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INTRODUCTION

It is well known that an optimal plan for saving and portfolio choice, over an
infinite horizon in continuous time, can be characterised by means of the martingale
and transversality properties of the associated shadow prices — the shadow price, or
‘marginal utility price’, of an asset or portfolio being defined as the product y = z-v
of its returns or market price process z = z(w,t) and the marginal utility process
v = v(w,t) calculated along an optimal plan. The present essay expounds and extends
these properties, with special reference to their place in the economic theory of value
and their applications to security and project valuation. |

Regarding the theory of value, the essential points to be made at the outset are
that the martingale properties of shadow prices may be regarded as generalisations to a
dynamic stochastic setting of the principle of equi-marginal utility, while the trans-
versality conditions correspond to the principles that an (unsatiated) consumer should
spend the entire budget and that redundant resources attract zero prices. This
foundation in fundamental concepts of economic theory lends a treatment of valuation
based on marginal utility prices a remarkable degree of universality and transparency,
and often affords insights which lead to simple and intuitively acceptable formulas.

The literature on valuation is fragmented, often proposing different theories and
techniques for different types of assets and different situations. Thus there are theories
for the valuation of ‘underlying’ securities, for derivatives and for indivisible projects,
theories for complete and for incomplete markets, for continuous and for discrete time,
for finite and for infinite horizons, and so forth. In general texts, the various models
tend to be presented seriatim, perhaps in ascending order of mathematical difficulty or
generality, with a profusion of mathematical methods and assumptions, often chosen
for technical convenience in a particular discussion. Inevitably, the models are largely
inspired by ideas from economic theory, but contact with these ideas (particularly in

their older and simpler forms) is easily lost in the mass of technicalities. A substantial



part of the recent literature restricts attention to the valuation of derivative securities
in the setting of a complete market, taking as given the price processes of the
‘underlying’ securities. Interest centres on special mathematical methods which are
convenient for this class of problems and contact with the general theory of value is
minimal from the outset — the only major priﬁdples borrowed from it being (loosely
speaking) that more money is better than less, and one or more forms of the ‘law of one
price’.1

The methodological stance of the present essay, briefly stated, is that the
natural way to develop the subject of financial asset valuation is to start with the
general concepts and principles of the economic theory of value, to classify particular
problems and techniques according to criteria suggested by this theory, and to treat
them, so far as is reasonable, as special cases within the general framework. It would
also be desirable, where possible, to construct mathematical proofs so as to reflect
underlying economic ideas, rather than simply to transplant the terminology and
intuitions of physics. Naturally this is not a programme which can be impleinented in
a single paper — nor is it suggested that we must make a fresh start, since most of the
material required exists in the present literature. The issues just raised concern rather
the method and order of presentation of basic ideas. Section 1 below presents a review
of some concepts of valuation along the lines suggested.

In order to keep the exposition within bounds, we shall concentrate attention on
the valuation of assets within the framework of an optimal plan for an individual

agent, (although some of the discussion can be re-interpreted as relating to the

! Some practitioners even affect to despise more general theories of economics based on
concepts of utility etc, and regard financial valuation as a ‘stand-alone’ branch of
applied mathematics which finds its practical expression in so-called “financial
engineering’. Enthusiasm for methods of hedging and valuation of derivatives in
complete markets, and for associated methods of computation, seems often to obscure
the fact that these techniques do not provide a general theory of valuation and that
fihey are liable to give at best only imprecise results when applied beyond their proper
omain.



equilibrium of an exchange economy with identical ‘representative’ agents). The main
topics will therefore be the conditions characterising an optimal consumption and
investment plan for the agent, together with the valuation of assets within the plan
and the valuation of changes. In support of our methodological position, it is note-
worthy that the martingale and transversality properties of shadow prices which
characterise an optimum, and the resulting formulas for valuation, can be proved fairly
directly and generally by arguments which correspond to economic intuition. In
particular, these general results have rather little to do with the type of market process
(Wiener, Markov etc, although continuity does make a difference); or with the
‘completeness’ as distinct from ‘perfection’ of the market (although non-negativity
conditions make a difference); or with the type of security to be valued (whether stock
or bond, ‘underlying’ or ‘derivative’ etc).

Certain technical issues concerning martingale methods deserve notice at the
outset. Economic valuation is forward-looking, the value of an asset being derived
from the returns or services which it will render in future. For most problems
concerning the valuation of derivative securities it is reasonable to restrict attention to
a closed, finite time interval, since the returns from the securities up to a terminal date
are usually specified in advance (as random variables or processes). A change of
probability measure then transforms the (suitably discounted) market price or returns
processes of the ‘underlying’ assets into uniformly integrable martingales, and the
valuation problem for a derivative is solved via martingale representation, at least if
the market is complete. By contrast, it is necessary in a general theory of valuation to
treat time as infinitely extended (or perhaps as open-ended with an unpredictable dies
irae) if arbitrary terminal valuations are to be avoided. For a reasonable degree of
realism, it is also necessary to allow for incompleteness of inter-temporal markets in
risks, even if the available markets are perfectly competitive. In this setting, the

‘martingale measure’ transformation is less useful, both because it is only ‘local’ (i.e.



defined only up to a stopping time) and because it is not unique. Instead, it is
optimisation which (under assumptions to be recalled later) produces uniquely defined
shadow price processes which are local martingales on [0,00); the transversality
conditions are expressed as limits taken along a sequence of stopping times which
‘reduce’ the shadow price processes to martingales. This holds even when markets are
incomplete, though not necessarily when there are ‘frictions’.

Working with local martingales is a nuisance, and besides, the mere information
that a price process is a local martingale does not provide an adequate economic
characterisation. We wish to identify suitable reducing times, not merely to know that
they exist, and if possible to select times with an interesting economic interpretation,
such as the first crossing times for shadow prices, or the first crossing times for capital
or cumulative consumption denominated in suitable units. Going a step further, the
possibility suggests itself of using a suitable family of times to define a random time
change, such that the shadow price processes are transformed into true martingales and
the transversality conditions are defined in terms of (transformed) ‘clock’ times. The
problems which arise are quite subtle, partly because of the need for a reasonable
economic interpretation, partly because of the joint dependence of the martingale and
transversality conditions on the choice of stopping times and the need to ensure that
the transformed conditions remain sufficient, as well as necessary, for optimality
(which could fail, for instance, if the choice of a time transform which is not strictly
increasing leads to a loss of relevant information). These issues are explored in Section
2 below and the Appendices, where several new results are proved. But when all is
said and done, it as an inescapable feature of the economic problem that in general a
martingale process defining shadow prices is not uniformly integrable on [0,00}, so that

it is not possible to recover the entire process by taking conditional expectations of the



limiting ‘variable at infinity’.2

Turning now to an outline of the following Sections, ideas related to valuation
in general and their relationship with properties of shadow prices are developed
informally in Section 1.3 Thereafter, we present in Section 2 a summary, mostly
without proofs, of part of the mathematical theory concerning conditions characterising
an optimal plan for saving, or for saﬁng and portfolio choice, drawing largely on the
author’s previous work. We also present some new results, concerning (i) the effect of
introducing into the saving model an exogenous, indivisible random income, such as a
salary or revenue from a wholly-owned property, and (ii) the use of random time
transforms to replace local by true martingales in the conditions for optimality; proofs
are given in Appendices.

The remaining Sections present applications to simplified problems of valuation
of more or less traditional kinds, which illustrate the advantages and difficulties of
present methods. Section 3 deals with a simple portfolio-cum-saving (PS) model with
initially just two ‘long-lived’ securities — a stock following geometric Brownian Motion
and a bond — and considers the valuation of a derivative security such as a European
call option; needless to say, this leads to (yet another) derivation of the Black-Scholes
(BS) formula. The analysis helps to show to what extent the valuation formula results
simply from martingale properties of shadow prices and what part is played by
ancillary assumptions such as martingale representation and risklessness of the bond
(either throughout its life or only at maturity). No direct use is made of arbitrage or

replication arguments.

2 Thus, in the basic example of optimal saving with discounted CirA utility and a
Brownian market log-returns process, the shadow price process is an exponential
martingale with limiting variable a.s. equal to zero, except in the case of logarithmic
utility when the whole shadow price process is a.s. equal to a positive constant; see
Foldes (1978a), Theorem 2 and Section 6, Remark (iii). Cf. also egs. (3.13—14) below.

3 Economists will no doubt find much of the discussion rather obvious, but I have been
persuaded that a review of fundamental concepts from a traditional economic stand-
point would be of interest to readers of a special issue on Computational Finance.
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Section 4 considers a simplified problem of project evaluation, in which an
investor who initially confronts an infinite-horizon problem of optimal saving with a
single risky security has the opportunity at zero time of acquiring, in exchange for a
lump sum, an indivisible random income stream (without the option of postponement).
As is familiar from deterministic cost-benefit analysis, use of the net present value
(NPV) formula for evaluating a project which is big enough to shift (market or
shadow) prices leads to over-valuation if the prices used are those which prevail in the
absence of the project, to under-valuation with the prices prevailing once the project is
in place. We confirm an analogous conclusion in our continuous—time, stochastic set-
up and show that the project may be correctly valued by a formula of Expected NPV
type, with random discounting using a shadow price process obtained as the average of
such processes corresponding to alternative hypothetical levels of project participation.

The literature related to the various topics is vast; a few references will be cited

in individual Sections.



1. SOME CONCEPTS OF VALUATION
Many concepts and problems concerning valuation in continuous—time stochastic
finance have analogues in traditional static or deterministic economic theory, and these
similarities often afford insights pointing to solutions of technically complicated
problems. In this Section, we take a few steps towards developing some common
formulations, having in mind particularly the examples to be considered later. Some
comments on the methodology of valuation are also offered.

Since theories of pricing for financial assets have developed largely as demand-
side models with conditions of supply given exogenously, a suitable starting point for
comparisons is afforded by the static theory of demand with pricing of a fixed supply.
More precisely, we shall consider valuation mainly from the standpoint of an individual
agent (consumer or investor), adopting broadly the ‘quantity into ‘price’ approach as
described by J.R. Hicks (1986), esp. Ch. IX., except that we accept unreservedly a
‘cardinal’ approach to utility. The agent has access to a market which is ‘competitive’,
‘perfect’ and ‘in equilibrium’ - at least for some commodities, and we say that these are
marketed; for any remaining commodities, we assume for simplicity that no trade is
possible, except perhaps for the offer of an ‘indivisible’ bundle of goods which must be
accepted or rejected as a whole (house purchase, job offer, take-over etc). The market
is not necessarily ‘complete’. The precise meaning of the terms in quotation marks
varies somewhat according to context. Briefly, the market is complefe if all
commodities (variables) appearing in the agent’s utility function, or perfect substitutes
for them, are marketed - commodities being distinguished, if appropriate, according to
time and random state as well as physical or financial characteristics. The focus on
individual decisions rather than market equilibrium or social welfare, and on a single
agent rather than a company or public body, serves to limit the argument, but we shall

sometimes extend the discussion informally to a wider setting.



Now value in economics means primarily price, which may be quoted in various
units, e.g. money, corn, labour or utility. Thus valuation may be taken to mean the
assignment of prices, having specified properties, to quantities of goods, or claims to
goods such as financial securities. In some settings, valuation may refer to the solution
of a set of pricing equations defined by a fully specified, closed model, such as a system
of general equilibrium. However, in typical problems of financial theory such as project
appraisal, evaluation of a job offer or the valuation of a new security, one is concerned
rather with some variation from a given benchmark - usually an optimal plan when
considering valuation by an individual agent, or an equilibrium when dealing with a
market. We shall be largely concerned with situations of this latter type.

We start with the static theory of demand and consider an agent whose plan is
optimal for some ‘initial’ or benchmark data - prices, constraints, list of goods mar-
keted etc. Given a change in the data - call it a perturbation - the agent formulates a
revised plan which is optimal for the perturbed data, and it is reasonable to define the
(money) valuation of the variation of the plan as the associated variation of the agent’s
capital which would leave the agent just as well off as before. Following Hicks, it is
usual to distinguish between the equivalent variation and the compensating variation,
defined respectively as the valuation for goods to be acquired (maximum sum payable)
and for goods to be disposed of (minimum sum receivable), the two valuations agreeing
for a ‘marginal’ (strictly, infinitesimal) variation of the quantity of a divisible good.
More generally, we shall speak of the offsetting variation for a given perturbation.

Some comments are in order. (i) It is important that the definition relates to
changes from one optimal plan to another, since for a move between non-optimal plans
the offsetting variation need bear no particular relationship to the market prices of the
(marketed) goods involved.

(ii) In textbook discussions of (say) the compensating variation it is usual to consider,

as an alternative to the sum of money which enables the agent to attain the previous



level of welfare, the sum which permits the purchase of the previously optimal basket
of goods. The latter calculation does not provide a basis for a general definition of
valuation because it is inapplicable if some goods are not marketed.
(iii) Sometimes the valuation of a commodity (or security) is defined simply as the
market price. Clearly this will not do for goods which are not marketed, or for a
potential trade so large that it would shift the equilibrium price for marketed
quantities. But even in the case of trades of marketed, divisible goods which are
substantial for the individual agent but small for the market, there is an apparant
paradox which should be clarified. We are accustomed by the usual text-book expo-
sitions to think of the valuation of (say) a non-marginal purchase as the equivalent
variation represented by the usual indifference curve apparatus, or, under Marshallian
assumptions, as a suitable area under the demand curve. This is clearly not the same
as the market price. Are there then two conflicting definitions of valuation? Not if the
definition of valuation as offsetting variation is interpreted carefully. Applied to the
case under consideration it does yield the result that the valuation is the market price,
since an agent would not pay more than that for a consignment which could be bought
in the market, but would pay any lesser price since unwanted amounts could be re-sold
at a profit. The geometric constructions in the text—books, if interpreted as defining
valuation, are to be taken as referring to a situation where (at least hypothetically) the
goods are not ‘traded’ (e.g. because the agent has no access to the market, or there are
prohibitive transaction costs). Of course, there are many intermediate situations. The
general lesson to be drawn from these apparently trivial remarks is that valuation must
be conceived as relative to a specified set of opportunities, or a specified change in this
set — which is really just a version of the old doctrine of opportunity cost.

To illustrate — and to prepare a format for the argument of later Sections —
consider the familiar static model of demand. The agent maximises a utility function

ufco,Cy,---Cn] with standard properties (say, defined and finite for 0 < ¢; < oo alli,



with derivatives u;> 0 > ui;) subject to a constraint ¥9 pic; = K; here c;,

i = 1,...,n, are quantities of divisible, marketed goods with prices pi, K is the capital,
and ¢ the amount of an additional divisible good which is not marketed but with
which the consumer is endowed at a level cg. There is a unique optimum, satisfying
(1.1) ui/pi = Uy

for all (divisible) goods which are bought, i.e. for ¢; > 0; here u is the ‘marginal
utility of money’ (defined as the derivative of the mazimum utility w.r.t. K). Eq.(1)
expresses the celebrated principle of equi-marginal utility, see Jevons (1871). For

divisible, traded goods which are not bought, i.e. c; = 0, one has only

(1.2) ui/p; < uK.4
For co, which is consumed but not traded, equation (1) defines a ‘shadow’ price
(13) f)o = 110/111(.

In all the above cases, the marginal valuation of a good c; is obviously equal to the
ratio ui/ g, which for traded goods that are bought agrees with the market price p;.
Thus, as one would expect, the valuations of marginal variations of quantities from an
optimal plan can be calculated from the marginal utilities at the optimum. Similar
remarks apply to valuations induced by small changes in parameter values; for
example, if there is a small change in the price of a marketed good which is bought,
one has the well-known Roy’s equation
(1.4) ou/dp; = —Ci Uy,

(where du/dps is the derivative of the maximum utility).

4 The first order conditions for the constrained maximisation problem are

(1) ¢i2 0, uj—Xp; ¢ 0, cijui —xpi] =0, i=1,.n,

where X is a Lagrange multiplier and the derivatives are evaluated at the optimum. To
obtain (1) and ?2), it remains to show that u = X. Now, with prices fixed, varying K
yields %9 pi-dci/dK = 1. Also, differentiating the equality in (f) w.r.t. K, one finds
that either dci/dK =0 or u; = Xp; in case c¢; = 0. Thus, using (),

u, = du/dK = uq-dco/dK + X uj-dci/dK = X-2% p;-dei/dK = X.
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So much is obvious enough. We shall consider analogues of the preceding
relations later on, in connection with the valuation of securities. Note that, when
comparing optima, the relations hold at each optimum. Now consider the case where
cd =0 in the ‘benchmark’ situation (assumed to be an optimum) and the agent is
offered a fized, non-marginal quantity c é of the good, the price © for the whole
amount being less than the capital K. The offer must be accepted or rejected as a
whole - a simple example of evaluation of an ‘indivisible’ project, even though we
assume for simplicity that the good is physically divisible. Also assume for simplicity
that the prices py,...,pn remain unchanged. Now there will be one optimal plan for
the remaining goods if the offer is accepted, another if it is rejected, with marginal

0

utilities respectively ué, uil, and ul‘;, u. It is easily shown, under standard

assumptions, that the equivalent variation v satisfies

(1.5) ug/ug > ofct > ulfug,

so that a criterion of the form © < cl-(ul/up) provides only a necessary condition for
acceptance of the offer, a criterion ®< cl-(uj/uy) only a sufficient condition. To
derive a necessary and sufficient condition, one can of course compare the total utilities
with and without the project and obtain v as that price for which the two totals are
just equal; then © < v defines the required criterion. It is however more convenient
to have a criterion expressed in terms of marginal utilities (shadow prices) or, if
possible, market prices. For this purpose, consider the hypothetical situation where a
proportion a of c é can be bought for a price v(a), and suppose that for each

« € [0,1] there is an optimal plan (accl), cy,...,c%) satisfying

(16) 7 p%cd = K—o(a)

with utility

(1.7) ue = ufack, c3...,cgl.

Assume for simplicity that ¢¥ >0 forall i andall o. Differentiating (7) and (6)

we have, with obvious notation,
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(1.8) du?/da = ug-cé + ¥ u?-dc‘ix/da

a a .,
= ug-ccl) + ug-E‘{ p;-dc¥/de = u,-cl—ug-v'(a)
Setting
(1.8") o’ (a) = ci-(ug/ug)
for each a yields du®/da = 0, hence u! = u’, and the equivalent variation is
1
(1.9) b=0(1) =ci-f  (1g/ug)da. "

The integral appearing here may be interpreted as a shadow price per unit of c é. In
Section 4, we shall adopt an analogous procedure to obtain a project evaluation
formula in a continuous-time, stochastic model.

Two special cases deserve mention. (i) If the quantity cé can be considered as
‘marginal’, say c é = 1, then (at an approximation) the derivatives can be evaluated at
a =0 and (9) reduces to (3) with v in place of P,.

(ii) It may be that there is a marketed commodity, or a linear combination of
such commodities, which provides a perfect substitute for commodity 0. More
formally, suppose that one unit of good 0 is considered to be ‘the same’ as a collection
(71y---,Tn) of the remaining goods, where the v; are constants, so that the utility
function satisfies an identity of the form
(1.10) ufco,C1y---,Cn] = u[0,c1+71Coy---,CntTnCo], hence
(1.10") uy =3} y;uf, 0<egl
In this case, (9) yields
(1.11) b= cé-j(l) ¥ 'yi(u?/ug)da = 2% 71-pi,
and the ‘project’ may be valued ‘by replication’.

This example can also be used to illustrate some effects of risk. Suppose now

5 If the prices py,...,pn vary with q, there is an additional term
1 1
~f %} c§-dps/dalda = [ [(1/ug) B3-0u®/dp$-dp$/dalde
on the right side of (9), the equality here being due to Roy’s equation (4).

12



that utility depends on a random element w, say u = ufcy,Cy,...,Cn;w], and that the
agent maximises the expectation of this function, the actual value of utility being
observed only after the quantities cy,...,cn have been chosen. The calculations (1 -4)

are practically unchanged, except that marginal utilities uj, u_ are replaced by their

K
expectations. Regarding the ‘indivisible’ offer, suppose further that the quantity c &
obtainable for the price b is also random, the amount again being revealed after all
decisions have been taken. Now (7) is replaced by
(1.7a) Eue = Eufaci(w), c¢,....c; .
On calculating dEu®/da as in (8) and setting the result equal to zero, we obtain
(1.8a) o'(a) = E[uz-cl] /E[u%] = E[cé] -E[ug] /E[ﬁ%] + Cov[cé,ug] /E[u%]
(assuming that we may differentiate under E and that the covariance exists). On
integrating, (9) is replaced by
(1.9a) b = E[cé-[é (ug/Eu%)da]

= Elcy] jcl)[[Eug]/[Eu%]]da 4 I(l)[COV[Cé,ug] [Blug]] de.

If the covariance terms vanish for each o - specifically, if the random variables
ci(w) and u[f,c1,...,Cn;w} are independent for each > 0 - then (9a) is like (9), with
marginal utilities replaced by their expectations; (this also goes for the additional term
in fn. 5, in case py,...pn vary with @). In case good 0 is marketed, the ratio
Elug}/ E[uK] can, of course, be repla,ced by the market price py; but, even then,
valuation generally involves the utility function unless the covariance terms vanish.

Now reconsider the special cases mentioned earlier. (i) If cé is ‘small’, then
b~ el v’ (0), cf. (8”) and (9), but otherwise matters stand as before.

(ii) If there is replication as in (1.10—10), with the same coefficients +; for all
w, we get, using the condition E[u?] /E[ug] = Pi,

(1.11a) v'(a) = [Eci]-¥] 7i-pi + ¥} 'yi-Cov[cé,u?]/E[ug].
The covariance term vanishes if the independence assumption stated above is satisfied,

and then v can be calculated from market prices without involving utilities; however
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replication alone is not in general enough to allow this.

Speaking informally, this discussion suggests (as is indeed the case in general)
that project evaluation with risk involves shadow prices dependent on marginal
utilities in at least three ways:

(a) the use of ratios of (expected) marginal utilities in place of market prices
where goods are not marketed;

(b) the use of ratios of (expected) marginal utilities where project returns and
non—project utilities are stochastically dependent;

(c) the averaging of (utility or market) prices over alternative levels of project
participation where the project does not qualify as ‘small’.

The question arises whether cases (a) and (b) are really distinct. Exponents of
a radically ‘neo-classical’ standpoint in value theory are apt to classify "all possible
occurrences in the world which impinge upon utilities" as "commodities", see Arrow
(1963) pp. 945—6, and in particular to regard uninsurable risks as non-marketable
commodities. (In effect, the circumstances of the real world are classified as
‘imperfections’ relative to a benchmark defined by an idealised perfectly competitive
economy - the Arrow-Debreu world - in which insurance markets exist for all dated
contingencies). From this standpoint, the distinction between (a) and (b) depends on
the extent to which markets for risk are available (or can be imagined). In principle,
(b) can be subsumed in (a), all stochastic dependence between project and non-project
benefits and costs being attributed to non-marketed (or ‘shadow’) commodities to
which shadow prices may, under suitable assumptions, be assigned; of course, this may
require quite an un-natural formulation of the appraisal problem. In the extreme case
where all ‘commodities’ (all random effects) are priced in competitive markets,
category (a) — which now includes (b) — is empty, while (c) remains in the sense that
large projects are liable to shift the state-contingent prices so that evaluation still

involves some averaging.
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Repeated mention has been made of shadow prices. These may be defined
loosely as numbers (or more generally functions or random processes) which have speci-
fied properties of prices but are not necessarily paid or even quoted in any market -
whether because relevant markets are not available, or because the prices are quoted in
units such as utils which are unsuitable for trade, or because they are mere mathe-
matical constructs such as Lagrange multipliers generated by constraints or dual
variables appearing in programming problems. The dividing line between market and
shadow prices is not a hard and fast one, and it is often convenient to use the latter
term loosely.

The definition of valuation as assignment of (say) a monetary equivalent to a
specified departure from a benchmark allocation of resources has some important, if
largely unavoidable limitations. A brief mention of these must suffice. There are con-
ceptual problems involved in introducing (say) a new, hitherto unconsidered, oppor-
tunity into a model which was initially assumed to be fully specified and optimised.
At a practical level, it is often impossible to model an existing operation and a new
opportunity in the same degree of detail, and some crude compromises may be
necessary. Setting such problems of formulation aside, we have noted that many
transactions or projects, such as the purchase of a house or a car, are ‘indivisible’
rather than marginal. One resulting difficulty, even in a deterministic setting, is that,
because of diminishing marginal utility, the valuations of such projects are in general
not additive. The impact of successive projects on overall risk, interacting with
diminishing marginal utility (risk aversion), also contributes to non-additivity. In this
essay, we ignore problems due to a succession of projects; however, the essential
difficulties are similar to those encountered when a single large project is super-
imposed on an existing optimum or equilibrium.

The difficulties due to indivisibilities are largely avoided in theories of

(corporate or public) finance by invoking some sharing or spreading mechanism (joint
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stock, insurance, public ownership etc) which allows the impact of a large project to be
regarded as marginal for each agent; see for example Arrow & Lind (1970). However,
sharing arrangements do not dispose of the difficulty due to induced price shifts, and
while risk-spreading may allow neglect of independent risks associated with a parti-
cular project or security it does not avoid accounting for contributions to systematic
risk. Besides, sharing or spreading arrangements are limited by well-known factors
such as moral hazard and transaction costs.

It is remarkable how much of the literature on valuation in finance is devoted to
working out detailed conditions in which assets or projects can be valued on the basis
of given market prices alone, without direct reference to the preferences of agents. The
basic procedures are those mentioned above. First, assume some sharing or spreading
mechanism to iron out indivisibilities. Second, appeal to some hypothesis of repli-
cation in (sufficiently) complete markets to justify valuing inputs and outputs
(including risks) at market prices, which are assumed to remain unchanged. The
essential assumption is that perfect substitutes for the inputs and outputs of a project
to be appraised, or perfect substitutes for a security to be valued, are already priced in
a competitive market, so that it is only necessary to invoke the ‘law of one price’ and
the assumption that people prefer more wealth to less. The well-known justification of
the net present value rule for project evaluation under certainty in the presence of a
‘perfect’ capital market (which here includes completeness at t = 0 of the market in
debts at all future times) is an example; the project is simply regarded as a bundle of
dated cash flows, each of which can be traded in a perfect market. The procedure for
valuation in an Arrow—Debreu economy is obviously an extension of the same idea to
dated contingent debts. Indeed, the criterion of profit maximisation in the elementary
theory of the firm, which is often advanced as a postulate, is more properly regarded as
an application of the same argument, since in the absence of suitably complete, com-

petitive markets it cannot in general be shown that the interests of the owners of the
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firm or other beneficiaries are best served by maximising the money value of net
output. The valuation of securities in the mean—variance theory, by reference only to
a riskless rate of interest and a price of systematic risk, is another example of the same
approach. Needless to add, the valuation of derivative securities by reference only to
the prices of ‘underlying’ securities, using replication or no-arbitrage arguments,
belongs to the same category.

The upshot of our review so far may be summarised as follows. The valuation
(or evaluation) of a given change to a plan involves, in principle, a comparison between
total utility or welfare before and after the change, and the calculation of a sum of
money equivalent to that change. If optimality of plans is taken as given, the valu-
ation of marginal changes in holdings of divisible, traded goods (or financial assets)
may be read off from market prices, assuming these to be unaffected. However, in the
case of changes in holdings of goods which cannot be traded, or which cannot be
sufficiently divided (whether physically or by sharing costs and benefits), or which,
even if divided, affect relative prices or the risk profile, valuation unavoidably involves
consideration of utilities. It remains possible (at least in the situations considered
here) to replace comparison of utility levels by valuation formulas involving sums of
prices times quantities, but usually the ‘prices’ will be in some sense shadow prices
which depend on marginal utilities in the optimal plan. This is naturally inconvenient
for computation, since one’s own utility function (even if it exists) is difficult to
formulate while other people’s functions are difficult to measure.

Turning now to continuous-time stochastic problems, we consider only models
with a single (composite) consumption good for each (w,t) but possibly several
financial assets, the consumption good serving as the unit of account for relative prices
at (w,t) of the financial assets. No more will be said about valuation in the setting of
complete markets. The concepts in that setting are essentially the same as in the

static theory of value, subject to quoting all prices in terms of the consumption good at
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t = 0 and replacing utility by expected utility (adjusted as necessary for impatience).
Of course, there are technical problems when working with continuous time and proba-
bility densities, but they do not change the essential ideas concerning valuation.

We consider instead a stochastic, continuous-time model of optimal consumption
and portfolio choice over an infinite horizon in which a number of ‘long-lived’ securitieé
are traded continuously, as in Foldes (1990). The market is not necessarily complete,
although it might be so in special cases, see Duffie & Huang (1985). The securities are
continuously traded in perfectly competitive markets, with (strictly) positive returns
processes zX = zX\w,t), A = 1,...,A, per unit of investment at zero time, (return being
identified with price, unless otherwise stated, by assuming all dividends etc. to be
instantaneously reinvested in the same security). The returns processes are modelled
either as general semimartingales, in which case short sales (negative holdings) are
excluded to ensure that portfolio returns stay positive, or as continuous semi-
martingales, and then we distinguish between cases with and without short sales.8

The investor is endowed with an initial capital K, and maximises ‘welfare’,
defined as the expected integral of utility of consumption €, T being expressed in
suitable ‘natural’ units, (e.g. bushels, or a real-terms index of consumption

-expenditure). We refer to a problem of optimal saving when there is only one security

6 It is usual to refer to z>» as a ‘money’ price or returns process, but this is not strictly
correct. The price zM\w,t) is quoted in units of consumption goods at (w,t), the securi-
ties being the carriers of value, i.e. of entitlement to consumption, across times and
states. In the absence of complete markets, there need be no single unit of account,
such as goods at T = 0, which can be transformed into goods at any specified (w,t). Of
course, consumption variables can be eliminated from quotations of relative prices by
taking a given security or portfolio plan, say 7, as numéraire, i.e. replacing z*w,t) by
z\w,t)/z%(w,t). Tt is usual to take as numéraire the riskless security if there is one;
but note that in the present setting the proper definition of a riskless security is one
whose payoff in terms of consumption (i.e. in ‘real terms’) is non-random. While
costless storage of such a security — call it cash — may ensure that its own-rate of
interest is non-negative, its real rate can be negative. Note also that, as is usual in
models of mathematical finance, there is no transactions motive to hold cash. Thus, if
there is a dated (say, zero-coupon) bond with a non-random cash value at redemption,
its yield must be the same as the yield on cash if both are to be held.
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or when the portfolio process is taken as given. As usual, consumption and capital are
constrained to be non-negative (or equivalently, for an optimum, positive, since we
assume u’ (0) = 00); these constraints are the source of most of the technical problems.
Further details of the model are given in Section 2; for the moment we proceed
informally, anticipating definitions and results to be given in Section 2 as required.

We assume throughout that a unique optimal plan exists, and for the moment
consider only necessary conditions for optimality. An optimal plan is denoted (c*,7%*),
where consumption € is in ‘natural’ units and a portfolio plan = is specified in terms of
the proportions 7™(w,t) of capital invested in the various securities. We write z* for
the returns process generated by 7* (or simply z if there is only one asset), also
c* = ¢*/z* and k* = k*/z* for the ‘standardised’ optimal consumption and capital
processes, and denote by v = v(w,t) the marginal utility process evaluated along the
optimal plan.

Before returning to the topic of valuation, we consider what is the proper ana-
logue in this setting of the static principle of equi-marginal utility. Starting with the
problem of optimal saving, we note that the random return at a time S from one unit
invested at t = 0 is z(w,s) in natural units of consumption, yielding approximately
z(w,5)v(w,S) in utility units if this return is consumed at S. Alternatively, if
consumption is postponed to a later time T, the utility contribution is z(w,T)v(w,T).
Writing y = z-v, the principle of equi—marginal utility in the case of certainty would
yield yg =y, hence y, =y =v/ for all T € [0,00). In the case of risk, the investor
does not know at S what the value of Zy will be, so that, bearing in mind that opti-
misation under risk requires consideration of ezpected utility, one would conjecture the
correct analogue of (1.1) to be
(1.12) Vg = ESyT,
where E represents conditional expectation relative to information at s. In other

words, the conjecture is that the process y = z-v should be a martingale. One might
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even be tempted to think that an equation like (12) should hold for arbitrary finite
stopping times s, T satisfying S(w) < T(w) a.s. Unfortunately, neither assertion is
correct in general. An equality (12) is a necessary condition for optimality if one
considers consumption (or equivalently depletion) times S, T, where by definition the
consumption time at the level i€ [0,K) is the upcrossing time at the level i of the
process Ig c*(t)dt, or the downcrossing time at Ko —1i of the process k*. In other
words, if a random time transform is performed so that time is measured by the cumu-
lative (standardised) consumption along the optimal plan, then the transform y of the
y-process is a true martingale with respect to the transformed information structure.
It is also true that (12) is a necessary condition if one considers price times, the time at
the level n > y, being defined as the first upcrossing time by y of the level n (or the
clock time n if that is earlier).

To prove (i.e. test) these assertions by variational methods, one argues that, if
there are (possibly stochastic) intervals of the form I;=[s,5’), I, = [T,1’) with
S’ < T, such that, for win some set A measurable at S, the time average of y on I, is
less than the corresponding average on I, then welfare can be increased by reducing
consumption during Iy and carrying forward the capital saved to augment consumption
during Iy, contrary to the assumption that the ‘star’ pla,n is optimal. Taking
conditional expectations at S and going to limits as the intervals become small (also
using the fact that y can be chosen right continuous) one concludes that
(1.13) v 2 By,
a.s.on A,ie. y is a supermartingale. This argument works in all cases, even if the
market process has jumps. In the opposite direction, one tries to argue that, if y is on
average greater on I; than on I, etc, then welfare could be increased by consuming
more in the earlier interval and less in the later, continuing until the variation of the
capital stock is reduced to zero. This unfortunately is not always possible unless the

intervals are suitably chosen, for example with end-points at consumption times. It is
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also true that the martingale equality holds for all pairs of (finite) clock times if the
standardised optimal capital k*(w,T) is bounded away from zero at each clock time T.
In general, however, one can only say that the untransformed process y is a positive
local martingale, i.e. that for each of a suitable sequence xn = yn(w) of stopping
times, tending a.s. to oo, the process y stopped at xn is a true martingale.

In the case of the portfolio-cum-saving (PS) problem, i.e. when several securities
are available, matters are more complicated. In this case we write yX = zX}.v for the
shadow price process associated with an individual security and y* = z*.v for the
process associated with the optimal plan. The properties of y* are like those found
for y in the problem of optimal saving. An equi—marginal argument shows that in all
cases the processes y» satisfy the supermartingale inequality
(1.14) ) 2 E°p ST
for clock times, and consequently (by the Stopping Theorem) for stopping times also,

“see Foldes (1990); this inequality may be considered as analogous to (2). If optimal
holdings of all securities are always positive, or if the market process is continuous and
short sales are allowed, the processes y» are local martingales for each security X; the
(rather restrictive) conditions under which their transforms to consumption time are
true martingales are considered in Appendix C.

Continuing for simplicity with a continuous market with short sales permitted
for traded securities, the martingale property (12) may be expected to define shadow
prices for securities with which the agent is endowed but which cannot be traded, more
or less analogously with the way in which (3) defines shadow prices for untraded
commodities. For example, given a security, such as an option, which pays a random
variable z,g at some (possibly) random time T and nothing at other times, the equation
(1.15) v = Esy,%, or equivalently 2} = Es[z,%-(vT/vS)] s<T,
may be expected to define shadow price processes for times S < T, in units of utility and

in money (or rather, consumption). This further suggests interpreting the process
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(z%; t < T) as a price process which, if it were quoted in the market, would be
consistent with holding the actual endowment of the untraded security in the optimal
portfolio up to time T. There are, however, some reservations to this analogy,
connected in particular with the distinction between local and true martingales. In
Section 3 we shall investigate this topic in more detail, with special reference to the
case of a European call option, pointing out in particular how the completeness of the
market in the underlying securities, together with an explicit specification of their
price processes, allows a formula like (15) to be put in a readily computable form
(Black-Scholes formula).

It is clear that a formula like (15) can be interpreted as a formula for valuation,
but now the concept of valuation needs to be interpreted more widely. A valuation
need no longer be thought of as a price or sum of money (say, at t = 0), but may now
be a suitable random variable or even a process. Recall that we said earlier that
valuation might refer either to the solution of pricing equations relating to a situation
defined by specified parameters, or to the calculation of an offsetting variation when
comparing two situations with different parameter values. Using (15) to calculate z§

for s < T when the variable z?

o is given may be interpreted in the former sense, so

that the random variable zg defines the valuation variable of the security at S and the
process (zg; t < T) the valuation process. (The formula can also be interpreted as
defining offsetting variables or processes corresponding to the introduction of a
marginal quantity of the security, but enough has been said.) As this example shows,
the general concept of valuation now becomes potentially very wide, and it is necessary
in particular cases to specify the type of object (process, random variable or constant,
money or corn, payment date etc) in terms of which a valuation is to be expressed.
Calculating an offsetting payment at t = 0 remains a basic problem, and in Section 4
we shall derive an analogue for (9a), using this definition, in the case of an indivisible

financial asset which is not marketable.
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The return z% has been defined as the total value of the fund accrued at time t
per unit of investment at zero time, with immediate reinvestment of any dividends etc
in the same security. While this definition is convenient for proving martingale
conditions of optimality, it is often preferable for valuation to derive a formula which
expresses the nominal price of a share (i.e. the price of one nominal unit, without
reinvestment) at a given date as the sum of the discounted future dividends up to a
horizon date plus the discounted nominal price at the horizon. We shall merely outline
a derivation of one such formula from the conditions for optimality.

Dropping superscripts when no confusion arises, let p with p(0) = 1 be the
positive semimartingale representing the nominal price process of one share of security
A andlet p with p(0) =0 be the predictable non-decreasing process representing
cumulative dividends per share. For simplicity, it is assumed that Apy = —Ab¢, hence
also Az; = 0, whenever Apy > 0, i.e. the nominal price falls by exactly the amount of
any lump-sum dividend.? Taking into account the accrual of returns upon reinvested

dividends, we have

(1.16) zy=pg + z%'j(o,T] (1/z3_)db,,
Alternatively, differentiating formally and simplifying,
(1.17) dz>\/z>» =dp/p.+ dp/p_,

as one would expect. These formulas allow any relation involving z>» to be expressed
in terms of p and . Now assume either that all returns processes are continuous with
short sales allowed, or that optimal holdings of all securities are always positive.

Then, according to the conditions for optimality (2.14) and (2.20) below, the processes

7 This assumption gets rid of the square bracket term between z» and [(1/z*)dp
when differentiating (16) below, and also allows 1/z* to be replaced by 1/z* in (16)

without altering the value of the integral. See also fn.10 for general conventions about
processes. The assumption that z» is a positive semimartingale (which includes the
condition zX > 0) ensures that the integral in (16) is defined and finite for T < co. It

then follows from (16) that j(o o) (1/z2)dD < 1.
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y» and y* are local martingales. Let T be a finite stopping time which ‘reduces’ y*, so
that yg = Esy% for times S < T. Setting y>» = z>-v in this equation, using the
expression for z* from (16), replacing 1 /z}G\_ by 1/ z%\ and rearranging yields

pevy = E° [pTVT + (@)~ 2w (o o (/A + @)l (l/z}c\)dnt].
The second term under E° vanishes by the martingale property of y*, and the third
term may be replaced by [ (s,7] (y%\/z%\)dnt = [ (5,7] v,-dp, using a slightly modified
version of the theorem on integration of a martingale w.r.t. a non-decreasing process,
Elliott (1982) 7.16. This leaves
(1.18) PVg = ES [pTvT + I(S,T] vt-th].
Cf. Duffie (1991) 4.3, where similar formulas are derived by other methods. Now let
T ] oo along a sequence of stopping times (xn) which reduce y* and also satisfy the
conditions (2.14); under some additional assumptions, it follows from the transversality
condition (2.14b) that the term ES[pTvT] in (18) goes to zero,® yielding a formula
which expresses the nominal price Dy as the expected integral of future (utility-
discounted) dividends up to infinity.

This brief derivation illustrates both the need to separate nominal prices from
dividends and the importance of treating the time horizon as infinite (or at least as

open with an unpredictable final time when all values vanish) if a satisfactory general

8 For example, suppose that for all t, a.s., the optimal nominal holdings qi of all
shares are non—negative while g> is bounded away from zero, say q> > 1. Write

k* = Xi[piqi]; then piv < grp’v < k*v = k*y* If (xn) satisfies (2.14), then

Ek*(xn)y*(xn)] 2 0 as n ] oo, so ES[pX(xn)v xn)] 2 0 as.

The requirement that 5 < (xn) | oo a.s., with a sequence (xn) which reduces y> and
also satisfies (2.14), restricts the choice of 5. Various conditions implying the existence
of a suitable sequence may be inferred from results reported below. If y» and y* are
true martingales, S may be any bounded stopping time and the )Q‘ may be chosen as
clock times. If s is bounded above by a price time of the form pF A pX , see (2.21) and

Appendix A, then the x, may be chosen as price times of the same form. Again, if s
is bounded above by a consumption time, and if z*/z* = y*/y* is a bounded process,
then the x, may be chosen as consumption times, see (2.16) and Appendix C.
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theory of valuation is to be obtained. It is worthwhile to expend some rhetoric on the
latter point. As explained by Irving Fisher (1930) p.14,

‘ The value of capital must be computed from the value of its estimated future

net income, not vice versa ’;
and, as Fisher shows, a coherent theory of capital requires that income be defined
essentially as real consumption; see also Fisher (1906). If the problem of optimal
saving and portfolio choice is treated in a (closed) finite-horizon setting, the terminal
assets must be valued more or less arbitrarily; and bearing in mind that a returns or
price process constructed by taking conditional expectations of terminal values will
automatically be a uniformly integrable martingale, the result will be a theory of
valuation which hangs to a greater or lesser extent by its own bootstraps.

In this connection, it is of interest to comment on the distinction between the
martingale properties of utility prices y* in our infinite-horizon model and the martin-
gale properties of (suitably discounted) market prices under a transformed probability
measure which are exhibited in many papers. Suppose either that optimal holdings are
always positive or that the market is continuous with short sales allowed. The (local
or true) martingale properties of our y> are relative to the original measure P (i.e. the
one thought to operate in the market), they are consequences of optimality, under
standard assumptibns the processes are unique (whether or not the markets are
complete), and in the case of ‘long-lived’ assets they are defined up to an infinite
horizon, (or at least an open horizon in depletion time); but, typically, the processes
are not uniformly integrable (so that it is not possible to reconstruct the whole utility-
price process by ‘working back from infinity’).

By contrast, let zA be the returns process to a particular asset or portfolio (e.g.
a riskless bond, or an optimal portfolio), and consider the ‘A-discounted’ processes
Z:\ = z\[zA. Given suitable assumptions of consistency, the zZ* are (true, uniformly

integrable) martingales on a finite (though possibly random) interval [0,T] under a
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brobabi]jty QT obtained by an absolutely continuous change of measure dQT = LT-dP,
(where L, is an ¢ -measurable positive random variable satisfying E L, = 1); for a
given vector process Z and a given choice of A, the measure yielding the desired
property is unique if the market is complete but not in general.

H, assuming completeness, successively longer intervals [0,Ty] are considered,
with T, = 00 a.s., a sequence LTn = dQTn/dP of £ T measurable random variables
is required to obtain the martingale property on the successive intervals, and it can
happen that the measures QTn converge to a limit measure Q(n which is concen-
trated on a P-null set; in short, this martingale property also is ‘local’.

There is, of course, a connection between the two kinds of local properties.
Suppose that an optimal plan is given, and that y*, yA and all y» are local martin-
gales reduced by stopping times Ty - 00, so that Ey}Tp) = EyA(Tn) = Ey*(Tn) = yo.
Defining measures QTn on £ Ty by dQTn = [yM(Ta)/yo]-dP, the processes
y» = yN/yA = z7[zA = ZX\, stopped at Ty, are QTn—martingales; see Foldes (1990) S.7.
for details. Conversely, the assumptions leading to the existence of ‘martingale
measures’ QTn do not imply that the prices z» are compatible with either optimality or
equilibrium for specified utilities, but under suitable assumptions it is possible to
construct utilities for which the given prices have these properties.

There is therefore a loose equivalence between the two kinds of martingale character-
isations of prices, although this is by no means transparent because of the different
assumptions made in both kinds of models (regarding short sales, continuity, horizons,
square-summability etc) and the difficult distinctions among the various criteria for
consistency of a price system (freedom from arbitrage, no free lunch, viability, exist-
ence of a martingale measure); see Duffie (1991) for details. Ultimately the difference
seems to lie in the different objectives of the theories (although it is difficult to make
the distinction without over-stating the case). The kind of model considered here aims

mainly at extending the economic theory of value to an inter-temporal, stochastic
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setting with incomplete markets; interest centres on the characterisation of optima and
equilibia, and thus on the valuation of ‘underlying’ or ‘long-lived’ securities. The
alternative approach centres on characterising systems of prices which are in some
sense consistent but may otherwise be arbitrary, and on the valuation of derivative

securities against the background of a consistent underlying system.
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2. OUTLINE OF THE MATHEMATICAL THEORY

The model which forms the basis of the detailed discussion is that developed in Foldes
(1990), see also Foldes (1978adb) — partly because it is the one which I understand
best, but mainly because it derives necessary and sufficient conditions for optimal
saving and portfolio choice directly in terms of martingale and transversality con-
ditions of shadow price processes.? The main features of the model will now be
summarised. Proofs are omitted apart from a few points which need clarification, and
some new results which are proved in the Appendices.

Let 9= [0,00), equipped with its Borel sets and Lebesgue measure, be the time
domain, and let (Q2,.4,P) be a complete probability space with a filtration
A= (A i t€ J) satisfying the ‘usual conditions’ of right continuity and completeness,
also A= A o while A4 0= A o is generated by the P—null sets. 2 represents the
investor’s information structure and P his beliefs. In the product space 2 x 7 we
define the usual s—algebras of progressive, optional and predictable sets, as well as the
corresponding classes of processes. All processes considered are assumed, or may be
shown to be, at least progressively measurable (with respect to 2 unless otherwise
stated, and we write simply ‘process’, or 2-process in case of doubt). Unless otherwise

stated, conventions concerning definitions and notation will be as in Foldes (1990).10

9 T have also retained the terminology of these papers, e.g. calling v the marginal
utility process, rather than the state price process as in Duffie (1991).

10 Thus ‘positive’ means ‘strictly positive’ etc. For a scalar process ¢, ‘€ > 0’ means
“¢(w,t) > 0 for all (w,t)’ — modulo null sets, see below — while similar notation for a
vector process means that the condition applies to each component. Similarly for

¢¢ >0 and for ¢ = 0.

Processes of a given type (e.g. semimartingales, or consumption plans) which differ
only on null progressive sets are identified; thus ‘€0 = £V for processes of that type may
be read as ‘€% w,t) = {{w,t) for a.e. (w,t)’. But note that, if membership of the type
requires right continuity with left limits (corlol), or left continuity with right limits
(collor), then ¢£0 = £V is equivalent to ‘60(w,t) = £Yw,t) for all t, a.s.’. In particular,
all semimartingales (including true, sub, super and local martingales) and all processes
of finite variation will by definition be corlol, with ¢(0-) = §(O§ a.s.; a positive process
¢ of one of these types is assumed to satisfy both £(t) > 0 and £(t—) > 0 on J, a.s.

For te 7, E! means E(-/ % t); similarly Pt, also EX, EX™ for a stopping time y.
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Before proceeding, it is useful to recall some facts about the martingale
exponentials and logarithms of semimartingales (semis for short). Given a semi J with
J(0) = 0 and a number G, > 0, there is a unique semi ¢ with ¢(0) = 6, such that ¢/¢,

is the ‘mart-exp’ &(J) of J, i.e. /6 is the unique semi solution of the equation

(2.1) g(r) = 1+ J[O,T] g(t=)ds(t).
Conversely, if ¢ is a given positive semi, J is the ‘mart—log’ .#(¢) of ¢, i.e.
(2.2) 3(1) = j[O,T] [1/6(t-))de(t)-

If 7 is a local martingale, so is ¢, and conversely if ¢ > 0, (but the term ‘local’ cannot
be omitted). If Jis continuous, so is ¢, and conversely if ¢ > 0; in this case,
(2.3) G, = ¢g-exp{i, — 301,71, }.
see Doléans-Dade (1970) p.186, also Jacod (1979) VI.1. As regards notation, if a
positive semi is denoted z (with some affix), then .#(z) will be denoted ¢ (with the
same affix); but if the positive semi is denoted y, then .#(y) will be denoted 7.

Recall also that, for two semis @ and K, the ‘square bracket process’ or
‘quadratic cross variation’ [¢,#] may be defined as that finite variation process which

for each t € J satisfies
1
o, = oo+ plim D, [o(tE.) (D] ((tEu0) — K(ED)
0<k< 2n

as n- 0o, where ty =t6, & =k2m, n=12,., k=0,1,..
If both 6and K are continuous with local martingale parts M and N respectively
(where My = G, Ng = Hp), then

[¢,u] = [u,x1 = (M,X)
is the unique continuous finite variation process such that MN — [M,¥1 is a continuous
local martingale vanishing at t=0; see Dellacherie & Meyer (1980) VII.39—44, VIII.20.

Some notes on local martingales and time changes are also in order; the
definitions which follow take account of the special assumptions of our model. A corlol

process y is called a local martingale (relative to ) if there exists a sequence (xn) of
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stopping times, xn(w) 1 00 a.s., such that, for each n, the stopped process
y? = (y(tAxn); t€ Z) is a uniformly integrable (u.s.) martingale. Then each xy is said
to reduce y, and (xn) is a reducing or fundamental sequence for the local martingale y,
see Dellacherie & Meyer (1980) VI.27 e.s. A given local martingale may admit various
fundamental sequences. A non-negative local martingale y is a supermartingale,
hence converges a.s. to a limiting variable y(00).

Sometimes a family x = (xi) of stopping times is defined for an index i
taking values in a real interval #= [0,I) with I< oo, such that x = (x(w,i)),
regarded as a process, is right continuous and non-decreasing and takes values in [0,00],
with x(0) = 0 and x(i) ] co as i ] L. Let .6 denote the o-algebra of events at x; ;
the family U = (aﬂui ; i€ #) satisfies the ‘usual conditions’. Then x (together with
20) can be regarded as defining a time change. If ¢ = (£; t€.7) is an 2-process, its
transform under Y is the 2-process ¢ = (Ei; i€ #), where £ = €(x1); if ¢ admits an
a.s. limiting variable {m we set £3= £m when x; = 00, and also define the limiting
variable § = ¢ .

In particular, if ¥ is a right continuous, non-decreasing process, with ¥(0) = 0
and ¥(o0) < 00, a time change x may be defined by

x(i) = inf{t: ¥(t) > i} for i€ #, setting x(i) = co if ¥(oo0) <i.
Conversely, given a time change x, we can define ¥ as an inverse time change by

U(t) = inf{i: x(i) > t} for teJ.
In all cases considered here, ¥ will be continuous and x right continuous; if ¥ is strict-
ly increasing, then y is continuous, (including continuity at values of i for which
x(i) = o0).

In the sequel, we shall encounter situations where there is a corlol y > 0
admitting a limiting variable y(oc0), and a time change x, such that every sequence
(x1) = (xi(ny) with xi 1 oo a.s. is fundamental for y. We extend the usual

terminology and say that x is fundamentalfor y. In this case, for each i =i(n) <1,
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yi = (y(tAxi); t€ 9) is a ui. Y-martingale, which implies (by the Stopping Theorem)
that yi= (J(jAi); je £) is a u.i. S-martingale, so that ¥ = (¥; : i€ #) is an U
martingale, which need not be u.i. (A converse proposition applies if x is defined by a
strictly increasing process ¥, but if ¥ is only non-decreasing the paths iw» x(i) may
‘jump across’ intervals of 7, and then martingale properties of y imply nothing about
y on these intervals.) For more on time changes, see Dellacherie & Meyer (1980)
VI.56 and references given there, also Meyer (1966) Ch.IV, Jacod (1979) Ch.X.

Returning to the model, it is assumed that a finite number of assets (also called
securities) indexed by A = 1,...,A is available at all times. For each X there is given a
positive semimartingale z» with z*(w,0) =1 called the (market) returns or price
process for A; thus zMw,t) represents the value at t in state w of one unit of capital
invested at zero time in asset A (with instantaneous reinvestment of dividends etc in
the same asset), the return being measured in suitable ‘natural’ units. The formula
¢ = #(z)) then defines the mart—log returns process for A. We write
Z = (z,...,28), HZ) = (¢,...,(A) for the corresponding vector processes. In case zX
is continuous, ¢(* has a unique decomposition

= x4+ a4, MM0) = aN0) =0,
where M is a continuous local martingale and A is a continuous process of (locally)
finite variation. 1!

A portfolio plan = is defined as a finite vector process with components
72, A = 1,...,A, which is defined for t > 0, adapted and left continuous with right

limits (hence predictable and locally bounded) and which satisfies

1t Here I have simplified the notation of Foldes (1990) by suppressing the process

x» = [n{z>\} with its decomposition x> = M*» + V\. To match up formulas in the
continuous case, note (dropping the superscript) that z = exp{xli implies

dz = z{dx + td(uM)} = z{dM + dv + {d(u,M)}, so that

A=V + 3d(uM) =V + jdimMl. If M = ow with W Wiener, 0 > 0, and V = mt, then
setting m = p— 102 we have

Zt = exp{xt} = exp{mt + O'Wt}, Ct = ut + ow. Ct. €q. (31) below.
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L (wt) =1 forall (wt), m™(0)=m0+);
the 7 represent the proportions of the investor’s wealth invested in asset A. We
denote by II° the set of all such plans, and by II* the subset of non-negative elements
(‘no short sales’). The set of all 7 which are admissible in a particular problem is
denoted by II, and it is assumed as in Foldes (1990) that II is II® or IT* if Z is con-~
tinuous but II = II* if Z has jumps. Sometimes we write simply II when it is not
necessary to specify which case is considered.

Given the mart—log processes (> for the individual securities, the corresponding

process (™ for the portfolio plan 7 may be defined simply by
(24) (1) = [[ B 40,

0,T
and then the portfolio returns process z~ for 7 is given by zm = &(({~) — see Foldes

(1990) for details. It may be checked that 2z~ always remains positive if Z is
continuous or if II = I1*.

Suppose now that the investor has an initial capital K, > 0 and no outside
income. Given a portfolio plan 7, we say that a (progressive) process € is a n-feasible
consumption plan in natural units, or simply a € —plan, if it is non-negative and a.s.

Lebesgue integrable on finite intervals and if the equation

- _ T
(2.5) ke(1) - K, = J[ kn(t-) des(t) — J o(t)dt

0,T] 0

is solved by one and only one semimartingale k and this solution is a.s. non—negative
on J; then k= is called the capital plan in natural units corresponding to €. The

solution is given by

(2.6) k(1) = z"‘(T)[Ko—J: [E(t)/z“(t)]dt].

Defining new processes k=™ and c=, called capital and consumption plans in -

standardised units, by

ky = ky/z1, o =cy/a,
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and dropping the superscript 7 for the moment, the preceding equation becomes

(2.7) k(T) = Ko— [ c(t)dt.

Now, since ¢ > 0, the condition that k(T) > 0 for all T, a.s., is equivalent to

(2.8) Joe(t)dt ¢ Ko as.

This condition does not depend on the choice of 7, so that we may define the set # of

consumption plans in standardised units simply as the set of non—negative, progressive

processes ¢ = (cy) satisfying (8). A portfolio-consumption plan, or portfolio-cum-

saving (PS) plan, in standardised units can then be defined as a pair (¢,7) with c € &,

7 € II; the corresponding plan (€,r) in natural units is obtained by setting ¢® = c-z™.
Next, it is assumed that the investor’s aim is to maximise a welfare functional

(2.9) p(c,m) =E [0 ule(wt)]eetdt, where T = c-zm.

The function u is defined and twice continuously differentiable on [0,00] and takes

values in [—00,00], with u" < 0 < u’ on (0,00) and u’(0) = 00.12 Following Terence

Gorman, we refer to u(-) as the felicity function, to eet with p > 0 as the impatience

function and to u(-)ewet, u’(-)eet as the utility and marginal utility functions at t.

The wutility and marginal utility plans corresponding to (c,7) are the processes

u[c(w,t)]eet and u’[c(w,t)leet, where ¢c(w;t) = c(w,t)z™(w,t).

The domain of the functional @ is taken to be € II. It is always assumed that for

each feasible plan the positive part of the double integral in (9) is finite, and further

that the supremum ¢* of the functional is finite. The PS problem is to maximise ¢ on

& x I1 if possible. A plan (c*,7*) or (¢*,7*) is optimal if o(c*,7*) = ¢*; we also write

c*¥ =c*.z* z* = z™. In this Paper, we usually take the existence of optima for

granted without special comment. The ‘star’ notation is reserved for a distinguished

12 The functional has been specified in a more restrictive form than in Foldes (1990),
mainly in order to avoid certain questions of measurability. In particular, ‘state

dependence’ of the form u[¢(w,t);w,t] is excluded here, although it is consistent with
validity of the martingale conditions for optimality. Also, for neatness, we now write

u, ¢ rather than 1, .
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plan which is either optimal or a candidate for optimality. For this plan, we assume,
usually without special mention, that c* > 0, and also that thereis aq ¢ (0,1] such that
(2.10) o(c*—ac*,7*) > —o0 for 0< a< ap.

The marginal utility plan evaluated along a star plan is written for short as v, i.e.
(2.11) v(wt) = v/ [c¥(wt)leet, T¥ =c*-z*

If 7 is fixed, the problem of maximising ¢(.,7) on ¥ is equivalent to a
problem of optimal saving with a single security. In this case we say that c* is
T—optimal (or equivalently that ¢* = c*.z% is 7—optimal) if ¢(.,7) attains a finite
supremum on % at c¥*.

Let v be asin (11), and for arbitrary 7 € II define a process y=, called the
shadow price process (or marginal utility price process) associated with , by
(2.12) Y (w,t) = v(w,t)z™(w,t).

In particular, y» = v-z defines the shadow price process for asset A. If 7 = Z(yv),
then (in abridged notation)

(2122) = [ dyn/yn= [ d(@)/(). = (5 + [ dv/vo+ Ef dv/v., ¢
using (12) and integration by parts. Consequently, taking account of (4),

(2.12b) (T) = J . 5, T(t) dpM(t).

If 7= 7* we write y* = v-2* (but if there is only one security we sometimes write
just y = v-z). Thus, for arbitrary ,

v [y* = [z* = &(¢v)] E(¢Y).
Note that in these definitions the marginal utility process v is always evaluated along
the star plan. Note also that 0 < ¢* < 0o implies 0 < v < 0o, and then
0 < z7, z* < 0o implies 0 < y7, y* < co. The assumption that u’(0) = co ensures
that €* > 0 if * is 7*—optimal, hence also c¢* > 0, so that k*(w,.) is strictly
decreasing on 7, a.s. Usually we write y*(0) as yo; we have y™(0) = y, for every 7

and yo = v(0) = v,.
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Given the star plan and another plan (c,7) or (¢,7) with T = c-z*, we write
fe=t—c* bc=c—c* k=k—-k* &k=k—k* 6r=7—7* etc, noting that
6 = c-zm —c*.z* = fc-z7 + c*(z7—2*), 6C-v = bc-y™ + cHF(y—y*).
We denote by Dy = Dy(cT*,7*; 6c,6m), or Dy(c*,7*; bc,67), the (Giteaux) directional
derivative of ¢ at (€*,7*) in the direction of the (feasible) variation (&¢,ém) or (éc,ér);
explicitly
(2.13) Dp=E [; 6c-v-dt = E [Q [dc-y™+ c*(y—y*)]dt.
The plan (¢*,7*) is optimal iff Dy < 0 for each variation; then, for each variation,
(2.13a) 0 > Dy(c*,7*; éc,é1) > Dy(c*,7*; —*,0] = —Efg)J c*.y* dt,
and it follows from from (10) that the last term is finite, see Foldes (1990) eqs.(4.1-3),
(4.6—9) and (2.32). Thus each Dy is finite. In particular, setting dc = 0, we have
(2.13b) ogEj“o’ c*-y“-dthjz c*.y*.dt < oo,
so that each c*-y~ is (product) integrable.

If 7= 7* is fized, or if there is only one asset, we have simply
(2.13c) Dp=E jz 6c.v-dt = E jz bc-y*-dt,
and c* € ¢ is r*-optimal iff Dp <0 for all fc =c—c* with c € . Necessary and
sufficient conditions for c* to be r*-optimal may be given in martingale form as
follows:
(2.14a) y* is an 2 -local martingale reduced by some sequence (xn) of stopping

times, increasing a.s. to oo asn ] oo, such that

(2146)  limg E[y*(aa)k* ()] = O,
see Prop.1 of Foldes (1990); bear in mind the implicit conditions c* > 0 and (10).
Note that these conditions do not require z* to be continuous. Since y* is a positive
local martingale and k* is positive and decreasing, the a.s. limits y*(oo) and k*(o0)
exist and, by Fatou’s Lemma, (14b) implies y*(00)-k*(c0) =0 a.s., or

(2.14b") y¥(o0) = 0 if k*(o0) > 0, a.s.
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Also note that, given (14a), the following is equivalent to (14b):

{1 1]
(2.15) E Jo yH(t)cH(t)dt = y K .
Indeed, given (14a—b), we have
© Xn Xn
E J y*(t)c*(t)dt = limg E J y*(tAxa)cH(t)dt = limg E [y*(xn)-J cH(t)dt ]
0 0 0

= limp E {Y*(Xn)[Ko —kK*(x)l} = Vo Ky
using the theorem on integration of a u.i. martingale with respect to a non-decreasing
process, Elliott (1982) 7.16, then (7) and Ey*()n) =y o Conversely, given (14a) and
(15), the preceding calculation implies (14b). It is to be expected on economic grounds
that (14b’) and (15) — which do not involve the sequence () — should be satisfied by
an optimal plan. The former condition says that (standardised) capital which remains
unused ‘at infinity’ has a zero price (in utils), while the latter says that the total value
(price x quantity) of capital is consumed over time. The question remains of finding
sequences (xn), with reasonable economic interpretations, for which (14) is satisfied.

It follows from the results of Foldes (1978a) that one may take any sequence of
the form
(2.16a) xn(w) = 1i(w) with i =1i(n) 1 K, as n ] o0,
where 7; is the consumption time at the leveli defined by
(2.16b) m(w) = inf{r: [ cH(wt)dt >i} Aoo, 0<i< Ky
for example, set i(n) = K¢(1—2=2). Explicitly, since c* > 0, 75(w) is both the
upcrossing time and the arrival time of Jg c*(t)dt at thelevel i, except that
7i(w) = oo if this level is never reached. We denote by .#; the o—algebra of events
at 7i. Equivalently, we may consider the depletion time at the leveli defined by
(2.17) vi(w) = inf{T: k*(w,T) < Kg—i} A oo, 0<i<K,.
On present assumptions, the concepts of consumption time and depletion time
coincide, but later we shall need to distinguish between them. The family |

7= (735 0 <i< Kg) defines a time change, which together with the filtration
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9 = (6) will be called here the transformation to consumption time — rather than to
depletion time as in Foldes (1978a&1990). If ¢ = (&;; t€ 9) is an 2-—process
admitting an a.s. limiting variable §m, its transform under 7 is denoted

£ = (&; 0 <i < Ky), where &; = ¢[ri], with &; = ¢ if 75=co. If the times (xn)
appearing in (14a—b) are chosen as in (16), then (14b’) is equivalent to (14b) in the
presence of (14a). Indeed, given (14b’) and (16), we have

y(ri) =0 if 73 = c0 and k*(7;) = K¢—i if 73 < 0o, hence

E{y*(ri)-k*(11)} = (Ko—i)-Ey*(1i) = (Ko-i)yo — 0 as iT K,.

Thus the use of consumption or depletion times allows the transversality condition to
be given in ‘pointwise form at infinity’ in both the sufficient and the necessary
conditions of optimality. The conditions (14) may also be written as

(2.18a) #* is a (true) 9 -martingale,

(2.18b) lim; E{§*(1)-k*(i)} = 0, i=i(n) ] K,.

Further, if k*(.,1) = Ko — jg c*(.,t)dt is a.s. bounded away from zero for each T, (so
that each 73 has a positive lower bound), then (14) may be replaced by

(2.19a) y* is a (true) Y—martingale;

(2.19b) lim, Efy(t)k*(T)] = 0, T o0,

see Foldes (1978a) T.6.

Turning now to the case where both ¢ and 7 are variable, let (c*,7*) be a
distinguished plan satisfying c* > 0 and (10) and further assume esther that Z is
continuous and IT = II0 orthat 7* > 0 (in which case IT may be II0 or IT*). Then
(c*,7*) is optimal iff
(2.20a) c* is 7*—optimal, and
(2.20b) y» is a local martingale for each A, or equivalently
(2.20b") y* is a local martingale for each ;
see Foldes (1990) S.3 and Appendices A & C below for further details, also Foldes
(1990) for discussion of cases with II = mt and 7*>0.
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Three new extensions of the preceding results may be sketched here.
A. Price Times. Returning to the case of a single security (or a fixed portfolio plan), a
possible choice of times satisfying (14a—b) is to take for ()xn) a sequence of price times
(2.21) pn =10 Ainf{t: y(t) > n}, yo<n 1 oo.
The use of price times to characterise an optimum can be extended to the PS model;
see Appendix A for details.
B. Saving Model with Income Process. Again with a single security (z not required to
be continuous), suppose that the investor also has an exogenous, non—marketable
income, e.g. a salary, or rent from a real property. To model this, let § = §(w,t) > 0
be a progressive process, a.s. integrable on compacts of 7, called the income process
in natural units, and replace the term — ]g ¢(t)dt in the equation of accumulation (5)
by { ,g [5(t)—c(t)]dt. Setting s(t) = §(t)/z(t) to define the income process in stan-
dardised units, and assuming that this also is a.s. integrable on compacts, (7) becomes
(2.22) k(1) = Ko+ J7 [s(t)—c(t)]dt.
An optimal plan (c* k*) must again satisfy c* > 0 for a.e. (w,t), (since otherwise one
can construct a variation éc with Dy = oo, contrary to optimality). For an optimum,
and more generally for a star plan, we continue to assume that c* > 0 and that (10)
holds, so that
(2.23) E [ y(t)c¥(t)dt < oo,
and also assume that
(2.24) E [o [v(t)s(t)ldt = E fQ [y(t)s(t)]ldt < oo,

A solvency constraint, whether of the form k(1) > 0 or (say) ET[ljminft_m k(t)] 20
a.s., now defines a separate constraint for each T, so that one cannot pass from (22) to
an analogue of (8). Indeed, the saving and PS problems with exogenous income are in
general much more complicated than the corresponding problems without; see

El Karoui & Jeanblanc-Piqué (1998) for a recent treatment of a related model and a
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survey of the literature.13 Nevertheless, matters are simplified if, at every time and
state, there is a positive conditional probability of the exogenous income drying up in
the immediate future, at least for a while. More formally, we assume that, for every

T € J, there exists a (strictly) positive random variable h, = hT(w) such that

(2.25) PU[s(t) =0 for T<t<T+h]>0 as.

This condition together with u’(0) = co ensures that capital is always maintained at a
positive level along an optimal plan; (if not, there will be a progressive (w,t)-set of
positive product measure on which ¢* = 0). Thus, in discussing optimality, we may as
well restrict attention to plans satisfying k(T) > 0 on J a.s.

The statement and derivation of the conditions for optimality need some ﬁlodi—
fication because in general a feasible process k need no longer be everywhere de-
creasing or bounded or converge at co (and these difficulties do not seem to be
excluded even in the case of an optimal plan). Given a star plan, the conditions (14)
are still sufficient for optimality, but characterisation of suitable fundamental
sequences and necessity present new problems. We confine attention to modified
conditions involving depletion times. Let
(2.26) I(w1) = sup{Ko—Kk¥(wt): t < 1} = sup{J} [c*(9)-s(6)]dd: t < 7};
this process, called the depletion process, is progressive, absolutely continuous and non-
decreasing with values in [0,Ko] and ['(0) = 0. Then k* may be replaced by Ky — T

in (17) without changing the definition of the depletion time v;; thus

13 The present model differs significantly, as to both specification and techniques, from
the works surveyed. Without attempting a detailed comparison, it should be noted
that all the publications considered model securities markets as diffusions (rather than
general semimartingales), with the income process appearing either as an additional
diffusion or as a process adapted to the natural filtration of the Brownian motion
driving the securities market. In the latter case the ‘income process...is spanned by the
market assets and therefore is not a source of new uncertainty’, El Karoui &
Jeanblanc-Piqué (1998) p.413; such an assumption largely nullifies the economic
relevance of the results, at least in so far as the model addresses optimisation with a
stochastic rather than a sure wage.
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(2.27a) vi(w) = inf{t: T(wt) >i}, 0<i< Ky, with

(2.27b) vi =00 iff I'(w,00) <i, and

(2.27¢) k*¥(v5) = Ko—T(11) = Ko—i iff vj< o00.

Note that ' can be constant on certain intervals, so that v; remains the first down-
crossing time for k* at the level Ko—i but can no longer be called the first arrival
time. The conditions for optimality (14a—b) remain necessary and sufficient if one
takes for (xn) any sequence (v;) with i =i(n) | K, and replaces k* by Ko, —T.
The equivalence of (14b’) and (14b) stands with the same replacement. Furthermore,
the conditions (14), as now amended, imply (15) with c* replaced by c* —s. It is
also true that y is a true martingale if K,TI' is bounded away from zero for each t.
See Appendix B for explicit statements of these results and some proofs.

Conditions analogous to (18) can also be obtained. Denoting by .#; the o-alge-
bra at v;, the family v = (v4; 0 <i < K) can be regarded as a time change, which
together with the filtration 2 = (.#;) is the transformation to depletion time. If ¢ is an
2—process admitting an a.s. limiting variable fm, its transform under v is the 2l-process
¢ = (£;0<i < Ky) where & = [vi], and & = fm if v; = 00. The conditions for
optimality may then be written as in (18) with ¥, %, k* replaced by ¥, %, K, —I".

The theory is simplified if it is assumed that
(2.28) [ s(t)dt < oo as.

Then, for every feasible plan, (22), k > 0 and ¢ > 0 imply

(2:29) [ c(t)dt < Ko+ [7 s(t)dt < o0, k(o) =Ko+ [3 [s(t)—<(t)ldt < oo, as.,
so that, a.s., k is of finite variation on [0,00] and k(oo) exists as a finite limit. Con-
ditions (14a&b) remain necessary and sufficient with (xn) any sequence (v;) such that

i =i(n) 1 Ko, even without replacing k* by K¢—T}; but then (14b’) is not equivalent
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to (14b). See also Appendix B, Remark I.14

C. Consumption Times for PS Model. For the PS model, it was shown in Foldes
(1990), as part of the proof of the conditions (20), that, for each portfolio plan 7, the
process y*, defined as the transform of y* to consumption (= depletion) time, is an
D] —supermartingale; (this holds whether or not Z is continuous, for I1 = II0 or

I =1*). I Z is continuous and II = II9, it is shown in Appendix C that y= is
actually an 9—martingale for every r satisfying certain boundedness conditions. It is
enough if the process z*/z* is bounded; this is too restrictive even where In z™ isa
Brownian motion, but is reasonable for some applications to derivatives. Some more

general, though less transparent, conditions are also given.

14 The discussion of the model with income can be modified to allow negative values
of s, provided that Ky + ]g s(t)dt is a.s. positive and bounded away from zero on J;

this modification is useful if (say) s is the cash flow from an investment project.
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3. DERIVATION OF BLACK-SCHOLES FORMULA

A rather comprehensive survey of alternative derivations of the BS formula has
been prepared by Andreasen et al. (1996), saving us a great deal of labour. These
authors distinguish eight methods, six of which are based on arbitrage or hedging/
replication arguments with continuous trading in a frictionless market. The remaining
two involve maximising the expectation of a utility function. One of these replaces
continuous trading by the assumption of a representative investor with power utility.
The other is based on a finite-horizon, continuous-time, Merton-style CAPM. First order
conditions for portfolio optimality are obtained by dynamic programming, and it is
then shown that, if a European call option is introduced in zero net supply, and its
price in equilibrium is a function of time and current stock price only, then that price
must satisfy the BS p.d.e. Reference is also made to some papers which consider the
robustness of the BS formula.

Mention should also be made here of recent work on option valuation in
continuous time with portfolio constraints or market frictions, for example transaction
costs. Ifit is required in these situations to obtain precise formulas for valuation
rather than mere bounds (which in many practical situations may be so wide as to be
almost useless), it is usually necessary to maximise a specified expected utility or other
criterion functional. It is then of interest to show that the BS formula is obtained in
the limit as the transaction costs are eliminated; see Barles & Soner (1998) for a recent
contribution to this approach, with a survey of earlier work. The BS formula thus
comes to serve as a benchmark for valuation in utility-based models. In this con-
nection, a derivation of the formula which appeals directly to martingale properties of
marginal utilities may be instructive.

We begin with the simplest special case of the PS model which is suitable for
deriving the BS formula, and then comment informally on the consequences of relaxing

the assumptions. Given (Q,.#4,P) and J as before, let W = (W: t€.9) be a standard
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Wiener process on (£, .4,P), (i.e. an a.s. continuous process with stationary
independent increments and W, a standard normal variable), andlet 2 = (.4) be
the augmented natural filtration of W. Suppose initially that there are only two
securities, a stock numbered 1 and a bond numbered n, with market price and mart-log
price processes of the form

(3.1) zt = exp{(p—io?)t + oWy}, (= uwt + oWy,

(3:2) z§ = exp{rt}, (t=rt,

for te 7, where g, 0 > 0 and r > 0 are constants. These prices cannot be influenced by
the individual investor. Assuming the existence of an optimal PS plan, let v be the
marginal utility process along this plan. Dropping superscripts and abridging the
notation we have, for each security or portfolio, a shadow price process y = z-v and a
mart-log process

(3.3) n=[dy/y=[d(zv)/zv=(+ [ dv/v + L] dv/v, {,

where ( = [ dz/z, cf. (2.12a). (Note: writing v and y rather than v- and y-in the
denominators takes into account that v is continuous; this can be proved directly but
will also be confirmed by the calculation which follows.) Explicitly,

(3.4) nt= ut+ oWy + jco,t) dv/v + Lf dv/v, aW]t,
(3.5) 7= rt+ jco,t) dv/v;

(there is no bracket term in (5) because (2 is deterministic). Now, by optimality, the
processes y{ and y? are local martingales, therefore the same is true of n{ and 7%,
and being local martingales on the Wiener filtration these processes are continuous and
representable as stochastic integrals. We choose to represent 7¢ :

(3.6) = fco,tjfs dWs,

with some adapted f, = f(w,s) satisfying [ :; f2ds < 00 a.s. on J. Then, combining

(5) and (6),
(3.7) jCO,tJ dv/v = jco,t) f,dWs —rt, hence

(3.8) [f dv/v, oW1, = L[ 1dW, oW1, = o/ {, ds.

43



Subtracting (5) from (4), using (8) to evaluate the bracket and rearranging, we have
(3.9) m—rt—oW, = (p—1)t + ‘ajg f, ds. |

Now both sides vanish identically, because the left side is a continuous local martingale
while the right side is of finite variation, with initial values of zero. Consequently
(3.10) m—m = oW; and f, = (r-p)/0;

in particular, the ‘price of risk process’ —f is a constant. Referring to (7),

(3.11) ICO,t:) dv/v = fW, -1t = [(r-p)/o]W, —rt, hence

(3.12) v(t) = vo- &(J dv/v)y = vo-exp{fW, — }f2t—rt} = vo-eTt. E{fW}, .
This result is remarkable in that the marginal utility process v is determined, up to a
scale factor, irrespective of the marginal utility function u’; this is analogous to the
fact that, in a deterministic dynamic model, the ratio of marginal utilities of
consumption at different times is equated to the corresponding compound interest
factor. Before going further, let us note that the processes y!and y», which are
local martingales by optimality, are actually true martingales. Substituting into (4)
from (11) and (8), then calculating y! as vo- &(nt), also yn as vo- &(mm) from (6),
and simplifying, we obtain

(313) i = vo &{J (0 + AW},

(314) 1 = vo E{/ fdW},,

which are true martingales (but not uniformly integrable on ).

It is also of interest to see whether y* is a true martingale. By (2.12b) we have

(318)  Joou WY = 1 = o 4o lniednt+ (1—g)dng);
substituting for d7', then for [ dv/v, and simplifying yields
(3.16) nt = Jco,t) (f+ or¥)dW, yi=vo- E{n*},,

and y* is a true martingale if (for example) 7!* is bounded on compacts, or if
E exp{%jg (m#*)2dt} < oo for T < oo. Some such condition is satisfied for the usual
utility functions, but is not essential for the derivation of the BS formula.

We now modify the model by introducing a European call option (numbered 0)
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on the stock, with expiry at a clock time s > 0 and exercise price C > 0; of course,
the return at s from one unit of the option is
(3.17) zg = (25— C)* = (25— C)J{Z;2 o}
The problem is to determine a price process {zg ; t < s} for the option which is
consistent with portfolio optimality. We assume that market prices of the stock and
bond cannot be influenced by the individual investor and, for simplicity, that the
availability of the option alters neither these prices nor the marginal utility process v
— say, because the option, being redundant, is not actually traded, or being traded does
not alter the ‘fundamentals’ of the ﬁarket. However, the formulas which follow
remain valid if the price and marginal utility processes change, provided that the
processes considered are those which obtain in the presence of the option.

Assuming continued optimality, there should — subject to Remark II below —
be a shadow (marginal utility) price process
(3.18) y = zl-vy,
defined for times t < s, which is at least a local martingale, where zg satisfies (17).
Since 0 < z% < z1, we have 0 < y%<y! and since y! is a uniformly integrable

martingale on [0,s] the same is true of y?. Consequently, for t < s,

(3.19) yt =Ety), ie 2§ =EY(v /ve)-2l}, or, using (12),
(3.20) 2 = T B s {E(wW, - W,)}-20)

Substituting from (17),

(3.21) 2§ = Et{(v/vi) (25— C)*}

= ) WO [ oy, 1)
1>

The usual transformations using the properties of the normal distribution — see Neftci
(1996) Ch.15 — now yield the BS formula.
ReEmARK I. Despite its intuitive appeal, the part of the preceding argument relating to

a European call option does not fit formally into the theory of Foldes (1990), since it is
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assumed there that all securities exist for all time and have strictly positive returns
processes. It is not difficult, although tedious, to extend the theory to allow for
securities with finite life and a positive probability of zero return from some time
onward, but for present purposes the following remarks will suffice. To deal with the
problem of finite life, the process z° can be defined formally for t > s by setting |
(3.22) zg = zg-z"‘;/z; , t>s

corresponding to the assumption that the proceeds zg are invested from s onward in
an optimal portfolio of ‘long—lived’ securities; we now assume such an extension
without special mention. Regarding the problem of zero return, as long as one is
concerned only with valuing a European call option in the ‘geometric Brownian’ model
one can simply replace (17) by

(3.17a) z)(€) = (z;—c)j{zleC} + 6'j{z51< o}

with a small ¢ > 0, carry out the transformations and then let ¢- 0.

REMARK II. As emphasised earlier, the fact that the y—process for any security is a
local martingale (given continuity of the market process and II = II9) is a consequence
of optimality as such and does not depend on special assumptions of the BS world such
as geometric Brownian motion, martingale representation or the availability of a
riskless security. Thus, given any security (not necessarily a derivative) with, say, a
payoff zg > 0 at a stopping time s and nothing at other times, it is tempting to
argue directly that (19) must hold by optimality even if we cannot pass to a more
specific form such as (20) or (21) without further hypotheses. Indeed, it seems that the
main role of the riskless security and martingale representation is to allow the marginal
utility process v, which is not directly observable, to be replaced in the valuation
formula by processes depending on parameters which can be more readily estimated.

While this is essentially correct, it must be borne in mind that optimality (or

equilibrium) as such requires only that the process y? be a local martingale, which
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does not imply the valuation formula (19) unless s is a time which reduces y° (Note
that we stopped to check this in the argument leading to the BS formula). In the
absence of such information, we can say only that there exists a sequence (xn) of
stoppivng times, increasing a.s. o 0o, such that each stopped process (yg A Xn) is a
uniformly integrable martingale, yielding a valuation formula

yg/\Xn = Ehxn Yg/\xn’ ted, n=1.2,..

REMARK ITI. It is known that the BS formula remains valid in suitable cases if the
filtration is larger than the natural filtration of the stock, see Babbs and Selby (1998),
also if bond prices are random but there is for each s a bond maturing at s and riskless
at that date, see Merton (1973). The following examples illustrate the effects of such
features on the methods of the present Section.

(a) Suppose first that A = (4£}) is extended to be the (augmented) natural
filtration of the pair (W,B) of standard Wiener processes, which for simplicity we take
to be independent; in other respects, the model is unaltered. The argument up to (5) is
unaltered, but the martingale representation (6) is replaced by
(3.6a) Mt = fCO,t:) fy dWs + jco,tD gs dBs,
where fand g are adapted processes with jg f2.ds and jg gi-ds finite on J, a.s.
Now (7) becomes
(3.7a) dv/v = [

fs dWs +j st —I't,

fco,t: co,td co,td Bs
but (8) remains unchanged by virtue of the independence of B and W. Consequently
(9) and (10) also stand; thus f has the same constant value as before, but the
process g remains undetermined. In (11) there is an additional term [ g dB asin
(7a), so that (12) becomes

(3.12a) v(t) = vo- 8(f dv/v)y = vo-ert. §{fW}- E{gB}+,

taking the independence into account. Once again the marginal utility process is

determined up to a scale factor; there is now scope for the process g to depend on the

utility function, but in general this process cannot be calculated without solving the
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whole PS problem. Note also that the representation (6a) allows us to infer only that
&{gB} is a local martingale, cf. Remark II above. Consequently it cannot in general
be asserted that the processes yt=z!.v and y» = zn.v are true martingales. Never-
theless, this property obtains in most reasonable cases and we now assume it. The
argument then proceeds much as before, except that the expression under Et in (20)
and (21) is multiplied by &{/ (t,9] gsdBs}; but since this term is orthogonal to the
remaining terms under Et and its conditional expectation is unity, it may be
discarded. The BS formula is then obtained as before.

(b) We now consider informally an example where the bond matures at s and
is riskless at maturity, but before s its price depends on the process B. The filtration
remains as in (a). Now (1) remains as before, but the expression for (» in (2) is
replaced by
(3.2b) (¥ = —1(st) — B(s—1)By, t<s,
where [ is a constant. We also set 7‘2 = 1, and in this example abandon the conven-
tion that z§ = 1; instead, 2§ = exp{—rs}. For later reference we note that
(3.23) Blst)Be = Bl 1, (s-5)dBs — BIY Buds, t<s,
the second term on the right being of finite variation.

Now the formula for 7! remains as in (4), but (5) is replaced by
(3.5b) m = —1(s—t) — f(s—t)B; + fco,t) dv/v —[f dv/v, ff(s—s)dBsl;
the bracket process has been rewritten using (23), omitting the finite variation term.
The martingale representation of 70 is written as in (3.6a); equating this to (5b) and
rearranging, we get (in abridged notation)

(3.7b) ] dv/v = [ fdW + [ gdB + f(s—t)B; + r(s—t) + Lf dv/v, f](s—s)dBs1.
The formula (8) for the bracket L[ dv/v, cW1] remains valid, though perhaps with a
new process f, while the bracket in (5b) is calculated from (7b) and (23) as
(3.8b) [/ dv/v, B(s—s)dBsly = L[f g dB + Bf(s—s)dB, Bf(s—s)dBsl:

= [Y{Bes(5-5) + B(s-5)2}ds.
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Substituting (8b) into (7b),
(3.7’) [dv/v = [fdW + [ gdB + f(5-t)B + r(s—t) + jg {Bgs(5—s) + f2(s5—s)2}ds.
Subtracting #» from 7! once again, separating the martingale terms from the finite
variation terms and noting that both sides of the resulting equation vanish identically
we obtain, using the evaluations (8) and (8b) of the brackets,
(3.10b) nt— ¢ — oW, — f(s—t)B; = 0,

(w-1)t + 15 + of ! £y ds + J* {fgs(55) + f(s5)2}ds = 0
for allt < s, a.s., or, letting t vary with s fixed,
(3.10b") p—t + ofy + fgi(s—t) + f%(s—t)2 = 0.
This equation may be used to eliminate either g or f from (7b’) and other formulas
above, but in order to evaluate one of these functions explicitly we need either to solve
the PS problem as a whole or to introduce an additional assumption. Assume that
(10b) holds for each maturity 5 (at least in a suitable interval [0,s1] ), with the same
process B(t) but possibly different processes f(t;s), g(t;s). (This corresponds loosely
to supposing that there is a bond which is riskless at maturity for each s, a variant of
the formulation in Merton (1973); this idea cannot be formalised in our model as it
stands since there is no provision for a continuum of securities, but we adopt the stated
assumption as an illustration.) Then, eliminating the last integral in (10b) from

previous work we get

(3.7b") Jdv/v = [{dW + [ [g + B(s—t)]dB — ut —a] £5 ds,
(3.4b) = [[f+0ldW + [ [g + A(s—t)]dB,
(3.6b) g = [fdW + [ g dB.

Since these formulas must hold for t € [0 ,s], for each fixed s€ [0,s], and since W
and B are independent, it follows that f and g+ f(s—t) do not depend on the date s,
although we may have g = g(t;s). Reverting to (10b’), we get

(3.24) pr+of=0; g(t;5) =—ps—t),

so that f again has the constant value given in (10). On substituting into (7b"), we
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again have (11), hence (12), and the rest of the derivation proceeds as in the case of a
deterministic bond.

(c) Still leaving the filtration as in (a), suppose now that the ‘bond’ is replaced
by a second ‘stock’, so that (2) becomes
(3.2¢) z% = exp{r—17?)t + 1Bi}, ¢} = rt + 1By,
for t €7, where 7> 0 is a constant.’® Once again, (4) stands but (5) becomes
(3.5¢) nt = rt + 9By + [ dv/v + [ dv/v, /Bl
Representing 7" as in (6a), equating the resulting expressions and rearranging we have
(3.7¢) [dv/v = [{dW + [ (g—7)dB — 1t — [f dv/v, yB].
Once again, (8) remains valid. Forming the bracket with 9B on both sides of (7c)

yields
(3.8¢) [f dv/v, /BY = 9/ (g—y)dt, hence
(3.7¢") [dv/v = [{dW + [ (g—7)dB —rt + v/ (g—7)dt.

Subtracting #n from n! and equating the martingale and finite variation parts yields
(3.10¢) Mm—m+ oW+9B =0, p—r1+ d—1g—y) = 0,

for all t, a.s. We can then eliminate either f or g from (7c’) etc and obtain a
valuation formula using (17—19), but once again it will involve an undetermined pro-
cess which may not be independent of W. Note that difficulties of this kind are
effectively assumed away in those derivations of the BS formula which assume from the
outset that a valuation formula (solution of a suitable p.d.e.) exists which depends only
on z}andt. In our terms this means, loosely speaking, that [ dv/v 4+ rtisa
functional of the Wiener process W only, hence has a unique (up to null sets) repre-
sentation as an It0 integral with respect to W, see Dudley (1977), so that g = v and

the derivation of the BS formula proceeds as if B were absent.

15 The resulting problem is related to those analysed by Margrabe (1978) and Grabbe
(1983). I am indebted to Michaél Selby for this remark.
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4. A FORMULA FOR PROJECT EVALUATION

As a second illustration of shadow pricing, we consider a classic problem of project eva-
luation in a continuous—time stochastic setting. We take as ‘benchmark’ the model of
optimal saving with a single, continuously traded asset with returns process z (which is
not required to be continuous). The investor is offered the option of an ‘indivisible’
project yielding a random cash flow § = §(w,t) , or s = §/z in z-standardised units,
on payment of an initial capital sum . The situation resulting from acceptance is
assumed to satisfy the conditions stated under B at the end of Section 2, (with K,
replaced by Ko — U and consequential changes in some definitions and notation); in
particular, s is taken to be non—negative and to satisfy (2.25) and (2.28). Unlike some
related contributions such as Constantinides (1978), we do not assume a market struc-
ture enabling the project to be priced ‘in the market’ without reference to utility.16

The ‘obvious’ project criterion is the change in the maximum value of the
welfare functional resulting from acceptance, but we seek an equivalent criterion of the
‘expected net present value’ type, using shadow prices to value the cash flows, in the
hope that this will yield greater insight.

Although the proposed project must actually be accepted or rejected as a whole,
we extend the notation to allow hypothetical situations in which a proportion « € [0,1]
of the cash flow s is receivable and an initial payment of U(e) € [0,K) is required.
The theor); of Section 2 is assumed to apply, with suitable values of parameters and

adjustments to definitions, for each value of a considered, and details will be spelled

16 Tt has been suggested that this Section might be presented as a contribution to the
currently active literature on ‘real options’. As summarised by Chirinko (1996), re-
viewing Dixit and Pindyck (1993), this literature develops ‘the idea that irreversible
investment, combined with ongoing uncertainty and timing flexibility, may have a sub-
stantial impact on the investment decision rule used by profit-maximising firms’.

While the investment considered here is irreversible, we do not consider timing flexi-
bility, and the criterion is a ‘welfare’ functional instead of profit. Our analysis is thus
closer in spirit to the older literature on public project evaluation or cost-benefit
analysis, as viewed from the standpoint of welfare economics.
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out only occasionally. In particular we assume that, for each such a, an optimal plan
exists, with a finite value of the welfare functional, and that assumptions corre-
sponding to (2.10) and (2.23—24) are satisfied. We distinguish among functions etc
relating to different values of a by means of superscripts. Thus t® and co = to/z
will denote the optimal consumption plan, in natural and standardised units

respectively, and ¢ the maximum welfare; (we drop the stars). So

(4.1) 9> = E J: u[cgleetdt = E J: ufcq-z,Jeetdt,

with equation of accumulation (in standardised units, writing ke = ka/z )

(4.2) k(1) = Ko—B(a) + jf [0s,—cg]dt.

Initially we consider just the values o =1 and o= 0, with ®(0) =0 and an
arbitrary value U = V(1) < K,, writing the corresponding value of g as

e = p(Ko — ofD); the ‘obvious’ criterion for project acceptance is then !> 0.

Because of the concavity of the utility function, we have

(4.3) ol— g0 < Er {ugO-zt[cg - cg]} evtdt = Er’ {yg- [ct— cg]} dt,

0 0
using abridged notation; here u{® = u’(c}), and y{ = u{°-z,-eet is the shadow price
process corresponding to « = 0. Using (2) with =1 and a =0 we have
(4.4) kY1) ~k0(1) =T+ [ [5, + ¢ — cfldt.
Since y0 is a local martingale reduced by the times v; = u?, 0<i < Ky, the theorem
on integration of a martingale w.r.t. a non-decreasing processs allows the right side of
(3) to be rewitten as

0
(45) lim, E{y°(v?)-j0 et —cfl} dt,

taking into account (2.8) and (2.28—29). Substituting from (4) and noting that

E yo(1Q) = y{, this becomes
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- . 0 0 0 2
(4.6) 0% + lim E{yo(l/i)[ko(ui) LA at) }
lT Ko (6]

Now, referring to (2.27) and (2.14b’), also Prop.B in Appendix B, we have

ko(1]) = Ko —1i if < 00, yo()=0 if 1] < oo,
and it follows from (2.28—9) that the term in (6) multiplying y°(+) stays finite. Since
Ey°(+]) = v, the term in (6) involving k° vanishes as i ] Ko. Dropping the non-
positive term in k!, using again the fact that yO is reduced by the times (V(i)), letting

i1 Ky, V? 1 oo and collecting results we get

(1]
(47) - 30T + E{J yi-50 dt}.
0

A sufficient condition for project rejection is that the right side of (7) be negative,

hence a necessary condition for acceptance is that it be positive (or zero), i.e. that

_ i\
(4.8) T < E { J (7Y/50)-s¢ dt}.
o
An analogous calculation, evaluating u’ at ¢! = c!-z with initial capital K, — ‘T, yields

a necessary condition for rejection, or a sufficient condition for acceptance, of the form

w9 B[ Ghhoal

These inequalities will be recognised as a continuous-time, stochastic version of
the result that a project large enough to shift prices — in this case, marginal utility
prices — will be overvalued if appraised using the prices prevailing in the absence of
the project, and undervalued by prices prevailing in its presence. (Admittedly, the
analysis here is oversimplified by consideration of a one-asset model, so that portfolio
rearrangement is neglected.) In the cost-benefit setting, it has often been suggested
that correct evaluation requires the use of suitable intermediate or average ‘shadow’
prices. We proceed to make this idea precise in the present setting; but note that,
while the preceding calculations are readily justified and details have been omitted

only for brevity, the calculations which follow involve some analytic assumptions
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which, while entirely reasonable, require further investigation.1?

We now consider values of a in the whole interval [0,1], so that in addition to
the feasible situations there are hypothetical ones in which a proportion a of the cash
flow s can be obtained for an initial investment U(a). Also, instead of fixing this
investment arbitrarily, we choose U(a) for each o as the equivalent variation for the
cash flow a-s, i.e. the payment which, given maximising behaviour, leaves the
investor’s welfare the same as at o = 0. Thus, if U is the investment actually
required, the necessary and sufficient condition for acceptance will be
(4.10) T < B(1).

In this setting, (1) and (2) apply for each o, but now
(4.11) par = ¢* for 0<agl.
Assuming that it is permissible to differentiate (1) and (2) as follows, we obtain, with

obvious notation

(4.12) 0 = EJ: {u;a.zt.ept[dc%/da]} dt = EJ: {y(g-[dc(g/da]} dt,
(4.13) dko(1)/da = —0'(a) + J: [s, — dcg/da] dt.

To make a transition similar to that from (3) to (5) above, we must amend the
definition of the depletion times to allow for the fact that, for project participation at
level o, the net initial capital is only K, —2(e) = K. By analogy with (2.17), let
(4.14) v¥(w) = inf{t: k¥(t) < Ko—i} A oo, 0<i—D(a) <K

Since yo is a local martingale reduced by the times V?, (12) may be written, taking

17 Given the assumptions already stated, the following conditions are sufficient for the
remaining calculations. The function U(a) defined in the next paragraph is to exist
(an extension of the assumption of the existence of optima). Also dc*(w,t)/da and
dk*(w,t)/da, defined as derivatives of the optimal processes c® and ka w.r.t. o (when
U(a) is chosen to satisfy (11) below) are to exist as (progressive) processes for

0 < @< 1. The differentiation of the integrals in (1) and (2) to obtain the integrals in
(12) and (13) is then justified by dominated convergence if the processes dc®/da and
et-dufce-z]/da = y>-dce/da are dominated by product integrable processes.
Existence of ¥’ () in (13) then follows from the existence of the other terms. The
integrability of dc®/da is also used in passing from (12) to (15).
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into account (13), as

(4.15) 0 = }%1;0 E{ya(y?).J:? [dc?/da]} dt
(84
= —m’(a)-yg + lim E{ya(u?)-[—dka(z/?)/da+inst dt]‘}.

lTKo o

Now, for each o and i> U(a), we have
(4.16) either kx*(vY) =Ko—1i, or v¥=00 and 3¢ =0.
Thus, on going to the limit, the term involving k® vanishes, and on rearranging there

remains simply

®
@1 w@=E|| Geypsal,
0
or, integrating over a, interchanging the order of integration and setting
1
(4182) 7o = | Ge/y9) da,
0
®
(4.18b) (1) = E H 7,5t dt].
0

The idea of valuation using ‘suitable’ average prices or discount rates thus turns out to
be correct in the present case. The argument illustrates both the application of shadow
pricing and the usefulness of the concept of depletion time. Actually calculating the
values of the ¥, is, of course, a different matter. In general, we have so far progressed
only from a project criterion involving ‘welfare’ or total utility to one involving

(random) marginal utility.
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APPENDICES
In these Appendices we give outline proofs of the new results asserted under headings
A — C in Section 2. These proofs build on the theory in Foldes (1978a&1990), and the
reader wishing to follow them in detail will need to refer to these papers.

APPENDIX A: PRICE TIMES
Consider the saving model with a single security, z not required to be continuous and
no income process. The price times p, may be defined as in (2.21) for realn € [y,,00).
(Note that py > 0 for n > y, since we assume yo = y(0+).) Referring to the conditions
for optimality (2.14), we wish to prove
PROPOSITION A: A plan (c* k*) satisfying c* > 0 and (2.10) is optimal iff
(A.1) yis an 2 docal martingale reduced by any sequence (pn) with yo < n ] 00, and
(A.2) limp E{y(pn)-k*(pn)} = 0 for any such sequence.

The sufficiency proof follows the same lines as similar proofs in Foldes
(19782421990) and is omitted; (see also Appendix B below for a more complicated
argument of the same kind).

Turning to necessity, let ¢* be optimal; since u’(0) = oo, we know that c¢* > 0
and k* > 0 up to null sets.

Local Martingale Condition. We know from the results of Foldes (1978a) that y
is a positive local martingale (reduced by any sequence (7;) of consumption times with

i1 Kp), with a limiting variable y(oo) > 0 satisfying y(w,00) =0 if k*(w,00) > 0.
On the other hand, y is reduced by any sequence of times (p,) with n T oo, see for
instance Meyer (1976) IV.4 bis, Dellacherie & Meyer (1980) VII.8,12,13. The necessity
of (1) follows.

Transversality. Now let'(c,k) be any plan such that 6k(t) <0 forall t > 0,

a.s., and consider the following calculation
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(A.3) Dy(c*, fc) = Ery.&.dt = —Ery.d(ék) = —limy EJQny-d(Jk)
(0] (0}

0
= tima B{y(pn)- *(p) — K(pn)]}

The first equality is (2.13c); the second uses 6c = — 6k = — d(ék)/dt, and then the

passage to the limit is justified because p(n) T co a.s. while the product integral

defining D¢ converges under (2.10). The last equality uses integration of a martin-

gale with respect to a non—decreasing process, noting that ¢k may be written as the

difference between two such (finite) processes on the bounded interval [0,py], while y

is uniformly integrable on this interval; also ék(0) =0. Now y > 0 and k*—k > 0

for t > 0, yielding D¢ > 0, hence Dy = 0 by optimality. This leaves

(A-4) Dy = 0 = limy E{y(pn)[K*(pn)—k(pn)]}.

It remains to get rid of the term k(pn) in (4) and so obtain (2). This step is
trivial in a discrete—time model, where one can choose for k the plan which consumes
all capital at t =0, and could be made so in the present model by allowing free
disposal of a ‘lump’ of capital. Without such an assumption it is not in general
possible to construct a feasible k such that k(pn) =0 a.s. for some fixed n. We
therefore need a limiting argument.

The first step is to define a family of plans (c%,k?; 6 > 0) by setting
(A.5) k¥(wt) = k¥*(w,t)edt,
hence (in abridged notation)

(A.6) ¢ = —kd= (G — k¥)ett = (fk* + c¥)edt > 0.

Clearly the plans are feasible and each k? is decreasing on J. If we now repla.ce k by
k? in (4), then (2) will follow if it is shown that, for 61 co, n T o0,

(A.7) limg limpy E{y(pn)k¥(pn)} = 0.

Turning to the second step, note that we may regard the family of stopping
times (pn; Yo < 0 < 00) as defining a (right continuous) time change, the associated

filtration U = (.4) = (Jgg ) satisfying the usual conditions. It follows readily that
n
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the transform § of y, defined for y(0) < n < 0o by §(n) = y(pn), is an U-martingale
and that the transforms k*(n) = k*(pn), k% = k%(pn) are decreasing and bounded
above by K, all these processes being positive and collor. We may now define the
limiting variables p(0c0) = 0o, §(0o) = y(00), k(o0) and k¥(co), where k¥(co) =0
by (5). It follows that the product

ho(n) = §(n)- k(n)
defines a collor, positive 2 -supermartingale with h%(co) = 0. We consider h® in
some interval [ng,00) with ng >y, Write
(A.8) HY%n) = Ehd¥(n), np{n < oo, H¥oo)=lim, H¥(n),
noting that H?(co) exists as a limit because H?(-) is non-increasing and that H?(.) is
right continuous because h? is sample right continuous, see Meyer (1966) VI.4. Thus
(A.9) ¥, K, 2 Hi(n) 2 H?(00) > Eh$(c0) = 0,
bearing in mind that 0 < h¥(n) < §(n)-K, and Ey(n) =y(0) for np<n < .

Now the third step. On letting T oo, h¥(n) 4 0 for each n, so that
(by dominated convergence) we have

limg H%n) =0, 1ng<n < oo;
this assertion also holds for n = oo because of (9). Obviously, the left—hand limits
Hb(n—) 1 0 alsoas 67T oco. Thus, for any sequence 671 oo, the functions H¥(n) are a
sequence of positive functions on [ny,00], collor, decreasing simply to zero together
with the left limits H®(n—); it then follows from a generalisation of Dini’s Theorem,
Dellacherie & Meyer (1980) VII.2 (Lemma), that the convergence is uniform. This
uniformity justifies the following interchange of limits, which completes the proof:

0 = limy limg H8(n) = limg lim,, H8(n).|

The proof yields the following
CoRrOLLARY A: If (c*k*) is optimal, then
(A.10) ¥ is an 2 -martingale, and

(A.11) lim, E{§(n)-k*(n)} =0 for any sequence of positive reals n  co.
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REMARK. The use of price times to characterise an optimal plan can be extended to the
PS model as follows. Suppose either that Z is continuous and Il = II°, or that #* > 0.
For each security A, define the times p) =n A {y*» > n}, rewrite p;, as p¥ and set

pz = p¥AplA..Aph. Then Prop. A, with pz in place of p and y = y*, still
characterises 7* -optimality of a plan (c* k*), and in the conditions for optimality
(2.20a&Db) one can choose a sequence (pZ) as fundamental for all the y> as well as for
y*. However, with this choice, (2.20b) cannot in general be replaced by (2.20b’) in a

set of necessary conditions.
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APPENDIX B: DEPLETION TIMES FOR MODEL WITH INCOME

Consider the model with a (positive) income process defined in Section 2B, and refer to
(2.26-27) for definitions of I' and v;. We wish to prove
PrOPOSITION B: A plan (c* k*), satifying c* > 0 and (2.10), is optimal iff
(B.1) y is an 2-ocal martingale reduced by any sequence {v;} with

i=1i(n) 1Ky, and
(B.2) lim; E{y(v;)[Ko —I'(»3)]} = 0 for any such sequence.
Condition (2) may be replaced by one of the following:
(B.3) lim; {y(v;)[Ko —T(»1)]} = 0 a.s.;
(B.4) y(w,00) = 0 if I'(w,0) < Kg, a.s.
Notation. For brevity, we write
y; = ¥(t) = y(tAw), o) = ¢i(w) = T{t: t <vi(w)}, Ni= Ny(w) = H{w: vi(w) < o0}.
Equivalences. We first check the equivalence of (2), (3) and (4) in the presence of (1).
Given that y is a positive local martingale, hence a supermartingale, and that Ko — T’
is monotonic and > 0, the a.s. limiting variables y(co) and Ko — I'(00) exist and
are > 0. Since v; 1 0o a.s. as i1 Ky, (2) implies (3) by Fatou’s Lemma, and then (3)
and (4) are clearly equivalent. To see that (4) implies (2), note that v; < co implies
Ko —T(v1) = Kg—i by (2.27), whereas v; = co implies I'(o0) <i < K, hence
y(vi) = y(00) = 0 by (4). Then (2) follows from
(B.5) 0 < B{y(1)[Ko—D()]} = B{N;-y(s1)- (Koi)} = (Komi)Ey(v3)

= (K¢-)yo— 0 as i | K,.
Sufficiency. The proof follows the same lines as in Foldes (1978a2&1990), with some
complications because capital plans in standardised units need not be decreasing or
bounded or converge at t = co. To avoid difficulties with such terms as y(v)- 6k(vs)
when v; = 00, we give an elementary argument rather than rely directly on the

theorem on integration of a martingale with respect to a non-decreasing process.

B.1



Proor. By assumption, ¢(c*) is finite. If (c,k) is an alternative plan (with ¢ > 0 and
k > 0), we have to show that Dy < 0. and we may assume that ¢(c) > —oo0. Then
p(c) — ¢(c*) = E [ [u(c)—u(c*)leet-dt is finite. By concavity,

[u(e)-u(e)leet < y-Be, s0 (c) = p(c*) < B[S y-de-dt,
and it suffices to show that the last expression is < 0. Also, the fact that y- éc is
bounded below by a product integrable process justifies the interchanges of the order of

integration in what follows. We have
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Vi i . o .
(B.6) EJO yt-éct-dt = —EJ yt-bkt-dt = —EJO yé.ékt..(pt.dt

(o)

= 5| By th,-vj-ae = ] BIEY)- ok s

) Vi Vi
= —| E{y(vi)-6k,-¢i}dt = —E i)- 6k, -dt = —E{N;-y(r5)| 0k, -dt
JO {y(vi)- &k - 9;} JO y(vi)- 8k, {Ni-y(v )Jo 4 dt}

= “B{Ni-y(n) ()} ¢ E{Ni-y(n)-K¥(m)} = B{Ni-y(vs)-[KeD(3)]}

= E{y(s)-KeT(m)]} — o.
The first equation follows from (2.22), the second is just a change of notation. The
third uses the fact that y; is a u.i. martingale by (1). The fourth uses Fubini’s
Theorem, the fifth properties of conditional expectation, the sixth Fubini again. Note
that in the resulting (seventh) term, the values y(v;) with v; = oo, which must equal
zero, multiply only finite numbers. The seventh equation excludes these vanishing
terms and takes y(v;) outside the time integral, which is then rewritten as ék(v;). The
inequality drops the term in —k(»3), allowing k*(v;) with v; < oo to be replaced by
K—T(v1), see (2.27), and since KT is bounded we may reinstate the terms with
v; = 0o under the expectation sign and go to the limit as i 7 K, which is zero by (2).||

CoroLLARY B1. The Conditions (B.1-2) imply

(B.7) E [ y(®)lc*(t) —s(t)]-dt = yo-Ko.
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ProOF. With notation as in the preceding proof, set k = 0, k = K, ¢ = s, hence
¢ = k* = s—c* for all t. Substituting in (6) up to the ninth term and reversing the

signs, one has

(B.8) E J : y,-(ct—s,)-dt = B{Niy(us) [Koek¥(ws)]}.
Now K¢k*(v3) = I'(»3) =i for vi < 0o and E{Nj-y(v;)} = Ey(vi) = yo, and it re-
mains to let i T K. The convergence of the right side of (8) implies the convergence of
the left side, and the limit may be written as on the left of (7) by virtue of (2.23—24).|
Necessity. As noted in Section 2, optimality and (2.25) ensure that ¢* > 0 and k* > 0.
Regarding the consumption times 7; as now defined for all i > 0, it may be shown as in
Foldes (1990) S.6 that § is a (positive) 2 -supermartingale and hence that y is an
2 -supermartingale, also that a limiting variable y(oo) > 0 exists. We wish now to
show that y is a local martingale reduced by any sequence of depletion times v;,
i =i(n) T Ko (hence that y is an ¥ —martingale), and that the transversality condition
(2) holds. A difficulty arises from the fact that now the sample paths of k* need not
be everywhere decreasing. To deal with this, we first prove a Depletion Lemma which
shows that ‘upward excursions’ of k* contribute nothing to the integral Ef y-k*.dt,
i.e. to the total value of investment, and so can be neglected when calculating certain
directional derivatives; this Lemma may be of some economic interest.

(i) Properties of Depletion Times. For fixed w, let
(B.9) B(w) = {teJ:t = ¥(w,i) for some i€[0,K,)}
i.e. B(w) comprises those times t which are depletion times. Bearing in mind that
the sample functions of K, —k* are absolutely continuous, it is clear that
Ko—%k* =I'* on B, more precisely that Ko —k*(v;) = (1) = Ko —1 if v <
— see (2.27c) — while Ko —k*(t) < T'(t) < Ko—1i for t < v;. Further,
Ko—k*(t) =T'(t) > Ko —i for t in some right neighbourhood of v, i.e. each such t

is again a first upcrossing time of some level 1> i and so belongs to B. Thus B(w) is
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the union of a finite or infinite sequence of disjoint half-open intervals of positive
length of the form

(B.10) [an(w), ﬂn(w)), n=12,.

where f = oo may occur. In particular, o= ¥(0) > 0, and a strict inequality
cannot be ruled out. The set {(w,t): teB(w)} is obviously progressive. Further, since
for fixed w we have ' = K¢ —k* on B while I' is constant on each complementary
interval [f ,0 +1), it follows that for a.a. t€ J the derivative 9(t) = dI'(t)/dt is
defined and may be chosen so as to satisfy

(B.11) y(t) = —k*(t) >0 for teB,  (t) = 0 for t¢B.

DEPLETION LEMMA. Let 0 <1<i <K, and A €€, andlet T, (wt) be the indicator

function of the set 9 — B(w); then

(B.12) J A[ ri YR (t)3,(8) dt] P = o;
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(B.127) E”:" y(e)k*(£), ] dt] = 0.

For brevity we prove only (12), the proof of (12/) being similar.

PRrOOF. (a) We may assume », < oo for we€ A. We first show that the left side of

(12) is not positive. Construct a variation &k = k—k* by setting (in abridged

notation)

(B.13) —bc = 6k = —k*, k=K T, hencec=c*+fc= s—k*—bli:vszo,
for teB°N[y,1), we A,

and 6k =0, k = k* otherwise. (Thus k cuts off any excursions of k* above KT

occuring between v, and v, but otherwise coincides with k*). Since k > 0, ¢ > 0, this

is feasible. On computing D¢ from (2.13c) we have the expression on the left of (12),

which by optimality must be < 0.

(b) To establish the opposite inequality, one would like to set &k(t) = ek*(t), e > 0,

for tEBcﬂ[VI,l/i), weA, and 6k = 0 otherwise, (i.e. k would blow up any excursions
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of k* above K(~I' occurring between Y and 2 but would otherwise coincide
with k*). Unfortunately the corresponding value

¢c=c*+ fc =c*— bk = c* — ek* = 5 — (1+¢)k*
could become negative, and we therefore define k on each component interval [f,a)
of Bn[v ;) as the solution of the o.d.e.
(B.14) k = s if s> (1+e)k*, k = 0 if s < (1+€)k*
with the initial condition k(f) = k*(6); note that ¢ =0 when k =s. It can be
checked that the solution curve k(t) lies above k*(t) throughout (§,a) but not above
k*(t) + e[k*(t) — k*(F)], and rejoins k* at aif a < 0o. Since k > k* > 0 and
¢ > s> 0, the variation is feasible, and we have éc = — 6k > — ¢k* on each interval

[6,), hence on Bcn[u ,ui); it follows by optimality and (2.13c) that

(B15) 03 Dp = -JA in ’

i,
|y ded]
I

y-&-JBc-dt > —EJAJ

“1

CoROLLARY B.2. Let 0<I < i< K, Then, for Ae JJI ,
V.
(B.16) J U 1y(t)l'c*(t)dt]dP <0,
A Y

the inequality being strict unless Y =00 as.on A.
Proor. This inequality follows from the preceding Lemma (which shows that the
contribution to the time integral made by B® vanishes) and from the facts that
k* < 0 on the interior of B while y(t) > 0. ||

(ii) Local martingale condition. For each fixed ie[0,K,), we define the stopped
process
(B.17) yi = (y[tAvs]; te 9);
we have to show that yi is a u.i. 2 -martingale. Since each tAv; is an 2U-stopping
time and y is a positive corlol supermartingale, it follows by the Stopping Theorem

that yi has the same properties, Dellacherie & Meyer (1980) VI.12; and by the

convergence theorem, ibid. VI.6, yi(t) converges a.s. to a finite limiting variable
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yi(oo) = y(vi=). The supermartingale inequality and predictability of »; then yield

(B.18) y(0) = y¥0) 2 Ey¥(t) 2 Eyi(c0) = Ey(vi-) 2 Ey(vs), teJ.
In the paragraphs which follow we shall show that
(B.19) ¥(0) < Ey(v);

this will imply first that yi is a martingale, since then Eyi(t) = y(0) for all t€ 7, and
second that the yi(t) are uniformly integrable because they are positive and we have
the relations yi(t) - yi(oo) a.s. and Eyi(t) - Eyi(c0), t - oo, see Meyer (1966) II.21.
ProoF OF (19). For fixed i€[0,K,), choose numbers #¢(0,Ko—i) and h > 0 and define
anew plan ¢ = c*+dc, k = k*+6k in three phases (a), (b), (c).
(a) The first phase is defined for 0 <t < hAy; by
(B.20) bc = §/h = — &k, hence c=c*+ éc >0 and
k(t) = k*(t)—(6/h)t > Ko —i—(0/h)t > 0, because (6/h)t < § < K, —i,
so that the variation is feasible. The value of k at the end of the first phase satisfies:
(B.21) k(hAvs) = k(vs) = k*(vi) — (0/h)vi = Ko —i— (8/h)r; if vi<h,
(B.22) k(hAw;) = k(h) = k*(h) — 03 Ko—i— 0 if h<ui
The first line holds because v; < oo implies v; € B, hence k*(v;) = Ky —i. The
second line follows from (20).
(b) In case h < vj, a second phase is defined by
(B.23) bc =0, k = k*, hence
k(t) = k(h) + k*(t) —k*(h) = k*(t) - 0> K, —~-0>0, h<t<ws
The construction so far guarantees that ¢> 0,k > 0, 6k < 0 and &k < 0 for
t < vi. In particular, (21) and (23) yield
(B.24) k(vi) = k*(vi) — (6/h)(hAvs) > Ko—i—4,

so that
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(B.25) &k(vi) = —(0/h)y; if vi<h
ok(vy) = — 40 if h<w

(c) I v; < o0, a third phase is defined by
(B.26) éc = k*, hence c(t) =s(t)>0, k(t)=0, ri<t<p,
where p is the first time in B such that k(t) = k*(t) if this exists, with p = o0
otherwise. For t > p, we set k(t) = k*(t). Feasibility is obvious, since
k(t) = k(v1) > K¢—i—8 on [vi,p) implies k(t) > 0. Explicitly, it follows from (25) and
the definition of depletion times that
(B.27) p=v, with 1=i+(0/h)y; if vilhy p=vig if h<n

This completes the construction of k. We now substitute into the formula
(2.13c) for Dy and, noting that 6c = —&k > 6/h in phase (a), éc = 0 in phase (b),

and 6 = k* in phase (c), obtain
hAy;

(B.28) 0> Dp > E[(G/h)J y-dt+Jp.y-l'<*-dt].

0
According to (27), p may take one of the two values v and viy, and clearly

v, { Visg; nevertheless we may replace p by vi. in the second integral in (28)
without disturbing the inequality. This follows from the fact that k* < 0 for

a.a. teB, whereas the Depletion Lemma shows that B® makes a zero contribution to

the integral. On dividing the resulting inequality by # and rearranging we have

®x)  Efam)  yat) < —Efa/af Tyl

We consider separately the two sides of this inequality. The random variables on the

o

left are dominated as h 1 0 because

hAv; h h
(B.30) (1/h)jo yodt < (1/h)J0 y-dt and E[(l/h)Joydt] < y(0),

the second inequality being due to the supermartingale property of y. On passing to

the limit under E and taking into account the right continuity of y, it is seen that

the left side of (29) tends to y(0).
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On the right side of (29), we may by the Depletion ng;ma restrict the time
integral to BN[vi,vi4), and on this set —k*(t)dt may, acc?nding to (11), be replaced
by 7(t)dt = dI'(t); on the other hand, 7(t) =0 for t¢B, so the whole exﬁression on
the right of (29) is equal to

Viv
(B.31) (1/0)EJ ¥(t)-dr(t).
Vi
Since I'(t) is non-decreasing and absolutely continuous and (1) = inf{t: I'(t) > 1}, a

(pathwise) change of variable gives

(B.32) JVM y(t)-dr(t) = J

vi

(i+0)AF(m)
iAT (o)

where y[(1)] = y(o0) in case 1> I'(00), i.e. in case (1) = oo. Now the Stopping

i+0

sl ¢ [ ybmla
Theorem implies that Ey(VI) < Ey(ui) for i <1<i44d, and it follows from (32) that
(31) cannot exceed Ey(w:). On collecﬁng results and referring to (29) we have
y(0) < Ey(v;), which completes the proof of (19) and hence of (1).

(iii) Transversality. It follows from Ey() = y(0) and the argument following
(29) that equality must hold a.s. in (32), in other words that y(oo) =0 if
I'(c0) < 1€ [i,i+0), and since i and @ are arbitrary subject to 0<i <i+6< K, it
follows that, a.s.,
(B.33) y(w,00) = 0 if T'(o0) < K.
This in turn implies (2), since then
(B.34) B{y(m)Ko-T()]} = E{Ns-y(u)[KoT()]} = (Ko—i)E{y()}

= (Ko—1)y(0) ~ 0 if Kol

The foregoing also yields
CoRroLLARY B.3. If (c* k*) is optimal, then
(B.35) ¥ is an 9 -martingale,
(B.36) F(wi) =0 if I'(w,0) < Ky, as.,
or equivalently

(B.36") lim; E{N;-7(i)-k*(1)} = 0 for any sequence i ] K,.
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ReEMARk I. If it is assumed that ]“0’ s(t)dt < oo a.s., then, for every feasible plan a.s.,
k 1is of finite variation on [0,00] and k(o0o) exists as a finite limit, see (2.28—29). Then,
since Ko —I'(v3) = k*(v4) when v; < oo whereas y(v;) = 0 when v; = o0, it is clear
that (2) and (3) imply the corresponding conditions with k*(v;) in place of

Ko —T(v;). The converse also holds since 0 < Ky, —TI' < k*. However, it seems that
one cannot exclude the possibility that k*(oo) > K¢ —I'(00) on a set of positive
probability, so that in (4) one cannot replace I'(c0) < Ko by k*(o0) > 0.

It can also be shown that, under (2.28), (7) is equivalent to (2) in the presence
of (1). It suffices to review the proof of Cor. B1 and note that now the convergence of
the left side of (8) implies that of the right side, and the result follows because k*(o0)
now exists as a finite limit.

REMARK II. Suppose that the optimal plan is such that the paths of I' are uniformly
bounded away from K, on  — more precisely, that there exists a positive, non-
decreasing, right continuous function I'*(t) on J such that, a.s.,

(B.37) P(wt) < THt) < K, forall teg.

Then y is a true martingale and E{y(t)-T'(t)} -0 as t - oco; these conditions,
together with c* > 0 and (2.10), are also sufficient for optimality (even if T is not
bounded away from K,). This proposition is analogous to Theorem 6 of Foldes (1978a)

and proof is omitted.
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APPENDIX C: CONSUMPTION TIMES FOR PS MODEL

We consider the PS model with a continuous market returns process Z and II = Ho,
i.e. short sales are permitted. The question at issue is whether, in the conditions for
optimality (2.20) with (2.14), one can take the consumption times as fundamental for
some or all of the local martingales y=. Sufficiency is straightforward, and we
concentrate on necessity. The best result so far is
PROPOSITION C. Let (c*,7*) be an optimal plan. The process y*, defined as the trans-
form of y* to consumption time, is an DIl -martingale for each portfolio plan 7 satisfying
(C.20) below, and a fortiori for each 7 satisfing the boundedness condition (C.2).

As a preliminary point, let (c*,7*) be just a distinguished plan satisfying c* > 0
and (2.10), and recall Prop.7 of Foldes (1990) in the following, corrected, form:

If IT = II9, if y~ is a local supermartingale for every € I10 and y* is a local

martingale, then y~ is a local martingale for every 7 € II0,
The italicised words were omitted in Foldes (1990)*.

It follows readily that, under the stated hypotheses — and therefore under
(2.20) — y~is a local 2( -martingale for every 7. This can be shown by noting that the
proof of the (corrected) Prop.7 works equally well for the y-processes transformed to
consumption time; unfortunately, the method of proof does not identify the stopping

times which reduce the y=. Hence the need for a more refined argument.

1 The second paragraph of the proof given in Foldes (1990) should be amended to read
as follows:

To be explicit, suppose that 0t does not vanish. Let 7 > 0 be a predictable time such
that d! < 0 with positive probability. Choose a number p < 0 and let 7/ be a portfolio
policy defined by 7't =pl + (1-p)7*t, 7'* = (1-p)7*> for A # 1. Then

gn’ = pot + (1-p)d* = pd}, which takes positive values with positive probability,

contrary to ot < 0.0
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Returning to the case of an optimal plan (c*,7*), we know from the proof of
Theorem 2 of Foldes (1990) that every y= is an 2 -supermartingale and every y= is an
2l-supermartingale; further, since c* is 7* -optimal, it follows from Theorem 5 of Foldes
(1978a) that §* is a (true) 2 -martingale. Thus, in order to prove Prop.C, it suffices to
show that
(C.1) Forevery = € II0satisfying (C.20), Ey=(0) > Ey=(1) for every 1 € [0,K,).
(Cf. the discussion of (B.19).) Note that Ey=(0) = y=(0) = §*(0) = y*(0) = Ey*(0).

We consider a fixed 7 throughout. The procedure will be to reverse, so far as
possible, the proof of the supermartingale property given in Foldes (1990), so that
ideally a phase of increased consumption, financed by sales of the portfolio =, will be
followed by a neutral phase and then by a phase of increased savings, used to buy in 7,
until capital has caught up with the star plan. The argument is simplified here in that
the first phase can start at zero time and the variation need not be restricted to a sub-
set of 2, but it is now more difficult to satisfy the non-negativity constraints. Since
the stopping routines needed to ensure feasibility in the general case are liable to make
the notation impenetrable, we give the proof first under the following boundedness
condition:

(C.2) For some finite number a > 1, we have 27 /z} < a on J, as.

Choose numbers h, 1, ¥ such that
(C.3) 0<h<i<I+1<K,,
then ¢ such that
(C.4a) 0<e<Hfa, and
(C.4b) 0<e<(Ko—1—H) e, hencealso ¢ < (K¢—1)/a < (Koy—h)/a

Now bear in mind that 7; denotes the consumption time at the level i, and if

7i < 73 with 0<i < j< Ky then, as.,

) .
J'r(i) c*(t)dt = k(ri) —k(r3) < j—i,
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with equality if 75(w) < co. We define a variation 6¢ = € —¢* by setting

+ (e/h)(z“/z*) 0 <t<mn spending phase
(C.5) fc, [Tt = { mit <71 neutral phase))
— (e/n)(27/2}) T <t< Tipy (saving phase)

Note that € and ¢* are in natural units and that

and 6c =0 for t>7‘I+H

¢*/z* = ¢* = —dk*/dt. The extra spending is financed by sales of 7, and the extra
saving is used to buy in this portfolio; thus, as in Foldes (1990) eq.(4.20), we have

(C.6) 6k, = —z1- J'-g[ae(t)/zw(t)]dt, Ted.

To check feasibility of (5): During the spending phase, clearly

¢, =T} + dc, >0, (bearing in mind that (’:’{ > 0 always), Also

t =
(C.7a) —bk, = (¢/h)zs- Jf cX(t)dt < ez,
(C.7b) k, = kf + &k, = z3(k¥ - ezn/2}) > zi(Ko—h—ea) > 0

for T < 7y, using (2—4) and noting that j c*(t)dt = Ko— ki <h for T <mp.

For the neutral phase, ¢, = ct > 0, and
_ _ h
(C.82) ~Skyl7g = 8K /ey = (efh)- ;Z( ) cH(t)dt < e
(C.8b) k, = kK + 6k, = zh(k}—ezn/2}) > z5(Ko—1—€a) > 0

reasoning as above. (If 7(h) < oo, there is equality throughout (8a).)
For the saving phase,

(C.9a) ¢, = cl—(¢/m@/ah)] > el (e/)a] > 0

by (4a). Next,

(C.9b) —fkyfoy = —0k /o + ﬁ(l) (8e/z7)dt < €= (¢/x)- J'ﬁ(l) cH(t)dt < e

since c*(t)dt < u for T< T and then, using (2—4) again,
T(I) g

I-H{’
T
(C.9c) k, = k,’]‘; + 6kT > z3-k¥ — ezl + (e/}{)z,"l‘,-j,r(l) c*(t)dt

> zp(ky — ezl /z3) > zi(Ko—1—H—€a) > 0.

So the whole variation is feasible. For =7, < 00, (9.c) yields

_ _ o 7(1+H)
(C99)  K(r,,) > B(r ) - en(r, Ji-/m)] 7 erode] = (),

7(1

so that k catches up with k* at or before 7

- if this time is finite. (The saving
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phase of the variation (5) could be stopped at the catching-up time if this occurs before
Ty Dut the notation is simpler if this is not done.)
The rest of the argument then proceeds as in Foldes (1990&:78a). Substituting

from (5) into the formula

(C.10) Dp=E/[ éc-v-dt
— see (2.13), writing
(C.11) y* = z%-v,
dividing by € and rearranging, we have
_ 7(h) 7(1+1)
(C.12) (l/h)EJ yTectod ¢ (l/H)EJ yT-ck-dt,
0 (1)
or, transforming to consumption time,
h I+H
(C.13) (l/h)EJ §T.di ¢ (1 /H)EJ §7-di.
0 I

Letting h | 0, x | 0, and bearing in mind that we already know that y= is a right
continuous, positive supermartingale with Ej=(0) = y(0) < oo, it follows as in the
proof of Theorem 2 of Foldes (1990) that in the limit we have
(C14)  y(0) = E§n(0) < B§n(T), 0<1<K,
so that in fact there is equality and = is a (true) 2 - martingale.

We now drop (C.2) and review the proof. For given a > 1; (fixed for the time
being), define a stopping time
(C.15) $y = §(a,mw) = inf{t: 23/zf > a} A oo;
(note that ¢ o cannot be finite a.s., since this would contradict optimality of the star
plan). For brevity, we sometimes write f{(ga) =k o ©tc. Continuing to choose € in
accordance with (4), replace each 7; in (5) by 7; A<, The verification of feasibility up
to (9c¢) remains valid with these replacements. It is not true in general that k catches
up with k* at or before 7

I+X
phase of the variation by setting

A Sa if Sa < Ty We therefore define a continuation
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(C.16) ¢, /ey = l—ca/l—(z for t>¢, if ¢ <m ., ie
— 5 —¢¥ — ¥k /k* —1] = ©*. &k [ik* -
b, =¢, —ct = cilk [k —1] = c}-6k [k ;

obviously this is feasible. (The variation could be stopped at the catching-up time if

this occurs before Tiin A

Reviewing the proof for the bounded case, and noting that 2% = a-zz by continuity if

Sop but once again we leave this aside for simplicity. )

Cq < 00, W find that

(C.17) - 61—((1 $ ezt =eazy

—§k [k* caz¥ k¥ = e alk*
bk Jk* < eaztf[k? = eafk] .

if Sq < Ty 2 hence

Calculating the directional derivative as above, (12) is now replaced by

T A
I+ "o
"yTeckdt ¢ (1/H)EJ yToc-dt

UL

~(1/)B[30 < ¢p< 7 +H}-J: (0K /Rhv,-dt].

ThA €
0

(C.18) (1/h)EJ

Taking into account the integrability conditions mentioned earlier, the term on the left
and the first term on the right converge as a | oo to the corresponding terms in (12).
Thus, in order to complete the proof, we want the second (or ‘nuisance’) term on the
right to vanish, as a | oo, for an arbitrary choice of 1+1. This term is positive, and
using the upper bound for

(C.19) —51_(&/1?;

supplied by (17), a sufficient condition is

m

(C.20) lim E[a-J{O << TH_H}-(l/kZ)-J (‘:::-vt-dt] = 0 for 0 <1+1 < K,.

- m 9
o
If zv/z* is bounded, the indicator function in this expression vanishes for « large
enough, so that the condition is satisfied. Note also that, as a1 oo, so that o T o0,
both the indicator function and the integral in (20) decrease pointwise to zero.
However, the condition is not very convenient and its economic meaning is unclear.

To get a more transparent sufficient condition, note that
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11} (1
(C.21) - [ ciov,-dt = I yi-ci-dt < sup{y*(wt): t 2 ¢ }-k*.
Ca Ca

Thus, applying first the Schwarz inequality to the expectation in (20) and then a
maximal inequality, it is found to be sufficient if both
(C.22a) sup {E(y}):t€e 9} < o0 and

(C.22b) lim[a-P{0<¢ <} =0 for 0<i<K,
- w

REMARK I. This Appendix has assumed a continuous market process Z with short sales
permitted. However, continuity of Z as such plays no part in the proof when (C.2)
applies, and in this case the argument extends to discontinuous Z and II = II*,
provided that #* > 0 and that holdings within 7* of securities comprising = are
sufficient to allow the spending phase (with small €) to be financed by sales of .
REMARK II.2 A much shorter argument can be given when (C.2) applies. Assume
either that Z is continuous with II = I19, or that 7* > 0 with II0 or II*. The con-
ditions (2.20) apply. Also, we know from earlier work, see (2.16)—(2.20), that y* is a
local martingale reduced by any sequence (Ti) with i | Ko. If z& < az*, then y™ < ay¥,
and since, for each i€[0,K,), y* stopped at 7y is a ui. martingale, the same is true of y=

stopped at 7. So y~is an 2( -martingale. |

2 Esprit de l’escalier: to be added to Journal version in proof.
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