scaling by βt−t0

is for convenience). Using the utility function [2.1], the first-order conditions for the consumption

levels C?
y,t, C

?
m,t and C?

o,t that maximize the welfare function [3.3] are:

ΩtC
?−

1
σ

y,t = Λ?
t , Ωt−1

(
δ

β

){
V ?
m,t

Et−1[V ?1−α
m,t ]

1
1−α

} 1
σ
−α

C?−
1
σ

m,t = Λ?
t , and

Ωt−2

(
δ

β

)2
{

V ?
o,t

Et−1[V ?1−α
o,t ]

1
1−α

} 1
σ
−α{

V ?
m,t−1

Et−2[V ?1−α
m,t−1]

1
1−α

} 1
σ
−α

C?−
1
σ

o,t = Λ?
t for all t ≥ t0. [3.5]

Since the first-order conditions are homogeneous of degree zero in the Pareto weights Ωt and the

Lagrangian multipliers Λt, one of the weights or one of the multipliers can be arbitrarily fixed. The

normalization Λt0 ≡ Y −1t0 is chosen, which has the convenient implication that a 0.01 change in the

value of the welfare function is equivalent to an exogenous 1% change in real GDP in the initial

period.16 Since the normalization uses output Yt0 at time t0, the Pareto weights Ωt0−2 and Ωt0−1

may be functions of the state of the world at time t0, but the ratio Ωt0−1/Ωt0−2 must depend only

on variables known at time t0 − 1. The welfare function [3.3] and first-order conditions [3.5] can be

rewritten in terms of stationary variables as follows:

Wt0 = Et0−2

[
1

3

∞∑
t=t0−2

βt−t0ωtut

]
, with ωt ≡ ΩtY

1− 1
σ

t , ut ≡
Ut

Y
1− 1

σ
t

, ϕt ≡ ΛtYt, and ϕt0 ≡ 1.

[3.6]

15This means that an ‘individual’ comprises not just a specific person but also a specific history of shocks up to the
time of that person’s birth. But the weight is not permitted to be a function of shocks realized after birth because
this would result in an essentially vacuous notion of ex-post efficiency where every non-wasteful allocation of goods
could be described as efficient for some sequence of weights that vary during individuals’ lifetimes. See appendix A.3
for further discussion.

16Applying the envelope theorem to the Lagrangian [3.4] yields ∂Wt0/∂Yt0 = Λt0 , and hence by setting Λt0 = Y −1t0
it follows that ∂Wt0/∂ log Yt0 = 1.
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Manipulating the first-order conditions [3.5] and using the definitions in [2.13] and [3.6] leads to:

ωt =
ϕ?t

c?
− 1
σ

y,t

, and
ϕ?t+1

ϕ?t
= (1 + gt+1)

1− 1
σ

{
(1 + gt+1)v

?
m,t+1

Et[(1 + gt+1)1−αv?
1−α
m,t+1]

1
1−α

} 1
σ
−α(

c?m,t+1

c?y,t

)− 1
σ

= (1 + gt+1)
1− 1

σ

{
(1 + gt+1)v

?
o,t+1

Et[(1 + gt+1)1−αv?
1−α
o,t+1]

1
1−α

} 1
σ
−α(

c?o,t+1

c?m,t

)− 1
σ

for all t ≥ t0, [3.7]

where these equations hold in all states of the world. There is a well-defined steady state for all

of the transformed variables in [3.6]. Using Proposition 1 together with equations [2.1], [3.6], and

[3.7], it follows that ω̄ = 1 and ϕ̄ = 1. Given the parameter restriction [2.5], this shows the welfare

function is finite-valued for any real GDP growth stochastic process consistent with [2.4].

The equations in [3.7] imply that the risk-sharing condition [2.21] is a necessary condition for any

Pareto-efficient consumption allocation. This equation is an equilibrium condition with complete

financial markets, so the complete-markets equilibrium will be Pareto efficient.17 However, there are

many other Pareto-efficient allocations satisfying the resource constraint [2.16] and the risk-sharing

condition [2.21].

Now return to the analysis of monetary policy where the policymaker is a central bank with

a single instrument, the nominal interest rate it. The central bank operates in an economy with

incomplete markets where the equilibrium conditions are [2.14a]–[2.14e] and [2.15]. The central

bank maximizes the welfare function [3.3] subject to the incomplete-markets equilibrium conditions

as implementability constraints (including [2.14c], which implies the resource constraint [2.16]).

The solution will depend on which Pareto weights Ωt are used, which capture the distributional

preferences of the policymaker.

Two questions regarding efficiency and distribution naturally arise when studying the central

bank’s constrained maximization problem. First, the extent to which the central bank will be able to

achieve a Pareto-efficient consumption allocation. Second, the considerations that should guide the

choice of the Pareto weights determining the policymaker’s distributional preferences. The second

question is less familiar in optimal monetary policy analysis because much existing work is based

on models with a representative agent. The approach adopted here is to assume the central bank

strives for Pareto efficiency and will always sacrifice distributional concerns to efficiency (that is, it

has a ‘lexicographic preference’ for efficiency). The following result provides some guidance for such

a central bank.

Proposition 3 (i) A state-contingent consumption allocation {c?y,t.c?m,t, c?o,t} is Pareto efficient

from t ≥ t0 onwards if and only if it satisfies the resource constraint [2.16] for all t ≥ t0, the

risk-sharing condition [2.21] for all t ≥ t0, and is such that v?
1
σ
−α

o,t0 c
?−

1
σ

o,t0/v
?

1
σ
−α

m,t0 c
?−

1
σ

m,t0 depends

only on variables known at time t0−1. The complete-markets equilibrium (with markets open

from at least time t0 − 1 onwards) is Pareto efficient from t ≥ t0.

17There are two caveats to this claim specific to overlapping generations models: the question of whether the
utility functions of the ‘individuals’ considered by the social planner should be evaluated as expectations over shocks
realized prior to birth, and the possibility of dynamic inefficiency. As discussed in appendix A.3, while these issues
are potentially important, neither of them is relevant in this paper.
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(ii) If a Pareto-efficient consumption allocation can be implemented through monetary policy from

time t0 onwards then this allocation must be the complete-markets equilibrium (with markets

open from time t0 − 1 onwards).

Proof See appendix A.10. �

The first part confirms that the complete-markets equilibrium is one of the many Pareto-efficient

consumption allocations. More importantly, the second part states that the complete-markets equi-

librium is the only Pareto-efficient allocation that can be implemented in an incomplete-markets

economy by a central bank setting interest rates (rather than by a social planner who can make

direct transfers). The intuition is that the risk-sharing condition [2.21] is necessary for Pareto ef-

ficiency, but this is also the only equation that differs between the equilibrium conditions of the

incomplete- and complete-markets economies. This result is useful because it provides a unique

answer to the question of the choice of Pareto weights for a central bank that always prioritizes

efficiency over distributional concerns. This avoids the need to specify the political preferences of

the central bank when analysing optimal monetary policy in a non-representative-agent economy.

Therefore, in what follows, monetary policy is evaluated using the Pareto weights Ω∗t consistent with

the complete-markets equilibrium.

3.3 Optimal monetary policy

Optimal monetary policy is defined as the constrained maximum of the welfare function [3.3] subject

to the equilibrium conditions [2.14a]–[2.14e] and [2.15] as constraints, and using Pareto weights Ω∗t

consistent with the complete-markets equilibrium. Monetary policy has a single instrument, and

this can be used to generate any state-contingent path for one nominal variable, for example, the

price level (accepting the equilibrium values of other nominal variables). For simplicity, monetary

policy is modelled as directly choosing this nominal variable, while the question of what interest-rate

policy would be needed to implement it is deferred for later analysis.

In characterizing the optimal policy it is helpful to introduce the definition of nominal GDP

Mt ≡ PtYt. Given the definitions of inflation πt and real GDP growth gt, the dynamics of nominal

GDP can be written as Mt = (1 + πt)(1 + gt)Mt−1. Using this equation together with [2.14a]

and [2.15], the following link between the unexpected components of the debt-to-GDP ratio dt and

nominal GDP is obtained:

dt
Et−1dt

=
M−1

t

Et−1M
−1
t

. [3.8]

This equation indicates that stabilizing the ratio of debt liabilities to income is related to stabilizing

the nominal value of income. The intuition is that dt can be written as a ratio of nominal debt

liabilities to nominal income. Since nominal debt liabilities are not state contingent, any unpre-

dictable change in the ratio is driven by unpredictable changes in nominal GDP. This leads to the

main result of the paper.
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Proposition 4 The complete-markets equilibrium can be implemented by monetary policy in the

incomplete-markets economy, closing the debt gap (d̃t = 1) from [3.2]. This equilibrium is obtained

if and only if monetary policy determines a level of nominal GDP M∗
t such that:

M∗
t = d∗t

−1Xt−1, [3.9]

where d∗t is the debt-to-GDP ratio in the complete-markets economy and Xt−1 is any function of

variables known at time t− 1.

Proof See appendix A.11. �

To understand the intuition for this result, consider an economy where shocks to GDP are

permanent or individuals have logarithmic utility functions. In those cases, Proposition 2 shows that

efficient risk sharing requires debt repayments that rise and fall exactly in proportion to income.

Decentralized implementation of this risk sharing entails individuals trading securities with state-

contingent payoffs, or equivalently, writing contracts that spell out a complete schedule of varying

repayments across different states of the world. Incomplete financial markets preclude this, and the

assumption of the model is that individuals are restricted to the type of non-contingent nominal

debt contracts commonly observed. In this environment, efficient risk sharing will break down when

debtors are obliged to make fixed repayments from future incomes that are uncertain.

In an economy that is hit by aggregate shocks, irrespective of what monetary policy is followed,

there will always be uncertainty about future real GDP. However, there is nothing in principle

to prevent monetary policy stabilizing the nominal value of GDP. In the absence of idiosyncratic

shocks, nominal GDP targeting would remove any uncertainty about nominal incomes, ensuring

that even non-contingent nominal debt repayments maintain a stable ratio to income in all states

of the world, and thus achieves efficient risk sharing.

3.4 Discussion

The importance of these arguments for nominal GDP targeting obviously depends on the plausi-

bility of the incomplete-markets assumption in the context of household borrowing and saving. It

seems reasonable to suppose that individuals will not find it easy to borrow by issuing Arrow-Debreu

state-contingent bonds, but might there be other ways of reaching the same goal? Issuance of state-

contingent bonds is equivalent to households agreeing loan contracts with financial intermediaries

that specify a complete menu of state-contingent repayments. But such contracts would be much

more time consuming to write, harder to understand, and more complicated to enforce than conven-

tional non-contingent loan contracts, as well as making monitoring and assessment of default risk a

more elaborate exercise.18 Moreover, unlike firms, households cannot issue securities such as equity

that feature state-contingent payments but do not require a complete description of the schedule of

payments in advance.19

18For examples of theoretical work on endogenizing the incompleteness of markets through limited enforcement of
contracts or asymmetric information, see Kehoe and Levine (1993) and Cole and Kocherlakota (2001).

19Consider an individual owner of a business that generates a stream of risky profits. If the firm’s only external
finance is non-contingent debt then the individual bears all the risk (except in the case of default). If the individual
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Another possibility is that even if individuals are restricted to non-contingent borrowing, they can

hedge their exposure to future income risk by purchasing an asset with returns that are negatively

correlated with GDP. But there are several pitfalls to this. First, it may not be clear which asset

reliably has a negative correlation with GDP (even if ‘GDP securities’ of the type proposed by

Shiller (1993) were available, borrowers would need a short position in these). Second, the required

gross positions for hedging may be very large. Third, an individual already intending to borrow

will need to borrow even more to buy the asset for hedging purposes, and the amount of borrowing

may be limited by an initial down-payment constraint and subsequent margin calls. In practice,

a typical borrower does not have a significant portfolio of assets except for a house, and housing

returns most likely lack the negative correlation with GDP required for hedging the relevant risks.

In spite of these difficulties, it might be argued the case for the incomplete markets assumption

is overstated because the possibilities of renegotiation, default, and bankruptcy introduce some

contingency into apparently non-contingent debt contracts. However, default and bankruptcy allow

for only a crude form on contingency in extreme circumstances, and these options are not without

their costs. Renegotiation is also not costless, and evidence from consumer mortgages in both the

recent U.S. housing bust and the Great Depression suggests that the extent of renegotiation may be

inefficiently low (White, 2009a, Piskorski, Seru and Vig, 2010, Ghent, 2011). Furthermore, even ex-

post efficient renegotiation of a contract with no contingencies written in ex ante need not actually

provide for efficient sharing of risk from an ex-ante perspective.

It is also possible to assess the completeness of markets indirectly through tests of the efficient

risk-sharing condition, which is equivalent to correlation across consumption growth rates of indi-

viduals. These tests are the subject of a large literature (Cochrane, 1991, Nelson, 1994, Attanasio

and Davis, 1996, Hayashi, Altonji and Kotlikoff, 1996), which has generally rejected the hypothesis

of full risk sharing.

Finally, even if financial markets are incomplete, the assumption that contracts are written in

terms of specifically nominal non-contingent payments is important for the analysis. The evidence

presented in Doepke and Schneider (2006) indicates that household balance sheets contain significant

quantities of nominal liabilities and assets (for assets, it is important to account for indirect exposure

via households’ ownership of firms and financial intermediaries). Furthermore, as pointed out by

Shiller (1997), indexation of private debt contracts is extremely rare. This suggests the model’s

assumptions are not unrealistic.

The workings of nominal GDP targeting can also be seen from its implications for inflation and

the real value of nominal liabilities. Indeed, nominal GDP targeting can be equivalently described

as a policy of inducing a perfect negative correlation between the price level and real GDP, and

ensuring these variables have the same volatility. When real GDP falls, inflation increases, which

wanted to share risk with other investors then one possibility would be to replace the non-contingent debt with
state-contingent bonds where the payoffs on these bonds are positively related to the firm’s profits. However, what
is commonly observed is not issuance of state-contingent bonds but equity financing. Issuing equity also allows for
risk sharing, but unlike state-contingent bonds does not need to spell out a schedule of payments in all states of the
world. There is no right to any specific payment in any specific state at any specific time, only the right of being
residual claimant. The lack of specific claims is balanced by control rights over the firm. However, there is no obvious
way to be ‘residual claimant’ on or have ‘control rights’ over a household.
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reduces the real value of fixed nominal liabilities in proportion to the fall in real income, and vice

versa when real GDP rises. Thus the extent to which financial markets with non-contingent nominal

assets are sufficiently complete to allow for efficient risk sharing is endogenous to the monetary policy

regime: monetary policy can make the real value of fixed nominal repayments contingent on the

realization of shocks. A strict policy of inflation targeting would be inefficient because it converts

non-contingent nominal liabilities into non-contingent real liabilities. This points to an inherent

tension between price stability and the efficient operation of financial markets.20

That optimal monetary policy in a non-representative-agent21 model should feature inflation fluc-

tuations is perhaps surprising given the long tradition of regarding inflation-induced unpredictability

in the real values of contractual payments as one of the most important of all inflation’s costs. As

discussed in Clarida, Gaĺı and Gertler (1999), there is a widely held view that the difficulties this

induces in long-term financial planning ought to be regarded as the most significant cost of infla-

tion, above the relative price distortions, menu costs, and deviations from the Friedman rule that

have been stressed in representative-agent models. The view that unanticipated inflation leads to

inefficient or inequitable redistributions between debtors and creditors clearly presupposes a world

of incomplete markets, otherwise inflation would not have these effects. How then to reconcile this

argument with the result that incompleteness of financial markets suggests nominal GDP targeting

is desirable because it supports efficient risk sharing? (again, were markets complete, monetary

policy would be irrelevant to risk sharing because all opportunities would already be exploited)

While nominal GDP targeting does imply unpredictable inflation fluctuations, the resulting real

transfers between debtors and creditors are not an arbitrary redistribution — they are perfectly cor-

related with the relevant fundamental shock: unpredictable movements in aggregate real incomes.

Since future consumption uncertainty is affected by income risk as well as risk from fluctuations in

the real value of nominal contracts, it is not necessarily the case that long-term financial planning

is compromised by inflation fluctuations that have known correlations with the economy’s funda-

mentals. An efficient distribution of risk requires just such fluctuations because the provision of

insurance is impossible without the possibility of ex-post transfers that cannot be predicted ex ante.

Unpredictable movements in inflation orthogonal to the economy’s fundamentals (such as would

occur in the presence of monetary-policy shocks) are inefficient from a risk-sharing perspective, but

there is no contradiction with nominal GDP targeting because such movements would only occur if

policy failed to stabilize nominal GDP.22

It might be objected that if debtors and creditors really wanted such contingent transfers then

they would write them into the contracts they agree, and it would be wrong for the central bank to try

to second-guess their intentions. But the absence of such contingencies from observed contracts may

simply reflect market incompleteness rather than what would be rationally chosen in a frictionless

20In a more general setting where the incompleteness of financial markets is endogenized, inflation fluctuations
induced by nominal GDP targeting may play a role in minimizing the costs of contract renegotiation or default when
the economy is hit by an aggregate shock.

21It is implicitly assumed different generations do not form the infinitely lived dynasties suggested by Barro (1974).
22The model could be applied to study the quantitative welfare costs of the arbitrary redistributions caused by

inflation resulting from monetary-policy shocks. See section 5 for further details.

23



world. Reconciling the non-contingent nature of financial contracts with complete markets is not

impossible, but it would require both substantial differences in risk tolerance across individuals

and a high correlation of risk tolerance with whether an individual is a saver or a borrower. With

assumptions on preferences that make borrowers risk neutral or savers extremely risk averse, it

would not be efficient to share risk, even if no frictions prevented individuals writing contracts that

implement it.

There are a number of problems with this alternative interpretation of the observed prevalence of

non-contingent contracts. First, there is no compelling evidence to suggest that borrowers really are

risk neutral or savers are extremely risk averse relative to borrowers. Second, while there is evidence

suggesting considerable heterogeneity in individuals’ risk tolerance (Barsky, Juster, Kimball and

Shapiro, 1997, Cohen and Einav, 2007), most of this heterogeneity is not explained by observable

characteristics such as age and net worth (even though many characteristics such as these have

some correlation with risk tolerance). The dispersion in risk tolerance among individuals with

similar observed characteristics suggests there should be a wide range of types of financial contract

with different degrees of contingency. Risk neutral borrowers would agree non-contingent contracts

with risk-averse savers, but contingent contracts would be offered to risk-averse borrowers.

Another problem with the complete markets but different risk preferences interpretation relates

to the behaviour of the price level over time. While nominal GDP has never been an explicit target

of monetary policy, nominal GDP targeting’s implication of a countercyclical price level has been

largely true in the U.S. during the post-war period (Cooley and Ohanian, 1991), albeit with a

correlation coefficient much smaller than one in absolute value, and a lower volatility relative to

real GDP. Whether by accident or design, U.S. monetary policy has had to a partial extent the

features of nominal GDP targeting, resulting in the real values of fixed nominal payments positively

co-moving with real GDP (but by less) on average. In a world of complete markets with extreme

differences in risk tolerance between savers and borrowers, efficient contracts would undo the real

contingency of payments brought about by the countercyclicality of the price level, for example,

through indexation clauses. But as discussed in Shiller (1997), private nominal debt contracts have

survived in this environment without any noticeable shift towards indexation. Furthermore, both

the volatility of inflation and correlation of the price level with real GDP have changed significantly

over time (the high volatility 1970s versus the ‘Great Moderation’, and the countercyclicality of

the post-war price level versus its procyclicality during the inter-war period). The basic form of

non-contingent nominal contracts has remained constant in spite of this change.23

Finally, while the policy recommendation of this paper goes against the long tradition of citing

the avoidance of redistribution between debtors and creditors as an argument for price stability,

it is worth noting that there is a similarly ancient tradition in monetary economics (which can be

traced back at least to Bailey, 1837) of arguing that money prices should co-move inversely with

productivity to promote ‘fairness’ between debtors and creditors. The idea is that if money prices

fall when productivity rises, those savers who receive fixed nominal incomes are able to share in

23It could be argued that part of the reluctance to adopt indexation is a desire to avoid eliminating the risk-sharing
offered by nominal contracts when the price level is countercyclical.
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the gains, while the rise in prices at a time of falling productivity helps to ameliorate the burden

of repayment for borrowers. This is equivalent to stabilizing the money value of incomes, in other

words, nominal GDP targeting. The intellectual history of this idea (the ‘productivity norm’) is

thoroughly surveyed in Selgin (1995). Like the older literature, this paper places distributional

questions at the heart of monetary policy analysis, but studies policy through the lens of mitigating

inefficiencies in incomplete financial markets, rather than with looser notions of fairness.

4 Equilibrium in a pure credit economy

In cases where Proposition 2 applies, [3.1] fully characterizes the equilibrium of the economy if the

optimal monetary policy of nominal GDP targeting from Proposition 4 is followed. The equilibrium

with optimal policy under conditions where Proposition 2 is not applicable, or where a non-optimal

monetary policy is followed, cannot generally be found analytically. In what follows, log-linearization

is used to find an approximate solution to the equilibrium in these cases.

4.1 Log-linear approximation of the equilibrium

The log-linearization is performed around the non-stochastic steady state of the model (ς = 0 in [2.4])

as characterized in Proposition 1 (which is valid for sufficiently small values of the standard deviation

ς of real GDP growth). Log deviations of variables from their steady-state values are denoted with

sans serif letters,24 for example, dt ≡ log dt − log d̄, while for variables that do not necessarily have

a steady state,25 the sans serif equivalent denotes simply the logarithm of the variable, for example,

Yt ≡ log Yt. In the following, terms that are second-order or higher in deviations from the steady

state are suppressed.

First consider the set of equations [2.14a]–[2.14e] common to the cases of complete and incomplete

financial markets. The equation for debt dynamics [2.14a], the definition of the real interest rate

[2.14b], the budget identities [2.14c], and the Euler equations [2.14d] for each generation have the

following log-linear expressions:

ρt = Etrt+1, dt = rt − gt + lt−1, cy,t = βγlt, cm,t = −γdt − βγlt, co,t = γdt, [4.1a]

cy,t = Etcm,t+1 − σρt + Etgt+1, and cm,t = Etco,t+1 − σρt + Etgt+1, [4.1b]

observing that the value functions vm,t and vo,t and the coefficient of relative risk aversion α do not

appear in these equations.

Proposition 5 The log linear approximation of the solution of equations [4.1a]–[4.1b] is determined

only up to a martingale difference stochastic process Υt (Et−1Υt = 0) such that Υt = dt − Et−1dt is

the unexpected component of the debt-to-GDP ratio defined in [2.22]. Given Υt, the debt-to-GDP

24For all variables that are either interest rates or growth rates, the log deviation is of the gross rate, for example,
gt ≡ log(1 + gt)− log(1 + ḡ).

25The level of GDP can be either stationary or non-stationary depending on the specification of the stochastic
process for gt.
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ratio is given by

dt = λdt−1 + χ (2ft−1 + Et−1ft) + Υt, with ft ≡ β
(

1− σ
σ

) ∞∑
`=1

ζ`−1Etgt+`. [4.2]

Given a debt ratio dt satisfying [4.2], the other endogenous variables must satisfy:

lt = −β−1φdt − β−1κft, ρt =
1

σ
Etgt+1 +

γ

σ
(ϑdt + χ (φft + Etft+1)) , [4.3a]

cy,t = −γ (φdt + κft) , cm,t = −γ ((1− φ)dt − κft) , co,t = γdt, and [4.3b]

rt = dt + β−1φdt−1 + β−1κft−1 + gt. [4.3c]

All coefficients χ, κ, φ, θ ≡ (γ/σ)ϑ, λ, and ζ are functions only of β and the ratio γ/σ, and all are

increasing in the ratio γ/σ. Formulas for the coefficients are given in appendix A.4. The coefficients

satisfy 0 < χ < 1, 0 < φ < 1, |λ| < 1, |ζ| < 1, and both κ and θ are positive and bounded.

Proof See appendix A.12 �

The variable ft includes all that needs to be known about expectations of future real GDP growth

to determine equilibrium saving and borrowing behaviour given individuals’ desire for consumption

smoothing over time. An increase in ft leads to a reduction in lending lt and a higher real interest rate

ρt. However, whether expectations of future growth have a positive or negative effect on ft depends

on the relative strengths of income and substitution effects. With strong intertemporal substitution

(σ > 1), expectations of future growth increase lending by the middle-aged to the young (the effects

of ft on the consumption of these two groups always have opposite signs because lending involves a

transfer of resources), while the effect is the opposite if intertemporal substitution is weak (σ < 1).

Any unanticipated movements in the debt ratio dt constitute transfers from the middle-aged to

the old. These have the effect of pushing up real interest rates because aggregate desired saving falls

following this transfer, and higher real interest rates reduce borrowing by the young. Consistent

with this, consumption of the old is increasing in dt, while consumption of both the young and

the middle-aged is decreasing in dt (the coefficient φ measures how the effects are spread between

the young and middle-aged in equilibrium). Note that the size of these effects is increasing in

the parameter γ, and as this parameter tends to zero, the economy behaves as if it contained a

representative agent.26

With incomplete markets, the system of equations [4.1a]–[4.1b] is closed (that is, Υt is deter-

mined) by a description of monetary policy and equation [2.15], which has the following log-linear

form:

rt = it−1 − πt. [4.4]

With complete markets, the system [4.1a]–[4.1b] is closed by the risk-sharing equation [2.21]. This

26With γ = 0, equations [4.3a] and [4.3b] imply ρt = (1/σ)Etgt+1 and cy,t = cm,t = co,t = 0. This means that
Cy,t = Cm,t = Co,t = Ct = Yt and the representative-agent consumption Euler equation Yt = EtYt+1 − σρt holds.
Strictly speaking, this limiting case is not a representative-agent model, but because all individuals receive the same
incomes, there is limited scope for trade, so to a first-order approximation, the economy behaves as if it contained a
representative agent.
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can be log-linearized as follows:

1

σ

(
(c∗m,t+1 − c∗y,t)− (c∗o,t+1 − c∗m,t)

)
+

(
α− 1

σ

)(
(v∗m,t+1 − Etv∗m,t+1)− (v∗o,t+1 − Etv∗o,t+1)

)
= 0,

with v∗m,t =
1

1 + β
c∗m,t +

β

1 + β
Et[c

∗
o,t+1 + gt+1], and v∗o,t = c∗o,t, [4.5]

where the second line log linearizes the value functions appearing in [2.14e]. The following result

first characterizes the complete-markets equilibrium, then states the equations for the ‘gaps’ between

variables and their values in the hypothetical complete-markets equilibrium, and finally provides the

link between these ‘gaps’ and the inflation rate.

Proposition 6 The equilibrium with complete financial markets is given by equations [4.2] and

[4.3a]–[4.3c] with Υ∗t = d∗t − Et−1d∗t given by

Υ∗t =

(
2− φ− β

1 + β

(ασ− 1)

ασ
(1− φ+ λ)

)−1{
χ

((
2− φ+

β

1 + β

(ασ− 1)

ασ
φ

)
(ft−Et−1ft)

+
β

1 + β

(ασ− 1)

ασ
(Etft+1 − Et−1ft+1)

)
+

1

γ

β

1 + β

(ασ− 1)

ασ
(Etgt+1 − Et−1gt+1)

}
. [4.6]

The debt gap d̃t ≡ dt − d∗t (from [3.2]) in the incomplete-markets economy must satisfy:

Etd̃t+1 = λd̃t. [4.7a]

The debt gap is a sufficient statistic for describing all deviations of the economy from the hypothetical

complete-markets equilibrium (for example, the real interest rate gap ρ̃t ≡ ρt − ρ∗t ):

l̃t = −β−1φd̃t, ρ̃t = θd̃t, c̃y,t = −γφd̃t, c̃m,t = −γ(1− φ)d̃t, and c̃o,t = γd̃t. [4.7b]

The inflation rate in the incomplete-markets economy satisfies:

πt = it−1 − d̃t − β−1φd̃t−1 − r∗t . [4.7c]

Proof See appendix A.13 �

The proposition shows how the complete-markets debt-to-GDP ratio d∗t (the natural debt-to-

GDP ratio) can be characterized for general utility function parameters and a general stochastic

process for real GDP growth. In the absence of further shocks, the economy will approach d∗t in

the long run (the debt gap will shrink to zero according to equation [4.7a], noting that |λ| < 1).

However, the debt gap is not automatically closed in the short run following shocks without a

monetary policy intervention. The behaviour of the debt-to-GDP ratio following a shock depends

on the behaviour of nominal GDP (see equation [3.8]):

dt − Et−1dt = −(Mt − Et−1Mt). [4.8]

The class of policies that close the debt gap are characterized in Proposition 4. The simplest is a

target for nominal GDP (Mt = Pt + Yt) that moves inversely with the natural debt-to-GDP ratio
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d∗t , that is, M∗t = −d∗t . This policy achieves d̃t = 0, but requires fluctuations in inflation. The

equilibrium inflation rate and nominal interest rate are:

πt = −gt − (d∗t − d∗t−1), and it = ρ∗t − Etgt+1 − (Etd
∗
t+1 − d∗t ). [4.9]

The optimal policy only allows nominal GDP to fluctuate if the natural debt-to-GDP ratio is time

varying. With real GDP following a random walk or logarithmic utility, d∗t = 0, in which case

the target reduces to M∗t = 0 and the required inflation fluctuations simply mirror the fluctuations

in real GDP growth in the opposite direction. In general, it is a quantitative question how much

optimal policy deviates from a completely stable level of nominal GDP.

4.2 Non-logarithmic utility and predictable variation in GDP growth

To study how much optimal policy deviates from a constant nominal GDP target when the utility

function is not logarithmic and real GDP does not follow a random walk, consider the following

stochastic process for real GDP growth:

gt = εt + ξεt−1, with εt ∼ i.i.d.(0, ςε). [4.10]

In this first-order moving-average process, the parameter ξ represents the difference between the

long-run effect of a shock εt on the level of GDP minus its short-run effect (ξ = 0 corresponds to

the case of a random walk where the long-run effect is identical to the short-run effect). If ξ > 0

then the long-run effect on GDP is greater than the effect in the short run, and vice versa for ξ < 0.

Substituting this stochastic process into [4.6] yields an expression for the innovation Υ∗t = d∗t−Et−1d∗t
to the natural debt-to-GDP ratio:

Υ∗t = ($∗−1)(Yt−Et−1Yt), where $∗ = 1+
ξβ
(
χ (1−σ)

σ

(
2− φ+ β

1+β
(ασ−1)
ασ

φ
)

+ 1
γ

1
1+β

(ασ−1)
ασ

)
2− φ− β

1+β
(ασ−1)
ασ

(1− φ+ λ)
.

[4.11]

The coefficient $∗ determines how much the debt-to-GDP ratio should rise or fall following a shock

to the level of GDP: the debt ratio should positively co-move with GDP if$∗ > 1, and negatively co-

move if $∗ < 1. As can be seen from the expression for $∗, determining which case prevails requires

assumptions on the preference parameters and the GDP stochastic process. As an example, consider

the plausible case where intertemporal substitution is relatively low (σ < 1) and risk aversion is at

least what would be implied by a time-separable utility function (α ≥ 1/σ). In this case, following

a negative shock to GDP, the debt-to-GDP ratio should rise if the shock’s effects are smaller in the

long run than the short run, while the ratio should fall if the long-run effects are larger. Intuitively,

if the economy is expected to recover in the future, debt liabilities should fall by less than current

income does, while if GDP is expected to deteriorate further, the real value of debt liabilities should

fall by more than current income.

Proposition 7 If real GDP growth is described by the stochastic process [4.10] then optimal mon-

etary policy can be described as a constant target for weighted nominal GDP Pt +$∗Yt = 0, where
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the weight $∗ on real output is given in equation [4.11].

Proof See appendix A.14. �

In the case where real GDP is described by stochastic process [4.10], Proposition 7 shows that

optimal monetary policy can equivalently be expressed in terms of a target for a stable level of

weighted nominal GDP, where $ is the weight on real GDP relative to the weight on the price level

(standard nominal GDP targeting is $ = 1). The optimal policy implies Pt = −$∗Yt, so $∗ can

also be interpreted as the optimal countercyclicality of the price level. As an example, consider

the plausible case where the elasticity of intertemporal substitution is relative low (σ < 1) and risk

aversion is relatively high (α ≥ 1/σ). It can be seen from [4.11] that when the long-run effect of a

shock to GDP is smaller than its initial effect (ξ < 0) then $∗ < 1, so following a negative shock to

real GDP, the price level should rise by less than if the shock were permanent. Given parameters

α and σ, the size of the deviation of $∗ from 1 depends on the deviation of the parameter ξ from

zero.

Figure 3: Optimal monetary policy when GDP shocks have different short-run and long-run
effects — weight $∗ assigned to real GDP relative to price level
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Notes: Monetary policy is Pt +$∗Yt = 0, where the formula for $∗ is given in [4.11]. The graphs
show the effects of varying one parameter, holding other parameters constant at their baseline values,
given in Table 1 (with the baseline value of ξ set to 0.5).
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The quantitative deviation of the optimal monetary policy from pure nominal GDP targeting

thus depends first on how much the stochastic process for real GDP differs from a random walk.

There is an extensive literature that attempts to determine whether shocks to GDP have largely

permanent or transitory effects, in other words, whether GDP is difference stationary or trend

stationary (see, for example, Campbell and Mankiw, 1987, Durlauf, 1993, Murray and Nelson,

2000). This literature has not reached a consensus, but episodes such as the Great Depression and

the recent ‘Great Recession’ point towards the existence of shocks where the economy has no strong

tendency to return to the trend line that was expected prior to the shock. For the stochastic process

[4.10], real GDP is described by a random walk when ξ = 0, while the level of GDP is stationary

when ξ = −1, and when −1 < ξ < 0, a partial recovery is expected following a negative shock. The

evidence then suggests a relative low value of ξ may be appropriate.

Even when the parameter ξ significantly differs from zero, how far optimal policy is from pure

nominal GDP targeting depends on preference parameters. A range of plausible values for these are

studied, as discussed later in section 5.6. For the coefficient of relative risk aversion, values between

0.25 and 10 are considered, with 5 as the baseline estimate. For the elasticity of intertemporal

substitution, the range is 0.26 to 2, with 0.9 as the baseline. The values of β and γ are chosen

to match the average real interest rate and debt-to-GDP ratio as described in section 5.6. The

implied values of $∗ are shown in Figure 3. Apart from cases where risk aversion or intertemporal

substitution are extremely low, the value of $∗ lies approximately between 0.75 and 1.25, even with

almost complete trend reversion in real GDP. Therefore, the quantitative deviation of optimal policy

from pure nominal GDP targeting due to trend reversion in real GDP appears to be small.

4.3 Implementation of optimal monetary policy

The analysis so far has assumed that the central bank can directly set the nominal price level or the

nominal value of income. The optimal monetary policy results have thus been stated as targeting

rules, rather than instrument rules. The following result shows how the nominal GDP target can be

implemented by a rule for adjusting the nominal interest rate in response to deviations of nominal

GDP from its target value. This is analogous to the Taylor rules that can be used to implement a

policy of inflation targeting.27

Proposition 8 Suppose the nominal interest rate is set according to the following rule:

it = ρ∗t − (Etgt+1 + Etd
∗
t+1 − d∗t ) +ψ(Mt −M∗t ), [4.12]

where M∗t = −d∗t is the target for nominal GDP. If ψ > 0 then Mt = M∗t and d̃t = 0 is the unique

equilibrium in which nominal variables remain bounded. If ψ = 0 then there are multiple equilibria

for the debt gap d̃t, in all of which nominal variables remain bounded.

Proof See appendix A.15. �

27The use of Taylor rules to determine inflation and the price level is studied by Woodford (2003). The determinacy
properties of Taylor rules have been criticized by Cochrane (2011).
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4.4 Consequences of directly targeting financial variables

Finally, given that the optimality of targeting nominal GDP derives from its effect on the ratio of

debt liabilities to income, it might be argued that a more immediate way of implementing optimal

policy would be to target the debt-to-GDP ratio directly. While a targeting rule of dt = d∗t is feasible

(there is one instrument and one target to hit), this policy has the serious drawback that it fails to

provide a nominal anchor.

Proposition 9 Suppose monetary policy is adjusted to meet the target dt = d∗t . The equilibria of

the economy are:

d̃t = 0, πt = et−1 + ρ∗t−1 − r∗t , and it = ρ∗t + et, [4.13]

where et is any arbitrary stochastic process observed at time t.

Proof See appendix A.16. �

While this targeting rule achieves Pareto efficiency (because d̃t = 0), it does not uniquely deter-

mine inflation expectations because it specified solely in terms of a ratio. Nominal GDP targeting

both achieves efficiency and provides a nominal anchor.

4.5 Consequences of inflation targeting

The choice of monetary policy in an economy with incomplete financial markets not only affects the

distribution of risk, but also has implications for the quantity and price of credit. In particular, the

model predicts that if the central bank reduces fluctuations in the price level below those consistent

with an efficient distribution of risk then this increases the procyclicality of credit. The more the

price level is stabilized, the more lending rises and interest rates fall during an expansion. In other

words, more stable prices lead to larger fluctuations in financial variables.

Proposition 10 Suppose monetary policy implements the targeting rule πt = 0 (strict inflation

targeting). The unique equilibrium of the economy is then:

d̃t = λd̃t−1 − (Yt − Et−1Yt)− (d∗t − Et−1d∗t ), [4.14]

with implied nominal interest rate it = ρ∗t + θd̃t. In the case where real GDP is described by the

stochastic process [4.10], a monetary policy target of Pt +$Yt = 0 implies the equilibrium has the

following features:

d̃t = λd̃t−1 − ($∗ −$)(Yt − Et−1Yt), and [4.15]

l̃t = λ̃lt−1 + β−1ϕ($∗ −$)(Yt − Et−1Yt), and ρ̃t = λρ̃t−1 − θ($∗ −$)(Yt − Et−1Yt),

where $∗ is defined in [4.11].

Proof See appendix A.17. �
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The proposition reveals that too much price stability relative to that consistent with an efficient

distribution of risk ($ < $∗) implies the loan-to-GDP ratio rises by more than is efficient following

a positive shock to real GDP, and the equilibrium real interest rate falls more than is efficient (that

is, falls below the natural interest rate). Achieving greater stability in financial markets is seen to

require some sacrifice of price stability in goods markets.

The size of these effects for plausible parameter values is depicted in Figure 4 (the coefficient of

relative risk aversion α is set to 5, the elasticity of intertemporal substitution σ is set to 0.9, and the

parameters β and γ are set to match the average real interest rate and debt-to-GDP ratio — see

Table 1). With strict inflation targeting, lending increases by approximately 1.5% following a 1%

rise in GDP, while for a temporary shock, the efficient outcome is for lending to rise by slightly less

than GDP. The effects on the real interest rate are smaller, but strict inflation targeting leads to fall

by about 0.3–0.4% more than is efficient (in the case of a permanent shock, the efficient outcome is

for the real interest rate to remain unchanged).

Figure 4: Response of financial variations to a positive shock to real GDP under different
assumptions on the completeness of markets and monetary policy

Difference between long-run and short-run effects on GDP (ξ)

Loans-to-GDP ratio (gross), percentage deviation

Representative agent
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Difference between long-run and short-run effects on GDP (ξ)

Real interest rate (expected), percentage deviation
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Notes: Percentage deviations from steady state on impact following an unexpected 1% increase in
the level of real GDP. ‘Representative agent’ is the limiting case of γ → 0. ‘Complete markets’ is
also the outcome when the optimal monetary policy is followed under incomplete markets. ‘Inflation
targeting’ is strict inflation targeting under incomplete markets. The long-run effect of the shock on
GDP is larger than the short-run effect when ξ > 0, and vice versa for ξ < 0.

The intuition for these results can be understood by looking at the effects of a transfer between

savers and borrowers. Given the pattern of earnings over the life-cycle, savers are older than borrow-
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ers. An unexpected change in inflation is thus economically equivalent to a redistribution between

younger and older individuals. Overlapping generations models have been widely used to study the

effects of such intergenerational transfers in the context of public debt and pensions (Samuelson,

1958, Diamond, 1965, Feldstein, 1974). A redistribution from younger to older individuals reduces

desired saving and raises real interest rates (and reduces capital accumulation in a model with an

investment technology). A policy of nominal GDP targeting that implies an unexpected decrease

in inflation when real GDP unexpectedly rises thus generates a transfer from debtors (younger in-

dividuals) to creditors (older individuals). A policy of strict inflation targeting fails to generate this

transfer following the shock to real GDP. Since the effects of the transfer are to reduce desired saving

(and hence in equilibrium the amount of lending) and raise interest rates, strict inflation targeting is

responsible for increasing lending too much in a boom and reducing the real interest rate too much.

These effects are also at work following a pure monetary policy shock, where an unexpected

loosening of policy increases lending and reduces the real interest rate.

Proposition 11 Suppose monetary policy is described by Mt = Mt−1+εt with an exogenous policy

shock εt ∼ i.i.d.(0, ςε). The equilibrium of the economy is then:

d̃t = λd̃t−1 − εt − (d∗t − Et−1d∗t ), and πt = εt − gt, [4.16]

with nominal interest rate it = ρ∗t −Etgt+1 + θd̃t. A positive shock εt reduces the real return rt, the

real interest rate ρt, and increases the loans-to-GDP ratio lt.

Proof See appendix A.18. �

4.6 The maturity of debt

The analysis so far has assumed borrowers have one loan contract over their period of borrowing with

a single monetary repayment at maturity. In this case, all inflation cumulated over the borrowing

period that was not anticipated at the beginning of the contract reduces the real value of debt by

the same percentage amount. In general, with repayments over the term of the loan, or with a

sequence of loan contracts over the borrowing period, the effect of inflation is smaller (except for

the case of a single jump in the price level before the first repayment, unanticipated when the initial

loan contract was agreed).

The duration of a loan contract is defined as the average maturity of the repayments weighted

by their contribution to the present discounted value of the loan. Duration is the elasticity of the

value of the repayments with respect to a parallel shift in the term structure over the term of the

loan. Now consider the case where any inflation that is unanticipated at the beginning of the loan

period is spread evenly over the term of the loan. This inflation has a larger effect on the real value

of repayments made later in the term of the loan. To introduce this into the model where borrowing

takes place over one discrete time period, let µ denote the duration of debt relative to the period of

borrowing (0 < µ ≤ 1), and let i†t+1 denote the overall nominal interest rate between period t and
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t+ 1. Assume this effective nominal rate is given by:

1 + i†t+1 = (1 + it)

(
1 + πt+1

1 + Etπt+1

)1−µ

, [4.17]

which implies an ex-post real return of 1 + r†t+1 = (1 + i†t+1)/(1 + πt+1). The standard case where

the duration of debt is the same as the period of borrowing is obtained by setting µ = 1.

Proposition 12 If the effective nominal interest rate is given by [4.17] then all the results of

Proposition 5 and Proposition 6 continue to hold with equation [4.7c] replaced by:

µπt + (1− µ)Et−1πt = it−1 − d̃t − β−1φd̃t−1 − r∗t , [4.18]

where it = Eti
†
t+1 is the expected nominal rate over the term of the loan. Unexpected changes in the

debt-to-GDP ratio are associated with unexpected changes in weighted nominal GDP Pt +$†Y:

$†(dt − Et−1dt) = −
(
{Pt +$†Yt} − Et−1{Pt +$†Yt}

)
, where $† = µ−1, [4.19]

which replaces equation [4.8]. Pareto efficiency is achieved using a monetary policy target of Pt +

$†Yt = −$†d∗t , and when the stochastic process for real GDP is [4.10], by using the target Pt +

$∗$†Yt = 0.

Proof See appendix A.19. �

The effect of shorter maturity debt (µ < 1) is to increase the amount of inflation required

to achieve the efficient real state-contingency of debt obligations (assuming that inflation occurs

uniformly over the term of borrowing). To implement this, the weight assigned to real GDP in the

weighted nominal GDP target must be scaled by a factor of $† > 1 (in addition to any scaling $∗

needed because of differences between the short-run and long-run effects of shocks).

5 Policy tradeoffs: Incomplete markets versus sticky prices

With fully flexible prices, the inflation fluctuations resulting from the optimal monetary policy of

nominal GDP targeting are without cost, but the conventional argument for inflation targeting is

that such inflation fluctuations lead to a misallocation of resources. This section adds sticky prices

to the model to analyse optimal monetary policy subject to both incomplete financial markets and

nominal rigidities in goods markets. To do this, it is necessary to introduce differentiated goods,

imperfect competition, and a market for labour that can be hired by different firms.

5.1 Differentiated goods

Consumption in individuals’ lifetime utility function [2.1] now denotes consumption of a composite

good made up of a measure-one continuum of differentiated goods. Young, middle-aged, and old

individuals share the same CES (Dixit-Stiglitz) consumption aggregator over these goods. The price
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level Pt is the minimum expenditure required per unit of the composite good:

Pt = min

∫
[0,1]

Pt()Ci,t()d s.t. Ci,t = 1, where Ci,t ≡
(∫

[0,1]

Ci,t()
ε−1
ε d

) ε
ε−1

for i ∈ {y,m, o},

[5.1]

with Ci,t() denoting consumption of good  ∈ [0, 1] per individual of generation i at time t and

Pt() the nominal price of this good. The parameter ε (ε > 1) is the elasticity of substitution

between differentiated goods. The price level and each individuals’ expenditure-minimizing demand

functions for the differentiated goods are given by:

Pt =

(∫
[0,1]

Pt()
1−εd

) 1
1−ε

, and Ci,t() =

(
Pt()

Pt

)−ε
Ci,t for all  ∈ [0, 1] and i ∈ {y,m, o}.

[5.2]

5.2 Firms

There is a measure-one continuum of firms in the economy, each of which has a monopoly on the

production and sale of one of the differentiated goods. Each firm is operated by a team of owner-

managers who each have an equal claim to the profits of the firm, but cannot trade their shares.

Firms simply maximize the profits paid out to their owner-managers.28

Consider the firm that is the monopoly supplier of good . The firm’s output Yt() is subject to

the linear production function

Yt() = AtNt(), [5.3]

where Nt() is the number of hours of labour hired by the firm, and At is the exogenous level

of TFP common to all firms. The firm is a wage taker in the perfectly competitive market for

homogeneous labour, where the real wage in units of composite goods is wt. The real profits of firm

 are Jt() = Pt()Yt()/Pt −wtNt(). Given the production function [5.3], the real marginal cost of

production common to all firms irrespective of their levels of output is kt = wt/At.

Firm  faces a demand function derived from summing up consumption of good  over all gen-

erations (each of which has measure 1/3). Using each individual’s demand function [5.2] for good 

and the definition [2.2] of aggregate demand Ct for the composite good, the total demand function

faced by firm  is Yt() = (Pt()/Pt)
−εCt, and profits as a function of price Pt() are as follows (with

the firm taking as given the general price level Pt, real aggregate demand Ct, and real marginal cost

kt):

Jt() =

{(
Pt()

Pt

)1−ε

− kt
(
Pt()

Pt

)−ε}
Ct. [5.4]

At the beginning of time period t, a group of firms is randomly selected to have access to all

28The participation of a specific team of managers is essential for production, and managers cannot commit to
provide labour input to firms owned by outsiders. In this situation, managers will not be able to sell shares in firms,
so the presence of firms does not affect the range of financial assets that can be bought and sold.
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information available during period t when setting prices. For a firm  among this group, Pt() is

chosen to maximize the expression for profits Jt() in [5.4]. Since the profit function [5.4] is the

same across firms, all firms in this group will chose the same price, denoted by P̂t. The remaining

group of firms must set a price in advance of period-t information being revealed, choosing Pt()

to maximize expected profits Et−1Jt(). All firms in this group will choose the same price P̌t that

satisfies the first-order condition in expectation. The first-order conditions for P̂t and P̌t are:

P̂t
Pt

=

(
ε

ε− 1

)
kt, and Et−1

[(
P̌t
Pt
−
(

ε

ε− 1

)
kt

)(
P̌t
Pt

)−ε
Ct

]
= 0, [5.5]

where the term ε/(ε− 1) represents each firm’s desired (gross) markup of price on marginal cost.29

The proportion of firms setting a price using period t− 1 information relative to those using period

t information is denoted by the parameter κ (0 < κ <∞), and firms are randomly assigned to these

two groups.

5.3 Households

An individual born at time t has lifetime utility function [2.1], with the consumption levels Cy,t, Cm,t,

and Co,t now referring to consumption of the composite good [5.1]. Labour is supplied inelastically,

with the number of hours varying over the life cycle.30 Young, middle-aged, and old individuals

respectively supply Θy, Θm, and Θo hours of homogeneous labour. Individuals also derive income

from their role as owner-managers of firms, and it is assumed that the amount of income from this

source also varies over the life cycle in the same manner as labour income. Specifically, each young,

middle-aged, and old individual belongs respectively to the managerial teams of Θy, Θm, and Θo

firms. The non-financial real incomes of the generations alive at time t are:31

Yy,t = Θywt+ΘyJt, Ym,t = Θmwt+ΘmJt, and Yo,t = Θowt+ΘoJt, with Jt ≡
∫
[0,1]

Jt()d. [5.6]

The coefficients Θy, Θm, and Θo are parameterized in terms of γ and β as in [2.6].

The assumptions on financial markets are the same as those considered in section 2. In the

benchmark case of incomplete markets with a one-period, risk-free, nominal bond, the budget iden-

tities are as given in [2.9]; in the hypothetical case of complete markets, the budget identities are as

in [2.17], in both cases with consumption Ci,t and income Yi,t reinterpreted according to equations

[5.1] and [5.6].

29It is implicitly assumed that firms using the preset price will be willing to satisfy whatever level of demand is
forthcoming. Technically, this requires that P̌t/Pt ≥ kt holds in all states of the world, which will be true for shocks
within some bounds given the presence of a positive steady-state markup.

30The case of endogenous labour supply is taken up in appendix A.6, but it is possible to study the cost of relative
price distortions in a model with an exogenous aggregate labour supply.

31Individuals receive fixed fractions of total profits Jt because all variation in profits between different firms is
owing to the random selection of which firms receive access to full information when setting their prices.
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5.4 Equilibrium

The young, middle-aged, and old have per-person labour supplies Hy,t = Θy, Hm,t = Θm, and

Ho,t = Θo. The aggregate supply of homogeneous labour is therefore Ht = (1/3)Hy,t + (1/3)Hm,t +

(1/3)Ho,t, which is fixed at Ht = 1 given [2.3]. Given aggregate demand Ct, market clearing

(1/3)Cy,t()+(1/3)Cm,t()+(1/3)Co,t() = Yt() for differentiated good  holds because firm  meets

all forthcoming demand. The aggregate goods- and labour-market clearing conditions are:

Ct = Yt, where Yt ≡
∫
[0,1]

Pt()

Pt
Yt()d, and

∫
[0,1]

Nt()d = 1, [5.7]

with Yt now being the real value of output summed over all firms, which must equal Ct given [5.1].

Using the definition of profits Jt() and equations [5.6] and [5.7], it follows that Jt = Yt − wt, and

hence Yy,t = ΘyYt, Ym,t = Θm, and Yo,t = ΘoYt, as in equation [2.3].

Given the aggregate goods-market clearing condition from [5.7], and the individual demand and

production functions in [5.2] and [5.3], satisfaction of the labour-market clearing equation in [5.7] is

equivalent to real GDP given by the aggregate production function:

Yt =
At
Ψt
, with Ψt ≡

(∫
[0,1]

(
Pt()

Pt

)−ε
d

)−1
, [5.8]

where the term Ψt represents the effects of relative-price distortions on aggregate productivity.

Let p̂t ≡ P̂t/Pt denote the relative price of goods sold by the fraction 1/(1 + κ) of firms that

set a price using period t information, and p̌t ≡ P̌t/Pt the relative price for the fraction κ/(1 + κ)

of firms using period t − 1 information. The formula for the price index Pt in [5.2] implies p̂t =

(1− κ(p̌1−εt − 1))
1

1−ε , while equation [5.5] is equivalent to p̂t = (ε/(ε− 1))kt. Using these equations,

the first-order condition [5.5], the aggregate goods-market clearing condition [5.7], the definitions of

real GDP growth gt and inflation πt, and Et−1P̌t = P̌t, it follows that:

1 + πt
1 + Et−1πt

=
p̌−1t

Et−1p̌
−1
t

, and Et−1

[(
p̌t −

(
1− κ

(
p̌1−εt − 1

)) 1
1−ε
)
p̌−εt (1 + gt)

]
= 0. [5.9a]

Using equation [5.8], real GDP growth gt and relative-price distortions Ψt are given by:

1 + gt = (1 + at)
Ψt−1
Ψt

, and Ψt =

(
κp̌−εt +

(
1− κ

(
p̌1−εt − 1

))− ε
1−ε

1 + κ

)−1
, [5.9b]

where at ≡ (At − At−1)/At−1 is TFP growth. The equilibrium of the model with incomplete mar-

kets (given exogenous TFP At) is then the solution of equations [2.15]–[2.14e] and [5.9a]–[5.9b],

augmented with a monetary policy equation.

Consider first the hypothetical case where all prices are flexible and set using full information

(κ = 0), with the resulting equilibrium values being denoted with a ·̂. In this case, [5.9b] implies

Ψ̂t = 1, so equilibrium real GDP growth with flexible prices is ĝt = (At−At−1)/At−1, which is simply

equal to growth in exogenous TFP. This corresponds to the Pareto-efficient level of aggregate output

Ŷt = At.

Returning to the analysis for a general value of κ, in a non-stochastic steady state, the unique
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solution of equations [5.9a] and [5.9b] is ¯̌p = 1 and Ψ̄ = 1. Assuming the steady-state growth rate

of At is zero, the steady state of the model is then as described in Proposition 1. Log-linearizing

equations [5.9a]–[5.9b] around the unique steady state yields:

gt = At − At−1, Ψt = 0, and πt − Et−1πt = −p̌t. [5.10]

This means that real GDP growth is equal to the exogenous growth rate of TFP up to a first-order

approximation.

5.5 Optimal monetary policy

Optimal monetary policy maximizes social welfare [3.3] using the Pareto weights derived from the

equilibrium with complete financial markets and flexible prices:

Wt0 = Et0−2

[
1

3

∞∑
t=t0−2

βt−t0Ω̂∗tUt

]
, [5.11]

where Ω̂∗t is constructed using Ŷt as real GDP and ĝt as real GDP growth.32 With both incomplete

financial markets and sticky goods prices, monetary policy has competing objectives to meet with

the nominal interest rate as the single policy instrument.

Proposition 13 The welfare function Wt0 in [5.11] can be written as Wt0 = −Et0−2Lt0 + terms

independent of monetary policy + third- and higher-order terms, where Lt0 is the quadratic loss

function:

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
ℵd̃2t + εκ(πt − Et−1πt)2

]
, where [5.12a]

ℵ =
γ2

3

(
2

σ

(
1− φ+ φ2

)
+

(
α− 1

σ

)
(1− βλ2)

(
1 +

(1− φ− βλ)2

1 + β

))
. [5.12b]

The coefficient ℵ on the squared debt-to-GDP gap d̃t = dt − d∗t is strictly positive.

Proof See appendix A.20 �

The quadratic loss function [5.12a] shows that just two variables capture all that needs to be

known about the economy’s deviation from Pareto efficiency. First, the loss from imperfect risk-

sharing in incomplete financial markets is proportional to the square of the gap d̃t = dt−d∗t between

the debt-to-GDP ratio and its value with complete markets. Second, the loss from misallocation of

resources owing to sticky prices is proportional to the square of the inflation surprise πt − Et−1πt.
Optimal monetary policy minimizes the quadratic loss function using the nominal interest rate

it as the instrument, and subject to first-order approximations of the constraints involving the

endogenous variables, the debt-to-GDP gap d̃t, and inflation πt. The debt-to-GDP gap must satisfy

32As discussed in section 3.2, the complete-markets weights are the only ones for which monetary policy can achieve
efficient risk-sharing. The use of flexible-price output ensures the weights are independent of monetary policy, unlike
in general those derived using actual GDP.
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equation [4.7a], while in the general case where debt has average maturity µ, inflation must satisfy

equation [4.18]. The two constraints are:

λd̃t = Etd̃t+1, and µπt + (1− µ)Et−1πt = it−1 − d̃t − β−1φd̃t−1 − r∗t , [5.13]

where r∗t an exogenous variable determined using [4.3c] with the real GDP growth rate from [5.10].

Proposition 14 The first-order condition for minimizing the loss function [5.12a] subject to the

constraints in [5.13] is

d̃t − Et−1d̃t =
εκ(1− βλ2)

µℵ (πt − Et−1πt). [5.14]

The first-order condition is satisfied if monetary policy achieves the following target:

Pt + $̂$†Yt = −$̂$†d∗t , with $̂ =

(
1 +

εκ(1− βλ2)
µ2ℵ

)−1
, [5.15]

and with $† is as defined in [4.19], or if the stochastic process for productivity growth is given by

[4.10], the target is Pt + $̂$†$∗Yt = 0, with $∗ is as defined in [4.11].

Proof See appendix A.21. �

The optimal monetary policy can be expressed as target for weighted nominal GDP (the weight

on real GDP is scaled by $∗ and $† even with fully flexible prices). Compared to the case of

flexible prices, the weight on real GDP relative to the price level must be scaled down by $̂ < 1.

This pushes monetary policy in the direction of strict inflation targeting, which corresponds to the

case where $̂ = 0. The optimal monetary policy is essentially a comprise between the nominal

GDP target that would achieve efficient risk sharing, and the strict inflation target that would avoid

relative-price distortions.

The value of $̂ is larger when risk aversion α is higher or when the life-cycle income gradient

γ is higher (both of which increase the term ℵ in [5.15]). Intuitively, these parameters increase the

importance of risk sharing. The value of $̂ is lower when the price elasticity ε is larger, or κ is

higher so prices are stickiness. These parameters increase the importance of avoiding relative-price

distortions. A quantitative assessment of whether optimal monetary policy is closer to nominal

GDP targeting or strict inflation targeting requires calibrating these parameters.

5.6 Calibration

Let T denote the length in years of one discrete time period. In the model, the length of an

individual’s lifetime is 3T , while shocks to GDP occur every T years. In choosing T there is a

trade-off between a realistic representation of the length of an individual’s lifetime (suggesting T

between 15 and 20, excluding childhood) and allowing for the relevant shocks to occur at a realistic

frequency. Given that the model is more likely relevant for permanent shocks to GDP rather than

for transient business-cycle episodes, T is set to 10 years, which still allows for a realistic horizon

over which individuals borrow and save (the term of borrowing and saving is for T years). Values
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of T between 5 and 15 years are considered in the sensitivity analysis. The parameters of the model

α, σ, β, γ, µ, ε, and κ are then set to match features of U.S. data. The calibration is summarized

in Table 1 and justified below.

Table 1: Calibration of parameters

Parameter Value Target

Directly calibrated
Relative risk aversion (α) 5 Values well within range of estimates obtained in
Intertemporal substitution (σ) 0.9 the literature — see discussion in text
Price elasticity of demand (ε) 3 ′′

Borrowing/saving period (T ) 10

Indirectly calibrated
Discount factor (β) 0.59 Real interest rate of 7%; real GDP growth of 1.7%*

Life-cycle income gradient (γ) 0.66 Household gross debt-to-income ratio of 130%*

Debt maturity (µ) 0.5 Average duration (Tf) of debt of 5 years†

Price stickiness (κ) 0.0044 Median duration (Tp) of a price spell of 8 months§

* Source: Author’s calculations using series from Federal Reserve Economic Data (http://research.
stlouisfed.org/fred2)
† Source: Doepke and Schneider (2006)
§ Source: Nakamura and Steinsson (2008)

The parameter β is related to the steady-state real interest rate and real GDP growth rate

(see Proposition 1). Let R and G denote the annual rates of interest and GDP growth, so that

1 + ρ̄ = eRT and 1 + ḡ = eGT . Equation [2.24] implies that β = e−(R−G)T . Given the focus on

household debt, it is natural to consider interest rates on the types of loans offered to households

in choosing R.

From 1972 through to 2011, there was an average annual nominal interest rate of 8.8% on 30-

year mortgages, 10% on 4-year auto loans, and 13.7% on two-year personal loans, while the average

annual change in the personal consumption expenditure (PCE) price index over the same time period

was 3.8%. The average credit-card interest rate between 1995 and 2011 was 14%. For comparison,

30-year Treasury bonds had an average yield of 7.7% over the periods 1977–2001 and 2006–2011.

The implied real interest rates are 4.2% on Treasury bonds, 5% on mortgages, 6.2% on auto loans,

9.9% on personal loans, and 12% on credit cards.33 Given this wide range of interest rates, the

sensitivity analysis considers values of R from 4% up to 10%. The baseline real interest rate is set

to 7% as the midpoint of this range.34

Over the period 1972–2011 used to calibrate the interest rate, the average annual growth rate

of real GDP per capita was 1.7%. Together with the baseline real interest rate of 7%, this implies

33Average PCE inflation over the periods 1977–2001 and 2006–2011 was 3.5%, and 2% over the period 1995–2011.
The real interest rate on government bonds is close to the conventional calibration of a 4% annual real interest rate
used in many real business cycle models.

34This would imply a spread of 2.8% between the interest rates on loans to households and Treasury bonds. Cúrdia
and Woodford (2009) consider a spread of 2% between borrowing and saving rates.
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that β ≈ 0.59 using β = e−(R−G)T .

In the model, the parameter γ sets the gradient of the age-profile of income (see Figure 1),

but also determines the steady-state debt-to-GDP ratio (see Proposition 1). Given the focus on

debt rather than on the specific reasons for household borrowing, γ is chosen to match observed

levels of household debt. Let D denote the measured ratio of gross household debt to annual

household income. This corresponds to what is defined as the loans-to-GDP ratio in the model (the

empirical debt ratio being based on the amount borrowed rather than the subsequent value of loans

at maturity), with an adjustment made for the fact that the level of GDP in the model is total

income over T years.

According to equation [2.24], the steady-state loans-to-GDP ratio is l̄ = βγ/3, and thus D =

βγT/3, from which it follows that γ = 3D/βT . Note that in the model, all GDP is consumed, so

for consistency between the data and the model’s prediction for the debt-to-GDP ratio, either the

numerator of the ratio should be total gross debt (not only household debt), or the denominator

should be disposable personal income or private consumption. Since the model is designed to

represent household borrowing, and because the implications of corporate and government debt

may be different, the latter approach is taken.

In the U.S., like a number of other countries, the ratio of household debt to income has grown

significantly in recent decades. To focus on the implications of levels of debt recently experienced,

the model is calibrated to match average debt ratios during the five years from 2006 to 2010. The

sensitivity analysis considers the full range of possible debt ratios from 0% to the model’s theoretical

maximum (approximately 196%, corresponding to γ = 1 with β ≈ 0.59). Over 2006–2010, the

average ratio of gross household debt to disposable personal income was approximately 124%, while

the ratio of debt to consumption was approximately 135%. Taking the average of these numbers,

the target chosen is a model-consistent debt-to-income ratio of 130%, which implies γ ≈ 0.66.35

There is an extensive literature estimating the elasticity of intertemporal substitution σ. Taking

the balance of evidence as pointing towards an elasticity less than one, but not substantially so,

the baseline value of σ is set to 0.9.36 The sensitivity analysis explores a range of values between

0.26 (the lower bound σ(γ,β) consistent with the model having a unique steady state according to

Proposition 1 with γ ≈ 0.66 and β ≈ 0.59) and 2.37

35This calibration implies the log difference between the peak and initial income levels over the life-cycle is ap-
proximately 1.2 (see equation [2.6]). Empirical age-earnings profiles are less steep than this, see for example Murphy
and Welch (1990), where the peak-initial log difference of income is approximately 0.8. In the model, that would
be consistent with γ ≈ 0.42 and a debt-to-GDP ratio of approximately 83%, which is considered in the sensitivity
analysis. The model does not however capture all the reasons for household borrowing so it is to be expected that
observed debt levels are higher than can be explained by the age-profile of income.

36Since ḡ ≈ 0.19 with G equal to 1.7%, and given that β = δ(1 + ḡ)1−
1
σ in steady state, the baseline value of σ

implies δ ≈ 0.6.
37There is limited consensus among the various studies in the literature. Early estimates suggested large elasticities,

such as those from the instrumental variables method applied by Hansen and Singleton (1982). That work suggested
an elasticity somewhere between 1 and 2 (this early literature has one parameter to capture both intertemporal
substitution and risk aversion). Those high estimates have been criticized for bias due to time aggregation by Hall
(1988), who finds elasticities as low as 0.1 and often insignificantly different from zero. Using cohort data, Attanasio
and Weber (1993) obtain values for the elasticity of intertemporal substitution in the range 0.7–0.8, while Beaudry
and van Wincoop (1996) find an elasticity close to one using a panel of data from U.S. states. A recent study
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In estimating the coefficient of relative risk aversion α, one possibility would be to choose values

consistent with household portfolios of risky and safe assets. But since Mehra and Prescott (1985)

it has been known that matching the equity risk premium may require a risk aversion coefficient

above 30, while values in excess of 10 are considered by many to be highly implausible. Subsequent

analysis of the ‘equity risk premium puzzle’ has attempted to build models consistent with the large

risk premium but with much more modest degrees of risk aversion.38

Alternative approaches to estimating risk aversion have made use of laboratory experiments,

observed behaviour on game shows, and in a recent study, the choice of deductible for car insurance

policies (Cohen and Einav, 2007).39 The survey evidence presented by Barsky, Juster, Kimball

and Shapiro (1997) potentially provides a way to measure risk aversion over stakes that are large

as a fraction of lifetime income and wealth.40 The results suggests considerable risk aversion, but

most likely not in the high double-digit range for the majority of individuals. Overall, the weight

of evidence from the studies suggests a coefficient of relative risk aversion above one, but not

significantly more than 10. A conservative baseline value of 5 is adopted, and the sensitivity analysis

considers values from as low as 0.25 up to 10.

In the model, the parameter µ represents the elasticity of the real value of debt liabilities with

respect to the total amount of inflation occurring over loan period that was not initially anticipated.

This follows from equation [4.17], which implies an ex-post real return of r†t+1 = ρt−µ(πt+1−Etπt+1).

To calibrate µ, the strategy is to use data on the duration of household debt liabilities. The duration

Tf of a sequence of loan repayments is defined as the average maturity of those payments weighted

by their contribution to the present discounted value of all repayments.

Doepke and Schneider (2006) present evidence on the duration of household nominal debt liabil-

ities. For the most recent year in their data (2004), the duration lies between 5 and 6 years, while

the duration has not been less than 4 years over the entire period covered by the study (1952–2004).

This suggests a baseline duration of Tf ≈ 5 years. The sensitivity analysis considers the effects of

having durations as short as one quarter, and longer durations up to the theoretical maximum of

10 years (given T = 10).

by Gruber (2006) makes use of variation in capital income tax rates across individuals and obtains an elasticity of
approximately 2. Following Weil (1989), it has also been argued that low values of the intertemporal elasticity lead
to a ‘risk-free rate puzzle’, and many papers in the finance literature assume elasticities larger than one (for example,
Bansal and Yaron, 2004, use 1.5). Finally, contrary to these larger estimates, the survey evidence of Barsky, Juster,
Kimball and Shapiro (1997) produces an estimate of 0.18.

38For example, Bansal and Yaron (2004) assume a risk aversion coefficient of 10, while Barro (2006) chooses a more
conservative value of 4.

39Converting the estimates of absolute risk aversion into coefficients of relative risk aversion (using average annual
after-tax income as a proxy for the relevant level of wealth) leads to a mean of 82 and a median of 0.4. The stakes
are relatively small and many individuals are not far from being risk neutral, though a minority are extremely risk
averse. As discussed in Cohen and Einav (2007), the estimated level of mean risk aversion is above that found in
other studies, which are generally consistent with single-digit coefficients of relative risk aversion.

40Respondents to the U.S. Health and Retirement Study survey are asked a series of questions about whether they
would be willing to leave a job bringing in a secure income for another job with a chance of either a 50% increase
in income or a 50% fall. By asking a series of questions that vary the probabilities of these outcomes, the answers
can in principle be used to elicit risk preferences. One finding is that approximately 65% of individuals’ answers fall
in a category for which the theoretically consistent coefficient of relative risk aversion is at least 3.8. The arithmetic
mean coefficient is approximately 12, while the harmonic mean is 4.
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The definition of duration (in years) implies that it is equal to the percentage change in the

real value of a sequence of repayments following a parallel upward shift by 1% (at an annual rate)

of the nominal term structure. To relate this to the model, suppose that any inflation occurring

between period t and t+ 1 is uniformly spread over that time period. Inflation πt+1−Etπt+1 that is

unexpected when contracts covering the period were written would therefore shift up the nominal

term structure by (πt+1−Etπt+1)/T (at an annual rate) once the shock triggering it becomes known.

Given that µ is the elasticity of the real value of debt liabilities with respect to total unexpected

inflation over T years, this suggests setting µ = Tf/T , and hence µ ≈ 0.5.

In the model, the extent of nominal rigidity is captured by the parameter κ. As was seen in

section 5.5, the only role of this parameter in determining optimal monetary policy is as part of

the coefficient of the squared unexpected inflation term in the loss function [5.12a]. The form of

nominal rigidity in the model is that some fraction of prices are predetermined before shocks to

GDP are realized. However, it is desirable to evaluate the welfare costs of inflation using the more

conventional Calvo (1983) pricing model with staggered price adjustment taking place at a higher

frequency.

Woodford (2003) demonstrates that Calvo pricing implies that the welfare costs of inflation

appear in the utility-based loss function as squared inflation terms (additively separable from other

terms, as in [5.12a]). Supposing that individual price adjustment occurs at a constant rate within

each discrete time period, and with inflation uniformly spread over each period (to be consistent

with the analysis of inflation’s effects on the real value of debt liabilities), appendix A.5 shows that

the formula for the welfare costs of inflation with Calvo pricing are bounded by:

Lπ,t0 ≤
ε

2

(
Tp
T

)2 ∞∑
t=t0

βt−t0Et0π
2
t , [5.16]

where Tp is the expected duration of a price spell (in years). The term Lπ,t denotes the welfare

costs of inflation as a fraction of the initial T years’ steady-state real GDP, which is in same units

as the loss function [5.12a] given the normalization of the Pareto weights adopted in section 3.2,

hence Lt0 and Lπ,t0 are comparable.

The calibration strategy for the parameter κ is to set it so that the coefficient of the inflation

term in the loss function is the same as would be found in the Calvo model for parameters consistent

with the measured average duration of a price spell.41 Comparison of [5.12a] and [5.16] suggests

setting κ = (Tp/T )2 to capture the welfare costs of inflation.42 There is now an extensive literature

41This strategy is much simpler than the alternative of actually building Calvo price adjustment into the model,
which would entail working with a quarterly or monthly time period to capture high-frequency price adjustment. The
debt contracts in this alternative model would span many discrete time periods, vastly increasing the dimensionality
of the model’s state space. The simplification adopted does ignore the possibility of interactions between staggered
price adjustment and nominal debt contracts, though arguably there is no obvious reason to suggest such interactions
might be quantitatively important.

42The only difference between the utility-based loss functions of the two forms of nominal rigidity is that the
predetermining pricing assumption implies the term in inflation is unanticipated inflation squared, rather than all
inflation squared. In the model, anticipated inflation Et−1πt is inflation that is anticipated before financial contracts
over the period between t − 1 and t are written. Such inflation has no bearing on the real value of debt liabilities
arising from these contracts. As can be seen from equation [5.14], optimal monetary policy is therefore completely
characterized by the behaviour of unanticipated inflation πt − Et−1πt, and so can be implemented by a target that
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measuring the frequency of price adjustment across a representative sample of goods. Using the

dataset underlying the U.S. CPI index, Nakamura and Steinsson (2008) find the median duration of

a price spell is 7–9 months, excluding sales but including product substitutions. Klenow and Malin

(2010) survey a wide range of studies reporting median durations in a range from 3–4 months to

one year. The baseline duration is taken to be 8 months (Tp ≈ 2/3), implying κ ≈ 0.0044. The

sensitivity analysis considers average durations from 3 to 12 months.

There are two main strategies for calibrating the price elasticity of demand ε. The direct ap-

proach draws on studies estimating consumer responses to price differences within narrow consump-

tion categories. A price elasticity of approximately three is typical of estimates at the retail level

(see, for example, Nevo, 2001), while estimates of consumer substitution across broad consump-

tion categories suggest much lower price elasticities, typically lower than one (Blundell, Pashardes

and Weber, 1993). Indirect approaches estimate the price elasticity based on the implied markup

1/(ε−1), or as part of the estimation of a DSGE model. Rotemberg and Woodford (1997) estimate

an elasticity of approximately 7.9 and point out this is consistent with the markups in the range

of 10%–20%. Since it is the price elasticity of demand that directly matters for the welfare conse-

quences of inflation rather than its implications for markups as such, the direct approach is preferred

here and the baseline value of ε is set to 3. A range of values from the theoretical minimum elasticity

of 1 up to 36 is considered in the sensitivity analysis, with the extremely large range chosen to allow

for possible real rigidities that raise the welfare cost of inflation in exactly the same way as a higher

price elasticity.43

The mapping between calibration targets and parameters is summarized below:

β = e−(R−G)T , γ =
3D
βT

, µ =
Tf
T
, and κ =

(
Tp
T

)2

. [5.17]

5.7 Results

The consequences of sticky prices for optimal monetary policy can be seen from the $̂ coefficient

in equation [5.15], which represents the weight on the monetary policy optimal with fully flexible

prices relative to the weight on strict inflation targeting (as would be optimal were financial markets

complete). The value of $̂ under the baseline calibration is 0.95, indicating that the quantitatively

dominant concern is to allow inflation fluctuations to help complete financial markets, rather than

avoid these to minimize relative-price distortions.

The extent to which this conclusion is sensitive to the calibration targets and the resulting

parameter values can be seen in Figure 5. The panels plot the value of $̂ as each target is varied

is consistent with zero expected inflation at the beginning of the time period.
43The model does not include real rigidities, but these would increase the welfare cost of inflation. For example, if

marginal cost is increasing in firm-level output then the ε multipying squared inflation in the loss function needs to
be replaced by ε× (1 +ε× elasticity of marginal cost w.r.t. firm-level output). Assuming a Cobb-Douglas production
function with a conventional labour elasticity of 2/3, the elasticity of marginal cost with respect to output is 1/2.
Taking the value of ε = 7.8 from Rotemberg and Woodford (1997), the term ε in the loss function should be set to
36 rather than 7.8 to capture this effect. The sensitivity analysis allows for this by considering a wider range of ε
values to mimic the effects of real rigidities of this size. Assuming large real rigidities is controversial: Bils, Klenow
and Malin (2012) present some critical evidence.
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Figure 5: Optimal monetary policy with sticky prices — weight ($̂) assigned to flexible-price
optimal monetary policy target relative to strict inflation targeting

Risk aversion (α) Intertemporal substitution (σ)

Annual interest rate, % Debt-to-GDP ratio, %

Borrowing/saving period, years (T ) Duration of debt, years (Tf)

Price elasticity of demand (ε) Duration of price spell, years (Tp)
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Notes: The formula for the weight $̂ is given in equation [5.15]. Strict inflation targeting corresponds
to $̂ = 0, while the optimal monetary policy with flexible prices corresponds to $̂ = 1. Each panel
varies one parameter or calibration target holding constant all others at the baseline values given in
Table 1.

over the plausible ranges identified earlier. It can be seen immediately that the calibration targets

for σ, the real interest rate (and hence β), T , and Tp make little difference to the results. The results

are most sensitive to the steady-state debt-to-GDP ratio, the coefficient of relative risk aversion, the

duration of debt contracts, and the price elasticity of demand. However, within a very wide range of

plausible values of these calibration targets, the weight on nominal GDP targeting is never reduced

significantly below 0.5.
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6 Conclusions

This paper has shown how a monetary policy of nominal GDP targeting facilitates efficient risk

sharing in incomplete financial markets where contracts are denominated in terms of money. In an

environment where risk derives from uncertainty about future real GDP, strict inflation targeting

would lead to a very uneven distribution of risk, with leveraged borrowers’ consumption highly

exposed to any unexpected change in their incomes when monetary policy prevents any adjustment

of the real value of their liabilities. This concentration of risk implies that volumes of credit, long-

term real interest rates, and asset prices would be excessively volatile. Strict inflation targeting does

provide savers with a risk-free real return, but fundamentally, the economy lacks any technology that

delivers risk-free real returns, so the safety of savers’ portfolios is simply the flip-side of borrowers’

leverage and high levels of risk. Absent any changes in the physical investment technology available

to the economy, aggregate risk cannot be annihilated, only redistributed.

That leaves the question of whether the distribution of risk is efficient. The combination of

incomplete markets and strict inflation targeting implies a particularly inefficient distribution of

risk when individuals are risk averse. If complete financial markets were available, borrowers would

issue state-contingent debt where the contractual repayment is lower in a recession and higher in

a boom. These securities would resemble equity shares in GDP, and they would have the effect

of reducing the leverage of borrowers and hence distributing risk more evenly. In the absence of

such financial markets, in particular because of the inability of households to sell such securities,

a monetary policy of nominal GDP targeting can effectively complete the market even when only

non-contingent nominal debt is available. Nominal GDP targeting operates by stabilizing the debt-

to-GDP ratio. With financial contracts specifying liabilities fixed in terms of money, a policy that

stabilizes the monetary value of real incomes ensures that borrowers are not forced to bear too much

of the aggregate risk, converting nominal debt into real equity.

While the model is far too simple to apply to the recent financial crises and deep recessions

experienced by a number of economies, one policy implication does resonate with the predicament of

several economies faced with high levels of debt combined with stagnant or falling GDPs. Nominal

GDP targeting is equivalent to a countercyclical price level, so the model suggests that higher

inflation can be optimal in recessions. In other words, while each of the ‘stagnation’ and ‘inflation’

that make up the word ‘stagflation’ is bad in itself, if stagnation cannot immediately be remedied,

some inflation might be a good idea to compensate for the inefficiency of incomplete financial

markets. And even if policymakers were reluctant to abandon inflation targeting, the model does

suggest that they have the strongest incentives to avoid deflation during recessions (a procyclical

price level). Deflation would raise the real value of debt, which combined with falling real incomes

would be the very opposite of the risk sharing stressed in this paper, and even worse than an

unchanging inflation rate.

It is important to stress that the policy implications of the model in recessions are matched by

equal and opposite prescriptions during an expansion. Thus, it is not just that optimal monetary

policy tolerates higher inflation in a recession — it also requires lower inflation or even deflation
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during a period of high growth. Pursuing higher inflation in recessions without following a symmetric

policy during an expansion is both inefficient and jeopardizes an environment of low inflation on

average. Therefore the model also argues that more should be done by central banks to ‘take away

the punch bowl’ during a boom even were inflation to be stable.
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A Appendices

A.1 Uniqueness of the equilibrium

As shown by Proposition 1, there are two possible reasons why the steady state may fail to be unique. The
first is that the elasticity of intertemporal substitution might be too low. The second is that individuals
may not be sufficiently impatient relative to the economy’s average rate of growth (taking into account
individuals’ willingness to substitute over time). The first possibility is because the model does not feature
a representative agent, while the second is due to the overlapping generations structure of the model.

It is well known that a problem of non-uniqueness of equilibria can arise in non-representative-agent
general equilibrium models where substitution effects are too weak relative to income effects (irrespective
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of whether there are overlapping generations of finitely lived individuals, or multiple infinitely lived indi-
viduals). In the model, the only substitution effect is intertemporal substitution in response to changes in
the real interest rate. All individuals have an incentive to save less when the real interest rate falls. The
strength of this substitution effect is determined by the parameter σ.

Income effects of interest-rate changes affect borrowers and savers differently. Lower interest rates make
borrowers better off, causing them to consume more now, which entails saving less. This income effect goes
in the same direction as the substitution effect. On the other hand, savers are worse off with lower interest
rates, which induces them to consume less, and hence save even more now, going against the substitution
effect. If the substitution effect is too weak then savers may increase saving following a fall in the interest
rate. Since borrowers borrow more when interest rates fall, this opens up the possibility that the bond
market might clear at multiple interest rates. Therefore the elasticity of substitution σ must be above a
threshold to ensure this does not happen. This threshold σ(γ,β) is increasing in γ because the size of
income effects from interest-rate changes depend on the amounts borrowed and saved, which are increasing
in the value of γ. The reason is that higher values of γ mean steeper age-profiles of income, and thus a
greater need for borrowing and saving to smooth consumption.

The second potential non-uniqueness problem is related to the issue of dynamic inefficiency in overlap-
ping generations models. If the real interest rate is below the economy’s growth rate then ‘bubble’ assets
might emerge that offer no return other than capital gains. If these assets can be sold at a positive price
then this changes the consumption possibilities of individuals. However, if the real interest rate is above the
economy’s growth rate then the price of these assets would grow faster than the economy, so eventually it
would be impossible for them to sold on to the next generation of individuals, causing the bubble to burst.
Anticipating this, the bubble would not form to begin with. In the model, the growth rate of real GDP is
given, while the equilibrium real interest rate is increasing in individuals’ impatience (given by the discount
factor δ) and the GDP growth rate ḡ (the size of the second effect depends on the elasticity of intertemporal
substitution σ). The equilibrium real interest rate is below the growth rate when the parameter restriction
0 < β < 1 from [2.5] is satisfied.

Conditional on having a unique steady state, the economy has a unique equilibrium if the difference
equations of the model have the saddlepath stability property. Saddlepath stability can be determined by
studying the perfect-foresight paths of the model, which Proposition 1 shows must satisfy the equations in
[A.8.1]. These equations have been reduced to two variables: the debt-to-GDP ratio dt and the real interest
rate ρt. Proposition 1 demonstrates that when there is a unique steady state, the difference equations
[A.8.1] have the saddlepath stability property in the neighbourhood of the steady state. Locally, there is
an upward-sloping stable saddlepath and a steeper or downward-sloping unstable saddlepath approaching
the steady state as depicted in Figure 6. To guarantee a unique equilibrium, saddlepath stability should be
a global property of the system of equations. This is extremely difficult to verify analytically. Numerical
analysis is used in appendix A.2 to confirm the model has this property for parameters where the steady
state is unique. It is assumed throughout the parameters are such that global saddlepath stability holds.

The saddlepath stability property ensures a unique equilibrium because the debt-to-GDP ratio dt is
a state variable, while the real interest rate ρt is not predetermined. As discussed in section 2.3, with
incomplete markets the choice of monetary policy determines the variable Υt from [2.22]. Conditional on
Υt being known, dt behaves as a state variable. Then starting from a particular value of dt0 at time t0, the
real interest rate ρt0 adjusts to allow the economy to jump to the stable saddlepath.

This analysis is based on the idea that perfect foresight paths not on the stable saddlepath cannot be
equilibria. The argument is not the usual one that explosive paths would violate a transversality condition.
With finitely lived individuals, there are no transversality conditions among the equilibrium conditions.
Technically, any perfect-foresight path that can be continued indefinitely could be an equilibrium even if
it diverges from or cycles around the steady state.44 What the numerical analysis in appendix A.2 shows
is that perfect-foresight paths not on the stable saddlepath lead into a region of (dt, ρt) space for which it

44All equilibrium conditions would be satisfied by construction of the perfect-foresight path. Assuming that the
initial debt level dt0 does not give creditors a claim to more than the maximum debtors could feasibly pay, all non-
negativity constraints will remain satisfied on the path because it is always feasible for individuals to choose strictly
positive consumption at all times and because marginal utility tends to infinity as consumption tends to zero.
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Figure 6: Perfect foresight paths and saddlepaths

Real interest rate (ρt)

Debt/GDP (dt)
d̄

ρ̄

is impossible to find any economically meaningful solution to the equations in [A.8.1] to continue the path
further. As the inability to continue the path can be foreseen, the corresponding starting point cannot be
an equilibrium at time t0. For this reason, all equilibria must lie on the stable saddlepath.

A.2 Computing perfect-foresight paths of the non-linear equations

It is shown in Lemma 1 that any perfect foresight path of the equations [2.14a], [2.14c], and [2.23] must
satisfy the difference equations:

℘σt

(
1− βγ+ βγ

∆t+1

℘t

)
(℘t+1 + β℘σt+1)− (1 + (1 + β)γ− γ∆t+1)℘t+1 − β(1− γ) = 0; [A.2.1a]

γ(1 + β℘σ−1t )∆t+1 − (1 + (1 + β)γ− γ∆t)℘
σ
t + (1− γ) = 0. [A.2.1b]

where ℘t and ∆t are the variables defined in [A.7.1] in terms of the real interest rate ρt and the debt-to-GDP
ratio dt. The implied values of ρt and dt can be recovered using:

ρt =
(1 + ḡ)

1
σ℘t

δ
− 1, and dt =

γ∆t

3
. [A.2.1c]

The objective of numerical analysis of the difference equations [A.2.1a]–[A.2.1b] is to confirm that the
properties established analytically in the neighbourhood of the unique steady state by Proposition 1 also
hold globally. In particular, in (℘t,∆t) space, all perfect foresight paths must lie on a one-dimensional
manifold (the stable saddlepath). This means that starting from a specific value of ∆t0 , there is one and
only one starting point ℘t0 such that the subsequent perfect-foresight path is well defined.

This requires a procedure for calculating the vector Ξt+1 =
(
℘t+1 ∆t+1

)′
given the vector Ξt. First,

if ℘t and ∆t are known, ∆t+1 can be obtained directly by solving equation [A.2.1b]:

∆t+1 =
(1 + (1 + β)γ− γ∆t)℘

σ
t − (1− γ)

γ
(
1 + β℘σ−1t

) . [A.2.2a]
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To find ℘t+1, equation [A.2.1a] can be rearranged as follows (making use of [A.2.1b]):

β℘σt

(
1− βγ+ βγ

∆t+1

℘t

)
℘σt+1 + ((2 + γ− γ∆t)℘

σ
t − (2 + βγ))℘t+1 − β(1− γ) = 0. [A.2.2b]

With ℘t, ∆t, and ∆t+1 known, equation [A.2.2b] can be solved numerically for a value of ℘t+1. A perfect-
foresight path can be constructed by applying this procedure recursively, starting from Ξt0 =

(
℘t0 ∆t0

)′
.

A path is only valid if it can be continued indefinitely. If there is no economically meaningful solution
(0 < ℘t+1 <∞) to equation [A.2.2b] then the starting value of ℘t0 must be rejected.

The saddlepath stability property can be confirmed numerically using a version of the ‘shooting’ al-
gorithm. For a fixed ∆t0 , different starting points for ℘t0 are considered, with an attempt to construct a
perfect-foresight path for each. It is then recorded how many iterations occur before each path reaches a
point where there is no economically meaningful value for the next iteration. A valid path can be iterated
infinitely many times. Plotting the number of possible iterations against the starting point ℘t0 (conditional
on a given value of ∆t0) reveals an asymptote at one value of ℘t0 , indicating the presence of a manifold on
which all perfect-foresight paths must lie.

That this manifold represents a stable saddlepath can be confirmed using the ‘reverse shooting’ algo-
rithm. To apply this algorithm, it is necessary to have a procedure to calculate Ξt given Ξt+1, that is, to
trace out perfect-foresight paths in reverse. Note that equation [A.2.1a] can be written as:

(1−βγ)(℘t+1+β℘σt+1)℘
σ
t +βγ∆t+1(℘t+1+β℘σt+1)℘

σ−1
t −(1+(1+β)γ−γ∆t+1)℘t+1−β(1−γ) = 0. [A.2.3a]

Given ℘t+1 and ∆t+1, this equation can be solved numerically for a value of ℘t. Equation [A.2.1b] can then
be arranged to obtain an expression for ∆t in terms of ∆t+1 and this value of ℘t:

∆t =
(1 + (1 + β)γ)℘σt − γ(1 + β℘σ−1t )∆t+1 − (1− γ)

γ℘t
. [A.2.3b]

Using the local characterization of the stable saddlepath provided by Proposition 1, a starting point Ξt0

can be chosen that lies on the stable saddlepath in the neighbourhood of the steady state. The reverse
shooting algorithm can then be used to trace out the path along which this point would be approached.

A.3 Pareto efficiency

Proposition 3 shows that the set of Pareto-efficient consumption allocations is characterized by those
satisfying equations [2.16] and [2.21] (and an initial condition at time t0), with value functions as given
in [2.14e]. This claim is made subject to the parameter restriction 0 < β < 1 from [2.5] and allowing the
Pareto weight Ωt (in the social planner’s problem [3.3]) for the generation born at time t to depend on the
state of the world at time t. These assumptions are needed to rule out two issues specific to overlapping
generations models which can mean that even the (sequential) complete-markets equilibrium is not Pareto
efficient. But as described below, dropping these assumptions leads to potential inefficiencies that cannot
be corrected by monetary policy (interpreted as setting the nominal interest rate), and are hence beyond
the scope of this paper.

The first issue relates to the possibility of dynamic inefficiency, which occurs when the equilibrium real
interest rate is permanently below the economy’s growth rate of real GDP. As shown in Proposition 1,
ruling out dynamic inefficiency requires the parameter restriction 0 < β < 1 from [2.5]. With β > 1, the
real interest rate would be below the growth rate. In that case, with the (scaled) Pareto weights ω∗t that
support the complete-markets equilibrium (which are bounded given that the shocks to the growth rate
are bounded), the social welfare function Wt0 in [3.6] would have an infinite value. When the objective
function is unbounded over the feasible set, the constrained maximum is not well defined, so the first-order
conditions do not correctly characterize a Pareto-efficient allocation.

With dynamic inefficiency, a Pareto improvement can be obtained by a permanent sequence of transfers
to old individuals from younger individuals. Sufficiently large transfers would correct the over-saving
problem underlying dynamic inefficiency, and in equilibrium, the real interest rate would rise above the
growth rate. This calls for a policy intervention directly specifying such transfers, or a monetary policy
that creates a ‘bubble’ which that can implement the same sequence of transfers in equilibrium. However,
a conventional monetary policy of setting the nominal interest will fail to correct dynamic inefficiency. The
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reason is that Proposition 1 shows the steady-state real interest rate is invariant to all policies of this type,
and unless monetary policy can permanently raise the real interest rate, it cannot succeed in eliminating
dynamic inefficiency.

The second issue is that of risk sharing prior to birth. Even though there are no idiosyncratic shocks in
the model, individuals’ lifetime consumption possibilities are affected by the realizations of aggregate shocks
that become known before and up to their births. It is then possible to argue that individuals’ welfare
should be assessed by taking an expectation over the outcomes for lifetime utility that will be obtained
for different shocks realized prior to birth, even though the individual does not actually experience the
uncertainty of not knowing his lifetime consumption path prior to birth (unlike when he is alive but is
subject to uncertainty about future consumption). If this argument is accepted then it entails treating
individuals as autonomous prior to their births, in other words, an individual born during an economic
boom is considered to be one and the same as the individual he would be had he been born during a deep
recession, even though he would never face uncertainty of this type while he is actually alive.

The Pareto efficiency criterion requires that autonomous individuals receive a fixed Pareto weight when
solving the social planner’s problem [3.3], that is, the Pareto weight Ωt for individuals born at time t can be
a function only of the state of the world when the planner’s problem is first solved (at some time t0). This
is more demanding than the requirement adopted in section 3.2 that the weight Ωt may be a function of the
state of the world at time t (but not a function of the realization of shocks during individuals’ lifetimes).
This weaker requirement effectively denies the autonomy of individuals prior to birth because it is as if the
social planner treats an individual born in good times as a different person from the individual he would
have been had he been born in bad times (though individuals are autonomous once born, represented by
a Pareto weight that depends only on the state of the world at their time of birth — which ensures that
efficiency is not reduced to a vacuous notion of any non-wasteful consumption allocation). The combination
of Pareto weights fixed at time t0 and evaluating pre-birth expected utility given a concave utility function
implies that additional risk-sharing conditions beyond [2.21] are necessary for Pareto efficiency. There is a
literature that analyses these risk-sharing conditions and their policy implications (see for example, Gordon
and Varian, 1988).

The sequential complete-markets equilibrium need not belong to the set of pre-birth Pareto-efficient
allocations in general. To restore the efficiency of complete financial markets with the more demanding
notion of pre-birth efficiency it would be necessary for these markets to be open at the beginning of time
(period t0) to all individuals, even those not yet born. Trading in these ‘beginning-of-time’ complete
financial markets would lead to an equilibrium that is one of many pre-birth Pareto-efficient allocations.

More importantly, there is the question of whether this ‘beginning-of-time’ complete-markets equilib-
rium (or some other pre-birth Pareto-efficient allocation) could be implemented via a suitable monetary
policy in the incomplete-markets economy. Since the resource constraint [2.16] and the risk-sharing con-
dition [2.21] remain necessary conditions for any such allocation, the set of pre-birth Pareto-efficient con-
sumption allocations is contained within the set of regular Pareto-efficient allocations. But Proposition 3
demonstrates that the only consumption allocation in this set that could be implemented through monetary
policy in an incomplete markets economy is the sequential complete-markets equilibrium, which need not
in general meet the more stringent requirement of pre-birth Pareto efficiency.

Whether the sequential complete-markets equilibrium satisfies the requirements for pre-birth Pareto
efficiency can be tested by considering the weights Ω∗t that support this consumption allocation. If these
weights depend only on the state of the world at time t0 (and not up to t, as allowed in section 3.2),
the equilibrium will be pre-birth efficient. Since the consumption of the young at time t in the sequential
complete-markets equilibrium will generally depend on the state of the world at time t, equations [3.6] and
[3.7] indicate that Ω∗t will generally depend on the time t state of the world as well, so this equilibrium will
not generally be pre-birth efficient.

There is at least one special case in which the sequential complete markets is pre-birth efficient. With a
logarithmic utility function (α = 1 and σ = 1), Proposition 2 shows that the equilibrium features c∗y,t = 1.
Using equations [3.6] and [3.7], it follows that Ω∗t = 1, which is independent of the realization of any shocks.
With Pareto weights equal to constants, the consumption allocation is pre-birth efficient.
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A.4 Coefficients in log-linearized equations

Formulas for the coefficients χ, κ, φ, θ, λ, and ζ of the equations introduced in Proposition 5 are given
below in terms of the parameters β, γ, and σ:

χ =
2

(1 + 2β) +
(

1− βγ
σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.4.1a]

κ =
3

(1 + 2β) +

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.4.1b]

φ =
2β
(
1 + γ

σ

)
(1 + 2β) +

(
1 + βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.4.1c]

ϑ =
2
(
1 + β+ β2

)
2 (1 + β+ β2) + (1− β)βγσ + (1 + β)

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) , and θ ≡ γ
σ
ϑ; [A.4.1d]

λ =
2
(
βγ
σ − 1

)
(1 + 2β) +

(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.4.1e]

ζ =
2β
(
γ
σ − 1

)
(1 + 2β) +

(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) . [A.4.1f]

A.5 Cost of inflation with Calvo price setting

Suppose price adjustment can occur continuously between time t − 1 and t, with P(τ) denoting the log
price level at time τ (where P(t− 1) = Pt−1 and P(t) = Pt in terms of the existing discrete-time notation).
Inflation πt = Pt − Pt−1 between time t − 1 and t is the integral of the continuous-time inflation rate
Ṗ (τ) = dP(τ)/dτ over this period:

πt =

∫
τ∈[t−1,t]

Ṗ(τ)dτ. [A.5.1]

The time interval [t−1, t] is assumed to represent T years. The steady-state real interest rate is denoted
byR, and the steady-state real GDP growth rate by G (both are given as continuous annual rates). In terms
of the existing discrete-time notation, 1+ ρ̄ = eRT and 1+ ḡ = eGT . Let % = R−G be the difference between
the real interest rate and the economy’s growth rate. Proposition 1 demonstrates that β = (1 + ḡ)/(1 + ρ̄),
and hence β = e−%T . The expected duration of an individual price spell is Tp years. It is assumed that
firms receive opportunities to change prices at a constant rate as in the Calvo (1983) pricing model, the
annual arrival rate being 1/Tp.

For the purposes of deriving the welfare cost of inflation, suppose that each interval of T years is divided
into n discrete subperiods, each being an equal fraction h = 1/n of the T years, that is, each is hT years
long. The assumption of Calvo pricing means there is a probability e−hT/Tp that an individual price will
remain unchanged during a subperiod. The discount factor over a subperiod is e−hTR, while growth scales
up real payoffs by ehTG over the same period of time. The effective discount factor over a subperiod of hT
years is therefore e−%hT .

The welfare costs of inflation can be derived by taking the continuous-time limit as h→ 0 (n→∞) of
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the formula for the discrete-time case reported in Woodford (2003).45 Let Lπ,t denote the expected welfare
cost of all inflation over the time interval [t− 1,∞), reported as a fraction of the first T years’ steady-state
GDP. The Calvo probability of no price adjustment in the formula is set to e−hT/Tp and the discount factor
is set to e−%hT . The formula gives the welfare cost in terms of one discrete period’s steady-state GDP (hT
years), so the expression must be multiplied by h to obtain the cost in terms of T years’ GDP. The welfare
cost is therefore:46

Lπ,t =
ε

2
lim
h→0

h
e−hT/Tp(

1− e−hT/Tp
) (

1− e−%hT e−hT/Tp
) ∞∑
`=0

(
e−%hT

)`
Et

[
(P(t− 1 + h(`+ 1))− P(t− 1 + h`))2

]
.

Noting that e−%hnT = β since hn = 1, this equation can be written recursively as Lπ,t = Lπ,t +βEtLπ,t+1,
where Lπ,t is defined by:

Lπ,t ≡
ε

2
lim
h→0

e−hT/Tp

(1− e−hT/Tp)(1− e−(%+T−1
p )hT )

n−1∑
`=0

e−%hT` (P(t− 1 + h(`+ 1))− P(t− 1 + h`))2 h.

This expression for Lπ,t can be rearranged as follows:

Lπ,t =
ε

2

T 2
p

(1 + %Tp)T 2
lim
h→0

e−hT/Tp

1−e−hT/Tp

hT/Tp
· 1−e−h(%+T−1

p )T

h(%+T−1
p )T

n−1∑
`=0

e−%hT`
(
P(t− 1 + h(`+ 1))− P(t− 1 + h`)

h

)2

h.

[A.5.2]

Noting the following limits as h→ 0:

lim
h→0

e−hT/Tp = 1, lim
h→0

1− e−hT/Tp
hT/Tp

= 1, lim
h→0

1− e−h(%+T−1
p )T

h(%+ T−1p )T
= 1, and lim

t→0

P(t+ h)− P(t)

h
= Ṗ(t),

the limit in [A.5.2] is given by:

Lπ,t =
ε

2

T 2
p

(1 + %Tp)T 2

∫
τ∈[t−1,t]

e−%T (τ−(t−1))Ṗ(τ)2dτ. [A.5.3]

Suppose that total inflation πt between t−1 and t is evenly spread over that period of time.47 It follows
from [A.5.1] that Ṗ(τ) = πt for all τ ∈ [t − 1, t]. Substituting this into [A.5.3] and evaluating the integral
leads to:

Lπ,t =
ε

2

(
Tp
T

)2( 1

1 + %Tp

)(
1− e−%T
%T

)
π2t . [A.5.4]

Since % > 0, it must be the case that 1/(1 + %Tp) < 1. If %T ≥ 1 then (1− e−%T )/%T < 1. When %T < 1,
since (1− e−%T )/%T < 1 is equivalent to (1− %T )−1 > e%T , which holds given the series expansions of these
functions, it is shown that (1−e−%T )/%T < 1 in all cases. Given that Lπ,t0 =

∑∞
t=t0

βt−t0Et0Lπ,t, it follows
from [A.5.4] that:

Lπ,t ≤
ε

2

(
Tp
T

)2 ∞∑
t=t0

βt−t0Et0π
2
t . [A.5.5]

This provides an upper bound for the welfare costs of inflation in the Calvo model (expressed as a fraction
of the initial T years’ steady-state GDP).

45It can be verified numerically that assuming a finite h (for example, h = 1/4T for subperiods equal to one quarter)
leads to smaller welfare costs of inflation than the continuous-time limit. The limiting case thus provides an upper
bound for the cost of inflation.

46The model here includes no real rigidity, but as discussed in section 5.6, the presence of real rigidity is isomorphic
to an increase in the price elasticity of demand ε.

47Given πt and equation [A.5.1], evenly spread inflation would minimize the loss [A.5.3] in the case where % = 0.
When % is relatively small, the loss-minimizing inflation time-path would not deviate too much from that constant
path. If inflation followed the optimal path, the loss would be smaller, so the assumption of evenly spread inflation
provides an upper bound for the welfare cost.
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A.6 Endogenous labour supply

This section adds an endogenous labour supply decision, which will imply that both the incompleteness of
financial markets and monetary policy have first-order consequences for aggregate output.

A.6.1 Households

The population and age structure of households is the same as that described in section 2, but the lifetime
utility function of individuals born at time t is now

Ut =

{
logCy,t −

Hη
y,t

ηΘ
η−1
y

}
+ δEt

{
logCm,t+1 −

Hη
m,t+1

ηΘ
η−1
m

}
+ δ2Et

{
logCo,t+2 −

Hη
o,t+2

ηΘ
η−1
o

}
, [A.6.1]

where Hy,t, Hm,t, and Ho,t are respectively the per-person hours of labour supplied by young, middle-aged,
and old individuals at time t. The utility function is additively separable between consumption and hours,
and utility is logarithmic in consumption (the parameter restrictions α = 1 and σ = 1 are imposed), with
the composite consumption good being [5.1], as in section 5. The parameter η (1 < η < ∞) is related to
the Frisch elasticity of labour supply, the Frisch elasticity being (η−1)−1. The parameters Θy, Θm, and Θo,
which in section 2 specified the shares of the exogenous income endowment received by each generation,
are now interpreted as age-specific differences in the disutility of working. A higher value of Θj indicates
that generation j ∈ {y,m, o} has a relatively low disutility of labour.

Hours of labour supplied by individuals of different ages are not perfect substitutes, so wages are age
specific. Let wy,t, wm,t, and wo,t denote the hourly (real) wages of the young, middle-aged, and old,
respectively. As in section 5, individuals earn remuneration as owner-managers of firms. Managerial labour
is assumed to have no disutility and is supplied inelastically, with Θy, Θm, and Θo denoting the per-person
proportions of total profits Jt received by individuals of each generation. Individuals are also subject to
age-specific lump-sum taxes Ty,t, Tm,t, and To,t. The per-person real non-financial incomes of individuals
from different generations are:

Yy,t = wy,tHy,t+ΘyJt−Ty,t, Ym,t = wm,tHm,t+ΘmJt−Tm,t, and Yo,t = wy,tHy,t+ΘyJt−Ty,t, [A.6.2]

where total profits Jt are as defined in [5.6].
Given additive separability of the utility function between consumption and hours, the consumption

Euler equations for each generation are the same (after setting α = 1 and σ = 1) as those in [2.10] in the
case of incomplete markets, and [2.18] in the hypothetical case of complete markets. Irrespective of the
assumptions on financial markets, the optimality conditions for maximizing utility [A.6.1] with respect to
labour supply Hj,t subject to [A.6.2] and the appropriate budget constraint are:

Cy,t

(
Hy,t

Θy

)η−1
= wy,t, Cm,t

(
Hm,t

Θm

)η−1
= wm,t, and Co,t

(
Ho,t

Θo

)η−1
= wo,t. [A.6.3]

A.6.2 Firms

There is a range of differentiated goods and monopolistically competitive firms as in the model of section 5.
The production function is [5.3], but now the labour Nt() used by firm  is reinterpreted as a composite
labour input drawing on hours of labour from young, middle-aged, and old workers. The labour aggregator
is assumed to have the Cobb-Douglas form:

Nt() ≡
Ny,t()

Θy
3 Nm,t()

Θm
3 No,t()

Θo
3

3Θ
Θy
3

y Θ
Θm
3

m Θ
Θo
3

o

, [A.6.4]

where Nj,t() is the firm’s employment of hours of labour by individuals of age j ∈ {y,m, o}, and Θy, Θm,
and Θo are the same parameters that appear in [A.6.1]. The Cobb-Douglas form of [A.6.4] implies an
elasticity of substitution between different labour inputs of one.

The firm takes the real wages wy,t, wm,t, and wo,t in each age-specific labour market as given. Firms are
assumed to receive a proportional wage-bill subsidy of s from the government. Irrespective of how firms set
prices, labour inputs Ni,t() are chosen to minimize the total cost of obtaining the number of units Nt()
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of composite labour that enter the production function [5.3] subject to the aggregator [A.6.4]. Conditional
on Nt(), the cost-minimizing labour demand functions are:

Ny,t() =
Θywt

3(1− s)wy,t
Nt(), Nm,t() =

Θmwt
3(1− s)wm,t

Nt(), and No,t() =
Θowt

3(1− s)wo,t
Nt(), [A.6.5]

where wt is the minimized value of (post-subsidy) wage costs per unit of composite labour:

wt = (1− s)w
Θy
3

y,t w
Θm
3

m,t w
Θo
3

o,t , with (1− s) (wy,tNy,t() + wm,tNm,t() + wo,tNo,t()) = wtNt(). [A.6.6]

Given the cost-minimizing choice of labour inputs, firms can be analysed as if they were directly hiring
units of composite labour at real wage wt for use in the production function [5.3].

A.6.3 Fiscal policy

The only role of fiscal policy in the model is to raise lump-sum taxes to fund the wage-bill subsidy paid to
firms. The government does not spend, borrow, or save. The total cost of the wage-bill subsidy is:

Tt = s

∫
[0,1]

(wy,tNy,t() + wm,tNm,t() + wo,tNo,t()) d. [A.6.7]

The subsidy is set so that s = 1/ε, where ε is the elasticity of substitution between different goods in [5.1]
(this implies a well-defined subsidy because ε > 1). The government distributes the tax burden so that the
per-person age-specific tax levels are:

Ty,t = ΘyTt, Tm,t = ΘmTt, and To,t = ΘoTt, [A.6.8]

where Θy, Θm, and Θo are the same parameters as in [A.6.1] and [A.6.4].

A.6.4 Equilibrium

There is a separate market-clearing condition for each age-specific labour market:∫
[0,1]

Nj,t()d =
1

3
Hj,t for each j ∈ {y,m, o}. [A.6.9]

Following the same steps as in [5.8] leads to the aggregate production function

Yt =
AtNt

Ψt
, with Nt ≡

∫
[0,1]

Nt()d, [A.6.10]

where Nt denotes the aggregate usage of units of composite labour, and Ψt is the measure of relative-price
distortions defined in [5.8]. The goods-market clearing condition Ct = Yt from [5.7].

Using the cost-minimizing labour demand functions [A.6.5], the market clearing condition [A.6.9], and
the definition of aggregate demand Nt for units of composite labour from [A.6.10]:

wj,tHj,t = Θj

(
wtNt

1− s

)
for each j ∈ {y,m, o}. [A.6.11]

From [5.6], [5.7], [A.6.6], and [A.6.9], total profits are given by Jt = Yt − wtNt. Using [A.6.6], [A.6.7],
and [A.6.10], total taxes are Tt = (s/(1 − s))wtNt. With [A.6.8], age-specific non-financial incomes from
[A.6.2] are Yi,t = wi,tHi,t + Θi(Jt − Tt) for each i. Together with the expressions for Jt and Tt, equation
[A.6.11] therefore implies that Yi,t = ΘiYt, and hence age-shares of total GDP are constant and equal to
those assumed in section 2.

Using the aggregate production function [A.6.10] to note that Nt = ΨtYt/At and substituting this into
[A.6.11], and then substituting this into the labour supply first-order condition [A.6.3] implies that the
age-specific real wages wi,t satisfy:

wj,t = cj,t
Ψη−1t Y ηt

Aη−1t

(
wt

(1− s)wj,t

)η−1
for each j ∈ {y,m, o}. [A.6.12]

With the formula [A.6.6] for the minimum cost wt of a unit of composite labour and the size of the wage-bill
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subsidy s = ε−1, the equation above implies that:

wt = (1− ε−1)
(
c
Θy
3

y,t c
Θm
3

m,t c
Θo
3

o,t

)
Ψη−1t Y ηt

Aη−1t

.

Assuming the parameterization [2.6] for Θj and substituting the expression for the real wage into the
equation kt = wt/At for real marginal cost:

kt = (1− ε−1)
(
c
1−βγ

3
y,t c

1+(1+β)γ
3

m,t c
1−γ
3

o,t

)
Ψη−1t

(
Yt
At

)η
. [A.6.13]

Output Yt is endogenously determined by the equation above given an assumption on how prices are set.
All other equilibrium conditions from section 2 continue to hold.

A.6.5 Flexible prices

If all firms have fully flexible prices then all set the same price (Pt() = Pt) because all face the same
marginal cost of production. Equation [5.8] then implies Ψt = 1, meaning that there are no relative-price
distortions and that Nt = Yt/At. From [5.5], profit maximization implies that kt = 1 − ε−1, and by
substituting this into [A.6.13] and solving for Yt/At:

Yt
At

= Nt =

(
c
1−βγ

3
y,t c

1+(1+β)γ
3

m,t c
1−γ
3

o,t

) 1
η

. [A.6.14]

In a non-stochastic steady state with TFP growth at = (At−At−1)/At−1 equal to a constant ā, Proposition 1
implies the consumption ratios have steady-state values c̄y = c̄m = c̄o = 1. Equation [A.6.14] then implies
steady-state employment is N̄ = 1, and thus steady-state real GDP growth is ḡ = ā.

With complete financial markets, Proposition 2 characterizes the equilibrium since α = 1 and σ = 1.
The natural debt-to-GDP ratio is d∗t = γ/3 and the complete-markets consumption ratios are c∗y,t = c∗m,t =
c∗o,t = 1. Using equation [A.6.14], complete-markets employment with flexible prices is N∗t = 1, and the
corresponding level and growth rate of real GDP are Y ∗t = At and g∗t = at.

With incomplete markets, a log-linear approximation of the equilibrium can be found by noting

1

3
((1− βγ)cy,t + (1 + (1 + β)γ)cm,t + (1− γ)co,t) = −νdt, where ν =

γ2

3
((2 + β)− (1 + 2β)φ) ,

[A.6.15]

where the expression for ν is derived using the results of Proposition 6, with d̃t = dt because d∗t = 0 when
α = 1 and σ = 1. The output gap Ỹt = Yt/Y

∗
t and the employment gap Ñt ≡ Nt/N

∗
t can then be found

using equation [A.6.14]:

Ỹt = Ñt = Nt = −ν
η
dt. [A.6.16]

Pareto efficiency requires a constant debt-to-GDP ratio, which can be achieved through stabilizing the level
of nominal GDP.

A.6.6 Sticky prices

Now suppose as in section 5.2 there are firms using a predetermined price P̌t and firms using a flexible
price P̂t, with κ denoting the fraction of the former relative to the latter. In what follows, the benchmark
is the hypothetical economy with complete financial markets and flexible prices with Ŷ ∗t = At and N̂∗t = 1.
The output gap relative to this benchmark is defined as Ỹt ≡ Yt/Ŷ ∗t . Since α = 1 and σ = 1, the results of
Proposition 2 apply, and hence d∗t = γ/3 and (1 + r∗t ) = (1 + gt)/β.

The formula for the price index in [5.2] implies p̂t = (1−κ(p̌1−εt −1))
1

1−ε , while the first-order condition
in [5.5] implies p̂t = (ε/(ε − 1))kt. Using the expression for real marginal cost kt in [A.6.13] and the
definition of the output gap Ỹt:(

1− κ
(
p̌1−εt − 1

)) 1
1−ε =

(
c
1−βγ

3
y,t c

1+(1+β)γ
3

m,t c
1−γ
3

o,t

)
Ψη−1t Ỹ ηt . [A.6.17]

60



The non-stochastic steady state features ¯̌p = 1, Ψ̄ = 1, and c̄y = c̄m = c̄o = 1, hence it follows that ¯̃Y = 1.
Log linearizing equation [A.6.17] around the steady state implies the Phillips curve:

κ(πt − Et−1πt) = ηỸt − νdt, [A.6.18a]

where equations [5.10] and [A.6.15] have been used, together with Ψt = 0.
With complete markets and flexible prices, the ex-post real return satisfies 1 + r̂∗t = (1 + ĝt)/β. Using

the definition of the output gap, it follows that 1 + r∗t = (Ỹt/Ỹt−1)(1 + r̂∗t ). Equation [4.7c] implies that the
inflation rate must satisfy

πt = it−1 − dt − β−1φdt−1 − Ỹt + Ỹt−1 − r̂∗t , [A.6.18b]

noting that dt = d̃t since d∗t = 0. The final equation is [4.7a] with dt = d̃t:

λdt = Etdt+1. [A.6.18c]

Therefore, the constraints faced by the policymaker are the Phillips curve [A.6.18a], the link between
inflation, the output gap and debt in [A.6.18b], and the debt-dynamics equation [A.6.18c]. There are four
endogenous variables: inflation πt, the debt-to-GDP ratio dt, the output gap Ỹt, and the nominal interest
rate it; and one exogenous variable r̂∗t = ĝt = at, which depends only on the growth rate of exogenous
TFP At. With α = 1 and σ = 1, the Pareto weights supporting the complete-markets equilibrium are
Ω∗t = 1, and these are used to calculate the social welfare function [3.3]. The following result presents the
second-order approximation of the welfare function and optimal monetary policy.

Proposition 15 The welfare function can be written Wt0 = −Et0−2Lt0 + terms independent of monetary
policy + third- and higher-order terms, where the loss function Lt0 is:

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
ℵd2t + εκ(πt − Et−1πt)2 + ηỸ2

t

]
, [A.6.19]

and where the weight ℵ on the debt-to-GDP ratio is:

ℵ =
γ2

3

(
1 +

1

η

)(
1 + φ2 + (1− φ)2

)
+
γ3

3

1

η

(
(1 + β)(1− φ)2 − βφ2 − 1

)
− ν

2

η
. [A.6.20]

The first-order condition for minimizing the loss function subject to the constraints [A.6.18a]–[A.6.18c] is:

dt − Et−1dt =


κ
(
ε+ κ

η + (ε− 1)νη

)
(
ℵ+ν2

η

1−βλ2

)(
1 + βλ2 κη

)
+ (ℵ − ν)κη

 (πt − Et−1πt), [A.6.21]

and optimal monetary policy is a weighted nominal GDP target:

Pt + $̂Yt = 0, where $̂ =

1 +
κ
(
ε+ κ

η + (ε− 1)νη

)
(
ℵ+ν2

η

1−βλ2

)(
1 + βλ2 κη

)
+ (ℵ − ν)κη


−1

. [A.6.22]

Proof See appendix A.22 �

There are three terms in the loss function: the debt-to-GDP ratio, the inflation surprise, and the
output gap (all terms are squared percentage deviations from their steady-state values). The coefficient
of the inflation surprise is the same as that in the model with a fixed labour supply, and the coefficient
of the debt-to-GDP ratio converges to that in the fixed labour supply model as η → ∞, that is, as the
Frisch elasticity approaches zero (noting that the assumption of log utility requires α = 1 and σ = 1). The
coefficient of the output gap is increasing in η (and thus decreasing in the Frisch elasticity).

With flexible prices, the optimal monetary policy given the parameter restrictions α = 1, σ = 1, and
µ = 1 is exactly a target for the level of (unweighted) nominal GDP. With sticky prices, optimal monetary
policy is a weighted nominal GDP target, where $̂ < 1 is the weight assigned to output. There are two
additional effects present relative to the case of a fixed labour supply. First, the Phillips curve [A.6.18a]
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implies that unexpected inflation leads to fluctuations in the output gap. Holding the debt-to-GDP ratio
constant, stabilizing inflation is equivalent to stabilizing the output gap. This effect of an endogenous
labour supply thus increases the importance of stabilizing inflation. The second effect is that fluctuations
in the debt-to-GDP ratio lead to shifts of the Phillips curve that must increase the volatility of inflation
or the output gap, or both. This effect increases the importance of stabilizing the debt-to-GDP ratio,
which requires a policy of targeting nominal GDP. It is thus a quantitative question whether the addition
of an endogenous labour supply decision to the model increases or decreases the weight on nominal GDP
targeting.

Imposing α = 1, σ = 1, and µ = 1 but calibrating other parameters as in section 5.6 (see Table 1)
leads to β ≈ 0.59 and γ ≈ 0.66. With these parameters, the expression for $̂ in [A.6.22] is decreasing in
η, and hence increasing in the Frisch elasticity. The effect of fluctuations in the debt-to-GDP ratio on the
position of the Phillips curve is thus the quantitatively dominant effect. The size of the overall effect is
small, though. In the limiting case of inelastic labour supply (η → ∞) the optimal weight is $̂ ≈ 0.95,
while with the Frisch elasticity of 2/3 (η ≈ 2.5) from Hall (2009), the optimal weight is $̂ ≈ 0.96.

A.7 Preliminary results

Lemma 1 Define the variables ℘t and ∆t as follows in terms of ρt and dt and let Ξt denote the vector of
these variables:

℘t ≡
δ(1 + ρt)

(1 + ḡ)
1
σ

, ∆t ≡
3dt
γ
, and Ξt ≡

(
℘t
∆t

)
. [A.7.1]

Any perfect-foresight path that is a solution of the system of equations [2.14a], [2.14c], and [2.23], with
gt = ḡ and Υt = 1, must imply values of ℘t and ∆t that satisfy the following equations:

F(Ξt+1,Ξt) = 0, where F(Ξ′,Ξ) ≡
(
fρ(℘

′,∆′, ℘)
fd(∆

′, ℘,∆)

)
, [A.7.2]

with functions fρ(℘
′,∆′, ℘) and fd(∆

′, ℘,∆) defined by:

fρ(℘
′,∆′, ℘) ≡ ℘σ

(
1− βγ+ βγ

∆′

℘

)(
℘′ + β℘′σ

)
−
(
1 + (1 + β)γ− γ∆′

)
℘′ − β(1− γ); [A.7.3a]

fd(∆
′, ℘,∆) ≡ γ(1 + β℘σ−1)∆′ − (1 + (1 + β)γ− γ∆)℘σ + (1− γ). [A.7.3b]

Proof Any solution of [2.23] must feature a future ex post real return rt+1 equal to the real interest rate
ρt, and hence from [2.14a] it follows (with gt = ḡ) that the current loan ratio is given by:

lt =
(1 + ḡ)dt+1

1 + ρt
. [A.7.4]

Substituting this equation into the age-specific budget constraints from [2.14c]:

cy,t = 1− βγ+
3(1 + ḡ)dt+1

1 + ρt
, cm,t = 1 + (1 + β)γ− 3dt −

3(1 + ḡ)dt+1

1 + ρt
, and co,t = 1− γ+ dt.

Written in terms of the new variables ℘t and ∆t from [A.7.1], and making use of the definition of β from

[2.5] which implies β = δ(1 + ḡ)1−
1
σ when ς = 0, the budget constraints above are:

cy,t = 1− βγ+ βγ
∆t+1

℘t
, cm,t = 1 + (1 + β)γ− γ∆t − βγ

∆t+1

℘t
, and co,t = 1− γ+ γ∆t. [A.7.5a]

Using ρt = rt+1 and gt+1 = ḡ, the Euler equations from [2.23] become

δ(1 + ρt)

(1 + ḡ)
1
σ

(
cm,t+1

cy,t

)− 1
σ

= 1 =
δ(1 + ρt)

(1 + ḡ)
1
σ

(
co,t+1

cm,t

)− 1
σ

,

and hence by noting the definition of ℘t in [A.7.1], these can be written as:

cm,t+1 = ℘σt cy,t, and co,t+1 = ℘σt cm,t. [A.7.5b]
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Substituting the budget constraints from [A.7.5a] into the second Euler equation from [A.7.5b]:

1− γ+ γ∆t+1 = ℘σt

(
1 + (1 + β)γ− γ∆t − βγ

∆t+1

℘t

)
,

and by rearranging this equation it can be seen that:

γ
(
1 + β℘σ−1t

)
∆t+1 − (1 + (1 + β)γ− γ∆t)℘

σ
t + (1− γ) = 0. [A.7.6]

Comparison with the definition [A.7.3b] shows that this equation is fd(∆t+1, ℘t,∆t) = 0.
The next step is to substitute the budget constraints from [A.7.5a] into the first Euler equation from

[A.7.5b]:

(1 + (1 + β)γ− γ∆t+1)− βγ
∆t+2

℘t+1
= ℘σt

(
1− βγ+ βγ

∆t+1

℘t

)
. [A.7.7]

Note that equation [A.7.6] implies:

βγ
∆t+2

℘t+1
=
β (1 + (1 + β)γ− γ∆t+1)℘

σ
t+1 − β(1− γ)

℘t+1 + β℘σt+1

,

which can be rearranged to obtain:

(1 + (1 + β)γ− γ∆t+1)− βγ
∆t+2

℘t+1
=

(1 + (1 + β)γ− γ∆t+1)℘t+1 + β(1− γ)

℘t+1 + β℘σt+1

.

Substituting this into equation [A.7.7] yields:

℘σt

(
1− βγ+ βγ

∆t+1

℘t

)(
℘t+1 + β℘σt+1

)
− (1 + (1 + β)γ− γ∆t+1)℘t+1 − β(1− γ) = 0, [A.7.8]

which given the definition in [A.7.3a] is the equation fρ(℘t+1,∆t+1, ℘t) = 0. This demonstrates that
F(Ξt+1,Ξt) = 0 as defined in [A.7.2] must hold, completing the proof. �

Lemma 2 Let G (z) be the following quadratic equation:

G (z) ≡ β
(

1− γ
σ

)
z2 +

(
2(1 + β)− βγ

σ

)
z +

(
1− βγ

σ

)
. [A.7.9]

Assume the parameters are such that 0 < β < 1, 0 < γ < 1, σ > 0. If the following condition is satisfied:

γ

σ
<

1 + β

β
, [A.7.10]

then G (z) can be factorized uniquely as

G (z) =
z(1− λz−1)(1− ζz)

χ
, [A.7.11]

in terms of real roots λ and ζ−1 of G (z) = 0 and a non-zero coefficient χ. These are given by the following
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formulas:

χ =
2

(1 + 2β) +
(

1− βγ
σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.7.12a]

λ =

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)
− (1 + 2β)−

(
1− βγ

σ

)
2β
(
1− γ

σ

)
=

2
(
βγ
σ − 1

)
(1 + 2β) +

(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ; [A.7.12b]

ζ =

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)
− (1 + 2β)−

(
1− βγ

σ

)
2
(

1− βγ
σ

)
=

2β
(
γ
σ − 1

)
(1 + 2β) +

(
1− βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) . [A.7.12c]

In the range of parameters consistent with [A.7.10], all of χ, λ and ζ are strictly increasing in the ratio γ/σ
and lie between the following bounds:

1

2(1 + β)
< χ < 1, −1

2
< λ < β, and − 1

2
< ζ < 1, [A.7.13]

and hence |λ| < 1 and |ζ| < 1.

Proof Evaluate the quadratic G (z) in [A.7.9] at z = −1 and z = 1:

G (−1) = −
(

1 + β
(

1 +
γ

σ

))
< 0, and G (1) = 3

(
(1 + β)− βγ

σ

)
.

Given that condition [A.7.10] is assumed to hold, it follows that G (1) > 0, and hence that G (z) changes
sign over the interval [−1, 1]. Thus, by continuity, G (z) = 0 always has a root in the interval (−1, 1). Let
this root be denoted by λ, which must satisfy |λ| < 1.

Since [A.7.9] holds, it must be the case that

2(1 + β) >
βγ

σ
,

and thus that the coefficient of z in [A.7.9] is never zero. The coefficient of z2 can be zero, though, so G (z)
is either quadratic or purely linear. This means that either G (z) has only one root or has two distinct roots.
As one root is known to be real, complex roots are not possible. Given that G (z) is at most quadratic and
has a sign change on [−1, 1], there can be no more than one root in this interval. A second root, if it exists,
lies in either (−∞,−1) or (1,∞). If there is a second root, let ζ denote the reciprocal of this root. If there
is no second root, let ζ = 0. In either case, ζ is a real number satisfying |ζ| < 1.

When ζ = 0, the function given in [A.7.11] is linear with single root at z = λ. When ζ 6= 0, [A.7.11]
is a quadratic function with roots z = λ and z = ζ−1. Therefore, the factorization [A.7.11] must hold for
some non-zero coefficient χ.

Take the case of γ < σ first. This means the coefficient of z2 in [A.7.9] is positive, so the quadratic
is u-shaped. Given that G (−1) < 0, it follows that the second root ζ−1 is found in (−∞,−1), that is, to
the left of λ. Now consider the case of γ > σ, where the coefficient of z2 in G (z) is negative, and G (z) is
n-shaped. With G (1) > 0 this means that the second root ζ−1 is found in (1,∞), lying to the right of λ.
In applying the quadratic root formula to find λ, observe that the denominator of the formula is positive
in the case where γ < σ (with ζ−1 < λ) and negative when γ > σ (with λ < ζ−1). Therefore, the root λ is
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always associated with the upper branch of the quadratic root function:

λ =
−
(

2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

)
2β
(
1− γ

σ

) . [A.7.14]

Since λ is known to be a real number, the term inside the square root must be non-negative.
When a second root exists, ζ−1 is given by the lower branch of the quadratic root function, and hence

an expression for ζ is:

ζ =
−2β

(
1− γ

σ

)
(

2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

) . [A.7.15]

Using [A.7.9], the formula for the product λζ−1 of the roots of G (z) = 0 implies:

λ =

(
1− βγ

σ

)
β
(
1− γ

σ

)ζ. [A.7.16]

Substituting for ζ from [A.7.15] provides an alternative expression for λ:

λ =
−2
(

1− βγ
σ

)
(

2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

) . [A.7.17]

Given that condition [A.7.10] holds and that the term in the square root is positive, [A.7.17] provides a
well-defined formula for λ in all cases, including γ = σ. Similarly, it can be seen from [A.7.15] that ζ = 0 if
and only if γ = σ, which given the definition [A.7.9] is equivalent to G (z) being purely linear. Therefore,
formulas [A.7.15] and [A.7.17] are well defined for all configurations of γ and σ consistent with [A.7.10]. An
alternative expression for ζ can be obtained by rearranging [A.7.16] to deduce ζ = (β(1−γ/σ)/(1−βγ/σ))λ
and by substituting the expression for λ from [A.7.14]:

ζ =

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

)
− (1 + 2β)−

(
1− βγ

σ

)
2
(

1− βγ
σ

) . [A.7.18]

Multiplying out the terms in the factorization [A.7.11] yields:

G (z) =
−ζz2 + (1 + λζ)z − λ

χ
.

Equating the constant term with that in [A.7.9] implies −λ/χ = (1− βγ/σ), which leads to the following
expression for χ:

χ =
λ(

βγ
σ − 1

) .
Substituting for λ from [A.7.17] shows that χ is given by:

χ =
2((

2(1 + β)− βγ
σ

)
+

√(
2(1 + β)− βγ

σ

)2
− 4β

(
1− γ

σ

) (
1− βγ

σ

)) . [A.7.19]

Given [A.7.10] holds and the term in the square root is positive, it follows that χ is strictly positive. Observe
that the term in the square root can be simplified as follows:(

2(1 + β)− βγ
σ

)2
− 4β

(
1− γ

σ

)(
1− βγ

σ

)
= (1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)
. [A.7.20]

Substituting [A.7.20] into [A.7.19], [A.7.14], [A.7.17], [A.7.15], and [A.7.18] yields the formulas in [A.7.12a]–
[A.7.12c].
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It follows immediately from the expression in [A.7.12a] that χ is strictly increasing in the ratio γ/σ. To
consider its effects on λ and ζ, denote the ratio by Φ ≡ γ/σ. In terms of Φ, G (z) can be written as:

G (z) = β(1−Φ)z2 + (2(1 + β)− βΦ)z + (1− βΦ). [A.7.21]

The coefficient λ is the only solution in (−1, 1) of the equation G (z) = 0. Since G (−1) < 0 and G (1) > 0
when condition [A.7.10] holds, it follows that G ′(λ) > 0. Similarly, since ζ is the only root lying in either
(−∞, 1) or (1,∞), given that G (−1) < 0 and G (1) > 0 it must be the case that G ′(ζ−1) < 0. From [A.7.21]
it follows that:

∂G (λ)

∂Φ
= −β(1 + λ+ λ2) < 0, and

∂G (ζ−1)

∂Φ
= −β

(
1 + ζ−1 + ζ−2

)
< 0, [A.7.22]

because λ ∈ (−1, 1) and ζ−1 ∈ (−1, 1). Given G (λ) = 0 and G (ζ−1) = 0, the effects of Φ on λ and ζ are
determined by:

∂λ

∂Φ
= − 1

G ′(λ)

∂G (λ)

∂Φ
, and

∂ζ

∂Φ
=

ζ2

G ′(ζ−1)

∂G (ζ−1)

∂Φ
,

both of which are strictly positive. Therefore, λ and ζ are both increasing in the ratio γ/σ.
Note that the restriction [A.7.10] means that Φ is restricted to the range 0 < Φ < (1 + β)/β. If

Φ = 0 then (1 + 2β) + (1 − Φ) +
√

(1 + 2β)2 + 3(1− β2Φ2) = 2(1 + β +
√

1 + β+ β2) < 2(1 + β). If
Φ = (1 + β)/β then (1 + 2β) + (1 − Φ) +

√
(1 + 2β)2 + 3(1− β2Φ2) = 2. The bounds on χ given in

[A.7.13] follow immediately from [A.7.12a] given that χ is increasing in Φ. Since [A.7.12a], [A.7.12b], and
[A.7.12c] imply that λ = (βΦ−1)χ and ζ = β(Φ−1)χ, the bounds on λ and ζ in [A.7.13] follow from those
established for χ given that Φ is restricted to the range 0 < Φ < (1 + β)/β. This completes the proof. �

A.8 Proof of Proposition 1

(i) The pair of difference equations can be written explicitly as:

dt+1 =
(1 + (1 + β)γ− 3dt)β

σ(1 + ρt)
σ − (1− γ)

3 (1 + βσ(1 + ρt)σ−1)
; and β2σ

(
1− βγ+

3dt+1

1 + ρt

)
(1 + ρt)

σ(1 + ρt+1)
σ

+ (βσ(1 + ρt)
σ(2 + γ− 3dt)− (2 + βγ)) (1 + ρt+1) = (1 − γ). [A.8.1]

Let ℘t ≡ δ(1 +ρt)/(1 + ḡ)
1
σ and ∆t ≡ 3dt/γ denote linear functions of the real interest rate ρt and the debt

ratio dt, and let Ξt ≡
(
℘t ∆t

)′
denote the vector containing these two variables, as defined in equation

[A.7.1] of Lemma 1. It is shown in Lemma 1 that any solution of the system of equations [2.14a], [2.14c], and
[2.23], with gt = ḡ and Υt = 1, must imply values of Ξt satisfying the vector of equations F(Ξt+1,Ξt) = 0
defined in [A.7.3]. Writing out the equations fd(∆t+1, ℘t,∆t) = 0 and fρ(℘t+1,∆t+1, ℘t) = 0 explicitly:

γ(1 + β℘σ−1t )∆t+1 − (1 + (1 + β)γ− γ∆t)℘
σ
t + (1− γ) = 0; [A.8.2a]

℘σt

(
1− βγ+ βγ

∆t+1

℘t

)(
℘t+1 + β℘σt+1

)
− (1 + (1 + β)γ− γ∆t+1)℘t+1 − β(1− γ) = 0. [A.8.2b]

The definitions of ℘t and ∆t imply that the values of ρt and dt can be recovered using:

1 + ρt =
(1 + ḡ)

1
σ℘t

δ
, and dt =

γ∆t

3
. [A.8.3]

Substituting these definitions into [A.8.2a] leads immediately to the first equation in [A.8.1]. Next, note
that [A.8.2b] can be rearranged as follows:

β

(
1− βγ+ βγ

∆t+1

℘t

)
℘σt ℘

σ
t+1+

(
γ
(
1 + β℘σ−1t

)
∆t+1 + ℘σt (1− βγ)− (1 + (1 + β)γ)

)
℘t+1−β(1−γ) = 0.

Using [A.8.2a], this equation can be written as:

β

(
1− βγ+ βγ

∆t+1

℘t

)
℘σt ℘

σ
t+1 + ((2 + γ− γ∆t)℘

σ
t − (2 + βγ))℘t+1 − β(1− γ) = 0,

and with the definitions in [A.8.3], it is seen to be equivalent to the second equation in [A.8.1].
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(ii) Now consider steady states (with gt = ḡ) of the system of equations [2.14a], [2.14c], and [2.23].
Given Lemma 1, such a steady state is equivalent to a constant perfect-foresight path Ξt = Ξ̄ of the state
vector Ξt =

(
℘t ∆t

)′
. The vector Ξ must satisfy F(Ξ̄, Ξ̄) = 0. The definition [A.7.2] of the vector-valued

function F(Ξ′,Ξ) implies that the steady-state values ℘̄ and ∆̄ are the solutions of the pair of equations
fρ(℘̄, ∆̄, ℘̄) = 0 and fd(∆̄, ℘̄, ∆̄) = 0. Explicit expressions for these functions are given in [A.7.3]:

℘̄σ
(

1− βγ+ βγ
∆̄

℘̄

)
(℘̄+ β℘̄σ)− (1 + (1 + β)γ− γ∆̄)℘̄− β(1− γ) = 0; [A.8.4a]

γ
(
1 + β℘̄σ−1

)
∆̄− (1 + (1 + β)γ− γ∆̄)℘̄σ + (1− γ) = 0. [A.8.4b]

The first equation [A.8.4a] can be rearranged as follows:

(1− βγ+ βγ
∆̄

℘̄
)℘̄σ −

(
(1 + γ(1 + β)− γ∆̄)℘̄+ β(1− γ)

℘̄+ β℘̄σ

)
= 0. [A.8.5]

The second equation [A.8.4b] implies:

βγ
∆̄

℘̄
=
β(1 + (1 + β)γ− γ∆̄)℘̄σ − β(1− γ)

℘̄+ β℘̄σ
,

from which it follows that:

(1 + (1 + β)γ− γ∆̄)− βγ∆̄

℘̄
=

(1 + (1 + β)γ− γ∆̄)℘̄+ β(1− γ)

℘̄+ β℘̄σ
.

Substituting the above equation into [A.8.5] implies:

℘̄σ
(

1− βγ+ βγ
∆̄

℘̄

)
−
(

1 + (1 + β)γ− γ∆̄− βγ∆̄

℘̄

)
= 0,

which can be rearranged to deduce that:

γ
∆̄

℘̄
(β+ β℘̄σ + ℘̄) = (1 + (1 + β)γ)− (1− βγ)℘̄σ. [A.8.6]

It also follows directly from equation [A.8.4b] that:

γ
∆̄

℘̄

(
℘̄+ β℘̄σ + ℘̄σ+1

)
= (1 + (1 + β)γ)℘̄σ − (1− γ). [A.8.7]

Combining equations [A.8.6] and [A.8.7] allows the variable ∆̄ to be eliminated, leaving the following
equation that involves only ℘̄:

(β+ β℘̄σ + ℘̄) ((1 + (1 + β)γ)℘̄σ − (1− γ)) =
(
℘̄+ β℘̄σ + ℘̄σ+1

)
((1 + (1 + β)γ)− (1− βγ)℘̄σ) . [A.8.8]

In finding the set of solutions of [A.8.8] for ℘̄, it is convenient to make use of the change of variable

z ≡ ℘̄σ. Using ℘̄ = z
1
σ , equation [A.8.8] is equivalent to:(

β(1 + z) + z
1
σ

)
((1 + (1 + β)γ)z − (1− γ))−

(
βz + (1 + z)z

1
σ

)
((1 + (1 + β)γ)− (1− βγ)z) = 0.

By multiplying out the brackets of the above equation and grouping terms in z
1
σ :

β
(
(1 + (1 + β)γ)(1 + z)z − (1− γ)(1 + z)− (1 + (1 + β)γ)z + (1− βγ)z2

)
+ ((1 + (1 + β)γ)z − (1− γ)− (1 + (1 + β)γ)(1 + z) + (1− βγ)(1 + z)z) z

1
σ = 0.

Simplifying this equation shows that it is equivalent to:

F (z) = 0, where F (z) ≡
(
(1− βγ)(1 + z + z2)− 3

)
z

1
σ + β

(
3z2 − (1− γ)(1 + z + z2)

)
. [A.8.9]

With economically meaningful real interest rates and real GDP growth rates in the range −1 < ρ̄ <∞ and
−1 < ḡ < ∞, the variable ℘̄ = δ(1 + ρ̄)/(1 + ḡ)

1
σ must be restricted to be a positive real number. Given

that z = ℘̄σ, a solution of F (z) = 0 is an economically meaningful steady state if and only if z ∈ (0,∞).
In solving the equation F (z) = 0, first note that the function F (z) in [A.8.9] is continuous and

differentiable for all z ∈ (0,∞). It is helpful to write F (z) as

F (z) = βP(z) + z
1
σQ(z), [A.8.10]
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in terms of two quadratic functions P(z) and Q(z) defined as follows:

P(z) ≡ (2 + γ)z2 − (1− γ)z − (1− γ), and Q(z) ≡ (1− βγ)z2 + (1− βγ)z − (2 + βγ). [A.8.11]

Since P(0) = −(1− γ) < 0 and P(1) = 3γ > 0 (with 0 < γ < 1), and as the coefficient of z2 in P(z) is
positive, it follows that the equation P(z) = 0 has a unique positive root z(γ,β) satisfying 0 < z(γ,β) < 1.
The value of the root depends only on the parameters γ and β. If z ∈ [0, z(γ,β)) then P(z) < 0, and if
z ∈ (z(γ,β),∞) then P(z) > 0.

Now consider similar arguments for the quadratic function Q(z). Since Q(0) = −(2 + βγ) < 0 and
Q(1) = −3βγ < 0, and as the coefficient of z2 in Q(z) is positive (given 0 < β < 1), the equation Q(z) = 0
has a unique positive root z(γ,β) satisfying z(γ,β) > 1, and thus z(γ,β) < z(γ,β). If z ∈ [0, z(γ,β)) then
Q(z) < 0, and if z ∈ (z(γ,β),∞) then Q(z) > 0.

Given these findings, for any z ∈ [0, z(γ,β)), since P(z) < 0 and Q(z) < 0, it follows from [A.8.10]
that F (z) < 0. Similarly, for any z ∈ (z(γ,β),∞), as P(z) > 0 and Q(z) > 0, it follows that F (z) >
0. Therefore, the search for solutions of the equation F (z) = 0 can be confined to the finite interval
[z(γ,β), z(γ,β)].

Existence of a steady state

Using equation [A.8.9] to evaluate F (z) at z = 1:

F (1) = 3((1− βγ)− 1) + 3β(1− (1− γ)) = 0,

hence z = 1 is a solution of F (z) = 0 for all possible parameter values. Given that ℘̄ = z
1
σ , z = 1 implies

℘̄ = 1. Furthermore, equation [A.8.3] shows that the steady-state real interest rate ρ̄ = (1 + ḡ)
1
σ /δ − 1,

which is as given in [2.24]. Similarly, given [2.23], the steady-state real return has the same value r̄ = ρ̄.
The following is required for ρ̄ > ḡ to be satisfied:

1

δ(1 + ḡ)1−
1
σ

> 1,

which is equivalent to the parameter restriction on β in [2.5] given that β = δ(1 + ḡ)1−
1
σ when ς = 0.

Given the value of ℘̄, the steady-state value ∆̄ can be obtained directly from equation [A.8.6]:

∆̄ =
℘̄ ((1 + (1 + β)γ)− (1− βγ)℘̄σ)

γ (β+ β℘̄σ + ℘̄)
.

Substituting ℘̄ = 1 into this equation yields ∆̄ = 1, and from [A.8.3] it follows that d̄ = γ/3. In steady

state, [2.14a] demonstrates that l̄ = (1+ ḡ)d̄/(1+ r̄), and since it has been shown that 1+ r̄ = (1+ ḡ)
1
σ /δ, it

follows that l̄ = δγ(1+ ḡ)1−
1
σ /3. With β = δ(1+ ḡ)1−

1
σ from [2.5] when ς = 0, this is equivalent to l̄ = βγ/3.

Finally, the budget identities from [2.14c] in steady state imply c̄y = 1−βγ+3l̄, c̄m = 1+(1+β)γ−3d̄−3l̄,
and c̄o = 1− γ+ 3d̄. Given the values of d̄ and l̄, it is seen that c̄y = c̄m = c̄o = 1.

Existence of parameters for which the steady state is unique

Let F(z;σ) denote the function F (z) from [A.8.9] with the dependence on the parameter σ made explicit.
This can be written as:

F(z;σ) ≡ (1− βγ)(1 + z + z2)z
1
σ − 3z

1
σ + 3βz2 − β(1− γ)(1 + z + z2). [A.8.12]

First, consider the limiting case of σ→∞. For any z ≥ z(γ,β) > 0, [A.8.12] reduces to:

F(z;∞) = (1−βγ)(1 + z + z2)− 3 + 3βz2 −β(1− γ)(1 + z + z2) = (1 + 2β)z2 + (1−β)z− (2 +β).

This is a quadratic equation in z. Given that 0 < β < 1, the coefficients of powers of z in the polynomial
change sign exactly once. Hence, by Leibniz’s rule of signs, the equation has at most one positive root.
This shows that z = 1 is the unique positive solution of the equation F(z;∞) = 0.

Next, consider the special case of σ = 1/2, in which case [A.8.12] reduces to:

F(z; 1/2) = (1− βγ)(1 + z + z2)z2 − 3z2 + 3βz2 − β(1− γ)(1 + z + z2)

= (1 − βγ)z4 + (1 − βγ)z3 − 2(1 − β)z2 − β(1 − γ)z − β(1 − γ).
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This is a quartic equation in z. Given that 0 < β < 1 and 0 < γ < 1, the coefficients of powers of z change
sign exactly once. Hence, by Leibniz’s rule of signs, the equation has at most one positive root, proving
that z = 1 is the unique positive solution.

To analyse a general value of σ, make use of the expression for F (z) in [A.8.10] to take the derivative
of F(z;σ) with respect to σ, holding z constant:

∂F(z;σ)

∂σ
= − 1

σ2
(log z)z

1
σQ(z). [A.8.13]

Now take any z ∈ (z(γ,β), z(γ,β)), for which Q(z) < 0 given the definition of z(γ,β). For z values in this
range, if z < 1 then it can be seen from [A.8.13] that F(z;σ) is decreasing in σ, while for z > 1, F(z;σ) is
increasing in σ. It follows that for any parameter σ in the range 1/2 ≤ σ <∞ and any z ∈ (z(γ,β), z(γ,β))
that F(z;σ) lies somewhere between the values of F(z; 1/2) and F(z;∞). Formally:

min{F(z; 1/2),F(z;∞)} ≤ F(z;σ) ≤ max{F(z; 1/2),F(z;∞)}. [A.8.14]

Now suppose the equation F(z;σ) = 0 were to have a root z 6= 1 for some parameter σ satisfying 1/2 ≤
σ < ∞. This root would need to lie in the interval (z(γ,β), z(γ,β)). It has already been established that
the equations F(z; 1/2) = 0 and F(z;∞) = 0 have only one root z = 1 on the interval z ∈ (z(γ,β), z(γ,β)).
Since F(z;σ) is a continuous function of z for all σ, and as F(z(γ,β);σ) < 0 and F(z(γ,β);σ) > 0, it
follows that F(z; 1/2) and F(z;∞) are both negative for all z ∈ (z(γ,β), 1). Similarly, F(z; 1/2) and
F(z;∞) are both positive for all z ∈ (1, z(γ,β)). Given the bounds in [A.8.14], it follows that F(z;σ) is
negative for all z ∈ (z(γ,β), 1) and positive for all z ∈ (1, z(γ,β)) for any 1/2 ≤ σ < ∞. It is therefore
shown that z = 1 is the only positive root of F (z) = 0 for any σ satisfying 1/2 ≤ σ <∞.

Existence of parameters for which the steady state is not unique

Given the definitions of z(γ,β) and z(γ,β) it follows from equation [A.8.10] that:

F (z(γ,β)) < 0, and F (z(γ,β)) > 0, where z(γ,β) < 1 < z(γ,β). [A.8.15]

Now note that the derivative of F (z) from [A.8.9] is

F ′(z) = (1−βγ)(1 + 2z)z
1
σ +

1

σ

(
(1− βγ)(1 + z + z2)− 3

)
z

1
σ
−1 +β (6z − (1− γ)(1 + 2z)) . [A.8.16]

Evaluating this derivative at z = 1:

F ′(1) = 3(1− βγ) +
3

σ
((1− βγ)− 1) + 3β (2− (1− γ)) = 3

(
1− βγ− βγ

σ
+ β+ βγ

)
= 3(1 + β)

(
1− β

1 + β

γ

σ

)
. [A.8.17]

If γ/σ > (1 +β)/β then [A.8.17] implies that F ′(1) < 0. Since F (1) = 0, this means that F (z) is strictly
positive in a neighbourhood below z = 1, and strictly negative in a neighbourhood above z = 1. Given
the statements in [A.8.15] and the continuity of F (z), it follows that F (z) = 0 has solutions in the ranges
(z(γ,β), 1) and (1, z(γ,β)). The steady state z = 1 would not then be unique.

To analyse the case where γ/σ = (1 + β)/β, use [A.8.16] to obtain the second derivative of F (z):

F ′′(z) = 2(1− βγ)z
1
σ +

1

σ
(1− βγ)(1 + 2z)z

1
σ
−1 +

1

σ
(1− βγ)(1 + 2z)z

1
σ
−1

+
1

σ

(
1

σ
− 1

)(
(1− βγ)(1 + z + z2)− 3

)
z

1
σ
−2 + β (6− 2(1− γ)) . [A.8.18]

Evaluating this derivative at z = 1:

F ′′(1) = 2(1− βγ) +
3

σ
(1− βγ) +

3

σ
(1− βγ)− 3βγ

σ

(
1

σ
− 1

)
+ 2β(2 + γ)

= 2(1 + 2β) +
6

σ
(1 − βγ) − 3βγ

σ

(
1

σ
− 1

)
. [A.8.19]
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Note that when γ/σ = (1 + β)/β:

1

σ
=

1 + β

βγ
,

which can be substituted into [A.8.19] to obtain:

F ′′(1) =
1

βγ
(2βγ(1 + 2β) + 6(1 + β)(1− βγ)− 3(1 + β)((1 + β)− βγ))

=
1

βγ
(2βγ(1 + 2β) + 3(1 + β)(1− β− βγ)) =

1− β
βγ

(3(1 + β)− βγ) . [A.8.20]

Therefore, from [A.8.17] and [A.8.20], when γ/σ = (1 +β)/β it follows that F ′(1) = 0 and F ′′(1) > 0, the
latter by noting 0 < β < 1 and 0 < γ < 1. Since F (1) = 0, it must be the case that F (z) is positive in a
neighbourhood below z = 1. Combined with [A.8.15], this means that there exists a solution of F (z) = 0
in the range (z(γ,β), 1), demonstrating that the steady state z = 1 is not unique.

Hence, it is established that there exist multiple steady states if the following condition holds:

γ

σ
≥ 1 + β

β
. [A.8.21]

Existence of a threshold intertemporal elasticity of substitution for uniqueness of the steady state

Consider given values of β and γ satisfying 0 < β < 1 and 0 < γ < 1. It has been shown so far that
the steady state z = 1 is unique for any σ ≥ 1/2, but from [A.8.21] it is known not to be unique if
σ ≤ (β/(1 + β))γ < 1/2. Any solutions to F (z) = 0 must lie in the interval [z(γ,β), z(γ,β)], and given
the definitions of z(γ,β) and z(γ,β), it follows from [A.8.10] that F (z(γ,β)) < 0 and F (z(γ,β)) > 0 for
any parameter values.

Now suppose there is a value of σ for which z = 1 is the unique solution of F (z) = 0. By continuity of
F (z) given the signs of this function at z = z(γ,β) and z = z(γ,β) and since F (1) = 0, this is equivalent
to F (z) < 0 for all z ∈ (z(γ,β), 1) and F (z) > 0 for all z ∈ (1, z(γ,β)). Now consider the derivative
of F (z) with respect to σ as given in [A.8.13]. Since Q(z) < 0 for z ∈ (z(γ,β), z(γ,β)), the derivative
is negative for z ∈ (z(γ,β), 1) and positive for z ∈ (1, z(γ,β)). This implies that following any increase
in σ, it remains the case that F (z) < 0 for all z ∈ (z(γ,β), 1) and F (z) > 0 for all z ∈ (1, z(γ,β)), so
z = 1 remains the unique solution of F (z) = 0. Therefore it is demonstrated that there exists a threshold
for σ (depending on γ and β), denoted by σ(γ,β), such that z = 1 is the unique solution if and only if
σ ≥ σ(γ,β).

To find the dependence of the threshold σ(γ,β) on γ, differentiate F (z) with respect to γ (holding
other parameters and z constant):

∂F (z)

∂γ
= β(1 + z + z2)

(
1− z 1

σ

)
,

where this expression uses [A.8.10] and [A.8.11]. For any 0 < σ < ∞, this shows that F (z) is increasing
in γ for z < 1 and decreasing for z > 1. Since F (z(γ,β)) < 0, F (1) = 0, F (z(γ,β)) > 0, and solutions of
F (z) = 0 must lie in the interval (z(γ,β), z(γ,β)), it follows that if z = 1 is not the unique solution for
some γ, any higher γ value will also imply multiple solutions. This means that the required threshold for σ
to ensure a unique solution is increasing in γ. Finally, note that when γ→ 0, P(1)→ 0 and Q(1)→ 0, so
z(γ,β) → 1 and z(γ,β) → 1. In this limiting case, z = 1 is the only possible solution of F (z) = 0, hence
it follows that limγ→0 σ(γ,β) = 0.

(iv) Lemma 1 shows that any perfect foresight path consistent with the system of equations [2.14a],
[2.14c], and [2.23] must be such that the sequence {Ξt0 ,Ξt0+1,Ξt0+2, . . .} satisfies F(Ξt+1,Ξt) = 0 for all
t ≥ t0. These equations implicitly define a time-invariant transition equation:

Ξt+1 = T(Ξt), where F(T(Ξ),Ξ) = 0 for all Ξ. [A.8.22]

Now suppose that σ ≥ σ(γ,β), which has been shown to be the condition for there to be a unique
steady state. In terms of the components of the vector Ξt defined in [A.7.1], this steady state is ℘̄ = 1
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and ∆̄ = 1, or equivalently, Ξ̄ = ι ≡
(
1 1

)′
. The local dynamics of the system of equations [A.8.1] are

determined by the Jacobian matrix of the transition equations T(·) from [A.8.22] evaluated at the steady
state. This matrix is denoted by ∇ΞT(ι), and by applying the implicit function theorem to [A.8.22], the
Jacobian must satisfy:

∇Ξ′F(ι, ι)∇ΞT(ι) +∇ΞF(ι, ι) = 0.

Suppose z is an eigenvalue of ∇ΞT(ι) and v is the corresponding eigenvector, that is, ∇ΞT(ι)v = zv. From
the equation above, it follows that

∇ΞF(ι, ι)v = z(−∇Ξ′F(ι, ι))v, [A.8.23]

thus, z is a generalized eigenvalue of the pair of matrices {∇ΞF(ι, ι),−∇Ξ′F(ι, ι)}.
To find the matrices in [A.8.23], the partial derivatives of the functions in [A.7.3] that make up the

elements of F(·, ·) in [A.7.2] are evaluated at the steady state ℘̄ = 1 and ∆̄ = 1:

∂fρ(1, 1, 1)

∂℘′
= β(σ− γ),

∂fρ(1, 1, 1)

∂∆′
= (1 + β+ β2)γ,

∂fρ(1, 1, 1)

∂℘
= (1 + β)(σ− βγ),

∂fd(1, 1, 1)

∂∆′
= (1 + β)γ,

∂fd(1, 1, 1)

∂℘
= −(σ+ βγ), and

∂fd
∂∆

= −γ,

and these are inserted into the Jacobian matrices ∇Ξ′F(ι, ι) and ∇ΞF(ι, ι) to obtain:

∇Ξ′F(ι, ι) =

(
β(σ− γ) (1 + β+ β2)γ

0 (1 + β)γ

)
, and ∇ΞF(ι, ι) =

(
(1 + β)(σ− βγ) 0
−(σ+ βγ) γ

)
.

Equation [A.8.23] shows that the generalized eigenvalues can be found from the following matrix:

∇ΞF(ι, ι) + z∇Ξ′F(Ξ̄, Ξ̄) =

(
(1 + β)(σ− βγ) + β(σ− γ)z (1 + β+ β2)γz

−(σ+ βγ) γ+ (1 + β)γz

)
, [A.8.24]

which has determinant:

det (∇ΞF(ι, ι) + z∇Ξ′F(ι, ι)) = γσ(1 + β)

(
β
(

1− γ
σ

)
z2 +

(
2(1 + β)− βγ

σ

)
z +

(
1− βγ

σ

))
.

Comparing this expression to the quadratic function G (z) defined in equation [A.7.9] of Lemma 2, the
determinant can be written as:

det (∇ΞF(ι, ι) + z∇Ξ′F(ι, ι)) = γσ(1 + β)G (z). [A.8.25]

The results of Lemma 2 and equation [A.8.25] reveal that det (∇ΞF(ι, ι) + z∇Ξ′F(ι, ι)) = 0 if and only if
z = λ or z = ζ−1, where λ and ζ are as defined in [A.7.12b] and [A.7.12c]. Lemma 2 establishes that |λ| < 1
and |ζ| < 1, so z = λ is a stable eigenvalue and z = ζ−1 is an unstable eigenvalue. To find the associated
eigenvectors, let v =

(
v 1

)′
, where the second element of the eigenvector is normalized to unity without

loss of generality. For a given eigenvalue z, equation [A.8.23] shows that (∇ΞF(ι, ι)v + z∇Ξ′F(ι, ι))v = 0,
and hence by using [A.8.24], the second row of this equation is:

−(σ+ βγ)v + (γ+ (1 + β)γz) = 0.

Dividing both sides by σ and solving for vλ (when z = λ) and vζ (when z = ζ−1) yields:

vλ =
γ
σ (1 + (1 + β)λ)

1 + βγ
σ

, and vζ =
γ
σ

(
1 + (1 + β)ζ−1

)
1 + βγ

σ

. [A.8.26]

These results demonstrate the existence of both a stable manifold and an unstable manifold in the
neighbourhood of the unique steady state. If a phase diagram were drawn with ∆t and ℘t on the horizontal
and vertical axes respectively, since v =

(
v 1

)′
, it follows that vλ is the slope of the stable manifold and vζ

is the slope of the unstable manifold. Lemma 2 proves that λ > −1/2, and since 0 < β < 1, it must be the
case that 1 + (1 +β)λ > 0, so vλ > 0. If ζ > 0, then since Lemma 2 shows that |λ| < 1 and |ζ| < 1, it would
follow that 1 + (1 + β)λ < 1 + (1 + β)ζ−1, hence vλ < vζ. Alternatively, if ζ < 0 then 1 + (1 + β)ζ−1 < 0,
and hence vζ < 0. This completes the proof.
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A.9 Proof of Proposition 2

Consider the possibility of an equilibrium in which the following are time-invariant: the debt-to-GDP ratio
(d∗t = d∗), the loans-to-GDP ratio (l∗t = l∗), and the age-specific consumption ratios (c∗y,t = c∗y, c∗m,t = c∗m,
and c∗o,t = c∗o). With time-invariant debt, loans, and consumption ratios, the budget identities in [2.14c]
require:

c∗y = 1− βγ+ 3l∗, c∗m = 1 + (1 + β)γ− 3d∗ − 3l∗, and c∗o = 1− γ+ 3d∗. [A.9.1]

Satisfying equation [2.14a] requires d∗(1 + gt) = l∗(1 + r∗t ). Since the stochastic process for growth gt
specified in [2.4] is stationary, the equilibrium real return (ex post) r∗t must also be a stationary stochastic
process with a time-invariant mean Er∗t . Taking unconditional expectations of d∗(1 + gt) = l∗(1 + r∗t ) and
of the equation in [2.14b] implies that

d∗ =

(
1 + Er∗t

1 + ḡ

)
l∗, and Eρ∗t = Er∗t , [A.9.2]

where ḡ = Egt is the time-invariant mean growth rate from [2.4]. Hence from [2.14a] and [2.14b] it follows
that the equilibrium real return (ex post) r∗t and real interest rate ρ∗t must satisfy the equations:

1 + r∗t
1 + gt

=
1 + Er∗t

1 + ḡ
, and

1 + ρ∗t
1 + Etgt+1

=
1 + Er∗t

1 + ḡ
. [A.9.3]

Therefore, if equations [A.9.2] and [A.9.3] hold then equations [2.14a] and [2.14b] are satisfied by construc-
tion.

(i) Consider the case of log utility (α = 1 and σ = 1). Given that α = 1/σ in this special case, the Euler
equations [2.14d] and the risk-sharing condition [2.21] reduce to:

δEt

[(
1 + r∗t+1

1 + gt+1

)(
c∗m
c∗y

)−1]
= 1 = δEt

[(
1 + r∗t+1

1 + gt+1

)(
c∗o
c∗m

)−1]
, and

(
c∗m
c∗y

)−1
=

(
c∗o
c∗m

)−1
. [A.9.4]

The value function equations [2.14e] are redundant in this case.

(ii) Consider the case where the stochastic process xt in [2.4] is independent and identically distributed
over time. Using the i.i.d. property together with the definition of β in [2.5], note that:

β = δEt
[
(1 + gt+1)

1−α] 1−1/σ
1−α . [A.9.5]

With this expression for β and equation [2.14e], the time-invariant consumption ratios imply time-invariant
value function ratios:

v∗m,t = v∗m =

(
c∗

1− 1
σ

m + βc∗
1− 1

σ
o

) 1

1− 1
σ , and v∗o,t = v∗o = c∗o.

With the time-invariant values v∗m and v∗o, the Euler equations in [2.14d] become:

δEt

[(
1+r∗t+1

1+gt+1

)(
c∗m
c∗y

)− 1
σ

(1 + gt+1)
1−α
]

(
Et [(1 + gt+1)1−α]

1
1−α
) 1
σ
−α

= 1 =

δEt

[(
1+r∗t+1

1+gt+1

)(
c∗o
c∗m

)− 1
σ

(1 + gt+1)
1−α
]

(
Et [(1 + gt+1)1−α]

1
1−α
) 1
σ
−α

, [A.9.6a]

and the risk-sharing condition [2.21] reduces to:(
c∗m
c∗y

)− 1
σ

=

(
c∗o
c∗m

)− 1
σ

. [A.9.6b]

Now consider the following equations:

β

(
1 + Er∗t

1 + ḡ

)(
c∗m
c∗o

)− 1
σ

= 1 = β

(
1 + Er∗t

1 + ḡ

)(
c∗m
c∗o

)− 1
σ

. [A.9.7]

Using [A.9.3] and [A.9.5], satisfaction of these equations implies [A.9.4] in special case (i) and [A.9.6a] and
[A.9.6b] in special case (ii).
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Next, consider the system of equations [2.14a], [2.14c], and [2.23] (with ς = 0, so gt = ḡ) that determines
the non-stochastic steady-state equilibrium values d̄, l̄, c̄y, c̄m, c̄o, r̄, and ρ̄. Note that these equations are
of an identical form to those in [A.9.1], [A.9.2], and [A.9.7] in variables d∗, l∗, c∗y, c∗m, c∗o, Er

∗
t , and Eρ∗t (the

only difference is that β may depend on the standard deviation ς, and is not generally the same as in a
non-stochastic steady state). Using the argument of Proposition 1, the unique solution of these equations
is:

d∗ =
γ

3
, l∗ =

βγ

3
, c∗y = c∗m = c∗o = 1, and Er∗t = Eρ∗t =

1 + ḡ

β
− 1. [A.9.8]

Combining this result with equation [A.9.3] yields the equilibrium given in [3.1]. This completes the proof.

A.10 Proof of Proposition 3

Using the transformations in [3.6], the first-order conditions [3.5] of the social planner’s problem can be
rewritten as:

ϕ?t = ωtc
?−

1
σ

y,t , ϕ?t =
δ

β
ωt−1(1 + gt)

1− 1
σ

 (1 + gt)v
?
m,t

Et−1[(1 + gt)1−αv?
1−α
m,t ]

1
1−α


1
σ
−α

c?
− 1
σ

m,t , ϕ?t =

(
δ

β

)2

ωt−2

× ((1 + gt−1)(1 + gt))
1− 1

σ

 (1 + gt−1)v
?
m,t−1

Et−2[(1 + gt−1)1−αv?
1−α
m,t−1]

1
1−α

(1 + gt)v
?
o,t

Et−1[(1 + gt)1−αv?
1−α
o,t ]

1
1−α


1
σ
−α

c?
− 1
σ

o,t ,

[A.10.1]

for all t ≥ t0. With the normalization in [3.6], ϕ?t0 = 1, ωt must depend only on the state of the world at
time t (for all t ≥ t0), while ωt0−1/ωt0−2 must depend only on the state of the world at time t0 − 1.

(i) For a specific set of Pareto weights ωt for t ≥ t0 − 2, let {c?y,t, c?m,t, c?o,t} denote the consumption
allocation (relative to real GDP) that is the solution to the planner’s problem. This must satisfy the
resource constraint [2.16] for all t ≥ t0. Next, the equations in [3.7] (which follow from [A.10.1]) imply
that the risk-sharing condition [2.21] must hold for all t ≥ t0. Finally, considering the equations in [A.10.1]
at t = t0 and taking the ratio of the equations involving ωt0−1 and ωt0−2, the following expression can be
deduced:

v?
1
σ
−α

o,t0
c?
− 1
σ

o,t0

v?
1
σ
−α

m,t0
c?
− 1
σ

m,t0

=

(
ωt0−1
ωt0−2

)(
β

δ(1 + gt0−1)
1− 1

σ

) (1 + gt0−1)v
?
m,t0−1

Et0−2[(1 + gt0−1)
1−αv?1−αm,t0−1]

1
1−α


α− 1

σ

×

Et0−1[(1 + gt0)1−αv?1−αm,t0
]

1
1−α

Et0−1[(1 + gt0)1−αv?1−αo,t0
]

1
1−α


α− 1

σ

. [A.10.2]

Since all terms on the right-hand side are functions of variables known at time t0 − 1 or earlier, it follows
that

v?
1
σ
−α

o,t0
c?
− 1
σ

o,t0

v?
1
σ
−α

m,t0
c?
− 1
σ

m,t0

= X ?t0−1, [A.10.3]

where X ?t0−1 is a function of variables known at time t0 − 1.
Now consider the converse. Take any state-contingent consumption allocation {c?y,t, c?m,t, c?o,t}, with

value functions {v?m,t, v?o,t} obtained from [2.14e]. Suppose the consumption allocation satisfies the resource
constraint [2.16], the risk-sharing condition [2.21] for t ≥ t0, and is such that equation [A.10.3] holds for
some X ?t0−1 which depends only on the state of the world at time t0 − 1. The following steps explicitly
construct a sequence of Pareto weights ω?t for t ≥ t0 − 2 and Lagrangian multipliers ϕ?t for t ≥ t0 that
support the consumption allocation. In what follows, the normalization ϕ?t0 = 1 (from [3.6]) is adopted.

Starting from a point where ϕ?t has been determined in all states of the world at some time t ≥ t0, the
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value of the Pareto weight ω?t is set as follows:

ω?t =
ϕ?t

c?
− 1
σ

y,t

, [A.10.4]

which is in accordance with the first equation in [A.10.1]. Next, the state-contingent value of ϕ?t+1 is set to

ϕ?t+1 = (1 + gt+1)
1− 1

σ

 (1 + gt+1)v
?
m,t+1

Et[(1 + gt+1)1−αv?
1−α
m,t+1]

1
1−α


1
σ
−α(

c?m,t+1

c?y,t

)− 1
σ

ϕ?t . [A.10.5]

By construction, this is consistent with the first expression for ϕ?t+1/ϕ
?
t in [3.7]. Since the consumption

allocation is assumed to satisfy the risk-sharing condition [2.21] for all t ≥ t0, the value of ϕ?t+1/ϕ
?
t implied

by [A.10.5] also agrees with the second expression in [3.7]. Hence, given ϕ?t , equations [A.10.4] and [A.10.5]
can be used to calculate ω?t and ϕ?t+1 in all states of the world. Thus, proceeding recursively from the
starting point of ϕ?t0 it is possible to construct sequences {ω?t } and {ϕ?t } that satisfy [3.7] in all states of
the world and from t ≥ t0.

The remaining Pareto weights ω?t0−1 and ω?t0−2 are constructed to satisfy the second and third equations
in [A.10.1] at time t = t0 (given the normalization in [3.6], these weights may be functions of the state of
the world at time t0). Together with [3.7], it then follows that all the first-order conditions in [A.10.1] hold
for all t ≥ t0. The construction of the weights ω?t0−1 and ω?t0−2 implies equation [A.10.2]. The consumption
allocation is assumed to be such that the left-hand side of [A.10.2] depends only on the state of the world
at time t0 − 1, thus it follows that ω?t0−1/ω

?
t0−2 also depends only on the state of the world at time t0 − 1.

The consumption allocation is therefore Pareto efficient because it is the solution of the planner’s problem
for a well-defined set of Pareto weights.

Now consider the equilibrium of the economy with complete financial markets open from t ≥ t0 − 1.
The budget identities [2.14c] imply the resource constraint [2.16] holds for all t ≥ t0. The risk-sharing
condition [2.21] holds for all t ≥ t0 as an equilibrium condition. Given that the risk-sharing condition [2.21]
also holds at t = t0 − 1, it can be rearranged to deduce that:

v∗
1
σ
−α

o,t0
c∗
− 1
σ

o,t0

v∗
1
σ
−α

m,t0
c∗
− 1
σ

m,t0

=

Et0−1[(1 + gt0)1−αv∗1−αo,t0
]

1
1−α

Et0−1[(1 + gt0)1−αv∗1−αm,t0
]

1
1−α


1
σ
−α(

c∗m,t0−1
c∗y,t0−1

)− 1
σ

, [A.10.6]

and hence [A.10.3] holds for some X ∗t0−1 that depends only on the state of the world at time t0 − 1. The
complete-markets equilibrium (from t ≥ t0 − 1) is therefore Pareto efficient from t ≥ t0 onwards.

(ii) Suppose that with one instrument of monetary policy (the nominal interest rate), the central bank is
able to implement a Pareto-efficient consumption allocation. Since this allocation must be an equilibrium
with incomplete markets for a particular monetary policy, it must satisfy the incomplete-markets equilib-
rium conditions [2.14a]–[2.14e] and [2.15], as well as satisfying the necessary conditions for Pareto efficiency.
These necessary conditions imply that the risk-sharing condition [2.21] must hold for all t ≥ t0. Another
requirement for Pareto efficiency is that equation [A.10.3] holds for some X ?t0−1 that is a function only of
variables known as of time t0−1. Multiplying numerator and denominator of [A.10.3] by (1+rt0)(1+gt0)−α

and taking expectations conditional on information available at time t0 − 1 yields:

X ?t0−1 =

Et0−1

[
(1 + rt0)(1 + gt0)−

1
σ {(1 + gt0)v?o,t0}

1
σ
−α c?

− 1
σ

o,t0

]
Et0−1

[
(1 + rt0)(1 + gt0)−

1
σ {(1 + gt0)v?m,t0}

1
σ
−α c?

− 1
σ

m,t0

] . [A.10.7]

Next, note that the Euler equations in [2.14d] imply that:

Et0−1

[
(1 + rt0)(1 + gt0)−

1
σ {(1 + gt0)v?o,t0}

1
σ
−α c?

− 1
σ

o,t0

]
Et0−1

[
(1 + rt0)(1 + gt0)−

1
σ {(1 + gt0)v?m,t0}

1
σ
−α c?

− 1
σ

m,t0

] =

Et0−1[(1 + gt0)1−αv?1−αo,t0
]

1
1−α

Et0−1[(1 + gt0)1−αv?1−αm,t0
]

1
1−α


1
σ
−α

c?
− 1
σ

m,t0−1

c?
− 1
σ

y,t0−1

.
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[A.10.8]

Putting together equations [A.10.3], [A.10.7], and [A.10.8] implies that equation [A.10.6] must hold, which
is equivalent to the risk-sharing condition [2.21] at time t = t0 − 1. Therefore, the consumption allocation
must satisfy all the equilibrium conditions for the economy with complete markets from t = t0−1 onwards,
and hence coincide with the complete-markets equilibrium. This completes the proof.

A.11 Proof of Proposition 4

Consider the conditions under which Υt = Υ∗t , where Υt ≡ dt/Et−1dt is the value of the variable defined in
[2.22] with incomplete markets, while Υ∗t ≡ d∗t /Et−1d∗t is the value of this variable with complete markets.
Using equation [3.8], Υt = Υ∗t is equivalent to:

M−1t
Et−1M

−1
t

=
d∗t

Et−1d∗t
, [A.11.1]

where Mt ≡ PtYt is nominal GDP. If nominal GDP is at its target value M∗t = d∗t
−1Xt−1 from [3.9] then this

clearly satisfies equation [A.11.1] because Xt−1 depends only on variables known at time t− 1. Conversely,
take any Mt satisfying equation [A.11.1]. The equation implies:

Mt = d∗t
−1
(
Et−1d

∗
t

Et−1M
−1
t

)
,

and hence [3.9] holds with Xt−1 = Et−1d
∗
t /Et−1M

∗
t
−1, which depends only on variables known at time t−1.

Thus, the nominal GDP target [3.9] is necessary and sufficient for Υt = Υ∗t .
With a particular monetary policy, if the incomplete-markets equilibrium were to coincide with the

complete-markets equilibrium then the debt gap from [3.2] would be closed (d̃t = 1), and hence Υt = Υ∗t
given the definition of Υt in [2.22]. Conversely, suppose that Υt = Υ∗t . From equation [2.22] it follows
that the state-contingent unexpected component of the incomplete-markets real return rt is the same as
the real return r∗t on the equilibrium portfolio with complete markets (the state-contingent realization of
real GDP growth gt is the same in both cases). The equilibrium conditions for incomplete markets and
complete markets share all of equations [2.14a]–[2.14e], and only differ in that [2.15] (determining rt) is
used with incomplete markets, while [2.21] (determining the complete-markets portfolio, and hence r∗t ) is
used with complete markets. Conditional on the behaviour of the real return, the budget identities and
Euler equations determining borrowing and saving behaviour are identical in both cases. The equilibrium
under incomplete markets is then the same as the complete-markets equilibrium, so dt = d∗t , closing the
debt gap.

Given that monetary policy can always generate any state-contingent path for one nominal variable
(accepting the equilibrium nominal values of other variables), it is feasible for the central bank to choose
the nominal GDP target [3.9].

With the Pareto weights Ω∗t supporting the complete-markets equilibrium, the complete-markets con-
sumption allocation is the maximum of the welfare function [3.3] subject to the resource constraint [2.16]. It
has been shown that a central bank can achieve the same consumption allocation subject to the incomplete-
markets equilibrium conditions [2.14a]–[2.14e] and [2.15] as implementability constraints (which imply the
resource constraint [2.16]). The nominal GDP target in [3.9] is therefore the constrained maximum of the
welfare function.

A.12 Proof of Proposition 5

The debt liabilities definition [4.1a] implies the ex-post real return rt must satisfy the identity rt = dt −
lt−1 − gt. Since the real interest rate is ρt = Etrt+1, this means that:

ρt = Etdt+1 − lt + Etgt+1. [A.12.1]
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Substituting this expression for ρt and the budget identities [4.1a] into the Euler equations [4.1b] of the
young and the middle-aged yields:

βγlt = −γEtdt+1 − βγEtlt+1 − σ(Etdt+1 − lt + Etgt+1) + Etgt+1;

−γdt − βγlt = γEtdt+1 − σ(Etdt+1 − lt + Etgt+1) + Etgt+1.

After collecting terms, simplifying, and dividing both sides of the equations by the positive coefficient σ, a
pair of equations in debt dt and loans lt is obtained:(

1 +
γ

σ

)
Etdt+1 =

(
1− βγ

σ

)
lt −

βγ

σ
Etlt+1 +

(
1− σ
σ

)
Etgt+1; [A.12.2a](

1 +
βγ

σ

)
lt =

(
1− γ

σ

)
Etdt+1 −

γ

σ
dt −

(
1− σ
σ

)
Etgt+1. [A.12.2b]

The class of solutions for the debt ratio dt is found by solving the system of simultaneous equations
[A.12.2]. This is done by eliminating the variable lt. Equation [A.12.2a] is multiplied by the positive
coefficient (1 + βγ/σ) to obtain:(

1 +
γ

σ

)(
1 +

βγ

σ

)
Etdt+1 =

(
1− βγ

σ

)(
1 +

βγ

σ

)
lt−
βγ

σ

(
1 +

βγ

σ

)
Etlt+1+

(
1− σ
σ

)(
1 +

βγ

σ

)
Etgt+1.

Equation [A.12.2b] can now be substituted into the above to eliminate terms in lt:(
1 +

γ

σ

)(
1 +

βγ

σ

)
Etdt+1 =

(
1− βγ

σ

){(
1− γ

σ

)
Etdt+1 −

γ

σ
dt −

(
1− σ
σ

)
Etgt+1

}
− βγ
σ
Et

[(
1− γ

σ

)
Et+1dt+2 −

γ

σ
dt+1 −

(
1− σ
σ

)
Et+1gt+2

]
+

(
1− σ
σ

)(
1 +

βγ

σ

)
Etgt+1,

which after applying the law of iterated expectations, collecting terms, and simplifying the coefficients
becomes:

γ

σ

(
1− βγ

σ

)
dt +

γ

σ

(
2(1 + β)− βγ

σ

)
Etdt+1 +

βγ

σ

(
1− γ

σ

)
Etdt+2 =

βγ

σ

(
1− σ
σ

)
Et [2gt+1 + gt+2] .

Finally, cancelling the non-zero coefficient γ/σ from both sides yields an equation for dt:(
1− βγ

σ

)
dt +

(
2(1 + β)− βγ

σ

)
Etdt+1 +β

(
1− γ

σ

)
Etdt+2 = β

(
1− σ
σ

)
Et [2gt+1 + gt+2] . [A.12.3]

Using the quadratic function G (z) defined in equation [A.7.9] in Lemma 2, the expectational difference
equation [A.12.3] for dt can be written in terms of G (z) and the forward F and identity operators I:

Et [G (F)dt] = β

(
1− σ
σ

)
Et [(2I + F)Fgt] . [A.12.4]

Proposition 1 shows that uniqueness of the steady state is equivalent to the restriction σ ≥ σ(γ,β), and
also demonstrates that σ(γ,β) > βγ/(1 + β). Therefore, as parameters consistent with a unique steady
state are used, it must be the case that γ/σ < (1 + β)/β. Lemma 2 implies that this restriction justifies
the factorization of the quadratic G (z) given in [A.7.11] with real values of λ, ζ, and χ satisfying |λ| < 1,
|ζ| < 1, and 0 < χ < 1. The factorization[A.7.11] is used to rewrite equation [A.12.4] as follows:

Et

[
1

χ
(I− ζF)(F− λI)dt

]
= β

(
1− σ
σ

)
Et [(2I + F)Fgt] ,

where the coefficients λ, ζ, and χ are the terms from equations [A.7.12a]–[A.7.12c]. These agree with the
formulas given in [A.4.1a], [A.4.1e], and [A.4.1f]. Writing the above equation out explicitly and using the
law of iterated expectations leads to:

(Etdt+1 − λdt)− ζEt[Et+1dt+2 − λdt+1] = χβ

(
1− σ
σ

)
Et[2gt+1 + gt+2]. [A.12.5]

To characterize the general class of solutions consistent with the economy always remaining on the
stable manifold, first consider the term ft defined in [4.2]. It is assumed that GDP growth gt is a bounded
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stochastic process, and given that Lemma 2 implies |ζ| < 1 for parameters consistent with a unique steady
state, it must also be the case that ft is a bounded stochastic process. Taking this definition of ft, define
the stochastic process zt as follows:

zt ≡ Etdt+1 − λdt − χ (2ft + Etft+1) . [A.12.6]

This definition refers to the debt ratio dt, so each potential solution for dt corresponds to a particular
stochastic process zt. Rearranging the definition implies that expectations of the future debt ratio are
given by:

Etdt+1 = λdt + χ (2ft + Etft+1) + zt, [A.12.7]

and then substituting this equation into [A.12.5] yields:

zt − ζEtzt+1 + χEt [(ft+1 − ζEt+1ft+2) + 2(ft − ζEtft+1)] = χβ

(
1− σ
σ

)
Et [2gt+1 + gt+2] . [A.12.8]

Observe that the definition of ft in [4.2] implies that it satisfies the following recursive equation:

ft − ζEtft+1 = β

(
1− σ
σ

)
Etgt+1, [A.12.9]

which can be substituted into [A.12.8] to obtain:

zt = ζEtzt+1. [A.12.10]

This equation characterizes the whole class of solutions for zt.
First, if ζ = 0, equation [A.12.10] implies zt = 0. Now consider the general case ζ 6= 0. Make the

definition υt ≡ zt − Et−1zt (so that υt is the unpredictable component of zt) and divide both sides of
equation [A.12.10] by ζ to deduce:

zt = ζ−1zt−1 + υt. [A.12.11]

Make one further definition Υt ≡ dt −Et−1Υt (so that Υt is the unpredictable component of the debt ratio
dt). Substituting this definition of Υt into [A.12.7] and rearranging to obtain an expression for dt:

dt = λdt−1 + χ(2ft−1 + Et−1ft) + zt−1 + Υt. [A.12.12]

Equation [A.12.12] characterizes the general solution for the debt ratio dt up to two degrees of freedom:
any stochastic process zt satisfying equation [A.12.10], and any stochastic process Υt satisfying Et−1Υt = 0
(in other words, any martingale difference sequence). For zt, it has been seen that either zt = 0 in the
case ζ = 0, or that zt satisfies [A.12.11] for ζ 6= 0. In the latter case, a solution for zt can be generated
by any stochastic process υt satisfying Et−1υt = 0 (any martingale difference sequence). However, since
|ζ| < 1 and υt must be uncorrelated with zt−1, equation [A.12.11] implies that |zt| → ∞ as t→∞ for any
υt process, with the exception of υt = 0. As Υt must be uncorrelated with dt−1 and zt−1, if |zt| → ∞ then
|dt| → ∞ as well. Therefore, the only set of solutions for dt consistent with the economy remaining on the
stable manifold are those with υt = 0, and hence zt = 0. From equation [A.12.12], the class of solutions is
then reduced to that given in equation [4.2].

Since the stochastic process ft is bounded and as |λ| < 1, it can be seen from equation [4.2] that any
bounded martingale difference sequence Υt is consistent with the economy remaining on the stable manifold.
The model places no further restrictions on Υt. This confirms the general class of solutions is that given
in equation [4.2]. Since any choice of Υt must satisfy Et−1Υt = 0, by taking expectations of [4.2], the
requirement that the economy remain on the stable saddlepath uniquely determines the expected future
debt ratio:

Etdt+1 = λdt + χ (2ft + Etft+1) . [A.12.13]

Finally, note that the formulas for χ, λ, and ζ given in [A.4.1a], [A.4.1e], and [A.4.1f], the bounds on these
coefficients, and the fact that all are increasing in the ratio γ/σ, are confirmed by the results of Lemma 2.

Starting with the equilibrium loans to GDP ratio, substitute the expression in [A.12.13] for the expected
future debt ratio Etdt+1 into equation [A.12.2b]:(

1 +
βγ

σ

)
lt =

(
1− γ

σ

)
(λdt + χ (2ft + Etft+1))−

γ

σ
dt −

(
1− σ
σ

)
Etgt+1.
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Use equation [A.12.9] to eliminate the term involving Etgt+1 in the above, and then collect similar terms
to obtain:(

1 +
βγ

σ

)
lt = −

(γ
σ
−
(

1− γ
σ

)
λ
)
dt − β−1Et

[(
1 + 2β

(γ
σ
− 1
)
χ
)
ft −

(
ζ− β

(γ
σ
− 1
)
χ
)
ft+1

]
.

[A.12.14]

Lemma 2 gives expressions in [A.7.12a] and [A.7.12c] for χ and ζ, from which it can be seen that ζ =
β(γ/σ− 1)χ. Substituting for ζ in [A.12.14] yields the equation:(

1 +
βγ

σ

)
lt = −β−1

(
β
(γ
σ
−
(

1− γ
σ

)
λ
))

dt − β−1(1 + 2ζ)ft. [A.12.15]

By making the following definitions:

φ ≡ β
(
γ
σ −

(
1− γ

σ

)
λ
)

1 + βγ
σ

, and κ ≡ 1 + 2ζ

1 + βγ
σ

, [A.12.16]

it can be seen that [A.12.15] implies the equation for the loan ratio lt given in [4.3a].
Explicit expressions for φ and κ are now derived to find the properties of these coefficients. Using the

first expression for λ given in [A.7.12b], it follows that:

βγ

σ
− β

(
1− γ

σ

)
λ =

1

2

(1 + 2β) +

(
1 +

βγ

σ

)
−

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
) . [A.12.17]

Note that this expression is equivalent to:

β
(γ
σ
−
(

1− γ
σ

)
λ
)

=

1
2

((
(1 + 2β) +

(
1 + βγ

σ

))2
−
(

(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)))
(1 + 2β) +

(
1 + βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ,

where this formula has been obtained by multiplying and dividing [A.12.18] by the term appearing the
denominator. By expanding the brackets in the numerator, the formula can be simplified to:

β
(γ
σ
−
(

1− γ
σ

)
λ
)

=
2β
(
1 + γ

σ

) (
1 + βγ

σ

)
(1 + 2β) +

(
1 + βγ

σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) .
Substituting this into the definition of φ from [A.12.16] yields the expression for φ in [A.4.1c].

Using the formulas for χ and φ from [A.4.1a] and [A.4.1c] it can be seen these are related as follows:

φ−1 =
χ−1 + βγ

σ

β
(
1 + γ

σ

) ,
from which it follows that:

φ =
βχ+ βγχ

σ

1 + βγχ
σ

, and 1− φ =
1− βχ
1 + βγχ

σ

.

Since χ > 0, the first formula demonstrates that φ is positive. It has been shown that χ is increasing in
the ratio γ/σ, and so the second formula shows that φ is also increasing in γ/σ, but always satisfies φ < 1
given that χ < 1.

Turning to the coefficient κ, the first expression for ζ in [A.7.12c] can be used to deduce that

1 + 2ζ =

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)
− (1 + 2β)

1− βγ
σ

. [A.12.18]
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This expression is equivalent to

1 + 2ζ =

(
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2))
− (1 + 2β)2

(
1− βγ

σ

)(
(1 + 2β) +

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)) ,
which has been obtained by multiplying and dividing [A.12.18] by the second term in parentheses in the
denominator above. Expanding the brackets and simplifying leads to:

1 + 2ζ =
3
(

1 + βγ
σ

)
(1 + 2β) +

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ,
noting that the term (1−βγ/σ) in the denominator cancels out. Substituting into the definition of κ from
[A.12.16] yields the expression for κ given in equation [A.4.1b]. From this formula it follows immediately
that κ is strictly positive and increasing in the ratio γ/σ.

The next variable to consider is the real interest rate ρt. Substituting the solution [A.12.13] for Etdt+1

and the solution [4.3a] for lt into equation [A.12.1] yields:

ρt = (λdt + χ (2ft + Etft+1)) +
(
β−1φdt + β−1κft

)
+ Etgt+1.

Grouping similar terms in the above equation leads to:

ρt =
1

σ
Etgt+1 +

(
λ+ β−1φ

)
dt + β−1

(
(2βχ+ κ)ft + βχEtft+1 − β

(
1− σ
σ

)
Etgt+1

)
. [A.12.19]

Substituting the original definition of φ from [A.12.16] implies:

λ+ β−1φ =
γ

σ
ϑ, where ϑ ≡ 1 + (1 + β)λ

1 + βγ
σ

. [A.12.20]

Substituting the equation above into [A.12.19] and using [A.12.9] to write β(1− σ)/σEtgt+1 in terms of ft
and Etft+1:

ρt =
1

σ
Etgt+1 +

γ

σ
ϑdt + β−1 ((2βχ+ κ − 1)ft + (βχ+ ζ)Etft+1) .

Now noting that [A.4.1a] and [A.4.1f] imply that ζ = β(γ/σ− 1)χ, the equation above can be written as:

ρt =
1

σ
Etgt+1 +

γ

σ
ϑdt +

(
β−1(2βχ+ κ − 1)ft +

γ

σ
χEtft+1

)
. [A.12.21]

Using the original definition of κ from [A.12.16]:

2βχ+ κ − 1 = χ

(
2β+

(
2ζ− βγσ

)
χ−1

1 + βγ
σ

)
= β

γ

σ
χ

(
2(1 + β)− χ−1

1 + βγ
σ

)
, [A.12.22]

where the second equality follows by substituting ζ = β(γ/σ − 1)χ. The expression for χ from [A.4.1a]
implies that

2(1 + β)− χ−1 = (1 + β) +
1

2

βγ

σ
− 1

2

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)
,

and by making use of the first formula for λ in [A.7.12b] it follows that 2(1+β)−χ−1 = βγ/σ−β(1−γ/σ)λ.
Substituting this result into [A.12.22] implies:

β−1(2βχ+ κ − 1) =
γ

σ
χ

(
β
(
γ
σ −

(
1− γ

σ

)
λ
)

1 + βγ
σ

)
,

and comparison with the original definition of φ in [A.12.16] shows that this allows [A.12.21] to be written
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as:

ρt =
1

σ
Etgt+1 +

γ

σ
ϑdt +

(γ
σ
φχft +

γ

σ
χEtft+1

)
.

Factoring out common terms yields the equation for ρt in [4.3a].
Now consider the coefficient ϑ defined in [A.12.20]. The formula for λ in [A.4.1e] implies that the

numerator of ϑ can be written as:

1 + (1 + β)λ =

(1 + 2β)βγσ +

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)

2(1 + β)− βγ
σ +

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) . [A.12.23]

By expanding the brackets and simplifying it follows that:(1 + 2β)
βγ

σ
−

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)(1 + 2β)

βγ

σ
+

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)

=

(
(1 + 2β)

βγ

σ

)2

−
(

(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
))

= 4(1 + β+ β2)

(
βγ

σ
− 1

)(
1 +

βγ

σ

)
,

and: (1 + 2β)
βγ

σ
−

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)2(1 + β)− βγ

σ
+

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
)

= 2

(
βγ

σ
− 1

)2(1 + β+ β2) + (1− β)
βγ

σ
+ (1 + β)

√√√√(1 + 2β)2 + 3

(
1−

(
βγ

σ

)2
) .

Hence by multiplying numerator and denominator of [A.12.23] by the first bracket appearing in the equa-
tions above, it follows that:

1 + (1 + β)λ =
2(1 + β+ β2)

(
1 + βγ

σ

)
2(1 + β+ β2) + (1− β)βγσ + (1 + β)

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2) ,
where the term (βγ/σ− 1) cancels out. Substituting this expression into [A.12.20] yields the formula for ϑ
in [A.4.1d]. Defining θ = (γ/σ)ϑ and comparing [A.8.26] with [A.12.20] shows that θ = vλ, where vλ is the
slope of the stable saddlepath. It can be seen from [A.4.1d] that ϑ is strictly positive, and since γ/σ > 0,
so it θ. Given the definition [A.12.20], it follows that θ = λ+ β−1φ. Since both λ and φ are increasing in
the ratio γ/σ, this property is also possessed by θ.

Substituting the solution for the loans ratio lt from [4.3a] into the budget identities [4.1a] yields the
expressions for consumption in [4.3b]. Finally, substituting the Fisher equation [4.4] into the definition
of debt liabilities from [4.1a] and using [4.3a] yields the expression for the real return rt in [4.3c]. This
completes the proof.

A.13 Proof of Proposition 6

The system of equations describing the economy with sequentially complete markets is [4.1a]–[4.1b] and
[4.5]. The risk-sharing equation [4.5] implies the following restrictions on the innovations to consumption
and the value functions at time t:

1

σ

(
(c∗o,t − Et−1c∗o,t)− (c∗m,t − Et−1c∗m,t)

)
+

(
α− 1

σ

)(
(v∗o,t − Et−1v∗o,t)− (v∗m,t − Et−1v∗m,t)

)
= 0. [A.13.1]
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Using [4.5], the innovations to the value functions are:

v∗m,t − Et−1v∗m,t =
1

1 + β

(
c∗m,t − Et−1c∗m,t

)
+

β

1 + β

(
Et[c

∗
o,t+1 + gt+1]− Et−1[c∗o,t+1 + gt+1]

)
,

[A.13.2a]

v∗o,t − Et−1v∗o,t = c∗o,t − Et−1c∗o,t. [A.13.2b]

Subtracting equation [A.13.2a] from [A.13.2b]:

(v∗o,t − Et−1v∗o,t)− (v∗m,t − Et−1v∗m,t) = (c∗o,t − Et−1c∗o,t)− (c∗m,t − Et−1c∗m,t)

− β

1 + β

(
(Etc

∗
o,t+1 − Et−1c∗o,t+1)− (c∗m,t − Et−1c∗m,t) + (Etgt+1 − Et−1gt+1)

)
,

then substituting this into [A.13.1] and dividing both sides by α:

β

1 + β

(
1− 1

ασ

)(
(Etc

∗
o,t+1 − Et−1c∗o,t+1)− (c∗m,t − Et−1c∗m,t) + (Etgt+1 − Et−1gt+1)

)
= (c∗o,t − Et−1c∗o,t) − (c∗m,t − Et−1c∗m,t). [A.13.3]

Since equation [4.3b] holds for c∗m,t and c∗o,t with a debt ratio d∗t , the innovations to these consumption
levels are given by:

c∗m,t − Et−1c∗m,t = −γ ((1− φ)Υ∗t − κ(ft − Et−1ft)) , and c∗o,t − Et−1c∗o,t = γΥ∗t , [A.13.4]

where Υ∗t = d∗t − Et−1d∗t . It also follows from [4.3b] that

Etc
∗
o,t+1 − Et−1c∗o,t+1 = γ(Etd

∗
t+1 − Et−1d∗t+1),

and since d∗t must satisfy [4.2] for Υ∗t = d∗t − Et−1d∗t :
Etc
∗
o,t+1 − Et−1c∗o,t+1 = γ (λΥ∗t + 2χ(ft − Et−1ft) + χ(Etft+1 − Et−1ft+1)) . [A.13.5]

Now substituting [A.13.4] and [A.13.5] into [A.13.3] and dividing both sides by γ yields:

β

1 + β

(
ασ− 1

ασ

)(
(1− φ+ λ)Υ∗t + (2χ− κ)(ft − Et−1ft) + χ(Etft+1 − Et−1ft+1) +

1

γ
(Etgt+1 − Et−1gt+1)

)
= (2 − φ)Υ∗t − κ(ft − Et−1ft).

By rearranging this equation, collecting terms in Υ∗t on one side:(
2− φ− β

1 + β

(ασ− 1)

ασ
(1− φ+ λ)

)
Υ∗t =

(
κ +

β

1 + β

(ασ− 1)

ασ
(2χ− κ)

)
(ft − Et−1ft)

+
β

1 + β

(ασ− 1)

ασ
χ(Etft+1 − Et−1ft+1) +

1

γ

β

1 + β

(ασ− 1)

ασ
(Etgt+1 − Et−1gt+1). [A.13.6]

The term κ appearing in the coefficient of ft − Et−1ft in [A.13.6] can be eliminated as follows. The
proof of Proposition 5 defines φ in equation [A.12.16], which implies that:

2− φ =
2 + βγ

σ + β
(
1− γ

σ

)
λ

1 + βγ
σ

,

and hence:

(2− φ)χ =
2β
(
γ
σ − 1

)
χ+

(
2(1 + β)− βγ

σ + β
(
1− γ

σ

)
λ
)
χ

1 + βγ
σ

. [A.13.7]

By using the formulas for χ and λ given in [A.7.12a] and [A.7.12b] of Lemma 2 it follows that:

2(1 + β)− βγ
σ

+ β
(

1− γ
σ

)
λ =

(1 + 2β) +
(

1− βγ
σ

)
+

√
(1 + 2β)2 + 3

(
1−

(
βγ
σ

)2)
2

= χ−1,

and comparison of the expressions for χ and ζ in [A.7.12a] and [A.7.12c] demonstrates that ζ = β(γ/σ−1)χ.
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Substituting this and the equation above into [A.13.7] leads to:

(2− φ)χ =
1 + 2ζ

1 + βγ
σ

.

The coefficient κ is defined in [A.12.16] in the proof of Proposition 5. Comparison with the equation above
shows that κ = (2− φ)χ, which can be substituted into [A.13.6] to obtain:(

2− φ− β

1 + β

(ασ− 1)

ασ
(1− φ+ λ)

)
Υ∗t = χ

(
2− φ+

β

1 + β

(ασ− 1)

ασ
φ

)
(ft − Et−1ft)

+ χ
β

1 + β

(ασ− 1)

ασ
(Etft+1 − Et−1ft+1) +

1

γ

β

1 + β

(ασ− 1)

ασ
(Etgt+1 − Et−1gt+1). [A.13.8]

Before using [A.13.8] to solve for Υ∗t , it must be verified that the coefficient of Υ∗t is non-zero. To do
this, use the definition of φ from [A.12.16] to note that:

2φ− 1 =

(
βγ
σ − 1

)
− 2β

(
1− γ

σ

)
λ

1 + βγ
σ

.

Comparison of [A.7.12a] and [A.7.12b] shows that λ = (βγ/σ− 1)χ, and hence:

2φ− 1 =

(
βγ

σ
− 1

)(
1 + 2β

(
γ
σ − 1

)
χ

1 + βγ
σ

)
=

(
βγ

σ
− 1

)(
1 + 2ζ

1 + βγ
σ

)
,

where the second equality follows from a comparison of the expressions for χ and ζ in [A.7.12a] and [A.7.12c].
The definition of κ in [A.12.16] then establishes that 2φ−1 = (βγ/σ−1)κ. Together with λ = (βγ/σ−1)χ,
this means that:

1− φ+ λ =
1

2

(
1 + (2χ− κ)

(
βγ

σ
− 1

))
=

1

2

(
1 + χφ

(
βγ

σ
− 1

))
,

with the latter using (2−φ)χ = κ. Since 0 < χ < 1 and 0 < φ < 1 according to Proposition 5, this proves
that 1− φ+ λ > 0. Given that α > 0, σ > 0, and 0 < β < 1:

−∞ <
β

1 + β

(ασ− 1)

ασ
< 1,

so when combined with 0 < φ < 1, 1− φ+ λ > 0 and λ < 1, it follows that for all parameters:

2− φ− β

1 + β

(ασ− 1)

ασ
(1− φ+ λ) > 0.

Dividing both sides of [A.13.8] by the coefficient of Υ∗t then leads to [4.6].
Since EtΥt+1 = 0 and EtΥ

∗
t+1 = 0, taking conditional expectations of equation [4.2] with dt and with

d∗t implies:

Etdt+1 = λdt + χ(2ft + Etft+1), and Etd
∗
t+1 = λd∗t + χ(2ft + Etft+1).

Subtracting these two equations and using the definition of d̃t ≡ dt − d∗t leads to equation [4.7a]. Similarly
subtracting the equations in [4.3a] and [4.3b] in the complete-markets case from their incomplete-markets
equivalents implies those in [4.7b]. Finally, the expression for inflation in [4.7c] is obtained by using the
Fisher equation [4.4] in conjunction with equation [4.3c] for the real return in both the incomplete-markets
and complete-markets cases. This completes the proof.

A.14 Proof of Proposition 7

Now suppose the stochastic process for real GDP is that given in [4.10]. If monetary policy achieves the
target Pt +$∗Yt = 0 then:

πt + gt = (1−$∗)gt.
Since Mt −Mt−1 = πt + gt and gt − Et−1gt = Yt − Et−1Yt, it follows that:

Mt − Et−1Mt = (1−$∗)(Yt − Et−1Yt).
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Given [4.8], this means dt − Et−1dt = ($∗ − 1)(Yt − Et−1Yt), and therefore d̃t − Et−1d̃t = 0 using [4.11].
That implies d̃t = 0 given [4.7a]. This completes the proof.

A.15 Proof of Proposition 8

Suppose the nominal interest rate is set so that [4.12] holds for some ψ ≥ 0. Any equilibrium must feature
an inflation rate satisfying equation [4.7c]. Taking time-t conditional expectations of this equation at time
t+ 1 implies:

Etπt+1 = it − (λ+ β−1φ)d̃t − ρ∗t , [A.15.1]

where ρ∗t = Etr
∗
t according to the definition in [4.1a], and where equation [4.7a] has been used to replace

the term in Etd̃t+1. The proof of Proposition 5 demonstrates that the coefficient of d̃t in the equation above
is θ = λ+β−1φ, which is a strictly positive number. Substituting the interest-rate rule [4.12] into [A.15.1]
yields:

Etπt+1 = ψ(Mt −M∗t )− Etgt+1 − Etd∗t+1 + d∗t − θd̃t,
where the target for nominal GDP is M∗t = −d∗t . Moving the terms in GDP growth and the natural debt-
to-GDP ratio to the left-hand side and using the definition of target nominal GDP to replace terms in d∗t
with −M∗t :

Et[πt+1 + gt+1]− (M∗t+1 −M∗t ) = ψ(Mt −M∗t )− θd̃t.
The definition of nominal GDP Mt = Pt + Yt implies πt+1 + gt+1 = Mt+1 −Mt. Now define M̃t ≡ Mt −M∗t
to be the gap between actual nominal GDP and the central bank’s target for nominal GDP. Substituting
these definitions into the equation above yields:

EtM̃t+1 = (1 +ψ)M̃t − θd̃t. [A.15.2]

Since this equation must hold for all t, by applying the law of iterated expectations it follows that EtM̃t+2 =
(1 +ψ)EtM̃t+1 − θEtd̃t+1. Substituting equation [A.15.2] and iterating for ` periods leads to:

EtM̃t+` = (1 +ψ)`M̃t − θ
(

(1 +ψ)`−1d̃t + (1 +ψ)`−2Etd̃t+1 + · · ·+ (1 +ψ)Etd̃t+`−2 + Etd̃t+`−1

)
.

Using [4.7a] to note that Etd̃t+` = λ`d̃t, this equation can be written as:

EtM̃t+` = (1 +ψ)`M̃t − θ(1 +ψ)`−1

(
1 +

λ

1 +ψ
+ · · ·+

(
λ

1 +ψ

)`−2
+

(
λ

1 +ψ

)`−1)
d̃t,

and by summing the geometric series and simplifying this becomes:

EtM̃t+` = (1 +ψ)`M̃t −
(

θ

1− λ+ψ

)(
(1 +ψ)` − λ`

)
d̃t,

where this formula is well defined since −1 < λ < 1 and ψ ≥ 0. After collecting terms, the expression for
EtM̃t+` can be written as follows:

EtM̃t+` = λ`
(

θ

1− λ+ψ
d̃t

)
+ (1 +ψ)`

(
M̃t −

θ

1− λ+ψ
d̃t

)
. [A.15.3]

Next, note that the choice of nominal GDP target M∗t = −d∗t implies that d∗t−Et−1d∗t = −(M∗t−Et−1M∗t ),
which can be combined with equation [4.8] and the definitions of M̃t and d̃t to deduce:

d̃t − Et−1d̃t = −(M̃t − Et−1M̃t). [A.15.4]

First consider the case where ψ > 0. Since |λ| < 1, for any d̃t:

lim
`→∞

λ`
(

θ

1− λ+ψ
d̃t

)
= 0.

Therefore, using equation [A.15.3], |EtM̃t+`| → ∞ as `→∞ unless the following condition holds:

M̃t −
θ

1− λ+ψ
d̃t = 0. [A.15.5]
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From this equation it follows that:

M̃t − Et−1M̃ =
θ

1− λ+ψ
(d̃t − Et−1d̃t), and hence

(
1 +

θ

1− λ+ψ

)
(d̃t − Et−1d̃t) = 0,

where the second equation is derived by combining the first with [A.15.4]. Since the coefficient of d̃t−Et−1d̃t
in the second equation is positive, it follows that d̃t = Et−1d̃t. Together with equation [4.7a], the only
solution must be d̃t = 0 for all t. Equation [A.15.5] then implies M̃t = 0 for all t is the unique solution.

Now consider the case of ψ = 0. Conjecture that there is a solution with M̃t − Et−1M̃t = υt, for
some martingale difference sequence υt (Et−1υt = 0). Since υt is the forecast error for M̃t, it follows that
EtM̃t+1 = M̃t+1 − υt+1. Substituting the definition of υt into [A.15.4] also shows that d̃t − Et−1d̃t = −υt.
Finally, substituting these results into equations [4.7a] and [A.15.5] shows that a solution is:

d̃t = λd̃t−1 − υt, and M̃t = M̃t−1 − θd̃t−1 + υt. [A.15.6]

There exist non-zero martingale difference sequences {υt} where d̃t 6= 0 such that M̃t remains bounded.
Therefore, there are multiple equilibria. This completes the proof.

A.16 Proof of Proposition 9

The target criterion is d̃t = 0, which it is feasible to achieve with one instrument of monetary policy. The
required state-contingent inflation rate is given in [4.7c]:

πt = it−1 − r∗t . [A.16.1]

Taking a conditional expectation of this equation implies it = ρ∗t + Etπt+1, where ρ∗t = Etr
∗
t+1. Let

et ≡ Etπt+1 denote current expectations of inflation one period ahead. This leads to the nominal interest
rate equation it = ρ∗t + et from [4.13]. Substituting this into [A.16.1] yields the inflation equation in [4.13].
Thus, all the equations of the model are satisfied with no restrictions placed on the stochastic process for
et other that it is known at time t. This completes the proof.

A.17 Proof of Proposition 10

With inflation πt = 0, the definition of nominal GDP implies Mt −Mt−1 = gt. The unexpected change in
nominal GDP is therefore:

Mt − Et−1Mt = gt − Et−1gt,
and hence using [4.8] it follows that Υt = dt −Et−1dt = −(Yt −Et−1Yt). Since d̃t = λd̃t−1 + (Υt −Υ∗t ) and
Υ∗t = d∗t − Et−1d∗t , the law of motion for d̃t in [4.14] is obtained. The definition of the real interest rate
ρt in [2.14b] and the Fisher equation [4.4] imply that it = ρ∗t + ρ̃t + Etπt+1. Since Etπt+1 = 0 and [4.7b]
implies ρ̃t = θd̃t, the expression for the nominal interest rate is obtained.

Now suppose [4.10] is the stochastic process for real GDP, but the policymaker pursues target Pt+$Yt =
0 with $ 6= $∗. This implies that πt = −$gt and hence:

Mt − Et−1Mt = (1−$)(Yt − Et−1Yt).
Using [4.8] and [4.11]:

dt − Et−1dt = ($∗ − 1)(Yt − Et−1Yt)− ($∗ −$)(Yt − Et−1Yt) = Υ∗t − ($∗ −$)(Yt − Et−1Yt).
Hence, Υt −Υ∗t = −($∗t −$)(Yt −Et−1Yt), and when combined with d̃t = λd̃t−1 + (Υt −Υ∗t ) this leads to
[4.15]. Substituting equation [4.15] into the expressions for l̃t and ρ̃t from [4.7b] implies the other equations
in [4.15], completing the proof.

A.18 Proof of Proposition 11

With monetary policy Mt = Mt−1 + εt, the innovation to nominal GDP is Mt − Et−1Mt = εt, and hence
using [4.8]:

dt − Et−1dt = −εt.
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Since d̃t = λd̃t−1 + (Υt − Υ∗t ), this leads to the expression for d̃t in [4.16]. The definition of nominal GDP
directly implies the expression for inflation in [4.16]. With Etπt+1 = −Etgt+1, and it = ρ∗+ ρ̃t+Etπt+1, the
expression for it is obtained using [4.7b]. The effects on the real return, real interest rate, and loans-to-GDP
ratio follow from Proposition 6. This completes the proof.

A.19 Proof of Proposition 12

The ex-post real return r†t is such that 1 + r†t = (1 + i†t)/(1 + πt). Using equation [4.17]:

1 + r†t =
1 + it−1

(1 + πt)µ(1 + Et−1πt)1−µ
.

Log-linearizing this equation leads to r†t = it−1 − µπt − (1− µ)Et−1πt. Substituting into [4.3c] implies:

µπt + (1− µ)Et−1πt = it−1 − dt − β−1φdt−1 − β−1κft−1 − gt. [A.19.1]

Combining this with the equivalent of equation [4.3c] in the case of complete markets implies equation
[4.18], which replaces [4.7c]. Equating the unexpected components of both sides of [A.19.1] and using
πt − Et−1πt = Pt − Et−1Pt and gt − Et−1gt = Yt − Et−1Yt implies:

dt − Et−1dt = −µ(Pt − Et−1Pt)− (Yt − Et−1Yt).
Dividing both sides by µ then leads to [4.19], noting the definition of $† = 1/µ. This completes the proof.

A.20 Proof of Proposition 13

The social welfare function is [3.3] using Pareto weights Ω̂∗t for the sequentially complete markets equilibrium
with output equal to its flexible-price level Ŷt at all times. The scaled Pareto weights ω̂∗t and corresponding
scaled Lagrangian multipliers ϕ̂∗t are constructed as in [3.6]. All these variables are independent of monetary
policy because Ŷt is independent of monetary policy, and conditional on real GDP, the complete-markets
equilibrium is independent of policy.

Using the definitions in [3.6], the first-order conditions [3.5] of the social planner’s problem can be
written in terms of ω̂∗t and ϕ̂∗t as follows:

ω̂∗t = ϕ̂∗t ĉ
∗

1
σ
y,t, ω̂∗t =

(β/δ)ϕ̂∗t+1ĉ
∗

1
σ
m,t+1

(1 + ĝt+1)
1− 1

σ

{
(1 + ĝt+1)v̂

∗
m,t+1

Et[(1 + ĝt+1)1−αv̂∗
1−α
m,t+1]

1
1−α

}α− 1
σ

, and

ω̂∗t =
(β/δ)2ϕ̂∗t+2ĉ

∗
1
σ
o,t+2

((1 + ĝt+1)(1 + ĝt+2))
1− 1

σ

{
(1 + ĝt+2)v̂

∗
o,t+2

Et+1[(1 + ĝt+2)1−αv̂∗
1−α
o,t+2]

1
1−α

(1 + ĝt+1)v̂
∗
m,t+1

Et[(1 + ĝt+1)1−αv̂∗
1−α
m,t+1]

1
1−α

}α− 1
σ

.

[A.20.1]

Using [3.7], it can be seen that ϕ̂∗t has steady-state value ϕ̄ = 1 and ω̂∗t has steady-state value ω̄ = 1.

Now let ut ≡ Ut/Y
1− 1

σ
t denote the scaled utility level defined in [3.6]. The utility function [2.1] implies

that ut can be written in terms of vy,t ≡ Vy,t/Yt:

ut =
v
1− 1

σ
y,t

1− 1
σ

, where vy,t =

(
c
1− 1

σ
y,t + δ

{
Et

[
(1 + gt+1)

1−αv1−αm,t+1

] 1
1−α
}1− 1

σ

) 1

1− 1
σ

, [A.20.2]

and where vm,t and vo,t are determined by the equations in [2.14e]. Given that the steady state is such

that c̄y = c̄m = c̄o = 1, equations [2.14e] and [A.20.2] imply that v̄
1−1/σ
y = 1 + β+ β2, v̄

1−1/σ
m = 1 + β, and

v̄
1−1/σ
o = 1, and hence the scaled utility value has a well-defined steady state ū = (1 + β+ β2)/(1− 1/σ).

Flexible-price output is Ŷt = At, and hence the relative-price distortions term Ψt from [5.8] is such that
Ŷt/Yt = Ψt since Ψ̂t = 1. Using the definitions of ω̂∗t and ut from [3.6], the social welfare function from [3.3]
can be written as:

Wt0 =
1

3

∞∑
t=t0−2

βt−t0Et0−2

[
ω̂∗t Ψ

−(1− 1
σ)

t ut

]
. [A.20.3]
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Taking a second-order accurate approximation of the relative-price distortions term Ψt from [5.9b] yields:

Ψt =
εκ

2
p̌2t + O3, [A.20.4]

where O3 denotes third- and higher-order terms in deviations from the steady state. Since [5.10] implies
that p̌t = −(πt − Et−1πt) + O2, substituting this into [A.20.4] yields:

Ψt =
εκ

2
(πt − Et−1πt)2 + O3. [A.20.5a]

The absence of first-order terms from this equation demonstrates that:

Ψt = O2. [A.20.5b]

Taking a second-order accurate approximation of the time-t terms in [A.20.3]:

ω̂∗t Ψ
−(1− 1

σ)
t ut = ū+ (ut − ū) + ū

(
ω̂∗t +

1

2
ω̂∗

2
t −

(
1− 1

σ

)(
Ψt −

1

2

(
1− 1

σ

)
Ψ2
t + ω̂∗tΨt

))
+

(
ω̂∗t −

(
1− 1

σ

)
Ψt

)
(ut − ū) + O3.

Since the weights ω̂∗t are independent of monetary policy, and since [A.20.5b] shows that Ψt is a second-order
term, it follows that these terms can be reduced to:

ω̂∗t Ψ
−(1− 1

σ)
t ut = (ut − ū)− (1 + β+ β2)Ψt + ω̂∗t (ut − ū) + I + O3, [A.20.6]

using the formula for ū and noting that this constant is independent of policy (such terms being denoted
by I ).

To find an approximation for the utility deviation ut − ū, write the equations [2.14e] and [A.20.2] for
the continuation values vy,t and vm,t as:

v
1− 1

σ
y,t = c

1− 1
σ

y,t + δz
1− 1

σ
m,t , where z1−αm,t = Et

[
(1 + gt+1)

1−αv1−αm,t+1

]
, and [A.20.7a]

v
1− 1

σ
m,t = c

1− 1
σ

m,t + δz
1− 1

σ
o,t , where z1−αo,t = Et

[
(1 + gt+1)

1−αv1−αo,t+1

]
. [A.20.7b]

From equations [A.20.2] and [A.20.7a] it follows that ut = (c
1− 1

σ
y,t + δz

1− 1
σ

m,t )/(1− 1/σ), which can be approx-
imated as follows:

ut − ū = cy,t +
1

2

(
1− 1

σ

)
c2y,t + β(1 + β)

(
zm,t +

1

2

(
1− 1

σ

)
z2m,t

)
+ O3. [A.20.8]

First- and second-order accurate approximations of the equation for zm,t in [A.20.7a] are:

zm,t = Et[vm,t+1+gt+1]+O2, zm,t+
1

2
(1−α)z2m,t = Et[vm,t+1+gt+1]+

1

2
(1−α)Et

[
(vm,t+1 + gt+1)

2
]
+O3.

The second-order approximation can be rearranged as follows:

zm,t +
1

2

(
1− 1

σ

)
z2m,t = Et[vm,t+1 + gt+1] +

1

2

(
1− 1

σ

)
Et
[
(vm,t+1 + gt+1)

2
]

+
1

2

(
1

σ
− α

)(
Et
[
(vm,t+1 + gt+1)

2
]
− z2m,t

)
+ O3,

and hence by combining it with the first-order approximation equation:

zm,t +
1

2

(
1− 1

σ

)
z2m,t = Et[vm,t+1 + gt+1] +

1

2

(
1− 1

σ

)
Et
[
(vm,t+1 + gt+1)

2
]

+
1

2

(
1

σ
− α

)
Et

[
((vm,t+1 + gt+1)− Et[vm,t+1 + gt+1])

2
]

+ O3. [A.20.9]

Next, considering the value function equation for vm,t from [A.20.7b], a first-order accurate approxima-
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tion is:

vm,t =
1

1 + β
cm,t +

β

1 + β
zo,t + O2, [A.20.10a]

and a second-order accurate approximation is:

vm,t+
1

2

(
1− 1

σ

)
v2m,t =

1

1 + β

(
cm,t +

1

2

(
1− 1

σ

)
c2m,t

)
+

β

1 + β

(
zo,t +

1

2

(
1− 1

σ

)
z2o,t

)
+O3. [A.20.10b]

Using equations [A.20.10a] and [A.20.10b] it follows that:

(vm,t+1+gt+1)+
1

2

(
1− 1

σ

)
(vm,t+1+gt+1)

2 =
1

1 + β

(
(cm,t+1 + gt+1) +

1

2

(
1− 1

σ

)
(cm,t+1 + gt+1)

2

)
+

β

1 + β

(
(zo,t+1 + gt+1) +

1

2

(
1− 1

σ

)
(zo,t+1 + gt+1)

2

)
+ O3. [A.20.11]

Using the same method that led to the approximation [A.20.9] for zm,t, the equation in [A.20.7b] for
zo,t can be approximated as follows:

zo,t = Et[co,t+1+gt+1]+O2, zo,t+
1

2

(
1− 1

σ

)
z2o,t = Et[co,t+1+gt+1]+

1

2

(
1− 1

σ

)
Et
[
(co,t+1 + gt+1)

2
]

+
1

2

(
1

σ
− α

)
Et

[
((co,t+1 + gt+1)− Et[co,t+1 + gt+1])

2
]

+ O3,

noting that vo,t = co,t according to [2.14e]. These approximations can be used to deduce that:

(zo,t+1 + gt+1) +
1

2

(
1− 1

σ

)
(zo,t+1 + gt+1)

2 =
1

2

(
1− 1

σ

)
Et+1

[
(co,t+2 + gt+1 + gt+2)

2
]

+ Et+1[co,t+2 + gt+1 + gt+2] +
1

2

(
1

σ
− α

)
Et+1

[
((co,t+2 + gt+2)− Et+1[co,t+2 + gt+2])

2
]

+ O3.

[A.20.12]

Substituting equation [A.20.12] into [A.20.11] yields:

(1 + β)Et[vm,t+1 + gt+1] = Et[cm,t+1 + gt+1] + βEt[co,t+2 + gt+1 + gt+2] + O2, and [A.20.13a]

(1 + β)

(
Et[vm,t+1 + gt+1] +

1

2

(
1− 1

σ

)
Et
[
(vm,t+1 + gt+1)

2
])

= Et[cm,t+1 + gt+1]

+βEt[co,t+2 + gt+1 + gt+2] +
1

2

(
1− 1

σ

)(
Et
[
(cm,t+1 + gt+1)

2
]

+ Et
[
(co,t+2 + gt+1 + gt+2)

2
])

+
1

2

(
1

σ
− α

)
Et+1

[
((co,t+2 + gt+2)− Et+1[co,t+2 + gt+2])

2
]

+ O3. [A.20.13b]

To complete the approximation of the utility deviation ut−ū, substitute equations [A.20.13a] and [A.20.13b]
into [A.20.9] and then into [A.20.8] to obtain a second-order accurate approximation:

ut − ū = cy,t + βEt[cm,t+1 + gt+1] + β2Et[co,t+2 + gt+1 + gt+2]

+
1

2

(
1− 1

σ

)(
c2y,t + βEt[(cm,t+1 + gt+1)

2] + β2Et[(co,t+2 + gt+1 + gt+2)
2]
)

+
1

2

(
1

σ
− α

)
β

1 + β
Et

[(
((cm,t+1 + gt+1)− Et[cm,t+1 + gt+1])

+ β (Et+1[co,t+2 + gt+1 + gt+2]− Et[co,t+2 + gt+1 + gt+2])

)2
]

+
1

2

(
1

σ
− α

)
β2Et

[
((co,t+2 + gt+2)− Et+1[co,t+2 + gt+2])

2
]

+ O3, [A.20.14]

from which it can be seen that a first-order accurate approximation of the utility deviation is:

ut − ū = cy,t + βEt[cm,t+1 + gt+1] + β2Et[co,t+2 + gt+1 + gt+2] + O2. [A.20.15]
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Given the definitions of cy,t, cm,t, co,t, gt, and Ψt and the steady-state values c̄y = c̄m = c̄o = 1, ḡ = 0,
and Ψ̄ = 1, the log deviations of these variables can be written in terms of log differences of consumption
and output levels:

cy,t = Cy,t−Yt, cm,t = Cm,t−Yt, co,t = Co,t−Yt, gt = Yt−Yt−1, and Ψt = Ŷt−Yt. [A.20.16]

Thus, the terms in the first-order approximation [A.20.15] of the utility function are exactly equal to:

cy,t+βEt[cm,t+1+gt+1]+β
2Et[co,t+2+gt+1+gt+2] = Cy,t+βEtCm,t+1+β2EtCo,t+2−(1+β+β2)Yt. [A.20.17]

Since Ψt = O2 according to [A.20.5b], it follows that ĝt+1 − gt+1 = Ψt+1 − Ψt = O2 and ĝt+2 − gt+2 =
Ψt+2 − Ψt+1 = O2. Thus, the terms on the second line of equation [A.20.14] can be written as:

c2y,t + βEt[(cm,t+1 + gt+1)
2] + β2Et[(co,t+2 + gt+1 + gt+2)

2]

= (cy,t − Ψt)2 + βEt[(cm,t+1 + ĝt+1 − Ψt+1)
2] + β2Et[(co,t+2 + ĝt+1 + ĝt+2 − Ψt+2)

2] + O3

= C2
y,t + βEtC

2
m,t+1 + β2EtC

2
o,t+2 − 2Ŷt

(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+ (1 + β+ β2)Ŷ2

t + O3

= C2
y,t + βEtC

2
m,t+1 + β2EtC

2
o,t+2 − 2Ŷt

(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+ I + O3, [A.20.18]

where the third line makes use of the identities in [A.20.16] and expands the brackets and the final line
notes that Ŷt is independent of monetary policy. The identities in [A.20.16] can also be used to rewrite the
final two terms appearing in [A.20.14] as follows:

Et

[
(((cm,t+1 + gt+1)− Et[cm,t+1 + gt+1]) + β (Et+1[co,t+2 + gt+1 + gt+2]− Et[co,t+2 + gt+1 + gt+2]))

2
]

= Et

[
((Cm,t+1 − EtCm,t+1) + β(Et+1Co,t+2 − EtCo,t+2))

2
]
, and [A.20.19a]

Et

[
((co,t+2 + gt+2)− Et+1[co,t+2 + gt+2])

2
]

= Et
[
(Co,t+2 − Et+1Co,t+2)

2
]
. [A.20.19b]

The next step is to consider the cross-product between the Pareto weight ω̂∗t and the utility deviation
ut − ū that appears in [A.20.6]. By using equation [A.20.17] and Ψt = O2 and gt − ĝt = O2:

ω̂∗t (ut − ū) = ω̂∗t
(
cy,t + βEt[cm,t+1 + gt+1] + β2Et[co,t+2 + gt+1 + gt+2]

)
+ O3

= ω̂∗t
(
(cy,t − Ψt) + βEt[cm,t+1 + ĝt+1 − Ψt+1] + β2Et[co,t+2 + ĝt+1 + ĝt+2 − Ψt+2]

)
+ O3

= ω̂∗t

(
Cy,t + βEtCm,t+1 + β2EtCo,t+2 − (1 + β+ β2)Ŷt

)
+ O3

= ω̂∗t
(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+ I + O3, [A.20.20]

where the final line uses that Ŷt is independent of monetary policy. Substituting equations [A.20.17],
[A.20.18] and [A.20.19] into [A.20.14], and then substituting this together with [A.20.20] into equation
[A.20.6] yields:

ω̂∗t Ψ
−(1− 1

σ)
t ut =

(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+

1

2

(
1− 1

σ

)(
C2
y,t + βEtC

2
m,t+1 + β2EtC

2
o,t+2

)
−
(

1− 1

σ

)
Ŷt
(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+ ω̂∗t

(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+

1

2

(
1

σ
− α

)(
β

1 + β

)
Et

[
((Cm,t+1 − EtCm,t+1) + β(Et+1Co,t+2 − EtCo,t+2))

2
]

+
1

2

(
1

σ
− α

)
β2Et

[
(Co,t+2 − Et+1Co,t+2)

2
]

+ I + O3. [A.20.21]

To analyse the cross-products between the Pareto-weights and consumption, second-order accurate
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approximations of the equations in [A.20.1] are derived:

ω̂∗t = ϕ̂∗t +
1

σ
ĉ∗y,t,

ω̂∗t = ϕ̂∗t+1 −
(

1− 1

σ

)
ĝt+1 +

1

σ
ĉ∗m,t+1 +

(
α− 1

σ

)(
(v̂∗m,t+1 + ĝt+1)− Et[v̂∗m,t+1 + ĝt+1]

)
+ O2, and

ω̂∗t = ϕ̂∗t+2 −
(

1− 1

σ

)
(ĝt+1 + ĝt+2) +

1

σ
ĉ∗o,t+2 +

(
α− 1

σ

)(
(v̂∗m,t+1 + ĝt+1)− Et[v̂∗m,t+1 + ĝt+1]

)
+

(
α− 1

σ

)(
(v̂∗o,t+2 + ĝt+2)− Et+1[v̂

∗
o,t+2 + ĝt+2]

)
+ O2.

By using equation [A.20.13a] and noting that [2.14e] implies vo,t = co,t, the terms involving the value
functions can be replaced by terms in consumption and growth rates:

ω̂∗t = ϕ̂∗t+1 −
(

1− 1

σ

)
ĝt+1 +

1

σ
ĉ∗m,t+1 +

(
α− 1

σ

)(
1

1 + β

(
(ĉ∗m,t+1 + ĝt+1)− Et[ĉ∗m,t+1 + ĝt+1]

)
+

β

1 + β

(
Et+1[ĉ

∗
o,t+2 + ĝt+1 + ĝt+2]− Et[ĉ∗o,t+2 + ĝt+1 + ĝt+2]

))
+ O2,

and also in the equation:

ω̂∗t = ϕ̂∗t+2−
(

1− 1

σ

)
(ĝt+1+ĝt+2)+

1

σ
ĉ∗o,t+2+

(
α− 1

σ

)(
1

1 + β

(
(ĉ∗m,t+1 + ĝt+1)− Et[ĉ∗m,t+1 + ĝt+1]

)
+

β

1 + β

(
Et+1[ĉ

∗
o,t+2 + ĝt+1 + ĝt+2]− Et[ĉ∗o,t+2 + ĝt+1 + ĝt+2]

))
+

(
α− 1

σ

)(
(ĉ∗o,t+2 + ĝt+2)− Et+1[ĉ

∗
o,t+2 + ĝt+2]

)
+ O2.

Using the identities in [A.20.16] these equations can be written as:

ω̂∗t = ϕ̂∗t +
1

σ
ĉ∗y,t = ϕ̂∗t+1 −

(
1− 1

σ

)
ĝt+1 +

1

σ
ĉ∗m,t+1 +

(
α− 1

σ

)(
1

1 + β

)(
(Ĉ∗m,t+1 − EtĈ∗m,t+1)

+ β(Et+1Ĉ
∗
o,t+2 − EtĈ∗o,t+2)

)
+ O2 = ϕ̂∗t+2 −

(
1− 1

σ

)
(ĝt+1 + ĝt+2) +

1

σ
ĉ∗o,t+2

+

(
α− 1

σ

)(
1

1 + β

)(
(Ĉ∗m,t+1 − EtĈ∗m,t+1) + β(Et+1Ĉ

∗
o,t+2 − EtĈ∗o,t+2)

)
+

(
α− 1

σ

)
(Ĉ∗o,t+2 − Et+1Ĉ

∗
o,t+2) + O2. [A.20.22]

The identities in [A.20.16] also imply that

Ŷt
(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+ βEt[ĝt+1Cm,t+1] + β2Et[(ĝt+1 + ĝt+2)Co,t+2]

= ŶtCy,t + βEtŶt+1Cm,t+1 + β2EtŶt+2Co,t+2,

and hence by using the equations in [A.20.22] it follows that:

ω̂∗t
(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
−
(

1− 1

σ

)
Ŷt
(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
=
(
ϕ̂∗tCy,t + βEtϕ̂

∗
t+1Cm,t+1 + β2Etϕ̂

∗
t+2Co,t+2

)
+

1

σ

(
ĉ∗y,tCy,t + βEtĉ

∗
m,t+1Cm,t+1 + β2Etĉ

∗
o,t+2Co,t+2

)
−
(

1− 1

σ

)(
ŶtCy,t + βEtŶt+1Cm,t+1 + β2EtŶt+2Co,t+2

)
−
(

1

σ
− α

)
β2Et

[
(Ĉ∗o,t+2 − Et+1Ĉ

∗
o,t+2)Co,t+2

]
−
(

1

σ
− α

)(
β

1 + β

)
Et

[((
Ĉ∗m,t+1 − EtĈ∗m,t+1

)
+ β

(
Et+1Ĉ

∗
o,t+2 − EtĈ∗o,t+2

))
(Cm,t+1 + βCo,t+2)

]
.

[A.20.23]
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Next, note the expression below can be rearranged as follows:

1

2
Et
[
(Co,t+2 − Et+1Co,t+2)

2
]
− Et

[
(Ĉ∗o,t+2 − Et+1Ĉ

∗
o,t+2)Co,t+2

]
=

1

2
Et
[
(Co,t+2 − Et+1Co,t+2)

2
]
− Et

[
(Ĉ∗o,t+2 − Et+1Ĉ

∗
o,t+2) (Co,t+2 − Et+1Co,t+2)

]
=

1

2
Et

[(
(Co,t+2 − Et+1Co,t+2)− (Ĉ∗o,t+2 − Et+1Ĉ

∗
o,t+2)

)2]
+ I

=
1

2
Et

[(
(c̃o,t+2 − (ĉ∗o,t+2 − c∗o,t+2)− Ψt+2)− Et+1[c̃o,t+2 − (ĉ∗o,t+2 − c∗o,t+2)− Ψt+2]

)2]
+ I ,

[A.20.24]

where the final line uses the definition c̃o,t+2 ≡ co,t+2−c∗o,t+2 and the identities in [A.20.16] to observe that:

Co,t+2 − Ĉ∗o,t+2 = (co,t+2 + Yt+2)− (ĉ∗o,t+2 + Ŷt+2) = (co,t+2 − c∗o,t+2)− (ĉ∗o,t+2 − c∗o,t+2)− Ψt+2.

The terms ĉ∗o,t+2 and c∗o,t+2 denote consumption with sequentially complete markets in the cases where

output is Ŷt and Yt respectively. A first-order accurate approximation for these variables is derived in
Proposition 6 and the solution is a linear function of current, past, and expected future values of growth
rates gt (directly, and through ft, which itself depends only on terms in gt in accordance with [4.2]). Thus,
the difference between ĉ∗o,t+2 and c∗o,t+2 is a function of terms in the difference between ĝt and gt up to
second- and higher-order terms. However, since ĝt − gt = Ψt − Ψt−1 = O2, it follows that:

ĉ∗y,t − c∗y,t = O2, ĉ∗m,t − c∗m,t = O2, and ĉ∗o,t − c∗o,t = O2. [A.20.25]

Using these findings and expanding the bracket in the final line of [A.20.24] implies:

1

2
Et
[
(Co,t+2 − Et+1Co,t+2)

2
]
−Et

[
(Ĉ∗o,t+2 − Et+1Ĉ

∗
o,t+2)Co,t+2

]
=

1

2
Et

[
(c̃o,t+2 − Et+1c̃o,t+2)

2
]

+I +O3.

[A.20.26]

An identical method to that used to deduce equation [A.20.26] from [A.20.24] yields:

1

2
Et

[
((Cm,t+1 − EtCm,t+1) + β(Et+1Co,t+2 − EtCo,t+2))

2
]

− Et
[((

Ĉ∗m,t+1 − EtĈ∗m,t+1

)
+ β

(
Et+1Ĉ

∗
o,t+2 − EtĈ∗o,t+2

))
(Cm,t+1 + βCo,t+2)

]
=

1

2
Et

[
((c̃m,t+1 − Etc̃m,t+1) + β(Et+1c̃o,t+2 − Etc̃o,t+2))

2
]

+ I + O3. [A.20.27]

Substituting equation [A.20.23] into [A.20.21] and making use of [A.20.26] and [A.20.27] yields:

ω̂∗t Ψ
−(1− 1

σ)
t ut =

(
Cy,t + βEtCm,t+1 + β2EtCo,t+2

)
+
(
ϕ̂∗tCy,t + βEtϕ̂

∗
t+1Cm,t+1 + β2Etϕ̂

∗
t+2Co,t+2

)
−
(

1− 1

σ

)(
ŶtCy,t + βEtŶt+1Cm,t+1 + β2EtŶt+2Co,t+2

)
+

1

2

(
1− 1

σ

)(
C2
y,t + βEtC

2
m,t+1 + β2EtC

2
o,t+2

)
+

1

σ

(
ĉ∗y,tCy,t + βEtĉ

∗
m,t+1Cm,t+1 + β2Etĉ

∗
o,t+2Co,t+2

)
− 1

2

(
α− 1

σ

)
β2Et

[
(c̃o,t+2 − Et+1c̃o,t+2)

2
]

− 1

2

(
α− 1

σ

)(
β

1 + β

)
Et

[
((c̃m,t+1 − Etc̃m,t+1) + β(Et+1c̃o,t+2 − Etc̃o,t+2))

2
]

+ I + O3.

[A.20.28]

The social welfare function Wt0 in [A.20.3] is obtained by summing over these terms. Doing this and
collecting terms in consumption levels during the same time periods leads to the following expression for
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the social welfare function:

Wt0 =
1

3

∞∑
t=t0

βt−t0Et0−2

[
(Cy,t + Cm,t + Co,t)+

1

σ

(
ĉ∗y,tCy,t + ĉ∗m,tCm,t + ĉ∗o,tCo,t

)
+ϕ̂∗t (Cy,t + Cm,t + Co,t)

−
(

1− 1

σ

)
Ŷt (Cy,t + Cm,t + Co,t) +

1

2

(
1− 1

σ

)(
C2
y,t + C2

m,t + C2
o,t

) ]

− 1

2

1

3

(
α− 1

σ

) ∞∑
t=t0−2

βt−t0Et0−2

[(
β

1 + β

)
((c̃m,t+1 − Etc̃m,t+1) + β(Et+1c̃o,t+2 − Etc̃o,t+2))

2

+ β2 (c̃o,t+2 − Et+1c̃o,t+2)
2

]
+ I + O3, [A.20.29]

where terms dated prior to t0 can be included in I because these are predetermined and thus independent
of monetary policy.

First- and second-order accurate approximations of the goods-market clearing equation [2.16] are:

1

3
(cy,t + cm,t + co,t) = O2, and

1

3
(cy,t + cm,t + co,t) +

1

3

1

2

(
c2y,t + c2m,t + c2o,t

)
= O3, [A.20.30a]

and by substituting the identities from [A.20.16] these equations become:

1

3
(Cy,t + Cm,t + Co,t) = Yt + O2, and [A.20.30b]

1

3
(Cy,t + Cm,t + Co,t) +

1

3

1

2

(
C2
y,t + C2

m,t + C2
o,t

)
= Yt −

1

2
Y2
t +

1

3
(Cy,t + Cm,t + Co,t)Yt + O3.

[A.20.30c]

Using equation [A.20.30c] and the identities in [A.20.16] it follows that:

1

3
(Cy,t + Cm,t + Co,t) +

1

3

1

2

(
C2
y,t + C2

m,t + C2
o,t

)
− 1

3
(Cy,t + Cm,t + Co,t) Ŷt

= Yt −
1

2
Y2
t +

(
1

3
(cy,t + cm,t + co,t) + Yt

)
(Yt − Ŷt) + O3

= Ŷt + (Yt − Ŷt)−
1

2
Ŷ2
t +

1

2
(Yt − Ŷt)

2 +
1

3
(cy,t + cm,t + co,t) (Yt − Ŷt) + O3

= −Ψt +
1

2
Ψ2
t −

1

3
(cy,t + cm,t + co,t)Ψt + Ŷt −

1

2
Ŷ2
t + O3 = −Ψt + I + O3, [A.20.31]

where the final equality uses [A.20.30a] together with Ψt = O2 (from [A.20.5b]), and that Ŷt is independent
of monetary policy. Using [A.20.16] it can also be seen that:

− 1

2

1

σ

(
C2
y,t + C2

m,t + C2
o,t

)
+

1

σ
Ŷt (Cy,t + Cm,t + Co,t) +

1

σ

(
ĉ∗y,tCy,t + ĉ∗m,tCm,t + ĉ∗o,tCo,t

)
= −1

2

1

σ

(
(C2

y,t − 2Ĉ∗y,tCy,t) + (C2
m,t − 2Ĉ∗m,tCm,t) + (C2

o,t − 2Ĉ∗o,tCo,t)
)

= −1

2

1

σ

(
(Cy,t − Ĉ∗y,t)

2 + (Cm,t − Ĉ∗m,t)
2 + (Co,t − Ĉ∗o,t)

2
)

+ I

= −1

2

1

σ

(
(c̃y,t − (ĉ∗y,t − c∗y,t)− Ψt)2 + (c̃m,t − (ĉ∗m,t − c∗m,t)− Ψt)2 + (c̃o,t − (ĉ∗o,t − c∗o,t)− Ψt)2

)
+ I

= −1

2

1

σ

(
c̃2y,t + c̃2m,t + c̃2o,t

)
+ I + O3, [A.20.32]

where the third line uses that Ĉ∗y,t, Ĉ
∗
m,t, and Ĉ∗o,t depend on flexible-price output Ŷt and are thus independent

of monetary policy, while the final equality makes use of [A.20.5b] and [A.20.25]. Finally, observe that:

ϕ̂∗t (Cy,t + Cm,t + Co,t) = ϕ̂∗tYt + O3 = ϕ̂∗t Ŷt + ϕ̂∗tΨt + O3 = I + O3, [A.20.33]

where the first equality uses [A.20.30a], the second uses [A.20.16], and the final one [A.20.5b] and that Ŷt

91



and ϕ̂∗ are independent of monetary policy. Substituting [A.20.31], [A.20.32], and [A.20.33] into [A.20.29]:

Wt0 = −1

2

∞∑
t=t0

βt−t0Et0−2

[
2Ψt +

1

3

1

σ

(
c̃2y,t + c̃2m,t + c̃2o,t

) ]

− 1

2

1

3

(
α− 1

σ

) ∞∑
t=t0−2

βt−t0Et0−2

[(
β

1 + β

)
((c̃m,t+1 − Etc̃m,t+1) + β(Et+1c̃o,t+2 − Etc̃o,t+2))

2

+ β2 (c̃o,t+2 − Et+1c̃o,t+2)
2

]
+ I + O3. [A.20.34]

The results of Proposition 6 imply that:

c̃y,t = −γφd̃t + O2, c̃m,t = −γ(1−φ)d̃t + O2, c̃o,t = γd̃t + O2, and Etd̃t+1 = λd̃t + O2, [A.20.35]

where d̃t ≡ dt − d∗t , and thus:

1

3

(
c̃2y,t + c̃2m,t + c̃2o,t

)
=
γ2

3

(
1 + φ2 + (1− φ)2

)
d̃2t + O3 =

2γ2

3

(
1− φ+ φ2

)
d̃2t + O3. [A.20.36]

Using the results of [A.20.35], it follows that:

c̃o,t+2 −Et+1c̃o,t+2 = γ(d̃t+2 −Et+1d̃t+2) + O2, and (c̃m,t+1 −Etc̃m,t+1) + β(Et+1c̃o,t+2 −Etc̃o,t+2)

= −γ(1 − φ)(d̃t+1 − Etd̃t+1) + γβ(Et+1d̃t+2 − Etd̃t+1) + O2,

and hence:

(c̃o,t+2 − Et+1c̃o,t+2)
2 = γ2(d̃t+2 − λd̃t+1)

2 + O3, and

((c̃m,t+1 − Etc̃m,t+1) + β(Et+1c̃o,t+2 − Etc̃o,t+2))
2 = γ2 (1− φ− βλ)2 (d̃t+1 − λd̃t)2 + O3.

These terms can be summed up as follows:

∞∑
t=t0−2

βt−t0Et0−2

[(
β

1 + β

)
((c̃m,t+1 − Etc̃m,t+1) + β(Et+1c̃o,t+2 − Etc̃o,t+2))

2 + β2 (c̃o,t+2 − Et+1c̃o,t+2)
2

]

= γ2
(

1 +
(1− φ− βλ))2

1 + β

) ∞∑
t=t0

βt−t0Et0−2

[
(d̃t − λd̃t−1)2

]
+ I + O3, [A.20.37]

where terms predetermined by time t0 are independent of monetary policy and thus included in I . The
summation can be further simplified by expanding the bracket and making use of [A.20.35] to deduce:

∞∑
t=t0

βt−t0Et0−2

[
(d̃t − λd̃t−1)2

]
=
∞∑
t=t0

βt−t0Et0−2

[
d̃2t − 2λd̃t−1d̃t + λ2d̃2t−1

]
= (1+βλ2)

∞∑
t=t0

βt−t0Et0−2d̃
2
t −2λ

∞∑
t=t0

βt−t0Et0−2

[
d̃t−1Et−1d̃t

]
=
(
1− βλ2

) ∞∑
t=t0

βt−t0Et0−2d̃
2
t +I .

[A.20.38]

Substituting equations [A.20.5a], [A.20.36], [A.20.37], and [A.20.38] into the expression for the social
welfare function in equation [A.20.34] yields:

Wt0 = −1

2

∞∑
t=t0

βt−t0Et0−2

[
ℵd̃2t + εκ(πt − Et−1πt)2

]
+ I + O3, [A.20.39]

where the coefficient ℵ is given by:

ℵ =
2

3

γ2

σ

(
1− φ+ φ2

)
+
γ2

3

(
α− 1

σ

)
(1− βλ2)

(
1 +

(1− φ− βλ)2

1 + β

)
. [A.20.40]

This is clearly equivalent to the expression given in equation [5.12b].
Since ε > 1 and κ > 0, the coefficient on the squared inflation surprise is necessarily positive. For the

loss function to be convex, it is necessary to establish that the coefficient ℵ on the squared debt gap is
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always positive. First, write the formula for ℵ from [A.20.40] as follows (making use of [A.20.36]):

ℵ =
γ2

3

(
1

σ

(
(1 + φ2 + (1− φ)2)− (1− βλ2)

(
1 +

(1− φ− βλ)2

1 + β

))
+ α(1− βλ2)

(
1 +

(1− φ− βλ)2

1 + β

))
.

[A.20.41]

Since 0 < β < 1 and |λ| < 1, the coefficient of α is positive, so it is sufficient to prove that ℵ would be
positive if α were zero. To do this, it must be established that:(

1 + φ2 + (1− φ)2
)
− (1− βλ2)

(
1 +

(1− φ− βλ)2

1 + β

)
> 0. [A.20.42]

Given the range of possible values for β and λ, it must be the case that 0 < 1−βλ2 < 1, hence to establish
that [A.20.42] holds it is sufficient to show:

φ2 + (1− φ)2 >
(1− φ− βλ)2

1 + β
. [A.20.43]

The proof of Proposition 5 shows that φ, θ, and λ from [A.4.1c], [A.4.1d], and [A.4.1e] are such that
θ = λ+ β−1φ. The inequality [A.20.43] is therefore equivalent to (1 + β)(φ2 + (1−φ)2) > (1− βθ)2, and
to the following by expanding the brackets:(

β+ 2βθ− 2(1 + β)φ+ φ2
)

+
(
(1 + 2β)φ2 − β2θ2

)
> 0.

Since φ > 0, the inequality above is equivalent to:(
β

φ2
+

2βθ

φ2
− 2(1 + β)θ

φ
+ 1

)
+

(
(1 + 2β)−

(
βθ

φ

)2
)
> 0. [A.20.44]

Defining Φ ≡ γ/σ, the expressions for χ and φ from [A.4.1a] and [A.4.1c] and θ = λ+ β−1φ imply that:

1

φ
=
χ−1 + βΦ

β+ βΦ
, θ =

(1 + β(1 + λ))Φ

χ−1 + βΦ
, and

βθ

φ
=

Φ

1 +Φ
(1 + β(1 + λ)) . [A.20.45]

Making use of the expression for 1/φ from [A.20.45] leads to:

β

φ2
+

2βθ

φ2
− 2(1 + β)

φ
+ 1 =

(χ−2 − 2(1 + β)χ−1 + β) + βΦ(2χ−1 + 2χ−1λ+ βΦ− 2β+ 2βλΦ+Φ)

β(1 +Φ)2
.

[A.20.46]

The formula for χ from [A.4.1a] implies that:

χ−2 − 2(1 + β)χ−1 + β = βΦ(1 + β− χ−1 − βΦ),

which can be substituted into [A.20.46] to obtain:

β

φ2
+

2βθ

φ2
− 2(1 + β)

φ
+ 1 =

Φ

(1 +Φ)2
(
(1− β) + (1 + 2λ)χ−1 + (1 + 2βλ)Φ

)
. [A.20.47]

Using the expression for βθ/φ from [A.20.45] and equation [A.20.47], the inequality [A.20.44] becomes:

(1− β)Φ+ (1 + 2β)(1 + 2Φ) + (1 + 2λ)χ−1Φ+ (1− β2(1 + λ)2)Φ2

(1 +Φ)2
> 0.

This inequality is satisfied if and only if:

(1+2β)+
(
(1− β) + (1 + 2λ)χ−1

)
Φ+ΦA (Φ) > 0, where A (Φ) ≡ 2(1+2β)+(1−β2(1+λ)2)Φ. [A.20.48]

Since 0 < β < 1 and λ > −1/2 according to Lemma 2, A (Φ) > 0 for all valid Φ ≡ γ/σ values is sufficient
to demonstrate that the inequality holds.

Lemma 2 establishes that λ is increasing in Φ. For low values of Φ, λ is negative, but satisfies λ > −1/2.
Hence for sufficiently low Φ, λ is such that β2(1 + λ)2 < 1 and hence A (Φ) > 0. If Φ goes beyond the
point where β2(1 + λ)2 = 1 then A (Φ) is decreasing in Φ in this range. Proposition 1 demonstrates that
βΦ < (1 + β) is a necessary condition for a unique equilibrium. Therefore to show that A (Φ) > 0 for all
valid parameter values it is sufficient to establish that A ((1 +β)/β) > 0. Substituting Φ = (1 +β)/β into
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the expression for λ from [A.4.1e] shows that λ = β, and thus from the definition of A (Φ) in [A.20.48]:

A

(
1 + β

β

)
= 2(1 + 2β) +

(
1− β2(1 + β)2

)(1 + β

β

)
.

This expression can be factorized as follows:

A

(
1 + β

β

)
=

1

β

(
(1− β2)(1 + 3β+ 4β2) + (1− β)β4

)
,

which proves that A ((1 + β)/β) > 0 since 0 < β < 1. Since [A.20.43] is sufficient to prove ℵ > 0 for all
valid parameters, and as the inequalities [A.20.43] and [A.20.48] are equivalent, it is shown that ℵ > 0.
This completes the proof.

A.21 Proof of Proposition 14

Starting from time t0, the Pareto weights are those supporting the complete-markets equilibrium with
financial markets open for securities paying off at time t0 and later. The calculation of the debt gap d̃t
then depends on the starting point t0 since d∗t0−1 = dt0−1, hence d̃t0−1 = 0.

The Lagrangian for the problem of minimizing [5.12a] subject to the two constraints in [5.13] is

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
ℵd̃2t + εκ(πt − Et−1πt)2

]
+
∞∑
t=t0

βt−t0Et0

[
kt
{
λd̃t − Etd̃t+1

}]
+

∞∑
t=t0

βt−t0Et0

[
it
{
it−1 − d̃t − β−1φd̃t−1 − µπt − (1− µ)Et−1πt − r∗t

}]
, [A.21.1]

where the Lagrangian multipliers are kt and it (each scaled by βt−t0 for convenience). The first-order
conditions with respect to each of the endogenous variables d̃t, πt, and it at t ≥ t0 are:

ℵd̃t + λkt − β−1kt−1 − it − φEtit+1 = 0; [A.21.2a]

εκ(πt − Et−1πt)− µit − (1− µ)Et−1it = 0; [A.21.2b]

Etit+1 = 0. [A.21.2c]

There is no constraint corresponding to the Lagrangian multiplier kt0−1, hence kt0−1 = 0.
Taking the expectation of equation [A.21.2a] at time t+1 conditional on time t information, multiplying

both sides by β, and using [A.21.2c] to eliminate terms in Etit+1 yields:

kt = βλEtkt+1 + βℵEtd̃t+1.

An expression for kt can be obtained by repeated forward substitution of this equation and using [5.13] to
deduce that Etd̃t+` = λ`d̃t:

kt = βℵ
∞∑
`=1

(βλ)`−1Etd̃t+` = βλℵ
{ ∞∑
`=1

(βλ2)`−1

}
d̃t =

βλ

1− βλ2ℵd̃t.

This equation holds for all t ≥ t0. Using the formula for kt, it follows that for all t ≥ t0 + 1:

ℵd̃t + λkt − β−1kt−1 =
ℵ

1− βλ2 (d̃t − λd̃t−1).

Since kt0−1 = 0 and d̃t0−1 = 0, this equation also holds for t = t0. Substituting this result into [A.21.2a],
using [A.21.2c], and noting [5.13] implies Et−1d̃t = λd̃t−1, yields an expression for it:

it =
ℵ

1− βλ2 (d̃t − Et−1d̃t), [A.21.3]

which is valid for all t ≥ t0.
Taking conditional expectations of [A.21.2b] at t = t0 using period t0−1 information implies Et0−1it0 =

0. Together with [A.21.2c], it follows that Et−1it = 0 for all t ≥ t0. Making use of this finding, a further
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expression for it can be obtained by dividing both sides of [A.21.2b] by µ:

it =
εκ

µ
(πt − Et−1πt).

Using this equation to eliminate it from [A.21.3] implies:

ℵ
1− βλ2 (d̃t − Et−1d̃t) =

εκ

µ
(πt − Et−1πt) = 0,

which yields the first-order condition [5.14].
Suppose monetary policy achieves the target [5.15] with $̂ and $† as defined in [5.15] and [4.19]

respectively. This implies that

(Pt − Et−1Pt) + $̂$†(Yt − Et−1Yt) = −$̂$†(d∗t − Et−1d∗t ). [A.21.4]

Using the definition of the debt gap d̃t = dt − d∗t the above equation can be written as:

$̂$†(d̃t − Et−1d̃t) = (Pt − Et−1Pt) + $̂$†(Yt − Et−1Yt) + $̂$†(dt − Et−1dt). [A.21.5]

For the case of a general debt maturity parameter µ, Proposition 12 shows that the unexpected component
dt − Et−1dt of the debt-to-GDP ratio satisfies equation [4.19]. Multiplying both sides of that equation by
$̂ yields:

$̂$†(dt − Et−1dt) = −$̂(Pt − Et−1Pt)− $̂$†(Yt − Et−1Yt),
and then substituting into [A.21.5]:

$̂$†(d̃t − Et−1d̃t) = (1− $̂)(Pt − Et−1Pt).
Since Pt − Et−1Pt = πt − Et−1πt, this equation is equivalent to:

d̃t − Et−1d̃t =
1

$†

(
1− $̂
$̂

)
(πt − Et−1πt).

Using the formulas for $† and $̂ from [4.19] and [5.15], it can be seen that the coefficient of πt − Et−1πt
in the equation above is the same as that in the first-order condition [5.14].

Finally, consider the case where TFP (and hence GDP) is described by the stochastic process [4.10]. If
monetary policy achieves the target Pt+$̂$

†$∗Yt = 0 (where $∗ is as defined in [4.11]) then the following
equation holds:

(Pt − Et−1Pt) + $̂$†$∗(Yt − Et−1Yt) = 0. [A.21.6]

Given the stochastic process [4.10], equation [4.11] must hold. Multiplying both sides of that equation by
$̂$† implies:

$̂$†$∗(Yt − Et−1Yt) = $̂$†(Yt − Et−1Yt) + $̂$†(d∗t − Et−1d∗t ).
Substituting this into [A.21.6] yields equation [A.21.4]. This completes the proof.

A.22 Proof of Proposition 15

The loss function

With Pareto weights Ω∗t = 1 supporting the complete-markets equilibrium (irrespective of the level of
output), β = δ according to [2.5] with σ = 1, and utility function [A.6.1], the welfare function in [3.3]
becomes:

Wt0 = Et0−2

[
1

3

∞∑
t=t0−2

βt−t0

{
logCy,t + β logCm,t+1 + β2 logCo,t+2 −

Hη
y,t

ηΘ
η−1
y

− β
Hη

m,t+1

ηΘ
η−1
m

− β2
Hη

o,t+2

ηΘ
η−1
o

}]
.

Changing the order of summation leads to the following expression:

Wt0 = Et0−2

[
1

3

∞∑
t=t0

βt−t0

{
(logCy,t + logCm,t + logCo,t)−

1

η

(
Hη

y,t

Θ
η−1
y

+
Hη

m,t

Θ
η−1
m

+
Hη

o,t

Θ
η−1
o

)}]
+I , [A.22.1]

where I denotes terms independent of monetary policy, which here includes terms predetermined as of

95



time t0. Using the definitions cj,t ≡ Cj,t/Yt and Ỹt ≡ Yt/Ŷ ∗t and the steady-state values c̄j = 1 and ¯̃Y = 1,
it follows that the terms in consumption can be written as:

1

3
(logCy,t + logCm,t + logCo,t) = Ỹt +

1

3
(cy,t + cm,t + co,t) + I , [A.22.2]

where terms in Ŷ ∗t = At are included in I because TFP At is independent of monetary policy. A second-
order accurate approximation of the resource constraint [2.16] is:

1

3
(cy,t + cm,t + co,t) = −1

2

1

3

(
c2y,t + c2m,t + c2o,t

)
+ O3, [A.22.3]

where O3 denotes third- and higher-order terms. Combining the results of Proposition 2 (with α = 1 and
σ = 1) and Proposition 6 leads to the following expressions for the consumption ratios:

cy,t = −γφdt + O2, cm,t = −γ(1− φ)dt + O2, and co,t = γdt + O2. [A.22.4]

By substituting these into [A.22.3], equation [A.22.2] can be written as:

1

3
(logCy,t + logCm,t + logCo,t) = Ỹt −

1

2

γ2

3

(
1 + φ2 + (1− φ)2

)
d2t + I + O3. [A.22.5]

Writing Hη
j,t = Hj,tH

η−1
j,t and noting that equation [A.6.3] implies (Hj,t/Θi)

η−1 = wj,t/Cj,t, the terms in
the disutility of labour at time t from [A.22.1] can be written as follows using the definition cj,t ≡ Cj,t/Yt:

Hη
y,t

Θ
η−1
y

+
Hη

m,t

Θ
η−1
m

+
Hη

o,t

Θ
η−1
o

=
1

Yt

(
wy,tHy,t

cy,t
+
wm,tHm,t

cm,t
+
wo,tHo,t

co,t

)
.

Using equation [A.6.11] together with the aggregate production function from [A.6.10], the wage-bill subsidy
s = ε−1, and real marginal cost kt = wt/At:

Hη
y,t

Θ
η−1
y

+
Hη

m,t

Θ
η−1
m

+
Hη

o,t

Θ
η−1
o

=

(
ktΨt

(1− ε−1)

)(
Θy

cy,t
+
Θm

cm,t
+
Θo

co,t

)
. [A.22.6]

Substituting the expression for real marginal cost from [A.6.13] and the parameterization of Θy, Θm, and
Θo from [2.6], and using the definition of the output gap Ỹt ≡ Yt/Ŷ ∗t with Ŷ ∗t = At:

Hη
y,t

Θ
η−1
y

+
Hη

m,t

Θ
η−1
m

+
Hη

o,t

Θ
η−1
o

= Ψηt Ỹ
η
t

(
c
1−βγ

3
y,t c

1+(1+β)γ
3

m,t c
1−γ
3

o,t

)(
1− βγ
cy,t

+
1 + (1 + β)γ

cm,t
+

1− γ
co,t

)
. [A.22.7]

Now note the following second-order accurate approximations:

Ỹ ηt = 1 + ηỸt +
η2

2
Ỹ2
t + O3, Ψηt = 1 + ηΨt +

η2

2
Ψ2
t + O3, Ψt =

εκ

2
(πt − Et−1πt)2 + O3,

c
1−βγ

3
y,t c

1+(1+β)γ
3

m,t c
1−γ
3

o,t = 1 +

(
1− βγ

3
cy,t +

1 + (1 + β)γ

3
cm,t +

1− γ
3

co,t

)
+

1

2

(
1− βγ

3
cy,t +

1 + (1 + β)γ

3
cm,t +

1− γ
3

co,t

)2

+ O3, and
1

cj,t
= 1− cj,t +

1

2
c2j,t + O3,

where the expression for Ψt follows from Ψt = (εκ/2)p̌2t + O3 derived from [5.9b] together with p̌t =
−(πt − Et−1πt) + O2 from [5.10]. Using these results in [A.22.7] leads to:

1

3

1

η
Ψηt Ỹ

η
t

(
c
1−βγ

3
y,t c

1+(1+β)γ
3

m,t c
1−γ
3

o,t

)(
1− βγ
cy,t

+
1 + (1 + β)γ

cm,t
+

1− γ
co,t

)
=
εκ

2
(πt − Et−1πt)2 + Ỹt +

η

2
Ỹ2
t +

1

2

1

η

(
1− βγ

3
c2y,t +

1 + (1 + β)γ

3
c2m,t +

1− γ
3

c2o,t

)
− 1

2

1

η

(
1− βγ

3
cy,t +

1 + (1 + β)γ

3
cm,t +

1− γ
3

co,t

)2

+ I + O3. [A.22.8]

Equation [A.6.15] gives the following first-order accurate approximation:(
1− βγ

3
cy,t +

1 + (1 + β)γ

3
cm,t +

1− γ
3

co,t

)
= −νdt + O2, [A.22.9]
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where the coefficient ν defined in [A.6.15] satisfies:

ν =
1

3
(γφ(1− βγ) + γ(1 + (1 + β)γ)(1− φ)− γ(1− γ)) . [A.22.10]

Note that by using [A.22.9] and the expressions for the consumption ratios in [A.22.4]:(
1− βγ

3
c2y,t +

1 + (1 + β)γ

3
c2m,t +

1− γ
3

c2o,t

)
−
(

1− βγ
3

cy,t +
1 + (1 + β)γ

3
cm,t +

1− γ
3

co,t

)2

=
1− βγ

3
(cy,t + νdt)

2 +
1 + (1 + β)γ

3
(cm,t + νdt)

2 +
1− γ

3
(co,t + νdt)

2 + O3

=

(
1− βγ

3
(−γφ+ ν)2 +

1 + (1 + β)γ

3
(−γ(1− φ) + ν)2 +

1− γ
3

(γ+ ν)2
)
d2t + O3. [A.22.11]

The coefficient of d2t can be rewritten as follows using the formula for ν from [A.22.10]:(
1− βγ

3
(−γφ+ ν)2 +

1 + (1 + β)γ

3
(−γ(1− φ) + ν)2 +

1− γ
3

(γ+ ν)2
)

=
1

3

(
γ2(1 + φ2 + (1− φ)2) + γ3((1 + β)(1− φ)2 − βφ2 − 1)− ν2

)
. [A.22.12]

Combining equations [A.22.1], [A.22.5], [A.22.8], [A.22.11], and [A.22.12] implies an expression for welfare:

Wt0 = −1

2

∞∑
t=t0

βt−t0Et0−2

[
ℵd2t + εκ(π− Et−1πt)2 + ηỸ2

t

]
+ I + O3,

where the coefficient ℵ is as defined in [A.6.20]. This confirms the loss function given in equation [A.6.19].

Optimal monetary policy

Setting up the Lagrangian for minimizing loss function [A.6.19] subject to the constraints [A.6.18a]–
[A.6.18c]:

Lt0 =
1

2

∞∑
t=t0

βt−t0Et0

[
ℵd2t + εκ(πt − Et−1πt)2 + ηỸ2

t

]
+
∞∑
t=t0

βt−t0Et0

[
tג
{
κ(πt − Et−1πt)− ηỸt + νdt

}]
+
∞∑
t=t0

βt−t0Et0

[
kt {λdt − Etdt+1}+ it

{
it−1 − dt − β−1φdt−1 − πt − Ỹt + Ỹt−1 − r̂∗t

}]
.

[A.22.13]

The first-order conditions of [A.22.13] with respect to the endogenous variables πt, dt, Ỹt, and it are:

ℵdt + νגt + λkt − β−1kt−1 − it − φEtit+1 = 0; [A.22.14a]

εκ(πt − Et−1πt) + κ(גt − Et−1גt)− it = 0; [A.22.14b]

ηỸt − ηגt − it + βEtit+1 = 0; [A.22.14c]

βEtit+1 = 0. [A.22.14d]

Substituting [A.22.14d] into equation [A.22.14c] and solving for :tג

tג = Ỹt −
1

η
it.

The Phillips curve [A.6.18a] implies Ỹt = (κ/η)(πt − Et−1πt) + (ν/η)dt, which can be combined with the
equation above to obtain:

tג =
κ

η
(πt − Et−1πt) +

ν

η
dt −

1

η
it. [A.22.15]

Taking expectations of the above equation at time t + 1 conditional on period-t information and making
use of equation [A.22.14d]:

Etגt+1 =
ν

η
Etdt+1. [A.22.16]
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Considering equation [A.22.14a] at time t + 1, multiplying both sides by β, and taking the period-t
conditional expectation leads to:

kt = βλEtkt+1 + βEt [ℵdt+1 + νגt+1] ,

where equation [A.22.14d] has been used to note that Etit+1 = 0. Substituting from equation [A.22.16]
implies:

kt = βλEtkt+1 + β

(
ℵ+

ν2

η

)
Etdt+1.

Solving forwards and using [A.6.18c] to deduce that Etdt+` = λ`dt yields the following expression for kt:

kt =

(
ℵ+

ν2

η

)(
βλ

1− βλ2
)
dt. [A.22.17]

Now substituting the expressions for tג and kt from [A.22.15] and [A.22.17] into [A.22.14a] and using
[A.22.14d] to set Etit+1 = 0:

ℵdt + ν

(
κ

η
(πt − Et−1πt) +

ν

η
dt −

1

η
it
)

+

(
ℵ+

ν2

η

)(
βλ

1− βλ2
)(

λdt −
1

β
dt−1

)
− it = 0.

Simplifying this equation yields:(
1 +

ν

η

)
it =

(
ℵ+ ν2

η

1− βλ2

)
(dt − Et−1dt) +

κν

η
(πt − Et−1πt), [A.22.18]

where equation [A.6.18c] has been used to write λdt−1 = Et−1dt.
Equating the unexpected components of both sides of [A.22.15] and using [A.22.14d] implies:

tג − Et−1גt =
κ

η
(πt − Et−1πt) +

ν

η
(dt − Et−1dt)−

1

η
it. [A.22.19]

Substituting this into the first-order condition [A.22.14b] leads to the following equation:(
1 +

κ

η

)
it = κ

((
ε+

κ

η

)
(πt − Et−1πt) +

ν

η
(dt − Et−1dt)

)
. [A.22.20]

Multiplying both sides of [A.22.18] by (1 + κ/η) and both sides of [A.22.20] by (1 + ν/η) allows it to be
eliminated:(

1 +
κ

η

)(( ℵ+ ν2

η

1− βλ2

)
(dt − Et−1dt) +

κν

η
(πt − Et−1πt)

)

= κ

(
1 +

ν

η

)((
ε+

κ

η

)
(πt − Et−1πt) +

ν

η
(dt − Et−1dt)

)
,

and simplifying this equation leads to:((
ℵ+ ν2

η

1− βλ2

)(
1 + βλ2

κ

η

)
+ (ℵ − ν)

κ

η

)
(dt − Et−1dt) = κ

(
ε+

κ

η
+ (ε− 1)

ν

η

)
(πt − Et−1πt).

This confirms the first-order condition [A.6.21].
Achieving the target Pt + $̂Yt = 0 (where $̂ is as defined in [A.6.22]) implies:

(Pt − Et−1Pt) + $̂(Yt − Et−1Yt) = 0. [A.22.21]

Multiplying both sides of [4.8] by $̂ and using the definition of nominal GDP Mt = Pt + Yt:

$̂(Yt − Et−1Yt) = −$̂(Pt − Et−1Pt)− $̂(dt − Et−1dt).
Substituting this into equation [A.22.21], noting Pt − Et−1Pt = πt − Et−1πt, and rearranging:

dt − Et−1dt =

(
1− $̂
$̂

)
(πt − Et−1πt).

The expression for $̂ in [A.6.22] shows this implies [A.6.21]. This completes the proof.

98



CENTRE FOR ECONOMIC PERFORMANCE 

Recent Discussion Papers 

1208 Jordi Blanes i Vidal 

Marc Möller 

Decision-Making and Implementation in 

Teams 

1207 Michael J. Boehm Concentration versus Re-Matching? Evidence 

About the Locational Effects of Commuting 

Costs 

1206 Antonella Nocco 

Gianmarco I. P. Ottaviano 

Matteo Salto 

Monopolistic Competition and Optimum 

Product Selection: Why and How 

Heterogeneity Matters 

1205 Alberto Galasso 

Mark Schankerman 

Patents and Cumulative Innovation: Causal 

Evidence from the Courts 

1204 L Rachel Ngai 

Barbara Petrongolo 

Gender Gaps and the Rise of the Service 

Economy 

1203 Luis Garicano 

Luis Rayo 

Relational Knowledge Transfers 

1202 Abel Brodeur Smoking, Income and Subjective Well-Being: 

Evidence from Smoking Bans 

1201 Peter Boone 

Ila Fazzio 

Kameshwari Jandhyala 

Chitra Jayanty 

Gangadhar Jayanty 

Simon Johnson 

Vimala Ramachandrin 

Filipa Silva 

Zhaoguo Zhan 

The Surprisingly Dire Situation of Children’s 

Education in Rural West Africa : Results 

fromt he CREO Study in Guinea-Bissau 

1200 Marc J. Melitz 

Stephen J. Redding 

Firm Heterogeneity and Aggregate Welfare 

1199 Giuseppe Berlingieri Outsourcing and the Rise in Services 

1198 Sushil Wadhwani The Great Stagnation: What Can 

Policymakers Do? 

1197 Antoine Dechezleprêtre Fast-Tracking 'Green' Patent Applications: 

An Empirical Analysis 

1196 Abel Brodeur 

Sarah Flèche 

Where the Streets Have a Name: Income 

Comparisons in the US 



1195 Nicholas Bloom 

Max Floetotto 

Nir Jaimovich 

Itay Saporta-Eksten 

Stephen Terry 

Really Uncertain Business Cycles 

1194 Nicholas Bloom 

James Liang 

John Roberts 

Zhichun Jenny Ying 

Does Working from Home Work? Evidence 

from a Chinese Experiment 

1193 Dietmar Harhoff 

Elisabeth Mueller 

John Van Reenen 

What are the Channels for Technology 

Sourcing? Panel Data Evidence from German 

Companies 

1192 Alex Bryson 

John Forth 

Minghai Zhou 

CEO Incentive Contracts in China: Why Does 

City Location Matter? 

1191 Marco Bertoni 

Giorgio Brunello 

Lorenzo Rocco 

When the Cat is Near, the Mice Won't Play: 

The Effect of External Examiners in Italian 

Schools 

1190 Paul Dolan 

Grace Lordan 

Moving Up and Sliding Down: An Empirical 

Assessment of the Effect of Social Mobility 

on Subjective Wellbeing 

1189 Nicholas Bloom 

Paul Romer 

Stephen Terry 

John Van Reenen 

A Trapped Factors Model of Innovation 

1188 Luis Garicano 

Claudia Steinwender 

Survive Another Day: Does Uncertain 

Financing Affect the Composition of 

Investment? 

1187 Alex Bryson 

George MacKerron 

Are You Happy While You Work? 

1186 Guy Michaels 

Ferdinand Rauch 

Stephen J. Redding 

Task Specialization in U.S. Cities from 1880-

2000 

1185 Nicholas Oulton 

María Sebastiá-Barriel 

Long and Short-Term Effects of the Financial 

Crisis on Labour Productivity, Capital and 

Output 

1184 Xuepeng Liu 

Emanuel Ornelas 

Free Trade Agreements and the Consolidation 

of Democracy 

1183 Marc J. Melitz 

Stephen J. Redding 

Heterogeneous Firms and Trade 

The Centre for Economic Performance Publications Unit 

Tel 020 7955 7673 Fax 020 7404 0612 

Email info@cep.lse.ac.uk Web site http://cep.lse.ac.uk  

mailto:info@cep.lse.ac.uk
http://cep.lse.ac.uk/

	1 Introduction
	2 A model of a pure credit economy
	2.1 Incomplete financial markets
	2.2 The complete financial markets benchmark
	2.3 Equilibrium conditions

	3 Monetary policy in a pure credit economy
	3.1 The natural debt-to-GDP ratio
	3.2 Pareto efficient allocations
	3.3 Optimal monetary policy
	3.4 Discussion

	4 Equilibrium in a pure credit economy
	4.1 Log-linear approximation of the equilibrium
	4.2 Non-logarithmic utility and predictable variation in GDP growth
	4.3 Implementation of optimal monetary policy
	4.4 Consequences of directly targeting financial variables
	4.5 Consequences of inflation targeting
	4.6 The maturity of debt

	5 Policy tradeoffs: Incomplete markets versus sticky prices
	5.1 Differentiated goods
	5.2 Firms
	5.3 Households
	5.4 Equilibrium
	5.5 Optimal monetary policy
	5.6 Calibration
	5.7 Results

	6 Conclusions
	References
	A Appendices
	A.1 Uniqueness of the equilibrium
	A.2 Computing perfect-foresight paths of the non-linear equations
	A.3 Pareto efficiency
	A.4 Coefficients in log-linearized equations
	A.5 Cost of inflation with Calvo price setting
	A.6 Endogenous labour supply
	A.6.1 Households
	A.6.2 Firms
	A.6.3 Fiscal policy
	A.6.4 Equilibrium
	A.6.5 Flexible prices
	A.6.6 Sticky prices

	A.7 Preliminary results
	Lemma 1
	Lemma 2

	A.8 Proof of Proposition 1
	A.9 Proof of Proposition 2
	A.10 Proof of Proposition 3
	A.11 Proof of Proposition 4
	A.12 Proof of Proposition 5
	A.13 Proof of Proposition 6
	A.14 Proof of Proposition 7
	A.15 Proof of Proposition 8
	A.16 Proof of Proposition 9
	A.17 Proof of Proposition 10
	A.18 Proof of Proposition 11
	A.19 Proof of Proposition 12
	A.20 Proof of Proposition 13
	A.21 Proof of Proposition 14
	A.22 Proof of Proposition 15


