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ABSTRACT

A model of optimal accumulation of capital and portfolio choice over an infinite horizon
in continuous time is formulated in which the vector process representing returns to
investments is a general semimartingale. Methods of stochastic calculus and calculus of
variations are used to obtain necessary and sufficient conditions for optimality involving
martingale properties of the ‘'shadow price' processes associated with alternative
portfolio-cum-saving plans. The relationship between such conditions and 'portfolio
equations’ is investigated. The results are applied to special cases where the returns
process has stationary independent increments and the utility function has the ‘discounted

relative risk aversion' form.

KEY WORDS: Investment, portfolio, martingales, semimartingale calculus, optimisation,

economic theory.




1. INTRODUCTION

This paper is concerned with the necessary and sufficient conditions for optimal saving
and portfolio choice over an infinite horizon in continuous time by an investor who seeks
to maximise the integral of expected utility. Both utility and the return to investment
are subject to risk, the sources of risk and the investor's information structure being
specified in a very general form; in particular, the vector process representing asset
prices ~ or more generally returns - is only assumed to be a semimartingale (which in
general need not be square integrable, or continuous, or even special}). Consumption and
capital are constrained to be non-negative, Assets are divisible and can be traded at
market prices without tramsaction costs, short sales being permitted in one version of the

model if the returns process is continuous but forbidden in the general case.

Conditions for optimality can be cast in various forms. We shall consider primarily
a set of conditions which extend those for optimal saving with a single asset given in
{F1], where an optimal pian was characterised by (a) a finite~value condition for the
welfare functional, (b) a local martingale condition for the ‘'shadow price' process,
defined as the product of the returns process and the marginal utility process evaluated
along the optimal plan, and {¢) a transversality condition at infinity. When several assets
are available, these conditions still apply if the shadow price process is taken to be that
determined by the returns to the optimal portfolio plan, but they are supplemented by
martingale properties of the shadow prices determined by returns to individual assets.
Briefly, the shadow price process of an asset is in all cases a supermartingale, and it is
a local martingale if the asset is always held in the optimal portfolio in (strictly) positive
amounts or if the market returns process is continuous and short sales are permitted,
We also investigate the relationship between martingale conditions, which characterise an
optimum in terms of intertemporal comparisons of utility, and ‘portfolio equations' which

lay down relations to be satisfied by the optimal portfolio vector at each time and
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state. Abstract portfolio equations are derived, and applied to the special case where the
market returns process is a process with stationary independent increments {PSII) and

utility has the discounted constant relative risk aversion (CRRA) form

The contribution of the present work lies partly in the form of the results and the
methods by which they are derived, which are motivated by certain ideas about the
underlying economic problem, partly in the conditions under which the results are

proved. It may be useful to set the stage with some comments on these points.

One of the guiding ideas of economics is the equi~marginal principle, which was

stated by W.S. Jevons as follows:

"...when the person remains satisfied with the distribution he has made, it
follows that no alteration would yield him more pleasure; which amounts to
saying that an increment of commeodity would yield exactly as much utility in

one use as in another " [J2] pp.115-116.

The martingale property of shadow prices associated with an optimum - which roughly
speaking requires the equalisation across time, in each investment actually undertaken, of
the conditional expectation of the marginal utility of consumption adjusted for return —
may evidently be regarded as an application of this principle. This suggests that the
property in question should owe almost everything to optimality as such, and almost
nothing to special technical assumptions. Now, if justice is to be done to this reasoning,
the property must be derived in a sufficiently general setting, and I would argue that the
kind of model which it is most useful to consider for this purpose is one in which time
is treated as continuous and open-ended — an infinite horizon as such is inessential —
and which admits a wide class of information structures and returns processes, allowing in
particular for discontinuous change. This unfortunately requires a good deal of
technique! Nevertheless it seems worthwhile to atternpt a mathematical treatment which

captures the above ideas as directly as possible. The methods adopted here — comprising
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mainly martingale theory (including semimartingale calcuius) together with a little calculus
of variations — appear well suited to the purpose; they are probably as elementary as the
problems will allow and seem to yield the best results within the prescribed framework.
However the arguments are partly tailor-made and do not extend readily to wider

stochastic control problems.

A few comments about the assumptions regarding time, prices and information are
in order. An important reason for treating time as continuous is that discrete-time
analysis places arbitrary constraints on the timing of both exogenous events and decisions,
and it is difficult to know to what extent these constraints are responsible for the results
obtained. For example, a variational argument which in a discrete—time model of
optimal saving yields a true martingale property for the shadow price process leads in
general only to a local martingale property in an analogous continuous—time model, as a
comparison betwéen [F2] and [F1] shows. Treating time as open-ended is important
because arbitrary terminal valuations affect planning during the whole preceding period.
In particular, processes constructed by taking 'backward' conditional expectations of
integrable terminal variables will automatically be uniformly integrable martingales, a
procedure which may prejudge essential aspects of the investigation. Obviously it is not
suggested that closed—horizon models are useless, but such an assumption does appear to
be less appropriate in a problem involving optimal accumulation or the pricing of
'fundamental® assets than (say) in the valuation of options with a fixed expiry date.
Concerning the modelling of price movements, suffice it to say that, whatever the
theoretical (or even empirical) attractions of Brownian motion or symmetric stable
processes, the fact remains that prices in practice are always piecewise constant functions
of time, and it is nice to have a model which allows for this possibility. The continuing
controversy about the choice of statistical models for speculative prices emphasises the
need for a flexible approach. If is also desirable to allow for various patterns in the
arrival of information: some data come almost in a continuous stream, others as discrete
announcements, which may occur at predictable times (e.g. budget speeches) or at totally

inaccessible times (e.g. disaster reports); some information is private, some public and
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accompanied by price changes. It is not usually appropriate to assume a priori that the
investor's filtration is precisely that generated by the history of market price movements;

to do so is indeed to prejudge the whole question of market efficiency.

These remarks may seem obvious, but taken as a whole they define a programme
which has not, to my knowledge, been carried out. It is difficult to give a brief review
of the state of the subject because of the diversity of problems, models, assumptions,
techniques and the form of results to be found in the literature on continuous—time
portfolio problems. Besides, this literature shades on the one hand into work on
stochastic growth models and on the other into work on equilibrium in asset markets and
the pricing of contingent claims — not to mention parallel work in a discrete~time setting
and on related problems in stochastic control. A few classificatory remarks may however

be helpful.

Portfolio problems may be “free-standing" or may be imbedded in models of market

equilibrium; we do not exclude the latter group from consideration but focus attention

on the aspect of individual optimisation. In both cases, it is necessary to distinguish !
. between two types of martingale property which are of economic significance: those of
shadow prices associated with an investor's optimal plan, considered with reference to the
‘given' probability measure which embodies his opinions, and those of (suitably
discounted) market prices or returns under a probability measure equivalent to the given
one. The latter type of property is important because market equilibrium (and for that
matter individual optimality) requires that there be no possibility of sure profit from
arbitrage, and this is known to be equivalent, in a suitable finite—horizon model, to the
existence of a ‘martingale measure' for prices, i.e. a measure equivalent to the given one
such that the vector of prices, divided (say) by the price of a riskless asset, becomes a
martingale — see for example [HP]. The relationship between the two types of property
can be derived from the fact that the ratio, at each (,t), between any two shadow
prices is the same as the ratio between the corresponding asset prices. In a closed

finite—horizon version of our model, the condition that the vector of shadow prices
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associated with an optimum is a martingale implies the existence of a martingale measure
for asset prices; it is enough to take as the Radon—Nikodym derivative of the measure
transformation the shadow price of any one asset, e g. a riskless one. However this
argument will not work in the case of an infinite horizon, because (apart from very
special cases) the shadow prices will not be uniformly integrable martingales — see

Section 7 below for further discussion.

Papers on continuous-time portfolio theory may conveniently be classified according
to the techniques used; we mention only some representative contributions. The first
and largest group uses methods of dynamic programming applied to a model of
consumption and portfolio choice driven by Brownian motion, mostly in a finite (closed)
horizon setting; wusually utility is written as the product of a ‘*felicity’ function depending
only on current consumption and an exponential discount factor, special attention being
paid to the CRRA case, cf. (6.1~2) below. Well-known members of this group include
[M1], which also considers a model with a Poisson process, and [CIR], which imbeds the
portfolio problem in a diffusion model of market equilibrium. A rigorous development of
the former model in the case where the price process is just a Brownian motion appears
in [KLSS], which considers the case of an infinite horizon among other possibilities.

The model in [CIR] is extended to the case of an infinite horizon, albeit under rather
restrictive assumptions, in [N], which also explains some of the difficulties facing such an
extension. The main emphasis in these papers is on solving the Bellman equation,
though [CIR] also gives pricing formulae for assets which are equivalent to martingale
properties of shadow prices as defined here. From our present standpoint, the main
Iimitations of this group of models are the classes of driving processes considered and the

additional difficulties encountered in the infinite—horizon case.

A second, very recent, group of papers considers finite—horizon models driven by
Brownian motion rather similar to those of the first group, but using martingale methods
- see [KIS], [CH1,2], also [K] for further references and a discussion relating the

saving—cum-~portfolio problem to option pricing and market equilibrium. The use made
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in these papers of the Girsanov transformation and the representation of martingales as
Brownian integrals involves in an essential way the assumptions that the horizon is finite
(closed) and that the filtration is that defined by the Brownian fields. The emphasis is
on a constructive approach, leading to sufficient conditions for an optimum and equations
which can be solved to obtain it; the existence of a martingale measure for prices plays

an important part in the argument, but martingale properties of shadow prices do not.

Separate mention should be made of the papers [A1,2], which consider a portfolio
model with a log—price process which is the sum of an absolutely continuous term, a
Brownian integral and a marked point process taking a finite number of values.
Effective use is made of the exponential formula for semimartingales to manipulate the
various returns formulae (2 method which will be used relentlessly in the present paper)
but in other respects the methods are mainly Markovian, in particular dynamic
programming is used. There is an interesting discussion of the problem of ruin. The

model is limited to a finite horizon and utility depends only on terminal wealth.

A final group of techniques is based on application of a theory of duality. In [P]
@ combination of the duality theory of [R] with martingale methods is used to derive
necessary and sufficient conditions for portfolio optimality in a finite~horizon model where
utility depends only on terminal wealth and the price proces is a general
semimartingale. Mention should also be made of the related paper [BP] which, although
it considers only a one-security model, is of interest here for its interpretation of dual
variables as shadow prices of information. Another paper in this group is [BM], which
applies the duality theory of [B1]; although mainly concerned with long—run dynamics,
this paper gives a sufficiency theorem applicable to the infinite—horizon portfolic problem
where the driving proces is the sum of an absolutely continuous process and a Brownian
integral. The use of a stochastic duality theory such as [B1,2] or [B3] is indeed an
obvious alternative to the present direct approach to the study of shadow prices. This
method would have the advantage of drawing on a well-developed and versatile theory.

On the other hand, the theory requires extensive technical preliminaries, in the course of
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which contact with the basic ideas is easily lost; also, for convenient application it is
desirable to make assumptions which are not particularly appropriate to the economic
problem (e.g. Ly bounds for martingales and control sets, possibly compact control sets,
finite horizon) and which our approach, although in other respects of much more limited

generality, does not require.

The rest of the paper is arranged as follows. Section 2 sets out various definitions,
details of the model and some preliminary results. Section 3 deals with martingale
conditions for optimality in various forms and under various assumptions. The main
results appear in Theorem 1, followed by a number of Propositions which are needed for
its proof but which are also of some independent interest. The argument up to this
point depends largely on the change—of—variables formula for semimartingales, in
particular the exponential formula, and on the multiplicative and additive decompositions
of supermartingales. The necessity part of Theorem 1 depends on Theorem 2, which
asserts that all shadow prices defined by an optimal plan are supermartingales; this is
proved separately in Section 4 by methods which combine basic properties of martingales
with elements of the classical calculus of variations. The relationship between martingale
properties of shadow prices and portfolio equations is derived in an abstract, general
“form in Section 5. It appears that portfolio equations can be regarded as defining the
compensators (dual predictable projections) of certain processes derived from a logarithmic
form of the shadow prices, but the economic interpretation of this relationship is still
rather obscure. Section 6 derives the explicit form of the portfolio equations in case the
market returns process is a PSII (satisfying certain conditions) and utility has the
discounted CRRA form, showing that the abstract equations are indeed a generalisation of
known results. Finally Section 7 takes up the connection, in the present model, between

martingale properties of shadow prices and martingale measures for asset prices.




2. THE MODEL

The model considered here is essentially an extension of that in [F1], and changes

in notation and assumptions have been kept to a minimum to facilitate cross—reference.

ILet I = [0,»), equipped with its Borel sets and Lebesgue measure, be the time
domain, and let ({,A,P) be a complete probability space with a filtration
A = (4Ay; tel) satisfying the usual conditions, where A = A, while b = Ay is

generated by the P-null sets. A represents the investor's information structure and P his

beliefs. In the product space Q@ x T we define in the usual way the o-algebras of
progressive, optional and predictable sets, as well as the corresponding classes of
processes. The following conventions apply to processes unless we state or imply
otherwise. They will be defined for all wef) and teI. Properties involving measurability
or integrability will refer to (A,P). Processes will be assumed, or may easily be shown
to be, at least progressively measurable, and processes of a given class which differ only
on null progressive sets will be identified. Scalar processes will take finite, or
occasionally extended, real values, and vector processes will be just finite families of
scalar processes. For a scalar process £, £ > 0 means ¥(w,t) > 0 for all {w,t) and
£ > 0 means {(w,t) > 0 for all (w,t), modulo null sets, while similar notation for a
vector process means that the condition applies to each component. All martingales
(true, sub, super, local) will by definition be coriol {continuous on the right with limits
on the left). The qualifier 'local' will be omitted as being part of the definition in the
case of (local) semimartingales and processes (locally) of finite variation; but we shall
distinguish explicitly between local martingales and (true) martingales, and similarly for
supermartingales and processes of integrable variation. Processes will not jump
att =0, ie. we set {,. = £o. so that for stochastic integrals we have
J ‘ =J , which we usually write as II; the formula for integration
[0,T] (0.1 o
by parts is adjusted accordingly. As regards notation, we shall chop and change between

£(t) and £, as convenience dictates, and sometimes even omit the time variable. Note
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also that the terms positive, negative, increasing, decreasing have their strict meaning

throughout, but ¢, { mean non-decreasing, non—increasing.

Let a finite number of assets (also called securities) indexed by A = 1,..,A be
available at all times. For each X\ there is given a semimartingale x* with x*w,0) = 0
called the log-returns or compound interest process for A; note that by definition the
values xMw,t) and xMw,t-) are finite on T for each w. The formula zM = exp{x}}

defines a positive semimartingale with zM0) = 1, called the returns or price process

for A; zMw,t) represents the value at t in state o of one unit of capital invested at zero
time in asset A (with instantaneous reinvestment of dividends etc. in the same asset), the
return being measured in suitable natural units such as corn or money adjusted for

changes in the price level of consumption goods. We write X, Z for the corresponding

vectors, called the market log—returns and returns processes: thus X = (xl,“ ,xA) denotes

a vector process, X(t) or X; a vector random variable etc Decompositions of xM are

written variously as
xN = MM + VA = MAC 4 MM £ yhe 4 yNd L2.1)

where M is a local martingale, VM a process (locally) of finite variation, MM + MM js
a decomposition of M» into continuous and compensated jump local martingales, and VA€
+ VM js a decomposition of VX into continuous and discontinuous processes of finite
variation; all these processes vanish at t = 0, and in general only MXC is uniquely

defined.

A portfolio plan = will be a finite vector process with components N, N = 1,...,A,
which is defined for t > 0, adapted and left continuous with finite right limits (hence
predictable) and which satisfies

L wMe,t) =1 L (2.2)
Y

for all (w,t). The left continuity expresses the fact that any jump Ax(t) accrues to the

portfolio #(t) = =(t—) held immediately before t, not to the portfolio =(t+) chosen at t,
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except that at t = O we arbitrarily set =(0) = »(0+). We denote by M° the set of all

such =, and by M' the subset satisfying = > 0, or explicitly

0 < 7™M w,t) < 1 . (2.3)

for all (w,t) and each X\; the restriction = » 0 means that short sales are forbidden.
The set of all = which are admissible in a particular problem is denoted by T, and (for
reasons which will be clarified below) we assume that [T is I° or It if X is continuous
but IT = Mt if X has jumps; sometimes we write simply I when it is not necessary to

specify which case is considered.

Before proceeding, it is useful to recall some facts about the Doléans integral

equation
T

(1) = 1 + j z(t-)dl(t) L (2.4)
(s

defined in [Dd]. Given a semimartingale { such that {(0) = 0, there exists one and

only one semimartingale z satisfying this equation for all t, a.s. It is given by

AL (t)

zp = exp(f, - § < € >y 0 (1 + A% e .. (2.5)

I I t<T

where the product term converges absolutely for all T, a.s, and defines a process of
finite variation, see [M2]IV.25; here we have written < (€ > instead of < (¢, (¢ >
to denote the angle brackets process of the continuous martingale part of {. The
process z is called the (martingale) exponential of { ~ we shall say mart—exp for short
and write z = &({). If ¢ is a local martingale, so is z. Conversely, if z is a given
semimartingale with z(0) = 1 such that z(tf) > 0 and z(t-) > 0 always, then the
process 1/z(t—) is locally bounded and one can define the stochastic integral

T az(t)
o z(t-)

o1 = e {2.6)

which is the unique semimartingale satisfying (4), see [Dd]p.186, also [J1]Ch.VI, esp.

Exs. 6.1-6.2; we shall call { the mart-log of z and write { = & 1(z) = £(z). From
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(6) it is clear that, if z is a Jocal martingale, then so is .

Now, given a portfolio plan rell, the portfolio returns process z7 is defined as the
unique semimartingale satisfying the equation

I A
Z7(I) =1+ [ 27(e) 3 A(en) di (t) (2.
o A

z (t-)

for all TeL, a.s. An intuitive interpretation is given after eq.(10) below. To justify the

definition formally, consider first the semimartingales ¢», {7 defined by

I dz}\(t)

o zx(t—)

1y = . T = [ 3 ot 2.8
o A

noting that {M is well defined as a stochastic integral and equal to £(z*) because the
assumptions about x* imply that zMt) and zMt~) are positive; then the integral {7 is
also well defined because =Mt) is left continuous with right limits, hence locally bounded
- see [DM]VIIL8 - so that =Mt)/zMt-) has the same properties. Now (7) just says

27 = &({7).

The definition of M adopted above is intended to ensure that only portfolio plans =
are admitted for which z7(t) is always positive; this may be regarded as a necessary
condition for the investor's solvency. Referring to (5), it is seen that
z®(t) > 0 for ali t iff 1 + A{™(t) > 0 for all t, and then z™(t-) > O also. By the

definitions of = and z» we have

T, T K X A, A AN, A
Zt/zt— 1+ As‘t =1+ % T Azt/zt_ % T zt/ ‘o
A AxN(t)
=5z e , . £2.9)
N t

so that it would actually be enough to choose as the admissible set the subset Il of I°
for which the expression (9) is positive for all t, a.s. This condition is obviously

satisfied if X is continuous, and then m = MO At the other extreme, if each x* can
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have arbitrarily large upward jumps at any time - more precisely,

if a.s.sup sz = o for each t and A - then MM = It and the solvency

condition rules out short sales. Many intermediate cases are possible, but in general it is

awkward to work with !, and it must be borne in mind that in practice short sales may
be forbidden even if they could be undertaken without any risk of involvency; hence the
definition of admissible portfolio plans which we have adopted. Incidentally, it may seem
puzzling that the requirement of solvency apparently imposes no restrictions on short sales
when X is continuous; the clue is that a restriction is built into the definition of = by
virtue of the assumption that «(t) = =(t-) is always finite. (To make the point
informally, let q* denote the number of A—shares held, write z = > qrzh, #h = grzdg,

and consider what happens to =M if z(t) » 0 as t 1t T; ¢f [A2]p.215.)

Having ensured that z%¥ > 0, z% > 0, we can define a portfolio log-returns or

compound interest process x* by z7 = exp{x¥}. Also, z% = & ({7} now implies

¢ = £(z1r), i.e. (7) can be written as {" = J dzﬂ/zf , so that (7-8) can

be combined in a more symmetrical form as i

1 .« 1 A T
Ty - [ LD s Ay O s Ao ety 210
oz (t-) o A z (t-) o A

This says essentially that the instantaneous rate of proportional increase in portfolio value
is the portfolio—weighted average of the rates for the individual assets, Note further
that, if the ‘single—asset portfolio A\' is defined by

™Mae,t) =1, «2(w,t) =0 for 2 # %\, all (o,t), (2.1

the procesess {*, z™, x™ may be identified with {», z*, x»; in future we shall replace

the superscript « by \ in appropriate cases without special comment.

For later reference we derive formulae expressing x¥ explicitly in terms of the x*.
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Write z = €X in egs. (7-10) For a single—asset portfolio, the change—of-variables

formula yields

I A
31 g
oz (t=-)
S
= x;\ + 3 < x)\c >T + 5 [eAX (t) _ 1 - Axi\] 2.1

t<T

where the sum converges absolutely for all T, as. Consequently, using (10),

I T
T A A A Ac
fI=JZwtht+5jz:td<x >

o A o A

A AN N
T
TC TC A 2 AC fc

<7 0> - Jo % % wom A <X, x> (214

Now consider (5) with z = z%, { = !, substitute for {, < {€ >, Al from (13),- (14),

(9), calculate x™ = In(z") and rearrange to obtain

T 1y I A Ac
sp=[ Ta et [ 3 md<x >
o A o A
I A2 e fLc
-fj’ogg-rtwtd<x s X >
3 (A -3 A ad] ... (2.15)
t<I X\
where
AxT = In [3 =" exp(ax™ ] (2.16)
t St PLEXe 1 R

the sum in the last line of (15) converging absolutely for all T, a.s. Using the

decomposition (1), this can be written more explicitly as follows:
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2 AC 2c

xr=J’§:de +%‘[Zw}\d<M)\c>—£J—22w>\w d <M M7 >
» » » 2
[ 3 e
)
S DA AR SV BT 2D
> t<¥ )

In each of the formulae (13), (15), (17), the terms in the last line vanish when X is

continuous.

Suppose mow that the investor has an initia] capital Ko > ¢ and no outside
income. Given a portfolio plan 7 with returns process z = z%¥ > 0, we shall say that a
(progressive) process ¢ is a =—feasible consumption plan_in natural units, or simply
c—plan, if it is non—negative and a.s. locally integrable (i.e. Lebesgue integrable on finite

intervals) and -if the equation

I

920 _ [ 5oy at ..(2.18)
o]

z(t-)

1
k(D - K = f K(t-)
(o3

is solved by one and only one semimartingale k and this solution is a.s. non-negative on

I; then k is called the capital plan in natural units corresponding to ¢. It follows

from [J1]p.193 that a semimartingale solution of (18) exists and is unique. In fact, it is

given explicitly by

1
K(I) = K z(D) - z(T) j [c(t)/z(t)]dt. . (2.19)
[e]

To check this, apply the formula for integration by parts [DM]VIII(19.2) to obtain, using

(19),




15

I T e- T
z, jo (c,/z)dc - Jo { J: (cy/z)dshdz, + [ =z (c sz )a

o)

i

T _ T _
Jo { KO - kt-/zt—}dzt + JO <, dt

I I
K (z; - 1) - JO (k,_/z, )4z, + JO e, dt; ..-(2.20)

it remains to substitute into (19) to obtain (18). Note that (19) shows that k/z is

absolutely continuous and non-increasing.

To make the economic meaning of (18) quite clear, suppose that k(T) > 0 for all
I, a.s, so that by (19) we also have k(T-) >'0; then the equation can be rewritten

as

I gE££l - JI dz(t) _ JI E(t) de,  K(0) - K, .(2.21)
o k{t-) o z(t-) o k{t-)
expressing the fact that the rate of growth of capital equals the rate of growth of
portfolio value minus the rate of consumption out of capital. A little more generally,
(18) can always be replaced by (19) on a random interval [0,r), where » is the first
arrival time of -k-t/zt at zero (with v = o if this level is never reached). Thus a c¢-plan
can also be defined as a non-negative, locally integrable process such that {21) has a
unique semimartingale solution k which is positive on some random interval [0,7) and

zZero on {.;,co)

The set of all c—plans which are r—feasible is denoted C™ and the set of all
c-:--plans which are feasible for some rell is Q(H)‘. A (feasible) portfolio—cum-consumption
plan ~ or simply a plan - in natural units is a pair (c,r) such that ceC™ and rell.

We assume that the investor's aim is to maximise a welfare functional of the form
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o(c) = E j u [cw,t); w,t] dt. . (2.22)

The utility function u = w(C; w,t) is defined for 0 < C < ®, w ¢ Q, t ¢ L, and takes
values in [-w,w]. Considered as a function of all its variables, it is Q[O,w] x H
measurable (where B denotes the Borel sets and H the progressive sets). For fixed
(w,1), u is continuous, concave and increasing in €, The marginal utility function

u'(C; w,t), u' = uwdC, is defined on the same domain as u and takes values in [0,=],
and for each (w,t) is continuous and non-increasing in C with 0 < G'(C) < @ for

0 < C < ®and u'(0) = «; thus u' also is gm,m] x H measurable. The continuity of

u, u' at C = 0 and C = = is, of course, one—sided.

It follows easily from a standard Measurability Lemma for processes, [L]p.503, that
for ¢ e C(T) the utility and marginal utility glén§ defined by ulc(.,.); ...] and
u'fc(.,.); ...] are H-measurable. The domain of the functional o is taken to be C(IN);
it is always assumed (or inferred from other assumptions) that for each c¢ in this set the
positive part of the double integral in (22) is finite, and further that the supremum "
of the functional is finite. The portfolio~cum—saving problem is to maximise p on C(I),

if possible. A plan (¢c7,x") is called optimal if p(c*) = ¢* (and o* is finite).

Let us for the moment fix =, write x = x¥, z = z%, and consider the problem of
optimal saving for that =, ie. the problem of maximising » on C™ Given an element

¢ and corresponding k, we introduce new processes ¢, k by the definition
c(w,t) = clw,t)/z(w,t), kiv,t) = kK(w,t)/z(w,t). ... (2.23)

The solution (19) of (18) then reduces to

1
K(D) = K - J c(t) dt L .(2.24)

o
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so that k is absolutely continucus (even if k jumps) and its sample derivative has a
progressive version defined by I'c(t) = — c(t). Further, the requirement that k(I) » 0 on
L a.s. is clearly equivalent to

<0

J clw,t) dt <K, a.s. ... (2.25)
e}

We call ¢ and k the consumption and capital plans in r-standardised units — or simply

the ¢ and k plans — corresponding to ¢ and k. It is clear that a ¢—plan can be defined
directly as a process ¢ = c(w,t) » 0 which satisfies (25); this definition does not involve
k, which can be defined by (24} if desired. We denote by C the set of all c—plans;

an advantage of working with C as the feasible set is that it does not depend on the
choice of x. Given any =, each ¢ e C defines an element ¢ = cz® ¢ C7 and every

¢ e C(I) can be obtained in this way from some ¢ and x. Thus a plan can be
specified either as a pair (¢,x) or as pair (c,x); in the latter case, the set of all plans

is simply C x II.

Still keeping ~ fixed, we may next define a z—standardised utility function u™ by

setting
uF(C; w,t) = u[Cz"(w,t); @,t] .. (2.26)

for all C, w, t for which u is defined, and then a functional

o (c) = E J Wlee,t); w,t] de L(2.27)
o]

whose domain is C. The analytical properties of u™, u'T = Qu¥/3C, ™, u*(c), u'*(c)

are the same as those of u, u' etc. stated above and need not be repeated. Note that

u'T(C,t) = Bu"(C,t)/3C = E'(Cz:,t)z:,
Cufe,t) = u' (e, 0z if ¢, = <, /2. . .(2.28)
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The problem of maximising ¢ on C7 is clearly equivalent to that of maximising %
on ¢, which in turn is essentially the same as the problem of optimal saving with a
single asset studied in [F1]. We say that ¢* is z—optimal, or equivalently that
% * T 3 - .p s - * * . .
¢ =c¢z% is r-optimal, if ™ attains its supremum on C at ¢* and ©7(c") is finite.

The necessary and sufficient conditions for optimality established in [F1] apply. Before

recalling them, we state some further definitions.

Let (E*,ar*), or equivalently (c*,vr*), be a distinguished plan with ¢* > 0
everywhere, When dealing with this ‘star’ plan we write x*, z*, Q*, u*, u'™ etc. in

place of x7, z¥, QT, u™, u'T etc. For brevity we also write

vi = v(w,t) = u'lc(w,t); wt]. ...(2.29)

Now, for arbitrary =ell, we define a process y%, called the shadow price process

associated with =, by

yHw,t) = v(w,t)z%(w,t). .{2.30)

In particular, y» = vz* defines the shadow price process for asset A, I 7 = x, we

write

Y () = V') = v(v)-exp{x*(1)}. ..(2.302)

Thus, for arbitrary ,

yR(t) = yU (0272 @) = y'() exp{x™(t) - x*(1)}. ...(2.31)

Note that in these definitions the marginal utility process v is always evaluated along the

star plan. Note also that 0 < ¢* < « implies @ > v > 0, and then

0 < z%, 2 < » implies 0 < y¥, y* < « Usually we write ¥'(0) as y,; we have
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Y¥(0) = yo for every = and v(0) = y,.

The following conditions for an element ¢© ¢ C to be = —optimal restate [F1]T.5-6

in an alternative form:

Proposition_1: Conditions for r*—Ogtimality.‘ Let (c*,%%) C x I be given and let

¢ =¢* Z*  Suppose that

o) ¢t >0,

(ii) there is a number oy € (0,1] such that

p(c® —ac®) > e for 0<ac<a. .. (2.32)

Then ¢ (or equivalently ¢*) is = —optimal iff

(2) the process y° = (yi; tel) defined by (2.30a) is an A-local martingale, ...(2.33)
and
o
(b) E J y¥(t) e*(t)dt = K, y¥(0). . (2.34)
o
I
If moreover k*('[) =Ky - f c¥(t)dt is a.s. bounded away from zero for each
o

TIel, then (a) may be replaced by

(a') y*¥ is a (true) A-martingale. ...(2.35)

Remarks. (i) The conditions are given in the above form for brevity, but they can be
further refined, in particular by specifying the times which reduce y*; some additional
details are mentioned in Section 4 below.

(ii) The fact that ¢* > 0 if ¢” is = —optimal is actually a consequence of the

assumption E'(O} = o, On the other hand, conditions (a) and (b} together with
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o(c*) > - are sufficient for optimality without assuming u'(0) = «, ¢* > 0, or (32).
Qualifications of this kind also apply to Theorem 1 below but are omitted for brevity.
(iii) In the models usually considered, (32) holds for all plans, not just optima.

(iv) Examples show that typically y* is not uniformly integrable even when (35) holds -

cf. [F1]S.1(E) and below, S.6.
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3. MARTINGALE PROPERIIES OF SHADOW PRICES

In this Section, {¢*,7") - or equivalently (c*,7") with ¢* = c*z%, ¥ = exp{x*}
— refers to the distinguished ‘star’' plan introduced above, and v, y*, y™ are defined with
reference to this plan as in (2.29-31). Any optimality properties assumed for the star
plan are stated explicitly. It is always assumed that (c*,7) ¢ C x 11, but the definition

of 1T varies. Martingale properties refer to A. The following is our fundamental result

for the saving—cum-portfolio problem:

Theorem 1: Martingale Conditions for Optimality

Let T be TI° or I* if X is continuous, " if X has jumps, let (¢*,7*) be a given plan

satisfying ¢* > 0 and (2.32), and consider the following conditions:

(1) y)‘ is a supermartingale for N\ = 1,..., A;
(ii) y)‘ is a local martingale for A = 1,..., A
(iii) ¥* is a local martingale for all zell;
(iv) Y7 is a supermartingale for all well.

Sufficiency: (c*,z") is optimal if ¢* is * -optimal (i.e. the conditions of Proposition 1
are satisfied) and one of the following holds:

S.(a) Condition (iv);

S.(b) x > 0 and (i) or (i) or (iii);

S.(c) mn

fh

I (X continuous) and (ii) or (iii);

S.(d) M=10% " >0 and (i).

Necessity: If (¢*,7%) is optimal, the conditions of Proposition 1 are satisfied and
N.{a) Condition (iv) holds;
N.(b) If 5 > 0, then (i), (i) and (iii) hold;

N.{c) If T =1° (X continuous), then (ii) and (ifi) hold;
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N.(d) I nm= T > 0, then (i) holds in the following,
more precise form: each y» is a supermartingale
with a canonical multiplicative decomposition

y* = LADM — see Remark (i) — satisfying

I A
J 75N (1) %Dr(% =90 Tel, a.s. ... (3.1)
c

Remarks. (i) In Theorem 1, 'supermartingale’ may be replaced by 'local
supermartingale’. A local supermartingale 7 satisfying %(0) = 0 has a unique additive
decomposition 5y = g + 8 with u(0) = 6(0) = 0, where u is a local martingale and 9 is
non-increasing and predictable (hence also non~-positive and locally of integrable

variation); conversely a process having such a decomposition is a local supermartingale,

[J1]2.13-19, [RW]VI32. A (strictly) positive local supermartingale has a unigue
multiplicative decomposition y = LD, L{0) = y(0), D{0) = 1, where L is a positive local
martingale and D is positive, non—increasing and predictable (hence also locally of
integrable variation), [J1]pp. 199-201, [M2]p. 317. These decompositions are sometimes
called ‘canonical', but since they are the only ones considered here we shall omit the

adjective.

(ii) The significance of (3.1) is that it provides a '"Kuhn-Tucker' condition for a

constrained solution, as may be seen by writing informally

#*A 2 0, dDM/DA < 0, r¥AdDM/DA = 0. .. .{3.2)

Note that, if x*)\(t) > 0 on I a.s. for some X, then condition N.(d) implies that yA s
a local martingale. The case of an optimum with = > 0, ie. 0 < r*}‘(t) < 1lonlL
a.s, for each A, is of special interest, both because the martingale conditions are simpler
and more interesting and because this case arises when all investors hold identical

portfolios.
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The proof of Theorem 1 will be broken up into several Propositions, some of which
are of independent interest They will yield first the sufficiency assertions, and then —
when it has been shown in Section 4 that optimality implies that every y* is a
supermartingale — the necessity assertions also. The following Proposition is useful as a

verification theorem for proposed solutions:

Proposition 2. If ¢* is w*—optimal and y¥ is a local martingale for every =¢[, then

(c*,7") is optimal.

Proof. Let (c,x) be another plan with ¢ = cz” and k = K, - J’ cdt - see
(2.23-24) - assume to avoid trivialities that p(C) is finite, and let (xn) be a sequence of

stopping times which reduce y* and y*. The following calculations yield the result:

7€) — #(©)
o
=E I [ulee) - E(Ef)] dt by definition
0
&80
< E j @ - T T @ a by concavity; (the preceding
0 line provides an integrable
lower bound for the integrand)
Lo
=E J (ceyT - c*y¥) dt changing to standardised units
t t't . PSP LW
D and using the definitions of y
and y*, see (2.29-30)
o
= -Ky¥, + E J Cy yf dt by (2.34), since c* is
D " -optimal; note Yo = vE(0)
Xn
= Ky, + lim E JD ctyT dt by definition of x
Xn
= ~Kpyo+ I%m E{y™(xn) J ¢ dt) integration of a martingale
) w.r.t. a non-decreasing

process [M2]VII. 16
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= -Kg¥o + lim E{y"(xp) [K, - k{xp)]} by (2.24)
n
< -Kpyp + Kgyy = 0 since Ey"(xn)= y™(0) by local
martingale property, y*(0) = y,
and k » 011

. (3.3)

Assertions S.(b)(iii) and S.(c)(iii) of Theorem 1 obviously follow.

Proposition 3. If ¢* is »"—optimal and ¥y is a local supermartingale for every =ell,

then {c*,y") is optimal.

Proof. Let y* = L7DT with L7(0) = y™(0) = y, be the multiplicative decomposition.
Since 0 < D¥ < 1 we have y¥ < L¥, and on applying this inequality to the fifth line ]
of (3) and assuming that the times x, reduce the local martingale L* the proof of

Proposition 2 stands with L™ in place of y™ in lines six to nine of (3).1

This Proposition completes the proof of S (a) of Theorem 1 (taking into account the fact

that a supermartingale is a local supermartingale).

Before going on to the next proposition, we note some relations between
shadow prices and their mart-logs. Suppose for the moment that (c*,z*) is t
any plan such that, for some 7Cell, the process yo = ywo is a positive local
supermartingale; (this will always be the case in the sequel, in particular when c¢* is
w*—optimal, since then one can set z° = 7", yo = y*).. The assumption about y°
implies that the process

¥ = (y9(t-); tel) is also positive, [DM]VL17, [J1]6.20. Let x = x°, z = 20

corrtespond to x°. For any other =¢fl, it follows from (2.31) that
y* = vz¥ = y9z7/20 = yOexp{xT - x°},

and since the semimartingales x7, xO are right continuous with (finite) left limits it
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follows that y™ is a positive semimartingale with y® > 0. Note further that
v =yt = y9/z0 is also a semimartingale with v_ > 0, and so is corlol {although we
have not assumed this property for @' or ). These facts are used repeatedly below

without special comment.

Under the conditions stated in the preceding paragraph, we may define the
'‘mart—log' #7 = £(y*) - see (2.6) - for every well, in particular n*» = £(y}) for

each N = 1,..,A; explicitly,

T 1
I dy™(t) ATy dyM(t)
77(1) = JO ey ' 7 () ‘[0 ) . (3.4)

Now replace y™ by vz, write out vizf by means of the formula for integration by parts
[DM]VIIL.18, use the fact that v_ and zZ are positive, and introduce the process

{% = £(z™) - see (2.6-8); this yields, in abridged notation,

I I
% dv dz* dv dz¥
SIS ST
[e] o H
I dv - dv !
TR e
[a]

On applying the same procedure to 5», with z*,{* in place of z7,{¥, and noting that

¢% = fIzMEM by (2.8) and that L) = 1, it follows readily that
I 3 A

T . A A . dy _ Y d

n = [ Tapdn, e [ =[x+ A ... (3.6)
o A X y

Because of this linear relation, it is often more convenient to work with the mart—logs of

shadow prices than with the shadow prices themselves.

Suppose now that = is such that y¥ is a positive local supermartingale, write y7 = y
for short and y = LD for the multiplicative decomposition. Using integration by parts,

and bearing in mind that D is predictable and of finite variation, we have
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I 1
Yp = LDp =y, + jo D,dL, + jo L, dp_, .G

see [DM]VIIL19; (the appearance of Yo is due to our convention that processes do not

jump at zero). Using (4) we have, in abridged notation
D dL dD
mel v R ety -G8

ﬁhere 7 =97, and p = p%, 3 = OF are for the moment just names for the processes
defined by the integrals. Note that L_ > 0 because L is a positive local martingale,
also D. > 0 because D is positive non-increasing, moreover 1/L. and 1/D_ are left
continuous with right limits, hence locally bounded, so that the integrals are well
defined. Moreover p is a local martingale because L is one, 3 is non—positive,
non-increasing, predictable, and p(0) = 3(0) = 0, so that 7 is a local supermartingale
and (8) gives its additive decomposition, justifying the notation g + 0. In particular, if
y is a local martingale, so is % (because then D =1, 3 = 0). Note also that (4), (8)

and y = y- + 4y > 0, y_ > 0 imply
Apy + AD¢ = Any = Ay /ye. > -1, (3.9
hence also Ag; > — 1 since AB(t) < 0.

Suppose conversely that we know that y* = y is a positive semimartingale with y_
also positive and that n = 97, as defined by (4}, is a local supermartingale with additive
decomposition 7 = p + O (not necessarily of the form given by (8)). The relations (9)
remain valid, so that 1 + Ax > 0, and on writing out the formula y = &(x)
explicitly from (2.5) and rearranging one obtains

y = &(#)Texp{a¥}~ M {(1+Ap_+A3 ) /(1+Ap )) ... (3.10)
t<T vt t

where & denotes the continuous part of 8. Now &(u) is a local martingale
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because p is one. Further, o is non-positive and non-increasing (because 1 is a local
supermartingale), so that exp(c©) is in (0,1] and non-increasing Each term in the
product of jumps is also in (0,1] because A3 < 0 and (9) implies 1 + Ap > 0, while

1 + Ap + A3 > 0 because y > 0, y_ > 0; therefore the product of jumps is in (0,1]
and non-increasing. It follows that y is a local supermartingale with decomposition

y = LD given by (10) with L = &(g); and if % is a local martingale, then so is y.

Proposition 4. If y)\ is a local martingale for each X = 1,..., A, then y7 is a local

martingale for every mell.

Proof If each yM is a local martingale, so is each #», therefore by (6) so is R

therefore so is y7.4
Assertions S.b(ii) and S.(c¢)(ii) of Theorem 1 follow from Propositions 4 and 2.

Proposition 5. If y* is a local supermartingale for each A = 1,...,A, then y¥ is a local

supermartingale for every = > 0.

Proof. Formulae (7-8) apply with y», LX DA, yA x* 3 in place of y, L, D

etc. Using (6) we have, in abridged notation, the first equality in
A A A
R w"-lldi+jz: A L (3.11)
A

(noting that «Mt) = xMt-) is left continuous with right limits, hence locally bounded, so ;
that the integrals are well defined). Clearly the first integral is a local martingale and
the second is predictable and of finite variation; moreover the second integral is
non-positive and non-increasing because 0 < #» < 1. Thus 5™ is a local
supermartingale with additive decomposition given by the sum of the two integrals, and it
is in conformity with our notation for such decompositions to call the integrals p* and

OF respectively. It follows that y™ is also a local supermartingale. |
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Assertion S.(d) of Theorem 1 follows from Propositions 5 and 3. Note that

Propositions 4-5 do not depend on optimality as such.
In certain cases, Prop. 5 can be strengthened as follows.

Proposition 6. If y» is a local supermartingale for each A and y* is a local martingale,
then if «* > 0 we have eq. (3.1); if moreover x° > 0, then yM is a local martingale

for each \ (and consequently y* is a Jocal martingale for every =ell).

Proof. If each y* is a local supermartingale we may set = = =, 7T = -q* in (11),

and then if y* is a local martingale we have & =~ % J w‘*)'dD)\/D_): = 0; since
this is a sum of non—positive integrals it follows that each ini\egml vanishes

and we have (1). If moreover w*)\(t) > 0 always, then since DX is

non-increasing and positive with D*0) = 1 it follows from (1) that DMt) = 1 on T,

a.s.; but then y» = L) The final assertion in brackets is due to Prop. 4.1

Since qr*-»optimality of ¢* implies that y" is a local martingale (Proposition 1), assertion

S.(b)(i} of Theorem 1 follows from Propositions 6 and 2. Thus all sufficiency assertions

are now proved. The following proposition could also be used to prove S.(c).

Proposition 7. If 11 = II% J§f y™ is a local supermartingale for every =¢l® and y# ic a Aocal

WaxDingale,
£ then y% is a local martingale for every =ell°,

Proof. Since y» is a local supermartingale for each » = 1,..., A, we have the first

equality in (11) for arbitrary =, as in the proof of Proposition 5, and once again the
first integral is a local martingale, the second predictable and of finite variation. This
time, however, we know in advance that %7 is a local supermartingale, and on writing
its decomposition as in (8) it is clear that both equalities hold in (11), with the first

integral equal to p¥, the second to 8%. Explicitly, we have for the finite variation term
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for every rell®, with 37(0) = 3MN0) = 0. ,(Now, if all 3» are non—increasing and = can

be chosen arbitrarily, subject only to left continuity with right limits and
IxM = 1, then OF cannot be non-—increasing for all z¢[® unless the @™ are constant on

L1 as., hence vanish. But then 7™ = 4™ and the result follows.
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Remark (iii). The preceding proposition is formulated only for 1T = II°, and this case is
considered here only when X is continuous. However the argument as such does not use
continuity, and it could be refined to yield local martingale conditions in cases where

M = ! and short sales are permitted, provided that suitable bounds are imposed on the

upward jumps of X and possibly also on negative values of x. This variant will not be

pursued here.

Suppose now that {¢*,7") is optimal. It will be shown below (Theorem 2) that
then y™ is a supermartingale for every xell. For the moment we assume this result and
verify the necessity assertions of Theorem 1. Obviously ¢* is w*—optimal, and by
Proposition 1 y* is a local martingale. Now N.(a) and N.(b)}(i} follow immediately from

Theorem 2, and then N.(d) results from Proposition 6. Assertions N (b)(ii) and (fii) also




30

follow from Proposition 6, and N.(c)(ii) and (iii) from Proposition 7. This concludes the

proof of Theorem I.
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4. THE SUPERMARTINGALE PROPERTY

The purpose of this Section is to show that, if a plan (€%,7%) is optimal, then for
every portfolio plan xell the shadow price process y™ defined by (2.30-31) is a
supermartingale; here IT can be N9 or It (among other possibilities). This result will
complete the proof of the necessity part of Theorem 1. The argument is presented
separately because the methods used are rather different from those in other Sections.
The procedure here is an extension of the classical calculus of variations approach used
in [F1], and we shall omit details of some steps which are essentially the same. The
reader who is prepared to accept the result stated in Theorem 2 can skip this Section
without loss of continuity. We begin with some definitions and preliminary results

concerning directional derivatives and time changes.

Let (&*,7%) be an optimal plan satisfying ¢ > 0 and (2.32), and define
associated processes x*, z¥ = exp(x¥), k¥, c* = e /2%, k¥ = ky - Jc*'dt,
aEh), a'(€*) = v and y' = vz* as in Section 2. Let (T.#) be an arbitrary plan with
associated processes x%, z7 = exp(x¥), k7, cT = T/Z%, k7 and y7 = vz¥ = y*z“-'!z*;
when no confusion is possible we sometimes drop the superscript =. We write

=&

= - *
66 =T ~C, 6c =¢ ~ ¢ etc.

and note that by (2.23) and (2.29-30) we have

6 = ¢%2% — ¢*z* = scz7 + c*(z"r—z*), ..{4.1)

dC.v = fcy™ + c*(y“'—y*).‘ —.{4.2)
For 0 € o < 1, we define a new consumption plan T& (in natural units} by

TY = of + (1-a)8" = & + wic. ..{(4.3)

To show that TQ is feasible, it is necessary to exhibit a portfolio policy =@ which
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finances &%, i.e. which is such that Eae—g_“a“ Intuitively, it is clear that
7% may be constructed as follows: divide the initial capital K, into two funds, in
proportions ¢, 1 - o, invest the first according to = and use it to finance o€, the
second according to =  and use it to finance (1 —a)¢*. It may be checked that a

suitable #® is given (in abridged notation) by

7N = ar Mk (1-a) 7*MKF (4.4

where k.. = k(t—) etc. and

K = ok + (1-a)k¥, . (4.5)

and that k@ is feasible and is the capital plan corresponding to c® moreover, if 7, 7
are in IIt, so is #® (There could in general be more than one portfolio policy which

finances c®, but we shall always consider this one).

Given these convexity properties, one can define the directional derivative

Dz = D(C*,x ; 6C,5%) of p at (€F,7") in the ‘direction" (4T,s7) by

Dp = lim (1/0)[p(E%) - p(c )]

a10
— lim (1/a)E [ (2% - acH) at: L (4.6)
ol 0

the limit exists becausc_a of the concavity of u, and the optimality of (E*,‘.rr*)
implies that Dy < O for all feasible variations (é¢,éx). Differentiating under the integral

sign, writing v = u'(c’) and using (2) yields

Dp = E J’ sc.v dt = E I [(yr—y*)c* + Bc‘.yr} dt . 4T

The differentiation can be justified, as in [F1], under assumption (2.32). In particular,
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on setting ¢ = 0, 5¢c = -c", §7 = 0 we obtain from (7) and (2.32)
x def — % ok —
D =— - Do(c ,x : -6 .,0) = E J S v dt

E J y*c‘*dt < .. {4.8)

and for an arbitrary feasible variation (4€,5x) it follows that
0 > Dp(c*,»™; s&,6%) » -DF > -, v (4.9)

Now define a process G* = (Gf; teT) by

, I | .
¢ = | ey dt = K, - K (1) 410
0

cf. (2.24). Obviously G* is increasing, absolutely continuous and takes values in [0.Ky).
For each i¢[0,K,), we define a stopping time 7; = 7{w,i), called the depletion time at

the level i, as the finite solution of

C[w, 7(w,i)] = i . (4.11)

if this exists and 7(w,i) = o if G*(w,®) < i. We denote by E}i the o-algebra of events
prior to (i.e. not later than) rj. The family r = (7 O<i<K,) defines a time change,
which corresponds to measuring time by the depletion of ‘standardised’ capital along the
star plan. The family A = (éi) satisfies the usual conditions, and we can define the
o—algebra of é-—progressive sets and the corresponding concepts of optional and
predictable sets, martingales, stopping times etc in the usval way. If £ = (s tel) is
an A-progressive process (or A-process for short), its transform under 7 is the process

£ = (& 0<i<K,) defined for each w by

Ei = 8 Titri<o) + Eul(in7j=o0) c . (4.12)
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where the 'variable at infinity' .§# remains to be defined in each case. Note that
{iir{=ec} = {i:G:o<i<Ko}, so that 'E\#(m) is the constant value assigned to g(co,i) when
i3G*(w,®); if G*{w,0) = K, this variable plays no part in what follows and can be
defined arbitrarily In the case of the transforms fr* and §“T we set ;;; = §g =0 on
{w:G*{co,oo)<Ko}.. The time change inverse to 7 is by definition G*, and it may be

checked that each Gf is an A-stopping time with ;éG*(t) =4 Ifn=(5)isan

~

~ « -
A-process we define 7 = (G ), so that & = ¢ if £ is an A-process.

Setting G equal to Gi (which is well defined as a left limit) we have

G¥ = iAGY, dGY/di = 1{0<i<GYy, L (4.13)

provided that the right-hand derivative is taken at i = Go; this formula is used to

transform integrals according to the rule

() (i) . ioa -
[ Temetm a = [ TimacT) = | £(8)dC (0)
(i) r{i) i
JAGT (=)
= £(6)de. o (414)

i

The transformed shadow price process ¥y o= (;vf; 0<i<K,) is of special interest.
Since ¢ is x*—optimal, it follows from Theorem S of [F1] that for the stopping times
{xn) appearing in Proposition 1 once can take any sequence { Ti(n)) of depletion times
such that i(n)1Ky, hence 7j(n)te, a.s. More precisely, the Theorem asserts that y* is a
(true, right continuous) A—mazﬁngale satisfying §f > 0 for i < G (i.e. for ri<«) and
§’f = 0 for i» Gr; also, of course, E§f =y, for each i. On applying the time change

to the integral in (8) and using these properties we have

E f:o v oae

“y
|
i
\.--—\

N
e}
fu
[
m

\—ﬁ

m‘<1
S
[

Ky, .. (4.15)
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which agrees with (2.34). Note that, since y* = *,712%, it follows from the properties
Y y

~

of vy, ;*, 27 and z© that y* is positive everywhere, yT is positive for i < G, both

processes are right continuous everywhere and §"-’(0) = y®{0) = Yo-

We are now ready to prove

Theorem 2: Supermartingale Property: If (c*,x ) is optimal in CxTl, then for every

refl the process y™ defined by (2.30-31) is an A—supermattingale..

Proof. (i) We consider a fixed « throughout. It is more convenient to show that

y"r = (y";; 0<i<K°) js an g—supermartingale; the result for y'}r then follows

by optional stopping, using yE(t) = §W(Gf), of. [F1], proof of T.6.

(ii) As a preliminary step, we show that the average values of E?“(i) on intervals of the
form [0,h), where 0 < h < K,, are uniformly bounded. For this purpose, choose b
and define a plan {c,7) by setting, for each @,
¢ = (Ko/h)eg{0<t<7h}
Since
k(rp) = Ko — (K, /h)G™(rp) and G*(rp) < B
— see (10) and (13) - it is clear that ¢ is feasible, On substituting into the last term in
(7) and rearranging we obtain

7 (h)

- * ® % &
Do = E{JO (KO/h)y: c, dt - jo Y. St de}.

On transforming the integrals to depletion time we have

_ hoa_ Ko 4
Dp = (K /h) E }’0 yy 40 - E Io y, 48,

or, taking account of (9} and (15)
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h . .

(1/h) E j yy do < 1:1"‘/:<0 =y, . (4.16)
0

(iii) To construct a variation which shows that gr is a supermartingale, we proceed as

follows  First choose i > 0 and Acd;, then I, h, H such that
i < i+th < 1 < I4H < X, (41T

then ¢ with 0 < ¢ < h, To avoid trivialities, we assume that (i) < = for weA
The idea is to reduce consumption a little below € during [74,7i+h), Invest the resulting
saving in « (while leaving k* invested in -:r*), then increase consumption after r1 until a
random time p is reached when kK returns to the star path k* (arranging matters if
possible so that p = 1 + H, at least in the limit as £10) and thereafter to revert to the
star plan; the fact that welfare does not increase, ie. Dp <0, should produce a

supermartingale inequality for §7‘".

For brevity, we sometimes write

™ T T w ks
Z. = Z . z, =z /Z,
i (71)’ i,t t/ i

with similar notation for 25, Let

T *
B = B{w,e) = {t: (e/h)(zi,t/zi,t) » 1 and T <t <7,

1-+h} ’

Now define a plan (€,79) as follows. For w £ Aort < 75 set T = g and -

0 = £* TFor weA and t » 7j, write 6C =T ~ ¢* and define

- - x *
(g/h) (1 IB) zi,t/zi,t 75 <t < Tiih

sc/ct = L. (4.18)
(e/H)(z’i",t/z":,t) T £t <p

and 631_ = O otherwise, where p = p{w,€) is 2 stopping time to be defined. Still for

weA and t » 1j, we take for #° the portfolio policy which corresponds to investing K
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in ~* and any variation sk defined by (18) in «, and denote by p = p(w,¢} the smallest
solution after 7(w,i} of K(w,t) = k' (w,t) if this exists and p = « otherwise. For t > p
we again set 7@ = x. Since k* remains invested in « and s¢ < 0 during [rj,7) we
have sk > O during this interval, hence p » 77 as assumed in the definition (18). For
w £ A we set p = 7i, so that p is well defined as a stopping time. Clearly c is
progressive and ¢ > 0 because of the definition of the set B; and since sk > 0 on

K*

[r3,0) and sk = 0 for t > p it follows that k = + 3k > 0, so that (c,#9) is

feasible. Note that ¢ depends on & but 7° does not.

It would be possible to write out formally the portfolic composition w?)\ in terms of
wf)‘ and wg* as in (4-5), but this would only obscure the argument. It is clear enough
that #° is well defined as a portfolioc policy {and is in N if %  and = are in this set),
and we can calculate p by considering only the equation of accumulation of the
additional fund sk(T) which is invested in =. Referring to (2.18), it is seen that this

equation may be written, for weA and r; < T < p, as

_ T I
SR(I) = j sk(t-)[2z"(7.)/z"(t-)] dz"(t) - j sc(t) dt. ...(4.19)
(i) ! (i)

As in the transformation of (2.18) into {2.19), this can be rewritten as
(D = - [ se(27(D/z" ()] a L (4.20)

where of course 6E(ri) = 0, and p is the first value of T > 7; for which sk(T) = 0 if
such a value exists. Suppose for the moment that this is the case for some
e = gy > 0; then obviously 7ij4 and 71 are finite. On substituting from (18), writing

5k{p) = 0 and simplifying one obtains

7{i+h)
asm |

(l-zB)[cf/zf] dt = (/) | [ct/zf} dt. L (4.21)
(1)

(1)
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When €10, 1-Igtl on [7},7i4p), and taking into account that ¢*/z" = ¢* = dG™/dt it
is seen that the left side 1 to (1/h)[G*(rj4n) ~ G™(+{], which equals 1 if 7j4 < «.
On the other hand, the right side is (1/H)[G"(p) — G*(PI)}, which would exceed 1 if we
had p > 7y14p; therefore p < 74, and if 73y < « then clearly ptrypy

as ¢10 to maintain equality in {(21).

In fact, it can be checked that p(e)t7y4py as €40 even if rp4py = « Then, if
TI+H < «, the limit on the left of (21) is 1 and the right side is < 1 for every upper
limit of the integral, so that im p(e) = «  Alternatively, if 7j4p, = =, then the right
side of (21) vanishes identically while the left is positive since 7; < « by assumption, so
that p{e) = « for every £. Of course, in these cases the equality in (21) is to be

replaced by >

Now substitute from (18) into (7), replace v¢*© by y'c*, note that D;: < 0, and

- . - w .
obtain - after cancelling the term zi/z’i* -

7 (i+h)

0> jA dp { ~(e/h)| . (1-1) y’t"[z’tf/z’t"jcf dt
Tl

)

P .
+ (e/H) j( ) yt[z:/zf}c: dt}. L (4.22)
7(1

On cancelling e, then letting £10, we have 1-Ig+l on [ry,7i4p) and p(e)triprrn
s0 that by monotone convergence we may omit I-Ig and replace p by 7y without
disturbing the inequality. On replacing y*z%iz* by y*, transforming the integrals to

depletion time and rearranging we obtain

i+h . I+H .
[ e ramf  ywan > [ e cam [ yTrde. o (4.23)
A i A |

Note that, since for fixed i and A these inequalities hold for arbitrary h, I and I+H
satisfying (17), they continue to hold if I, I+H are replaced by i, i+h' with

0<h<h'<Kg-i.
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(iv) 1t remains to replace the inequalities {23), which relate to time averages of )7"'", by

inequalities for the process itself. For O<i<i+h<K,, define new variables

“h i+h -
Y, = (1/h) J v (8) dé
i

and note that

YI: - ¥y. a.s. when hi0 . (4.24)

[T |

because of the right continuity of §‘F. For fixed b = H, the inequalities (23) with

A = {} show that E ;}: t as il, and by part (ii) above we have E AY‘: < Yo SO
that the :{}: are all integrable. For fixed i, the process (;’I;; 0<h<K,-i) is
adapted to the filtration (;&i.,.h; 0<h<K,-i), it is right continuous because 9"" has this
property, it is integrable, and so by the sentence following (23) it is a supermartingale.

On letting hi0, it follows that the ;l: converge a.s. and in i:l to some
:\A_i-measurable variable, see [DM}VI.7, and by (24) this variable is ;7:

But then we may pass to the limit under the outer integral in the inequalities (23) as

h = H10, vielding the supermartingale inequality for ;r"", ie.

J yT dP > j yi AP, A€l i<, .. (4.25)
A A

as well as the integrability condition E §'1: < Yool
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5. PORTFOLIO EQUATIONS

This Section investigates the abstract relationship between martingale conditions,
which characterise an optimum in terms of intertemporal comparisons of utility, and
'portfolio equations® which lay down relations to be satisfied by the optimal portfolio

vector at each time and state, An example of portfolio equations is given in Section 6

The present discussion follows on from Section 3. Initially it is assumed, unless
otherwise stated, that I1 = [Tt, that X can have jumps, and that (c*,w*) is a distinguished
plan satisfying 5 > O (the case 1 = 9, X continuous, « unrestricted being similar
though simpler); the case Il = n*, == > 0 is considered separately afterwards. We

assume for the time being that (c*,ar*) is optimal and consider necessary conditions.

Let r be another portfolio plan and write 47 = 7 — £, s7h = ah - TN et
The processes y*, y* are local martingales by Propositions 1 and 6 (or by Prop. 7 if
I = I9), therefore the corresponding processes 7%, 7" defined as in (3.4) are local

martingales also. Using (3.5) we have
x & T * dv 7w *
R R j -] (5.1

and ¢% - ¥ is given by (2.13) with é7 in place of x, and then x* can be written out

explicitly as in (2.1). The square bracket term in (1) can be split up as
dv .7 & dv ,c ,7C *c
[ & -t - <(f &5 8T -

Av(t) x *

and AtT — At® may be obtained from (2.9); explicitly, the angle bracket term in (2) is

-3 ser d < (In v, M > .. (5.3)
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while the sum of jumps is

A
52 3 st 0O R
t<I A
Writing for brevity
NN = yhe 4 i< MAC,  MAC > ¢ <« (In v)C, MAC > ) o (5.5)

substituting into the right-hand side of (1) and rearranging we get, in abridged notation,

' 1
[ Seeta+ [ 3ot v+ [ 5 ec a?
0 A 0 x 0 x
A ' A
+ ¥ 3 61)\ {eAX -1 - Ax}\ + (Av/v_)eAX 1. ... (5.86)
t<I X

This simplifies further, using first Ax» = AMM + AVM and the fact that VM is just the
A
* X

sum of its jumps, secondly that v = ve™ , y}\ — ve* . hence

£ % AKX N, A -AX

L E - -Ax
T+ Av/v_ = viv_ = (y fyde = yhe™
and finally Ysx» =0. On taking the first term in (6) to the left—hand side of (1) and

taking into account the definitions of %%, 1° we have

I
T * A A
771*’7I_J0 garth

T \
- Mpdy (t)
—J 2 om [ x th]
0 A y (t-)
1 RN X T oyh(e) A
[ Serpany+ 3 Sea [ LA - aw ], (5.
ox Yt Nty t
or simply

B?W = Ngf + s%w .. .(5.72)
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where B®¥ is a new name for the common value of the three lines in (7) and NO~,
SO7 are abbreviations for the two terms in the last line. Note that the equality of the
three lines in (7) does not depend on optimality or martingale properties of the yX as
such — except that, as mentioned in the discussion preceding {3.4) and (3.5), the fact
that y* is a positive local martingale ensures that yk, y_)_“, v, v_ are all positive so that
the processes 7%, n* and the other formulae involved in the calculations leading to (7)
are well defined. In particular, if we consider the single asset portfolio defined by

(2.11) and write
M I R A ol I Sl . (5.8)
A )

we get, on replacing = by \ in 4%, BO%, N7 887 the formulae

> N N T S
B‘I‘ =1 - My - MI + MI'
A & 3A
= N] - Np + 520, e (5.9)
5) NN N A *
_ ¥ Y - .
s;" = 3 aM; o+ M | ..(5.10)

Iy *
t<I  y (t-) ¥y (t-)

Now, the first line in (7) is a local martingale vanishing at zero time, therefore so
is the last. Further, it follows from the method of calculation and standard results
concerning the change-of-variables formula that the sum of jumps S?’T
converges absolutely for all Tel as., [M2]iII.3,8. Since the integral N87 is a
continuous process of finite variation, it follows that B47 is (locally) of finite variation,
and being also a local martingale vanishing at zero it is locally of integrable variation,
[DM]VL.83. But N%7% is focally of integrable variation, therefore so is S37, It follows

i_”;'re;) admits a compensator (dual

that the sum-of- jumps process s°7 = (s
predictable projection) $87, and since S9% + NOT is a local martingale vanishing at zero
we have §67 = — Néw , so that the compensator is continuous. In other words, B%% is

a compensated jump local martingale, and satisfies
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0=B,  =N_." + 8§ on I, a.s., for every = = x* + &7 ¢ II. . {(5.11)

In particular, for the single-asset portfolios we have

- % o~
0= Bi'\ = N;\ - NI + S‘;}\ on L, a.s., for A = 1,... ,A. o (5.12)

For brevity we shall consider mainly the system (12), rather than (11), from now

on. This system may be regarded as a set of portfolio equations to be satisfied by the

optimal portfolio process z~ in case 11 = 0¥, =* > 0 (or 1 = I°, X continuous); of
course, the equations do not in general determine x independently of ¢*, since both the
continuous and jump terms in (2) involve v, which depends on ¢*, which in turn

depends on x° by way of the conditions stated in Proposition 1.

The equations {12} have been presented so far as necessary conditions for
optimality. Conversely, if (¢*,x") is such that ¢* is ‘:r*_—opiimal, so that in particular y*
is a local martingale, the processes nM, S8\ are well defined and the equations (9) are
valid, with S%M of finite variation. If moreover each SOM is locally of integrable
variation so that $8} is well defined, and if the equations (12) hold, then each B%* has
a zero compensator and so is a local martingale, therefore so is each y* — 5, and
since 7" is a local martingale {because y* is one) the same is true of n*, hence of y;
but then (c*,#") is optimal by Theorem 1. The case I = M°, X continuous does not
require separate detailed consideration. The discussion so far is summed up in part (a)

of the following

Theorem 3: Portfolio Equations. Let 11 be T° or Tt if X is continuous, It if X has
jumps. A plan (c*,x") is optimal iff ¢* is 2" —optimal and a further condition holds, as
follows:

(a) In case either »* > 0, or I = TP (X continuous), the condition is that, for each

A = 1,..,A, the process B®X defined by (5.9) is locally of integrable variation and its

compensator BoX vanishes, i.e. the equation (5.12) is satisfied. If X is continuous (with
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either == > 0 or [T = II9), the condition simplifies to the requirement that the processes

NA, N* defined by (5.5), (5.8) satisfy

N - N, on L, as., for A =1,...,A L (5.13)

(b) In case T = N*, =* > 0, the condition is that, for each A, BSM is locally of
integrable variation and B4} is non-positive, non—increasing and satisfies (5.14) below.
If X is continuous, the condition is simplified by writing Bé» = BSA = N» - N* (and

then the locally integrable variation is automatic).

It remains to complete the proof of (b). Starting with necessity, a review of the
previous argument shows that the calculations up to (10) are still valid but 5%, 7> are
no longer necessarily local martingales. However, 13* is still a local martingale (because
y* is one by Proposition 1). Also, by Theorem 2, each y* is a positive supermartingale,

so that each n* can be decomposed as in (3.8) and

A A

T;)‘-jdn"/ni=q -3

is a local martingale. A slightly modified version of the argument preceding (11-12)
then shows that Bé» need no longer vanish as in (12), but instead is equal to 3*
and so is non-positive and non-increasing. It then follows from (3.1) or Proposition 6

that

I
- -

[ = Mey aB® (1) =0 on I, a.s., A=1,... A (5 14)

0

Turning to sufficiency, the validity of the definitions and calculations up to (10) is
established as in the case »~ > 0, and S8*, B8M are well defined because S$%* is
assumed to be locally of integrable variation. Now B&>» — BéX js by definition a local
martingale and BOM is non—positive and non-increasing by assumption, implying that B&A

is a local supermartingale, hence by (9) that 7> is also a local supermartingale, so that

the same is true of yM, and then optimality follows from Propositions 3 and 5.t
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Remarks (i) In general, the processes y* = vz}, y* = vz* may jump even if X does
not, whether because A has a time of discontinuity (sudden arrival of news) or because
the function u' is discontinuous with respect to t. However — bearing in mind that
Ssxh = 0, that

yMyh = (v )(zNzd) = (viv]) exp(ax)),

and that Ax» = AM* + AVM - the processes B87, BOA defined in (7), (9) can jump

only if at least one of the components of X jumps.

(i) If X has at most a finite number of jumps in a finite time interval, formulae (7-10)
may be simplified by absorbing the jumps of M into V4 (and any remaining part of Md
into V¢). I it is known that v also has finite number of jumps in a finite interval, one

can form separately the sums

A . *
- 3 Yk& S B ACO N ... (5.15)
t<I y (t-) t<I y (t-)

If these processes are locally integrable, one can define their compensators, and then (12)

becomes
A X * T
NI + SI - N’I’ + S.I onl, a.s., x=1, .. A, ...{5.16)

(ili) In portfolio theory it is often assumed that there is a ‘riskless’ asset, say the one
with index A. If this is taken to mean that the process x/\ is deterministic, then the
assumption that X is a semimartingale imposes some limitations on the functional form of
xA(1), see [J1]2.77. In general, xA can still have jump discontinuities; but if one
assumes that X has jumps only at totally inaccessible times, then xA can have no jumps
at all. Taking this last case as an example, and adopting alsc the assumptions leading
to (15-16) above, it follows from MAC = 0 and (5) that NA = VAC, and since xM does
not jump we have SA = 0. Subtraction from (16) then yields N» + §N = VAC for

A o= 1,..,A-1, with VAC deterministic.
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6. AN EXAMPLE

The example to be considered is that where utility has the ‘discounted CRRA' form
and the semimartingale X is a PSII with respect to A satisfying an integrability condition
which ensures that an optimum exists. The solution of this model is well known in the
case where X is a A-dimensional Brownian motion with drift, see [M1], [KLSS], but
even in that case it is of interest to derive the results by new methods and so to
convince the reader that the rather abstract objects which we have called ‘*portfolio

equations' deserve the name.

In the ‘discounted CRRA' model it is assumed that the welfare functional has one

of the forms

- 1. =, . 1-b -pt

o(c) = (1-b)~ EJ () TP TP g 0<b#1 e (6.1)
0

P = E[ {Ino(t))e™" a e (6.2)
0

where p is a constant (not necessarily positive). For brevity we shall consider only (1)
explicitly; (in facf, correct expressions for the optimal plan under (2) can be obtained
by setting b = 1 in the results derived under (1), but the condition for existence is
rather different). Regarding X, we assume that it is a PSH as well as a semimartingale
with decomposition (2.1), where M and M9 are now true martingales. It may be

assumed w.l.o.g. that

vi‘c =t , M - MW, <M, M s o o™ (6.3)

where (Wl,......,WA) is a vector of standard Wiener processes relative to A and mA,
oM are constants, o = oM > 0, and the (covariance) matrix [oM2] is
symmetric and non-negative definite. Further assumptions about VA, MM will be

introduced below. We take IT = ITt if X has jumps, IT = I® or IT* if X is continuous.
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A convenient feature of this model is that, if an optimal plan exists at all, then
there is one with a constant ratio of consumption to capital and a constant portfolio
composition. We shall not prove this fact as such, but rather use it as a guide in
constructing an optimum. Let us say that a consumption plan ¢ or ¢ is constant if

there is a number ¢ > 0 such that
c/ky = ke = 6 for all (w,t), ..(6.4)

and that a portfolio plan = is constant if there is a numerical vector = = (-}1,.....‘,%/\)

such that
= 7h, N =1,.,A,  for all (w,t); ...(6.5)

a plan (c,x) or (c,r) will be constant if both its components are constant. In the sequel
we shall usually be concerned with properties of a distinguished 'star' plan and shall
leave off the stars when no ambiguity arises; also, if # = == is constant, we shall write

™ rather than "M o1 1 A,

If = is constant, it is clear that the corresponding process x = x¥ is a PSII, and
the problem of optimal saving with = given is equivalent to the problem of optimal
saving with a single asset whose log—returns process is 2 PSH. Let us briefly recall the
solution of this problem in a form suitable for present purposes — see [F1]S.1 for
details. Let K, = 1 and consider what conditions are necessary for a constant 8 > 0
to define a z-optimal constant consumption plan ¢ such that y* = u'(c)eX is a true

martingale. Since k = -~ ¢ we calculate successively
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kt = e—gt’ ¢t = Be—at’ Et = geX(t)"ﬂt,

vy = (¢ et = g7b e-bx({t)+(bo-p)t

e = v eX(t) = g=b (I-D)x(t)H(bo-p)t ...(6.6)

and using he fact that x is a PSII it is readily shown that y* is a martingale iff Ey*(1)

is finite and constant on I. This in turn is equivalent to the conditions that

E e(I-0)x(1} <« o ..{6.7)
and that
8§ =n=mn(r} >0 ...{6.8)

where n is defined by

e bn = g o(1-b)x(1)-p ...(6.9)

A calculation then shows that

(1-b)p(c) = [n(x)]® ...(6.10)

which is finite under (7-8), and then conditions (2.32) and (2.34) of Prop. 1 are also
satisfied and the plan is =—optimal. On the other hand, if (7) fails or n < 0, it can be
shown that no »—optimal c-plan can exist. Moreover, a standard convexity argument
shows that a =—optimal c¢-plan is unique, modulo null sets. Thus a =-optimal ¢ (or c)
exists iff (7) holds and n(x) > 0, and then it is unique and is given explicitly by (6)

and (8). Note that (7) holds automatically if x is a continuous PSII.
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The condition (7), which is essentially a requirement that a particular value of the
bilateral Laplace transform of x(1) exists, is typically not satisfied if x is a PSI whose
sample functions can have countably many jumps in a finite interval. In particular, it is
not satisfied if x is a symmetric stable process with index in the interval (1,2), which is
to my knowledge the only processs of this type to have been proposed as an empirical
model for speculative prices. It will therefore be assumed in the rest of this Section
that the vector process X has a.s. at most a finite number of jumps in (say) a unit
interval of time. As noted in Remark (ii} of Section 5, each MM can then be absorbed

into the corresponding V}, so that the tetms in AMM, AM™ in (5.7-10) can be omitted.

Consider now what conditions are necessary for a constant plan (¢*,z") = (c,r) to
be optimal. Of course, ¢© must be = —optimal, so that (6-9) above must be satisfied.
If T = O, we shall assume for the time being that = >0 (which in the case of a
' constant optimum can in principle be achieved simply by omitting from the list |
A =1,..,A those securities which are not held in the portfolioc). Both in this case and
in case IT = II° with X confinuous, the optimum must satisfy the ‘'portfolio equations’

(512). To evaluate N® and N, refer to (5.5) and (5.8) for the definitions, then use

(6) above together with (2.17) and (3) to obtain

<(in v©, M'C > =-b<3 2 MES, MMe > =-bTY M 61D
§ ¢

=1+ 30 -b3et Y, N =3NS .. (6.12)
1 ) 172" N

If X has no jumps, the equations (5.12) reduce to NMI) = N*(T) for A = 1,...,A, or
simply NM1) = N*(1) on cancelling T. If A is a riskless asset, they reduce further to
NM1) = mh for X = 1,...,A-1, or explicitly

R N W i LS A SR W Y ... (6.13)

2

which are the equations for the Browmian case originally derived by Merton [M1].
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We now allow for jumps. Wiiting x = x* and y» = v- exp{x*}, we have from (6)
that

X, eAx“(t)-be*(t) %, % _(1-b)ax (¢)

Y /Y = Ye/Ye .

¢ e (6.14)

and exp{Ax*} may be evaluated from (2.16) as ¥ 72 exp(Ax?). Substituting into (5.15)

yields

2 X
S)‘ -3 [%. ﬁ_f eAx (t)]—b eAx (t)

¢<1

* (1-b)Ax™ (1) 2 Axl(t) 1-b

-3 [e 1= 5[5 MM)] - 6.15)
t<T t<I @ .

and the proceses S, S¥ are again PSII. Now S* is an integrable process if

ES™(1) < o, and then the compensator S* (being the predictable process which must be
deducted from S* to get a local martingale) is given by §%(I) = T- ES*(1). Since S* is
just the positively weighted average of the S*, with constant weights, the preceding
condition implies that the SM are also integrable with SNT) = T "ESM1). On the other
hand, in view of the assumptions made about the continuous part of X, the condition
ES*(I) < = is just (7) with x = x*. It now follows from Remark (ii) of Section 5 that

the portfolio equations may be obtained by substituting into either (5.12) or (5.16).

To simplify a little further, let T, m = 1,2,... be the jump times of the vector X
with 0 < T} < ... < Ty < Typ4q ..., the vectors AX(Ty,) being iid. Write simply
AX = (Axl,......,AxA) for a representative variable, let # < « denote the expected number

of jumps in a unit interval and assume that

0
E (5% )l g ... (6.16)

2

where = = z°. Then, on writing
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o X
ﬁ;:m}\-!-ffr}\)‘—bZU)‘QwQ+#E[(2wQeAX)*beAx]
g 2
=% 2 ~p <5\ ~N
B1 = % % B1 s B1 = B1 - Bl’ (6.1
the portfolic equations (5.12) or (5.16) are
B =0, a=1,...4 .. (6.18)

These of course contain the well-known results for the discrete—time case, see [H]. If A
is a riskless asset ~ which according to Remark (iii) of Section 5 does not jump - the

equations reduce to ﬁ}‘(l) =mh for A = 1,...,A-1.

Finally, if 1 = II™ and the assumption = > 0 is replaéed by ©f =% » 0, it

follows from (3 1-2) and (5.14) that (18) is to be replaced by

<0, = B, =10, A=1,...,A. .. (6.19)

To sum up, we have

Proposition 8. Let o have the ‘discounted CRRA® form (6.1), let X be a semimartingale
— PSHI having at most a finite expected number of jumps per unit time, and let I be
I° or A% if X is continvous N* if X has jumps.
The necessary conditions for a constant plan (c*,-:r*) — ie. a plan with constant
consumption ratio and constant portfolio composition — to be optimal are as follows:
(i) that (6.16) holds at = = =*, or equivalently that (6.7) holds
at X = x*; (this condition is redundant if X is continuous);
(ii) that n = n(x*) defined as in (6.9) is positive and ¢*(t) = ne Nt
onl, a.s.;

(iii) (a) in case either = > 0, or Il = N° (X continuous), that =¥

satisfies the equations (6.17-18);

(b) in case T = I*, ¥ > 0, that ¥ satisfies (6.19).
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These conditions are also sufficient for optimality.

Remarks. Verification of sufficiency is straightforward and is omitted for brevity., It can
be checked that the y» are true martingales for those A with =" » > 0. A question not
settled by the above proposition is whether there can be any optimum if there is no
constant one. On the other hand, an optimal portfolio plan is in general not unique,
cf. [S], so that if there is a constant optimum there may also be optima for which the

portfolio plan is not constant,
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7. MARTINGALE MEASURES FOR ASSETI PRICES

This Section considers briefly the connection, in the present model, between
martingale properties of shadow prices and the existence of 'martingale measures' for

asset prices.

We first recall some concepts and results. Given (Q,A,P) and A = (A;) with
A = A, and another probability measure Q, we write Q ~ P if Q is equivalent to P, or
more generally Q ~ P(B) if the equivalence is asserted only on some sub o-algebra B.
Let PB, QB denote the restrictions of P, Q to (Q,B), in particular write Pt, Qt if
B =4 If Q ~ P, there is a positive version L of the Radon-Nikodym derivative
dQ/dP, and the formula Lt = E;L defines a positive and uniformly integrable
(P,A)- martingale; here E; means E[../At] taken with respect to P,
Further, Lt is a version of th,_/dPt and is sometimes written Lt. = E;(dQ/dP) .
Conversely, if (I..t) is a positive, uniformly integrable (P,A)- mart ingale
such that L0 = 1, hence Lt = Eth, and if Q iIs the probability defined

P
on A by dQ/dP = Lw, then

=
1

Elt)(dQ/dP) = aQ" /ap*, BRCRY

see [VSW], [BI].

These results will be applied to the situation where a positive stopping time y (the

A Bep)

P, Q, Pt, Qt by the restrictions PX, QX, PtAX, QtAX, also Et by EtAX,

'horizon') is given and A is replaced by AX’ A= (ét) by _A_X = (A

L; by Lt Ay, Lo DY I‘X" Then we say for short that the properties considered

in the preceding paragraph hold 'up to x'; thus '‘Q ~ P up to x' means

'QX ~ PXt ete.

Returning to our model, let the A—dimensional semimartingales X, Z be defined as

usual, let an optimal plan be given for which the processes yM are all local martingales,
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. : ; . D\ A : .
and bear in mind the interpretation of z, = exp{xt} as the market price of

. S A . .
asset A at time t and of Yo = V.2, as the shadow price. Select one of the

tt

assets, say A, and define the (A-1)-semimartingale Z with components

~N. ~A A, A .

(zt, tel), z, = zt/zt, noting that

~X A, A A A A, A

z, = Zt/zt = exp{xt - xt} = yt/yt" : vl (7.2)

The processes zA represent 'A-discounted prices' (the usual assumption, which we shall
not need, being that A is a riskless asset). Given the investor's beliefs P, another

probability Q, and a horizen x, we say that Q is a martingale measure for Z up to ¥

if QX-~ PX and for each A = 1,...,A-1 the stopped process (EiAX) is a
uniformly integrable (QX,AX)-martingaleq These definitions are
straightforward extensions of those used in the finite—horizon theory of the pricing of ‘

contingent claims, see [HP].

Now let (xp) be a sequence of times reducing each of the (P,A)~local
martingales (y:), =1, ..,A, and fix y = Xn: S0 that the (y:AX) are

uniformly integrable (PX,AX)—martingales" Suppose w.l.0.g. that

b

A(O) = y*(O) = 1 for each X\, so that in particular yi is a positive,

éx—measur'able variable with Ey; = 1, and we may define a probability Q by
yi = dQ/cIPX.. Then QX = Q on éx and we have, as in (1), !
A _ EtAx yA _ thAX/dPtAxa (1.3)

Yeaxy = Cp %

It can now be shown that QX is a martingale measure for Z up to x. In i

- e we have
fact, for AéétAx
[ 2} aeX
A X

X, A _
- IA (/9,04 by (2) |
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- J yx dPX definition of QX
A X
A . ' A
- JA yt/\x dpX martingale property of (ytAX)
- J yk dptAX obvious
tAY
A
_ A A tAX
- jA s/ Vers 40 by (3)
_ ~h tAY
_j Zepy 90 by (2)
A
= I Ek doX obvious. It (7.4)
A EAX ’ o

As an immediate consequence, we have

Proposition 9. Let an optimal plan be given such that the shadow price processes

yk, A=1,...,A, are {(A,P)-1local martingales reduced by a sequence (xn) of ;
n
ositive stopping times. For eachn, let A = A , A = (A ; tel),
P PPIng 4 T8 (—t Axg 1)

P’ = P/Qn, and let Qn be the probability measure defined on A

by dQn/dPrl = yA(xn)H Then Qn is a martingale measure for Z up to y, -
in other words, the process (Ek(tAxn); tel), where ER - z)\/zA = yk/yA, is a

uniformly integrable (Qn,ﬂn)—martingale“

Remark. The significance of this proposition lies largely in what it does not say.
say. Since the shadow price yA will typically not be uniformly
integrable to infinity - cf. the example in Section 6 - it cannot be
asserted that there is a single martingale measure for asset prices
up to infinity even if the yk are all (true) martingales. If 0 = ITF,
the yk will not in general even be local martingales unless 7% > 0;

however, if wA(t) >0onla.s., i.e. if security A is always held, the
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argument leading to Proposition 8 goes through except that the equality

in the fourth Iine of (4) is replaced by <, showing that (E:AX) is a local
supermartingale  These points indicate serious limitations of the
change-of-measure technique in the analysis of infinite-horizon models

of market equilibrium when investors have diverse opinions and portfolios.
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