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1. INTRODUCTION

The object of this paper is to prove the existence and uniqueness of an optimal planin a
slightly modified version of the portfolio—cum—saving (PS) model formulated in [1]. The
model considers planning for optimal saving and portfolio choice over an infinite horizon in
continuous time by an investor who seeks to maximise welfare, defined as the expected
integral of discounted utility. Both utility and the return to investment are subject to risk,
the sources of risk and the investor’s information structure being specified in a very general
form; in particular, the vector process X representing log—returns to investment is only
assumed to be a semimartingale with respect to a given filtration. Consumption and
capital are constrained to be non—negative. Assets are divisible and can be traded at
market prices without transaction costs and short sales are forbidden. In [1] we discussed
conditions characterising an optimal plan but not whether such a plan exists. A variant of
the model was considered in which the X—process is continuous and short sales are permit-
ted, but this is left aside here apart from a brief remark. The only other substantial change
in the definition of the model is that a portfolio plan 7 is defined here as a predictable
process specifying the (non—negative) proportions of capital assigned to the available
assets, whereas in [1] a portfolio plan was required to be adapted and continuous on the left
with limits on the right (collor). The left continuity expressed the requirement that any
jump AX(t) in the market should accrue to the portfolio (t) = m(t—) held immediately
before t, not to the portfolio 7(t+) chosen at t. Bearing in mind that the predictable
o—algebra is generated by the adapted collor processes, the present definition does
essentially the same job, while ensuring that limits of portfolio plé,ns are portfolio plans.

As shown in [11-12] in the special case where X has independent increments, an optimal

plan with 7 collor cannot in general be expected to exist unless the characteristics of X



satisfy substantial conditions of smoothness, in particular the absence of fixed times of
discontinuity. The theory of necessary and sufficient conditions for optimality with non-
negative portfolios developed in [1] is substantially unaffected by the change of definition.

Ezistence of an optimal PS plan is proved here under the hypothesis that the welfare
functional has a finite supremum and that there is a maximising utility sequence which is
weakly precompact in a suitable L, space. An optimum exists if the undiscounted utility
function is bounded, and separate sufficient conditions are given for the cases of negative,
positive and logarithmic utility. In the case of a single asset (or a fixed portfolio plan) the
method of proof is a modified version of that used in [2]. An extension of the one—asset
proof has been applied in [3] to a finite—horizon PS model driven by Brownian motion, but
to my knowledge the method has not previously been used in a PS model with general
semimartingale investments.! The method used here to deal with convergence of portfolio
plans — which makes use of weak sequential compactness in a suitable L2 space — also
appears to be new. Advantages of the present approach to existence include the
(relatively) simple methods used and the generality of the assumptions about information
and about the market and portfolio processes. In particular, the filtration need not be the
smallest for which the X—process is optional; the question of the ‘completeness’ of the
market does not arise; there need be no riskless security; no martingale representation or
duality theory is required; and an infinite horizon is allowed.

Two questions concerning uniqueness are considered. The first relates to the
conditions under which the portfolio plan generating a given returns process is unique
— or, more or less equivalently, the conditions under which the sum of a finite number of
semimartingale integrals uniquely determines the integrands. General results on this point

do not appear to be available. It is well known that distinct portfolios can generate the

1 Existence in the infinite—horizon case is also proved in [3] and in [10], but by different
methods; the models considered are driven by Brownian motion with information defined
by the ‘natural’ filtration.



same returns even in one-period models, and there are familiar conditions for portfolio
uniqueness in this case, see [15] T.2.5. Sufficient conditions for portfolio uniqueness and
uniqueness of equilibrium in models driven by Brownian motion are also known, see [16]
and references cited there. Portfolio uniqueness when X is a process with independent
increments and portfolio plans are required to be collor (except perhaps at fixed times of
discontinuity of X) has been discussed in [11-12]. Here we shall investigate this question
under the assumptions that X is a general semimartingale and portfolio plans are
predictable and non—negative. The discussion involves the use of random measures
associated with the jumps of X. This technique yields a simple treatment even in cases
where X may have arbitrarily large jumps — in particular, where X is not a special
semimartingale — and in cases where the paths of X may have countably many
(arbitrarily small) jumps during a finite interval; such processes have sometimes been
proposed as models of speculative prices. In elementary cases, the results obtained reduce
to well—known conditions such as non-singularity of a returns matrix or positive
definiteness of a covariance matrix. The second question relates to the uniqueness of
optimal plans. Here the answers are classical: briefly, an optimal plan is unique if there is
diminishing marginal utility and portfolio uniqueness.

The main features of the model together with some preliminary results are set out in
Section 2; some material from [1] and [2] is included to keep the discussion self—contained.
Section 3 investigates some convexity and convergence properties of feasible sets of
consumption and portfolio plans needed for the existence theorems; the latter are then
quickly proved in Section 4 and some criteria which are sufficient for existence are given.

Uniqueness is considered in Section 5.



2. THE MODEL

Let J=[0,00) be the time domain with Borel sets .2 and Lebesgue measure [ and let
(2, £P) be a complete probability space with a filtration A = (./Jt; t€ J) satisfying the
‘usual conditions’ of right continuity and completeness, where A£= A while £ 0= A o
is generated by the P—null sets (so that an ¢ o—measurable variable is a.s. constant

on ). 2 represents the investor’s information structure and P his beliefs. We define
the products o = 2 xJ, £ x B, m=P x[ and write 5 = (w,t), dm(s) = dP(w)dt,

dt = di(t). Statements which hold apart from null sets of J , ¢ are qualified by
‘a.a.t.’, ‘a.s.’, ‘a.e.’ respectively, the measures considered being [, P, m or equivalent
measures unless otherwise stated. In the product space o we define in the usual way the
o—algebras #, 0 , # of progressive, optional and predictable sets, as well as the
corresponding classes of processes.2 The following conventions apply unless we state or
imply otherwise. Measures are by definition non—negative. All processes considered are
assumed, or may easily be shown to be, at least progressively measurable, (but it would be
possible to replace progressive by optional measurability throughout). Scalar r.v.s and
processes take finite, or occasionally extended, real values, while vector r.v.s and processes
are families with a finite number A = 1,...,A of components. The Euclidian norm in RA
is written ||:||. For a scalar process ¢, £ > 0 means £(s) >0 forall 5 and £>0
means £(s) 2 0 for all s, modulo null sets, while similar notation for a vector process
means that the condition applies to each component; analogous convention for r.v.s, with s

replaced by w. For te ., E' means E(-/ 4), similarly EY, EY™ for a stopping time v.

2 # comprises (w,t) sets H such that, for each Te ., the subset H n {Qx[0,T]} belongs
to A T * .,?T. 0 1is generated by intervals of the form [o,7[ where o, 7 are stopping

times, or equivalently by the right continuous, adapted processes. # is generated by
intervals Jo,7] and sets A x {0} with Ae.f o O equivalently by the left continuous,

adapted processes. We have A£x 2 H2J 0 2.



The terms positive, negative, increasing, decreasing have their strict meaning throughout,
but 1, | mean non—decreasing, non—increasing. Semimartingales, martingales, non-
decreasing and finite variation processes will by definition be finite on J and continuous on
the right with limits on the left (corlol). A semimartingale £ is called positive if £(t) >0

and £(t—) > 0 on J a.s. For any process we set £(0—) = £(0), so that for stochastic

(and pathwise) integrals we have I[o,'r] = | (o,1] which we often write as jg .
Martingales, non—decreasing and finite variation processes satisfy £(0) = 0 unless
otherwise stated. A process ¢ is called integrable on compactsif E| §T| < oo for each

Te g, similarly square—integrable on compacts if Ef,% < oo foreach TeJ; but locally
integrable means that E| {(Tn)| < oo for some sequence of stopping times T 1 oo as.,
etc. Finite variation means finite variation on compacts, the variation being written

1€, = j§|d£t|; thus integrable variation on compacts means E|¢], < oo for each TeJ,
etc. Finally, if a given set = of processes is specified, two elements §1 and {2 which are
indistinguishablé, i.e. which satisfy 6¢(w,t) =0 for all te J a.s., where &£ = {1—52, are
identified and we write 51 = {2 or 0(£=0. If 66 =0 a.e., we call the elements similar
and write §1 ~ &, Or 6¢ ~ 0, specifying the measure and o—algebra in question if

necessary; as explained in the footnote, we identify similar processes in certain cases.?

3 Identifications are usually defined so as to set up bijections among equivalence classes of
processes associated with the same ‘plan’. As will appear, there is for each ‘plan’ a con-

sumption plan in natural units €, a consumption plan in standardised units c, correspond-
ing capital plans k, k, a utility plan U, a portfolio plan r, a returns process z and a

log—teturns process x = Lnz. Now k, k, z, x are (corlol versions of) stochastic or
ordinary integrals and are naturally defined as classes of indistinguishable processes; in

these cases, §1~ §2(m) — 51562. On the other hand, €, ¢, U are progressive processes,

and by identifying m-similar elements we obtain bijections among €, ¢, U, k, k, z, and x
classes. The details so far are straightforward if tedious and can usually be omitted. More
care is needed in the case of portfolio plans, which are predictable processes with no
specified properties of sample continuity. Suppose that T, gemerates x., i = 1,2. Distinct

portfolios can generate the same returns even in a one—period model, so it is to be expected
that in general X15Xq does not imply " 2(m). Conversely, if the market can jump at



On the measurable space (¢’,#) we consider, in addition to m , a unitary
measure g, with the same null sets, defined by

du(s) = dp(wt) = q(wt)dP(w)dt = q(s)dm(s), .(2.1)
where q is a positive, finite, #—measurable function satisfying Ejg Qwt)dt =1; g is
called the discount measure, q the discount density. We denoteby £, = Ll( o, %, R)
the space of (classes of) progressive, y—integrable, real—valued processes & = £(5) = £(w;t)
on ¢ with the norm [|¢|dp. When the domain is not specified, y—integrals are taken
over .

As in [1], a finite number of assets (or securities) indexed by A = 1,...,A are

assumed to be available at all times, where A > 2 to avoid trivialities.. For each A there

A

is given a semimartingale x” with x)‘(w,O) = 0 called the log—returns or compound

X
interest process for )\, and the formula z)‘ =¢e*" defines a positive semimartingale called

the returns or price process for \. The vector X = (xl,...,xA) is called the market

log—returns process. Decompositions of x)‘ are written

2 = My v A

where M)‘c, M)‘d

V)\c7 V)\d

+ Vv o M VA ..(2.2)
are continuous and compensated jump local martingales respectively,
are continuous and discontinuous processes of finite variation; all these
processes vanish at t=0. In general only M’\c is uniquely defined, but a choice of any one
of M)‘d, V)‘c or V)‘d fixes the remaining terms. Similarly, for vectors, X =M + V etc.

A

We also write x'C = MAC 4 VA, X€= M4 V&, M = prd  yAd xd _pyd | yd

It is always possible to choose a decomposition such that, a.s. for allte T and each ),
Ax)‘(w,t) = 0 implies AM)‘(w,t) = —AV)‘(w,t) =0. (2.3)
To check this, suppose first that X is a special semimartingale, choose the ‘canonical’

decomposition X =M + V with V predictable, and let (u{ ) be a sequence of predictable

predictable times, 7r1~7r2(m) does not imply X;2Xy. We shall introduce below measures
for which TN Ty implies X =Xo), also the converse under additional conditions.



stopping times which exhausts the jumps of V. Further, let (l/'i') 1 oo be a sequence of
finite predictable stopping times which reduce M, see [9] VI.84, and let v =viAv]. If
the assertion were false, there would be some Y, = v, some A, and an event A€ .4 y with
A_ A_ _AvA A :
PA > 0 such that AxV—O and AMV— AVV#O on A. Now V,€ £, since V

is a predictable process of finite variation, so AMI);-I A= —AVQ-I A €A, hence

Mi_ = EV—Mﬁ a.s.on A. On the other hand, the martingale property of (M,, )
implies Ml);_ =EY" MI); a.s., hence AMﬁ = M;) - Mi_ =0 a.s.on A, a contradiction

o . . . =X _ A
which yields the result. If X is a general semimartingale, V= Et <t [Ax A I” Axt||>1]
defines a process V of finite variation, X—V is special and so has a decomposition M+V
with v predictable, and X—V and V cannot jump simultaneously. It then follows from
the preceding argument that X = M + (V+V) is a decomposition satisfying (3).||

Ao M’\ + V’\ are the ‘angle brackets’ process (MAC,MAC), also

Associated with x
written as (MAC) or (x)‘c), and the ‘square brackets’ processes [x)‘,x)‘] = [x)‘] and
[M)‘]. Recall that (M)‘c) is the unique continuous non—decreasing process such that
(M)‘c)2 - (M’\C) is a local martingale. The various brackets are related by

'l = @+, = 5

], = o+ My, M =, sT(AMi‘)z. (2.4)
For an arbitrary local martingale M)‘, the bracket (M)‘) may be undefined, but if M)‘
is locally square—integrable then (M)‘) is the unique predictable non—decreasing process
such that (M)‘)2 - (M)‘) is a local martingale, and (M)‘) is the compensator (dual
predictable projection) of [MA] so that [M)‘] - (M)‘) is a local martingale, see
[9] VIL.39—42. Further, if M isa (true) martingale and is square—integrable on
compacts, then [M)‘] and (M)‘) are integrable on compacts and both (M’\)2 - (MA)
and [M)‘] - (M)‘) are martingales, see [8] 1.4.50. Square brackets are defined for all

semimartingales. For vectors, we sometimes write



X1, = 5,0, VI =51V,

M1, =5, IMY, (MO, =5, (M), =5,(MY), (2.42)
etc. The brackets (M)‘C,M!Lc)T etc. are defined by ‘polarisation’, i.e.
4(M)‘C,M£c) = (M)‘C+M£c) - (M’\C—Mf'c) etc; in particular,
x4, = ofemto 4 EtST(Ax:‘-Ax%). ..(2.5)
We denote by (I ) o the (random) matrix with elements (M’\C,M’Lc)T (M ) (M ) s
is symmetric non—negative definite for each pair S < T from J a.s., see [7] 3.46—47.

A portfolio plan = is now defined as a predictable vector process with components
A

77 satisfying
0¢ M wt) <1, A=1,.A, .(2.6)
£, (wt) = 1 (2.7)

for all (w,t), (subject to conventions for identification to be discussed below). The
restriction 7 > 0 means that short sales are forbidden. Note that, since AX(0) =0, the
vector m(0) may be defined arbitrarily without affecting portfolio returns (see below).
The set of all portfolio plans is denoted by II (corresponding to mt in [1]).

Given a portfolio plan 7ell, the portfolio returns process z" generated by = is

defined as the unique semimartingale satisfying the equation

T A
2"(T) =1+ Jo 2"(t-) 5, 7(1) %;Tt(% (2.8)

for all te 7 a.s. It may be verified, as in [1] 5.2, that z"(T) and z"(T-) are defined and
positive for all TeJ a.s. Consequently the relation z”" = e defines a semimartingale
x" on J with x7r(0) = 0 called the portfolio log—returns process generated by , or

simply the compound interest process for m. Writing

T A s
dm=] gl - | T do=Co=o (29)

transforms (8) into the linear relation



(1) = J: 3, (1) (2.10)

and the change—of—variables formula yields

NT) = x + %(x)‘c) + By eple efXNE) _q Ax’t\], ..(2.11)
the sum on the right converging absolutely for all T, a.s. The processes z”, x", (" define
one another uniquely. Using these relations it is shown in [1] that x:’rr may be calculated
explicitly as

x"(w,T) = x;r

= [ 5,n* aM?C 4 [ 5,0t amM

+ I8y @V 4 [ 5,0 avA

+4f By d(M’\c) —%f EAELW)‘WL d(M)‘c,Mlc)

+ 3y gl -3y A, (212)
the sum over t in the last term converging absolutely for all T a.s; here [ = | '(1; , all
variables and angle brackets on the right of the equation should have the subscript t, and

Ax = In [2)\'”‘)\ Ax (t)] ...(2.13)

The investor has an initial capital K o and no ‘outside’ income. Given a 7€ll and
x", we say that an (m—a.e. defined) progressive process € is a 1—feasible consumption plan
in natural units, or simpy a ¢—plan financed by , if it is non—negative and a.s.

[~integrable on compacts of 7 and if the semimartingale k solving (strongly) the equation

KT)-K, = E k(1) X (:)gex™(t) _ J: o(t)dt (2.14)

is a.s. non—negative on J; then k is called the capital plan in natural units corresponding
to €. Asshown in [1], (14) has a unique semimartingale solution defined on the whole of

J a.s., which is given explicitly by
T
K1) = &"(T [Ko —J c(t)e—x“(t‘)dt]. .(2.15)
0

The set of all c—plans which are 7—feasible is denoted ¥ " and the set of all ¢—plans which

10



are n—feasible for some 7€ll is &. A (feasible) portfolio—cum—-consumption plan — or
simply a PS plan — in natural units is a pair (C,r) such that ce ¥ and mell.

The investor’s aim is to maximise a welfare functional of the form

(e = EJ: aE(wt); wtla(wt)dt = Jd’ﬁ[é(s);s]du(s). (2.16)

The utility function @ = 1(C; wyt) is defined for 0 < C < 0o, wef), t€ I, and takes values
in [—00,00]. Considered as a function of all its variables, it is 3[0, o] * 7 measurable.
For fixed (w,t), U is continuous, concave and increasing in C (the continuity at C=0
and C=co being one—sided). As usual, @ may be selected from a family of functions
differing only as to scale and origin; thus we may assume @ < 0 if utility is bounded above,
i > 0 if utility is bounded below.4

It follows from a Measurability Lemma for processes, [6] p.503, that for Te & the
utility plan defined (m—a.e.) by

0(.) = I_I.é(.) = @c(.,.); -y -.(2.17)
is —measurable. The domain of the functional ¢ is taken to be #; it is always
assumed (or inferred from other assumptions) that for each € in this set the positive part
of the double integral in (16) is finite, and further that the supremum ¢* of the functidnal
is finite. The PS problem is to maximise % on ¥ (if possible). A PS plan (¢*,7*) is
called optimalif p(c*) = ¢* (and ¢* is finite).

T

Let us for the moment fix =, write x = x", z = 2", and consider the problem of

4 The definition (16) differs from that in [1] because of the appearance of q in the

integrand, but this is not a point of substance since the distinction between @ and q is
largely arbitrary; the reason for introducing q is that we want to integrate with respect

to a unitary measure. Note also that the marginal utility function @’(C; w,t) is not

needed here, and that no special conditions are imposed on the limits of #(C)/C as C-0
and C - oco0. It would be possible for present purposes to replace ‘progressive’ by

‘predictable’ in the definition of a ¢—plan, but this would be inconvenient for the theory of

necessary and sufficient conditions for optimality, where one wants the process ﬁ’(é)qexﬂ
defined by an optimal plan to be a right continuous local martingale — see [1].

11



. . . — - . - . - .
maximising ® on ¥ . Given an element T and corresponding k, we introduce new

processes ¢, k by the definition

o(wt) = e(wt)e™ (wt), k(w,t) = K(wt)e™ (wt), ..(2.18)
The solution (15) of (14) then reduces to
K(T) = K, — [3 c(t)dt, (2.19)

and the requirement that k(T) >0 on J as. is equivalent to

Joc(wt)dt <K as. ...(2.20)
Wecall ¢ and k the consumption and capital plans in 7—standardised units — or simply
the ¢ and k plans — corresponding to € and k. Itis clear that a c—plan can be defined
directly as a progressive process ¢ = c(w,t) > 0 which satisfies (20); this definition does
not involve k, which can be defined by (19) if required. We denote by # the set of all
c—plans; an advantage of working with & as the feasible set is that it does not depend on
the choice of 7. Given any 7, each ce & defines an element € = ceX" €#" and every
Ce ¥ can be obtained in this way from some ¢ and 7. Thusa PS plan can be specified
either as a pair (C,7) or as a pair (c,7). In the latter case, the set of all plans is simply

#I1, and it is sometimes convenient to write the functional (16) in the form
(|
oe,m) = E J ale(t)e" Mstlg,at = f ae(s)e" (%):sjdu(s). (2.21)
0 o

The problem of maximising » on %" is clearly equivalent to that of maximising
¢(.,m) on ¢, which in turn is essentially the same as the problem of optimal saving with a
single asset studied in [2]. We say that c* is r—optimal, or equivalently that ¢* = c*e*

is 7—optimal, if ¢(.,7) attains its supremum on ¥ at c* and ¢(c*,7) is finite.
The existence theory of Sections 3—4 below can be simplified by a preliminary

transformation of the probability measure. It is known — see [9] VIL.58, 63 bis & 98c, also
[13] 7.3 — that there exists a probability Q equivalent to P, with dQ/dP bounded,

12



such that, under Q, X has a decomposition M + V such that, for each A, V)‘ is

predictable, each M isa martingale and E(M,;‘)2 , E(|V)‘|T) are finite for each Te J;
(one can also obtain E( |V)‘|T)2 < 00, but this is inessential here). In general Q is not
unique, so we make a convenient choice once and for all. Replacing P by Q and q by
ntg(dP /dQ) leaves unchanged the measure p defined as in (2.1), and since the set of
feasible plans is unaffected the values of the functional @ or ¢ are also unchanged. Until
further notice we shall assume, without changing the notation, that these replacements have
been made. When working with the transformed P, we consider only the canonical
decomposition of X. Since in this case M and V as well as M® are uniquely defined, the
same is true of M9 = M — M, V€ and Vd; moreover (3) holds.

Now recall that a non—decreasing process £ which is integrable on compacts defines
a o—finite ‘Doléans’ measure ¢ on (¢, H#) by setting

05(17) = Ef) n,d¢, .(2.22)
for non—negative processes 7 and then extending to {—integrable processes. If m and Ty
are processes for which ? ¢ is defined, the condition ? E((Jn)2) = 0, where én= My, i
equivalent to M~ 7y ( f)’ and then we call the processes similar for d & or simply for &.
We shall be mainly concerned with the case where the integrand 75 is predictable and
bounded. It is a standard result that £ has a compensator, defined as the non-decreasing
predictable process ¢P such that ¢ — ¢P is a martingale, and for non-negative or ¢-
integrable, predictable n we have ? Ep(n) =D E(17). Vector processes 7; and 7, are here
considered to be similar if ||énl| ~ 0, where [[é7]| denotes the process (||énl], : t€ 7); thus
n~0 means ||7| ~0. A measure 0 ¢ can also be defined for locally integrable, non-
decreasing ¢; in this case, ¢ —¢P is only a local martingale, see [7] 1(d—e), [9] VI.79-80.

Examples of such measures already encountered are m = [ and u=10 fq Under
our transformed P the processes [X], V], [V|, [M] and (M) are integrable on

compacts and we may consider the three measures

13



.0 =0 0 0 . 2.
[Vel+ 0] = 211+ )+ 3T P+ vE Qe+ ] (223)
The first and middle terms are clearly equivalent, taking into account (3); also, the middle

and last coincide on # since |V| is predictable and (M) = [M]P.

It follows from the definitions of the stochastic and Stieltjes integrals that portfolio
plans 7, and 7, which are similar for all of [VE], (M) and [Xd] define indistinguish-
able log—returns x, and x, (see Section 5 below for details). It might therefore seem
natural to identify portfolios which are similar for one of the measures (23), say for
0 )+ v| However, such portfolios can still be different in an everyday sense, because
sets which are null for (M) + |V| —e.g. intervals during which the market is closed —
can have positive measure for m, i.e. in ‘real time’. We thérefore prefer to identify
portfolio plans which are similar for (M) + |V| andfor m. Also, it is more convenient
for the existence theory to work with equivalent measures which are bounded on £#. For

this purpose we note that there is a predictable process f taking valuesin (0,1] such that

Jo frdM)+]V]) €1 ass ..(2.24)
Thus we may define bounded measures #i, n on (¢/,#) by
Explicitly, we have

(1) = [ pn-dn=4E [0 nf,-d((M),+]V1,) + 4B 7 7,9, -dt .-(2.26)

for non—negative or bounded predictable 7, and n(¢’) = n(I of) <1. We denote by
Ly = L2( ¢, ?,n;!tA) the space of (classes of n—similar) predictable RA—valued processes
Y satisfying

J VIR dn < o0, Y2 =5,(Y))?, (2.27)

and consider II as a subset of }32.

5 It is enough to consider the predictable times 7, =inf{t: (M), +|V,| 2i}, i=12,.,
. _ : R
with 7, = oo permitted, and to set f =13, 2 I[Ti-l,Ti[ , see [9] VI.86—87.

14



3. PROPERTIES OF FEASIBLE SETS

In this Section we establish some properties of the sets €, II and & which are needed for
the existence and uniqueness proofs.
The set ¥. By definition, a process ¢ = c(s) belongs to ¢ iff it is progressive, non-
negative and satisfies the inequality (2.20) a.s. Obviously # is non—empty and convex. If
ce ¥ and c’ is a progressive process such that 0<c’ <c a.e. (for m or p) then c’e€¢. If
(c,) is a sequence from ¢ and

cx(s) = liminf c (s) a.e(m), ..(3.1)

then c4 is progressive non—negative and Fatou’s Lemma implies

w (¢ ]
J cx(w,t)dt < Hm infnJ c (wt)dt < K, ..(3.2)
0 0 _

so that c«€ %; we call this the lower closure property for €.

If there is only one asset, or a fixed portfolio plan 7 with z = &' s given, we
may write ¢ = ¢/z and

ule] = ule(s)s] = We(shs, W) = fule(s)slduls) = #(e), -(33)
cf.(2.16), (2.18) and (2.21). Conditions for the existence of a 7—optimal element of & can
then be obtained as in [2] Section 3, with minor adjustments for changes of definitions and
notation; (in particular, c, g, ¥ in [2] correspond to T, c, ¥ here). Alternatively, one
can proceed directly to Theorem 1 below, which in the case of a single asset is just the
Existence Lemma in [2] with a slightly modified proof. Either way, the argument rests on
the fact that, if (c ) is a maximising sequence from ¢ with U , = u(c,) converging
weakly in £, one can construct a new sequence (Em) from & Withb cx =liminf €
such that

o(cs) 2 lim fufc Jdp = ¢¥ ...(3.4)

and since c4 isin € by lower closure it is optimal. This suggests a similar approach to
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the existence problem when 7 is variable, with €, @, @ in place of c, u, ¢; however the

properties of & corresponding to those of & are harder to establish.

The set I1. Obviously this set is non—empty and convex. Let Ty Ty be elements of II
generating Xqs Xo and let 7 a be defined n—a.e. by

T4 = omp, + (l—o)my,, 0<all; ...(3.5)
then 7 isin II and generates some X . Referring to (2.12—13), it is seen that for a pair
S < T from J, or more generally for a pair of finite stopping times such that S < T a.s.,
the function assigning to each « the random variable x or — %05 is a.s. finite and concave
in a. More precisely, the first five terms on the right of (2.12) are linear in «; the term
-3 (s,1] ) Aztirz?rg d(M)‘c,M’Lc) is concave because (I C)T — (MY g 1s non—negative
definite; and the last term is also concave by (2.13) because the log function is concave. It
follows that, a.s.,

Xop — X 2 0AXyp —Xp0) + (I—a)(xgn — Xo0)- ...(3.6)

Let (7rn) be an arbitrary sequence from II converging n—a.e. to some 7y ;
clearly m4€ll. Let x 1 be generated by T, X* by 7, and consider the convergence
properties of (xn). Changing the m_ on an n—null set of # if necessary — which does not
alter the x_ — it may be assumed that m — my for all (w,t). It then follows from the
dominated convergence theorem (d.c.t.) for stochastic integrals — see [7] 2.72—4 or
[13] 2.3.4 — and (2.12-13) above that X, — X« in probability, uniformly on compacts
of 7, i.e. foreach TeJ,

8up; (. |X (1) —x4(t)| — 0 in probability as n — oo, -.(3.7)
and selectin_g subsequences if necessary (henceforth s.s.i.n.) we may assume that

x (1) —x(t) as,
first for t < T and then, letting T = 1,2,..., on the whole of J. So, s.s.i.n.,

x,(5) — x«(s) a.e.(m).
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To justify the application of the d.c.t. in detail, consider separately the convergence
of the terms on the right of (2.12), setting 7= 7. In the first two terms we may consider
each )\ separately and take as ‘dominated integrands’ the bounded predictable functions
wf‘l ; the required convergence of the martingale terms | wédM)‘ then follows (for instance)

from [7] 2.73. The next four terms contain only Stieltjes integrals of the bounded

integrands WI); and WI);- wﬁ with respect to integrators of finite variation, and the passage

to the limit follows from [7] 2.72, i.e. essentially from the ordinary d.c.t. The last term is

. A MY
non-negative because Zvr)‘eAx > eEvr Ax

Ogvr)‘gl and 27r)‘

(convexity inequality); also, using Ln z < z—1,
= 1, it is bounded above, uniformly with respect to Ty by the non-

X
xXNt) _ 1-— Axi‘], which converges absolutely on J a.s.

negative sum % . %, Ca
according to (2.11)—, and the passage to the limit again follows from [7] 2.72. This
completes the proof of (7).

Now consider II as a subset of £,.6 Since n(¢#) < 1, the norms (j||7r||2dn)% are
uniformly bounded by 1 for all 7€ II. Consequently II is weakly sequentially compact
in the reflexive space £2 , i.e. every sequence (7rn) from I contains a subsequence
converging weakly to a (predictable) process T4€Ly [4] 11.3.28; here weak convergence
means [ X A(vrl); - wi‘)f)‘dn — 0 for every feL,. Denoting the subsequence again by (),

there is a sequence (7_ ) of convex combinations,

Jm -’m
T =X

m =¥ Ammtjr E Bm =l m=mpme., -(3.8)

6 In the argument which follows, the space £y = L2( o, 3’,n;RA) could be replaced by the
corresponding L, space, with the norm [ 3, | wi‘ldn . Conditions for weak sequential

compactness in L1 spaces are recalled in Section 4 below.
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converging o 4 in the norm of £,.7 The norm—convergent sequence (7_) also
converges in n—measure, [4] III 3.6—7, and s.s.i.n. converges n—a.e. to the same limit.
Clearly w4€ll, and if %m, Ty« generate im, X4 We may assume 8.5.i.n. that

T, — T* ae(n), X —x¢ (€T as. ..(3.9)
It further follows from the discussion leading to (6) above that

~

hence, by the convexlty of the exponential function,

t€J as., ...(3.10)

—%a(t) ¢ W4 ~Xme(t)
e < j{)lﬁjme teJ as. ...(8.11)

The set ¢. By definition, a process T = T(s) belongs to & iff it is progressive
non—negative and there is a 7€ll such that ¢ =ce * satisfies (2.20) a.s. If Te ¥ and
¢’/ is a progressive process such that 0 < ¢’ < C a.e., then C’€ #; moreover, if 7
finances ¢, then 7 also finances T’. (Proof: it is always possible to consume less!). As

regards convexity, let ¢ be elements of & financed by i j=1,2, let X; 24 be

J

¢, = oty + (l-a)c,, 0<agl, ...(3.12)

generated by T and let k. correspond to ((‘:j,7rj). A process of the form

is obviously progressive non—negative, and it is intuitively clear that ¢, can be financed
as follows: divide the capital K o into two funds in proportions =0 0= 1-a,

invest ajK o in 7rj and use the return to finance Ej . The only point requiring proof is

7 More precisely, there is for each integer n an integer m ,a set of integers j=1,...,Jq

Jn
and a set of non—negative numbers (ﬂln,...,ﬁ ) satisfying _El ﬂjn =1 such that
J =

Jnl

1> m +Jn and 7y — 2 ﬂJ .— 0 innorm as n — oo, see [4] V..3.14, also

IIln+ n mp+j

[5] pp. 54&91, for details. Smce m_ + D, we may replace ﬂ by ﬂm, Mot by 7 +

JIl by Jm, where m = m.
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that such a scheme corresponds to some portfolio plan as fhe term is defined here. It may
be checked that an appropriate 7= 7 o is obtained by setting, for.each A and each s,

wﬁ = [alwi‘l—(l_ + a27r3‘1_<2_]/[a11—(1_ + ook, ], ...(3.13)
where Ei— = Ei(t—), whenever the denominator is positive, with an arbitrary choice
otherwise; (this last qualification was omitted in [1] (4.4-5) ). Note that in general the
process 7 defined in (5) does not finance €,

We next consider lower closure. Let (En,w Il) be a sequence of PS plans and let Tx
be defined by

C(s) = liminf T (s) = liminfC(s) ae(m); ...(3.14)
N-o j2n J

we want to show that €«€ ¥. Now, for each n, the process 6;1 defined by

(':I“l(s) = inf in éj(s) a.e.(m).
is progressive non—negative and satisfies 0 < (':1“1 T, hence is in ¥ and is financed
by T Since é;l 1 €4, we may from the outset assume w.l.o.g. that (S 1 C4.

It remains to show that there is a my€ll such thaf (T4,m¢) is a PS plan.
Obviously €4 is progressive non—negative, so we need only show that thereis a m4€ll

generating an x, such that

Tawe e < Kk as (3.15)

o * A o .S. 5N
— see(2.20). By definition, we have

0

Jo én(t)e—x“(t)dt <K, as ...(3.16)

Referring to the discussion of II,let m — m weaklyin £, and define 7 asin (8)so

that (9)—(11) hold, s.s.i.n. The following calculation shows that the process x4 = lim X5
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satisfies (15):
r0
ea(t)e Py

Y0
D . ~

- flim_t_(t)le S mn%a(t)ay
Y0

- )

- lim_ [Em(t)e n ]dt

YO

< lim Jm e m(t)e_im(t)dt

- -/ m

¢  lm_ 3% B Jm ¢ (t)e *milthay
0

J ®
. m = —Xm +j t)
< im % 6. J ., (t)e ™m (Vg
(0] m+]

A
~

.(3.17)
The first equation follows from the definitions of the limits Ty, m4 and the fact that (Em)
is a subsequence of (En). The second equation follows because the semimartingales X,
and X4 are finite. The first inequality results from Fatou’s Lemma since all variables are
non—negative and then the next inequality follows from (11). The third inequality follows
because (€ ) { with n, hence (¢ )1 with m. The last inequality then follows from

(16) and the second equation in (8).||
4. EXISTENCE THEOREMS

THEOREM 1. Let ¢* be finite, and suppose that there is a maximising sequence (En)
from ¥ such that the corresponding sequence (U n) defined by

U (s) = T[T ()9] .-(4.1)
is weakly precompact in £, . Then there is a PS plan (T4,74) such that »(CTs) = ¢*.
ProoF. To say that (Un) is weakly precompact in El is to say that thereis a

subsequence converging weakly to some Uy in }31. Denoting the subsequence also by
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(U,), weak convergence to Uy means [(U ~Us)fdy— 0 for every fe€ ; an equivalent
condition is that the norms || I_In| dy are uniformly bounded and that | Hﬂndu — jHI—J*du
for every He %, see [4] IV.8.7. If U converges weakly to Us , there exists a sequence of
convex combinations

0 . =%¢ 0 .., %o =1 m=m;,m,., .(4.2)
converging to U, in norm and s.s.i.n. for p—a.e. s. We have

J Uul(s)dp = lim [ ﬁm(s)dp = lim [T (s)dp = ¢* ...(4.3)
by the definitions of weak and norm convergence and the fact that (ﬁn) is maximising.

Using the non—negative constants iy WE define a sequence (%m) by
Im

%m = j§1 ajmém+j; ...(4.4)
then %me % by convexity, and the concavity of @ implies (in abridged notation)
~ Im Jm
e ] = 1‘1[])_31 aJm(‘:m+J] > 1231 aJmﬁ[ém+j] = U, ...(4.5)
Define
¢x = lim T ; ..(4.6)

as shown above, we have T4«€ ¢, and using first the monotonicity and continuity of 1,
then (5), then U_ — U, we obtain

i(Ts) = li_mmﬁ(%m) > limmem = Uy ae. ..(4.7)
Integrating and taking account of (3) yields

Ju(Cs)dp 2 [ Usdp = ¢~ .(4.8)
Since ¢* is the supremum of the utility integral on ¥ we have equality in (8) and Ty is
optimal.||

This result reduces the existence problem to the search for explicit conditions which
imply (a) the finite supremum condition and (b) the existence of a weakly precompact
maximising sequence. A sufficient condition for (b) is that the set of all utility plans — see

(2.17) — is weakly sequentially compact in £, i.e. that every infinite sequence from the
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set is weakly precompact in 21. We recall that, if u( ) < 00, a necessary and sufficient
condition for a set § in 21 to be weakly sequentially compact is that the functions fe
are uniformly g-integrable. An equivalent condition is that for fe§ the norms [|f|du are
uniformly bounded and the indefinite integrals are uniformly continuous, i.e. that for every
€> 0 thereisa 6> 0 such that, for every feF, the conditions He # and p(H) < 6
imply [, |f|du < e. It is sufficient if thereis an f €€, such that, for each feg,
1| < |f,| ae., and a fortiori if all |f| are uniformly bounded (by a constant). It is also
sufficient if, for some ¢ > 0,

sup [ [11)] 1 €du(s): feg] < . .(4.9)
For these results, see [9]A 11.17-25, [4] Ch.IV, also [2] S.3.

Before turning to examples, we state separately an existence theorem for the case of
negative utility.

THEOREM 2. If @ < 0 and thereis an element ¢, € ¥ such that

+
g‘o(h(“:+) > —oo foreach h € (0,1], ...(4.10)

then there is a PS plan (¢*,7*) such that §(c*) = ¢*.

ProoF. This is essentially that for the one—asset model given in [2] (3.10-18) and will not

be repeated in detail. Aside from the change of notation mentioned earlier, it is only

necessary to replace standardised units by natural units; (thus assertions about

U, pC, %, in [2] are to be replaced here by corresponding assertions about

¢, 1,0, p %a’ #, with minor changes of wording). The argument uses the concavity of

¢, which was discussed at (3.12—13) above. Note that the hypothesis of Theorem 2

implies that ¢* is finite. The proof proceeds by assuming that there is no maximising

sequence (T ) from # such that the corresponding sequence (fIn) is weakly precompact

in £, and deriving a contradiction; thus Theorem 2 appears as a corollary of Theorem 1.||#

8 ] am grateful to Costis Skiadas for pointing out an error in an earlier attempt at a
simplified, direct proof of Theorem 2.
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It remains to give some examples of explicit criteria which imply that the
hypotheses of Theorems 1 or 2 are satisfied. When considering applications of these
criteria, it should be borne in mind that Theorems 1 and 2 involve the measure y but not
P and q separately. Since p is unaltered by the transformation of P and q introduced in
Section 2, the criteria may be applied using either the original P and q or the transforms;
the former choice is usually the natural one. Also, for given P, the split of the integrand in

® into the factors @ and q is largely arbitrary and may be chosen for convenience.

Bounded Utility. It follows from either Theorem 1 or Theorem 2 that it is sufficient for the

eristence of an optimal plan if U is a bounded function.

Negative Utility. We apply Theorem 2. Suppose that thereis a b > 1 such that

0> 4(Cs) > (1-b)cl™®  forann (C,9); (4.11)
then, if (T,7) or (c,7) with ¢ = ce X" isaPS plan, we have

o(c,m) > (1-b) L E J: o(t) DeIDIx(t) 44t . (4.12)
If, for given well, the integral

N = J: [E{e(l‘b)x“(t)q(t)}]l/ b4t .(4.13)

converges, a short calculation shows that the non—random function

¢(t) = ¢(0) [E{e(l_b)x“(t)q(t)}] o c0) =K /o, (4.14)
isin ¢ and that ¢(hc,m) = P(ht) > —oo for h € (0,1], cf. [11] S.4. In particular, if
q(wt) = pe P b with some p > 0, it is sufficient for existence if there is one asset A for
which

Jm [Ee(l‘b)x*(t)] /b e~p/b)t gt < . (4.15)
o
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Note that Ee( 1-b)x(t)

is for each t a value of the bilateral Laplace Transform of a
random variable; thus more detailed conditions can be obtained in special cases, notably if

X has independent increments, see [12].

Positive Utility. Suppose now that i > 0; here we apply Theorem 1, modifying the
argument in [2] 3.21-26 to allow for portfolios. According to (9) above, every feasible
utility sequence is weakly precompact in 21 if there is an ¢ > 0 such that

sup [J[ﬁ(é(s),s)]l'l'edp(s): ce ?f] < o, ..(4.16)
and this condition also ensures that ¢* < co. In particular, the condition is satisfied if
there is a be(0,1) such that

0 < 5(C:s) < (1-b)1c®  forall (C,s), - (4.17)
and further a fe(0,b) such that

® ey (3P ce 7
sup [EJ e(t) I PAg(t)dt: ce g] < . ..(4.18)
0
For a more explicit condition which is sufficient for (18) to hold, use T = ce
Holder’s inequality, then | gctdt <K, with K =1 to obtain

E J: E%_ﬂqtdt =E J: {ctex“(t)}l_ﬁ q,dt

o[ el [z J: (1) 3118 4]

o

< [E J: {e(l_ﬂ)x“(t)qt}l/ Z dt] 2 .(4.19)

Thus it is sufficient for existence if the supremum of the last expression taken over all 7ell

is finite for some P€(0,b), and a fortiori if

Jm sup, E[{e(lnﬂ)x“(t) qt}llﬁ] dt < oo. ...(4.20)

0
Once again, more precise conditions can be given in special cases, see [12].
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Logarithmic Utility. Conditions for positive and negative utilities can be combined to deal
with cases where utility is unbounded above and below in the same way as in the one—asset
case —see [2] S.3 — and we shall not go over the ground again. It is however worthwhile
to deal separately with the case of logarithmic utility. Let

i(C;s) = tnC  forall (C,s), : ...(4.21)
so that

¢(c,m) = E jg (tnc, + xf)qtdt, ...(4.22)
and assume for simplicity that q is non—random. The functional (22) has a finite
supremum iff

E [ (n c,)q,dt ...(4.23)
has a finite supremum on € and

E [0 (xf)adt = [ x"(s)du(s) ..(4.24)
has a finite supremum on II. The search for a maximum of (23) on ¥ may be confined
to non—random functions, and it may be shown that this problem has a solution iff

Ig |{n q;[gq,dt < oo, ...(4.25)
see [11] S.6. The processes (x: 7€Il) are uniformly p—integrable, and an element of II

which maximises (24) exists, if there is some > 1 such that
sup [ J |x; Iﬂqtdt WEH] < o0; ...(4.26)

in fact, |xt|ﬂ can be replaced in (26) by (x7r+)ﬂ + |x ~|, where x™, x™ denote the

positive and negative parts of x". We omit further details.

Short Sales, Continuous X. Conditions of optimality were derived in [1] for a version of the
PS model where X is sample continuous and short sales are allowed, i.e. (2.6) is omitted
from the definition of a (collor) portfolio plan 7. The question arises whether the existence

proofs given above also extend to a modified version of the model as defined here, with X
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continuous and (2.6) omitted from the definition of a (prediciawble) r A review of the
preceding argument and relevant passages in [1] shows that ;he set of feasible = mus;t be
further restricted if stochastic integrals such as those in (2.8—12) are to be well deﬁnéd, if
an arbitrary sequence (1rn)' is to be weakly precompact in 22 , and if the dominated
convergence argument leading to (3.7) is to be valid. It is sufficient if the choice of 7 is
restricted to a set satisfying a condition of the form ||7(s)|| < g(s), n—a.e., where g isa
predictable, real—valued process satisfying | ofgzdn < oo (or a condition of the form
EAIWA(5)| < g(s) with g predictable, locally bounded and satisfying | Gfg(s)dn < o0, see
footnote 6 above). Limited short sales can also be permitted in certain cases where X has

jumps, for example if the jumps are uniformly bounded in absolute value.
5. UNIQUENESS

Associated with any plan are processes €, T, x=x", z=e*, c=Ce X, U=1(cT) etc. As
mentioned above — see fn. 3 — the uniqueness of the correspondence among suitably
defined equivalence classes of these processes is straightforward, except in the case of the
relation between 7 and x”. In this Section, we shall consider under what conditions, and
for what definitions of equivalence among portfolio plans, the element 7 generating a
given returns process x is unique. Thereafter, we shall briefly consider conditions for
uniqueness of the processes €, 7, x, ¢ defining an optimal plan.

.Let T3 Ty again be elements of II generating Xq5 Xo and write ér = T~
fx = x)—X, etc.; thus A(fx), = Ax;,—Ax,, = §(Ax,), while ((5x)c), denotes the angie
bracket of the continuous martingale part of éx. In the present discussion we do not
impose in advance any convention defining equivalence among elements of II (except as
usual that indistinguishable processes are identiﬁed). Since some of the conditions

occurring below involve the distributions of the variables X , it is now preferable to work
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with the original (untransformed) versions of P and q. Thus M and M9 are now only
local martingales, V¢ and vd processes (locally) of finite variation.

We begin by noting some conditions on ér which are sufficient for dx = 0. It is
enough if all three of the following hold, a.s. for all T€ J, for each A, for some
decomposition of X satisfying (2.3):

fs (57ri‘)2d(M’\c)t = 0, ..(5.1)
JT 62V, = o, (52)
By ()2 1) = 0. .(53)

This assertion follows from (any standard version of) the definition of the integral of a
bounded predictable process with respect to a semimartingale, but for completeness we
outline a proof. Write out an expression for 6xT as a function of 6, Ty, Ty from
(2.12—13) and consider it term by term. We know that

B(JT o) a2 < B [T (6r)2au, (5.4)
and then it follows from (1) that jg 67ri‘ dMi‘c vanishes a.s. for each T, hence vanishes
a.s. on J by continuity. The fact that H&r)‘d(M)‘c) and j($7r)‘dV)‘c vanish follows
easily from (1) and (2) by the Schwarz inequality for Stieltjes integrals. Next,

[ I AEQ(w’l\w%—r;‘wg)d(MAc,Mu)] 2 _ [zAz£ JT orM (s é)d(M"C,M‘C)]?

< 3, J2 (6rM2 a?9 -5, 1T (rr+ns) ety = o ..(5.5)
by rearrangement, then the Kunita—Watanabe inequality [9] VII.54, and (1). This disposes
of the continuous terms in 6x, i.e. those with superscript c.

X
Now note that (3) says that, a.s., 67ri‘ =0 whenever ¢*(t)

A

# 1, or equivalently

whenever Ax AMi‘ + AVi‘ # 0; hence, by (2.3),

t =
57r:‘ =0 whenever AMi‘ #0 and whenever AV:‘ #0. ...(5.6)
A A Te AyjyAd Ay : AarAd
Thus the terms EtST&rtAxt and [ éridVy =zt5T67rtAVt vanish. Next, [ér"dM

A

is by definition the compensated jump local martingale L” satisfying L)‘(O) =0 and

A oA A A
ALT = 61rT-AM

e .AM? 20 we have L* = 0. Finally,

and since 6
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A, = tafsyrhy 0] aafs o, HO0) (5

AxX(t)

by (2.13), and on separating the sums over indices with e =1 from those with

eAx)‘(t) # 1 and using ¥ A"i\t =% A”gt =1 it is seen that this expression also vanishes. ||
If X is a special semimartingale and the canonical decomposition is considered, the
processes (M%), |V®| and [Xd] are locally integrable and the measures (eY > DIVCI
and D[xd] may be defined as in Section 2. It is clear that é7 ~ 0 for all three measures
iff (1), (2) and (3) above hold a.s. for all T and A. This confirms the assertion in Section 2
that, under the transformed probability measure introduced there, ér~ 0 for all three
measures implies 6x = 0. If X is a general semimartingale, we fix a convenient
decomposition of X satisfying (2.3) and work with this from now on. Now (M®) and
|Vc| are locally integrable so that 0 () and DIVCI are defined, and é7~ 0 for these
two measures iff (1) and (2) hold a.s. for all T and . However |Vd|, hence also |V],
[X] and [Xd], may fail to be locally integrable, leaving a[xd] and indeed all the
measures in (2.23) and (2.25) undefined, (and in this case the same will be true for every
decomposition of X, see [9] VIL.25). To obtain conditions expressed in terms of predictable

measures which fill the gap, we first rewrite (3) as
A
j J [57@ (et -1}]2 F(d¢dt) = 0, .(5.8)
[o,7] ' E
where F = F(w;d¢,dt) is the integer—valued random measure associated with the jumps of
X, the inner integral being taken over ¢ = (§1,...,§A) in E , an auxiliary ‘space of jumps’
which is a copy of gh , see [7] 3.22 or [8] II.1.16. Since éx is predictable and the double

integral vanishes identically, a condition equivalent to (8) is obtained if F is replaced
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therein by its compensator F = F(w;d¢,dt), see [7] 3.15, [8] II.1.8.9 Further, F can be
factorised in the form

Fw;dé,dt) = f(w,dét)dG(w,t), ..(5.9)
where f,(-) = f(w;-,t) isfor each (w,t) a measureon the Borel sets of Z which does not
charge the origin, f(-;B,-) is for each Borel set a predictable process, and G is a
predictable, non—decreasing process satisfying G(0) = 0 and EGt < oo for each t. Thus
the measure 0, is well defined, and (3) or equivalently (8) holds on J a.s. for each A iff

j 5, [(57@)2 Jﬁ{ee‘—l}zf(dg,t)] dG(t) = 0 ..(5.10)

[o,1] =

on Ja.s. A fortiori, (3) and (8) hold if 6~ 0 (2,).

Note further that G can be decomposed as G+ Gd, where each component has
the properties of G stated above and G® is continuous, Gd purely discontinuous. We
define J = {(w,t): AGd(w,t)#O} — up to indistinguishability — and note that J is the

predictable support of F, see [7] 3.24—25. J is thin (i.e. each section J ., contains at most

 F and F are (non—negative) random measures in the sense that, for each w, F(w;-,-)
and F(w;-,-) are measures on the Borel sets of = xJ. Roughly speaking, F is con-
structed by placing a unit mass (delta—function) at the point (w,{,t) if AX(w,t) = £ #0;

A

(if AX(wt) =0, ¢ isreplaced by a point ~¢Z). Denoting by 2~ the Borel sets of =,

we define optional and predictable o—algebrasin (2 x7) x E by 0 x ﬂA, 2x2h

. Then
F is an optional measure in the sense that, if W = W(w,{,t) is an optional non—negative
or (F x P)—integrable function, the process (W+F), = j[ 0,1] Jz W-dF is optional in the
usual sense; similarly, F is a predictable measure. The measures F and F are related
by the following facts: if W >0 is predictable, E(W+F) =E(W+F)_; andif W is
predictable and such that |W|+F, or equivalently |W|«F, islocally P—integrable, then
the processs WxF is the compensator of WxF, i.e. J[O,T]IE W-d(F-F) is a local

martingale. For a survey, see [14].
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a countable set) and so is a null set for GS. Consequently ér~0 for G iff éw~ 0 for
both G and G4,

To sum up so far, it is sufficient for éx =0 if 6r~0 for all of (M), IV, G°
and Gd. This criterion is certainly not necessary. On the other hand, it is complicated by
the absence of any particular relationship among the null sets for the various measures. To
simplify a little, without serious loss for applications, we shall from now on assume that
G as well as the processes (M)‘C,Mtc) and VAC for all AL have absolutely continuous
sample functions with (predictable, m—a.e. defined) derivatives g, o )‘t v». Then the
preceding criterion for éx =0 can be replaced by the simpler (but even stronger) sufficient
condition

brn0 for m+0,4. ...(5.11)

We now seek conditions under which, conversely, éx =0 implies (11). First note
some equations which follow from dx =0 without further assumptions. We have

[5x1, = ()%, +5, ST(A&xt)z = 0, (5.12)
and ((6x)°) vanishes with [#x], see [7] 2.23; hence, a.s. for each Te Z,

(6%, = J 5,3, br)6r0 o) Cdt = . ..(5.13)

Also, using (7) and 2)\67ri‘ =0, the condition that %, <T(A&x )2 vanishes can be written

Ag AXN(t 2 A
EtST[‘JA&'/rt{e X(t) _ 1}] = J[O . J [2)‘6% (et - 1}] F(d¢,dt) = 0. ...(5.14)
Since the double integral vanishes, so does its compensator, and we may again replace F
by F. Factorising F asin (9), then replacing th by gdt + de, we obtain two

integrals each of which must vanish on J a.s., i.e.

J fo.1] J E[EA‘”@{G@ - 1}]? fagg(t)it = o, (5.15)

J o] J: (64 - 1] 2 agmaa) = o .(5.16)

Note that in general (15—16) are weaker than (10).
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We now consider additional assumptions. It is clear from (13) that 67~ 0 (m) if
[aiw] is a positive definite matriz : ...(5.17)
a.e.(m). Alternatively, 6w ~ 0 (m) may be inferred from further assumptions about the

jumps of X. Suppose that

g(t) >0 ..(5.18)
a.e.(m). Then (15) leads to
B6r0(e —1) = 0 for f—almost all ge= .(5.19)

a.e.(m). For given (w,t), (19) says that the vector 6m(w,t) must be orthogonal in
A

E=1%" to f—almost all vectors eE —1, or equivalently to the subspace {ft} generated
by vectors eé —1 with ¢ in the support of the measure ft' A sufficient condition for this
to imply ém(w,t) = 0 is that

1y = 2t .(5.20)
Thus 6r~ 0 (m) if (18) and (20) hold a.e.(m). These conditions imply that, during any
interval of the form Ax(S,T| with Ae.¢ g S<T in J, there is for each asset a positive
probability of a jump in price occurring at some totally inaccessible time.

A separate condition is needed to ensure that 7~ 0 for cd. Bearing in mind that
de(w,t) = AG(w,t) > 0 iff (w,t)ed, it is seen that since (16) holds for all T a.s. we
have (19) for (w,t)€eJ, and then the result follows if (20) holds for (w,t)eJ. This can also
be expressed in another way. Letting (Vi) be a sequence of predictable times with disjoint
graphs such that J = U[Vi], (14) implies

%.cr [zAaw’\(ui){eAxx(”i) -~ 1}]2 =0 ..(5.21)
for all T a.s.; thus the big bracket vanishes a.s. for each i=1,2,... Writing v, =, taking
conditional expectations with respect to £ _, and noting that én(v)e.6, since 6r is
predictable, we obtain

E)‘67r}‘(V)EV— [eAx)‘(V) - 1] =0 as. ..(5.22)

This implies 67rV = 0 a.s. if, a.s., the subspace generated by the support of the distribution
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of exp(AX )—1 conditional on £, is 22 To sum up we have
THEOREM 3. Suppose that the processes V)‘c, (M)‘C,Mf'c) forall A,L and G® are
absolutely continuous. Then m, ~ 7, (m+ 0,q) implies x; =x,. The converse
implication also holds if one of the following is satisfied:
(17) holds a.e.(m), and (20) holds a.e.(9,4); ...(5.23)
(18) and (20) hold a.e.(m), and (20) holds a.e.(dy4). ..(5.24)
REMARK. Conditions (17) and (20) can be refined. Let {1} denote the subspace of gh
generated by 1 and {1}* its orthogonal complement; the relation ¥ ,\67r)‘ = 0 implies

A

67rt € {1}*. Dropping the subscript t when convenient, let ¢” denote the vector in RA

with co-ordinates a)‘ﬁ

, {at} = {0} the subspace generated by the vectors a)‘, and con-
sider B(¢) = 2)‘215’\510”' as a form on RA. Since B > 0, the subspace
N = {£&: B(¢) = 0} is precisely the set where B attains its minimum, from which it
follows that N = {¢&: (E,a}‘)=0 each A\} = {o}*. Now (13) implies that, a.e.(m),
B(6m) = 0, hence 6m € {o}* n {1}*, which in turn implies ér =0 if {o}* n {1}* = {0},
ie. if

{at} is a (A—1)-dimensional subspace not containing 1. ...(5.17a)
Next, consider {ft} = {f}. As noted earlier, (19) implies 6r € {f}*, hence
ém € {f}* n {1}*, which in turn implies ér = 0 if {f}* n {1}* = {0}, i.e.if

{f;} is a (A-1)-dimensional subspace not containing 1. ...(5.20a)

Replacing (17) and (20) by (17a) and (20a) allows conditions for portfolio uniqueness to

be given in case there is a riskless asset; we omit further details.

Conditions (23—24), suitably restricted to random intervals, also allow the concavity
inequality (3.6) to be replaced by a strict inequality. For brevity, we verify only the
following form of this assertion, which is needed below: if x,# x, and either (23) or (24)
is satisfied, there is a T€ I and a set A€ 6 T with PA > 0 such that
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X > oxp +(1-0)xy,  for 2T, wed, 0< o<l ...(5.25)
It is only necessary to prove the inequality for t=T, since (3.6) does the rest. Now, if
Xy # Xy, there is some Te 7 and C = {w: 6x(w,T) # 0} £, with PC > 0. It follows from
(2.12) and the ‘local character’ of the stochastic integral, [9] VIII.23, that there is a
predictable set H = {(w;t): t<T & 6m(w;t)#0} whose sections H & are a.s. non—empty for
weC, and for given weC we have either (H ) >0, or 6r(w;t) # 0 for some teJ NH A
Let Ci, CP denote the subsets of C for which these conditions are respectively satisfied,
and note that at least one of them has positive probability. Suppose that P(C?) > 0.

Then, if (17) holds a.e.(m), the term —le L?r)‘ it oMat is strictly concave for

weCl, and taking into account the concavity of the remaining terms in (2.12) this implies
(25) with A = C! a.s. Alternatively, if (18) and (20) hold a.e.(m), the set
i 2 i, (T N 2

= {weC™: EtEHwnJg(éAxt) >0} = {weCh [ [ [EAéw)‘(eg =1)]*f(d¢,t)g(t)dt > 0}
has positive probability, and for weCld we have Ax,, # Axy, for some t < T. It then
follows from (2.12) and the strict concavity of the log function that
Ax 4 > aAxy, + (l—a)szt, and taking into account that all terms in (2.12) are concave
this implies x ;. > ox;. + (1-a)xy, for weCd, proving (25) with A = Cid, Finally, if
P(CP) > 0, the assumption that (20) holds for (w,t)eJ implies that

CP = {weC: %

2 .
tenmmm(mxt) >0}, ie. weCP means that Ax;, # Ax,, for some t< T,

teJ  ; then the strict concavity of the log function again implies (25) with A = CP.||

Finally, we consider uniqueness properties of optimal plans. Let (61,7r1) and
(Tq,m5) mow be optimal, with X,, Xo generated by 7, 7, and ¢; = éle—xl ,
Cy = o X2 We have ®(T;) = ¥(cy) = ¢*. Let (c,,m,) beasin (3.12-13); this plan is

feasible, so ¢ =T e “*a ¢ ¢; It follows from the concavity of @(-;5) and the definition

33



of @ that

g‘o(éa) > ajp(Ty) + (1-a)3(c,) = ¢*; ...(5.26)
thus, if 1(-;s) is strictly concave a.e. (law of diminishing marginal utility) we have
ty v G (m), since otherwise the above inequality becomes strict, contrary to optimality. A
similar argument using (3.3) shows that, for a fized , a 7—optimal element of # is
uniquely defined a.e. if #i(-;s) is strictly concave a.e. From now on we assume this strict

concavity and denote by T =¢; =Ty =cje ' = cze"xz the unique optimal element of

#. Obviously ¢y v ¢y (m) iff x; =x,. Define 7 asin (3.5) with some fixed a€(0,1),

~N

let 7 o Benerate x and define processes c o’ Ca by

¢, = oc; + (l-ajey, T, = caexﬁ; ...(5.27)
then c €€, so %ae%. We have, for a.e. (w,t),
~ X ax+(1—a)x
t, = ¢,&® 2 {ac; + (1-a)cy}e™ " (1-a)x,
= t{aell (=) 4 (1_gjeo(xixay 5 o ..(5.28)

the first inequality results from (3.6), the second from the convexity of the exponential
function. Since €4 is optimal, the inequalities must in fact be equalities a.e., and

(ca, Ty X a) is optimal for each a. Now assume one or other of the portfolio uniqueness
conditions (23), (24) — or some variant implying that the strict inequality (25) holds for
some TeJ and some Ae.¢, with PA >0 whenever x; # x,. It follows from(25) that
the first inequality in (28) is strict for weA and t>T, contrary to the result obtained
previously, so that in fact Xy 5%y, Ty~ T (m +OGd). To sum up, we have

THEOREM 4. Suppose that @(-;s) is strictly concave a.e.(m) and that either (5.23) or (5.24)
e i are optimal plans,

J
j=12, then T ~CTy(m), c;~ey(m), x; =% v Ty (m+Dyg)

is satisfied. If (c j,1rj) with associated processes X, €= c
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